
Lectures on Public Finance Part1_Chap3, 2006 version   P.1 of 23  
Last updated 30/5/2006 

Chapter 3  Revenue Forecasting 
 
 
 

3.1  Introduction1 
 
Over the years, a key issue in the design of fiscal policy rules has been the accuracy of 
government budget forecasts, particularly those of tax revenues.  During the early years of the 
Reagan administration, “supply-side” forecasts of budget surpluses gave way to the reality of 
large deficits that persisted into the 1990s, despite several policy changes aimed at deficit 
reduction (Auerbach, 1994).  The persistence of overly optimistic forecasts led to the 
perception that, as budget forecasts came to occupy a more central role in the policy process, the 
pressure on forecasters to help policy makers avoid hard choices led to forecasting bias.  
However, the experience of recent years suggests that prior conclusions may need to be 
amended. 
  The remarkable U.S. economic expansion of the 1990s has also been a challenging period for 
government revenue forecasters, but with different consequences than before.  Continual 
surprises as to the overall strength of the U.S. economy and the share of income going to those 
in the top income tax brackets have led to a series of what turned out to be overly pessimistic 
aggregate revenue forecasts.  Large predicted deficits gave way to smaller predicted deficits 
and, ultimately, the realization of budget surpluses and the forecast of larger surpluses to come.  
These large revisions have had a significant impact on the budget process of a government that 
has lashed itself to the mast of revenue forecasts to help it withstand the political sirens in its 
path.  Even without such budget rules, though, revenue forecasts would remain an important 
input to the design of fiscal policy, for they provide a sense of what fiscal actions are sustainable 
over the longer term. 
  Some critics of the recent government revenue forecasts have suggested a bias, albeit in the 
direction opposite to that argued to exist in the earlier period. They point to the size of forecast 
errors and the consistent sign of these errors in arguing that the forecasters should have been 
able to do better.  But over, short periods, any sequence of individual forecast errors can be 
given a rational justification, and virtually any statistical error pattern is consistent with an 
efficient forecasting process that uses all available information in forming its predictions.  One 
needs more data to get a better sense of whether the recent forecasts really are consistent with 
forecast efficiency, or whether they simply illustrate the continuation of a process of biases 

                                                   
1 Section 3.1-3.7 draw selectively from Auerbach (1999, pp.767-80). 
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forecasting, with perhaps a change in bias. 
 

3.2  Data and Methodology 
 
Twice each year (and, on occasion, more frequently), the Congressional Budget Office 
(hereafter, CBO) and the Office of Management and Budget (hereafter, OMB) produce revenue 
forecasts for the current and several upcoming fiscal years.  One forecast typically occurs 
around the beginning of February with the presentation of the Federal Budget by OMB and the 
roughly coincident Economic and Budget Outlook published by CBO.  The second typically 
occurs in August or September, with OMB’s Midsession Review and CBO’s Economic and 
Budget Outlook: An Update.  For most of the sample period, both winter and summer forecasts 
have been for six fiscal years, including the one ending September 30 of the same year2. 
  In revising its revenue forecasts for a particular year, each government agency incorporates 
changes in its own economic forecasts as well as estimates of the effects of policy changes.  
For a number of years, both CBO and OMB have followed the practice of dividing each forecast 
revision into three mutually exclusive categories: policy, economic, and technical.  Policy 
revisions are those attributed to changes from “baseline” policy.  Economic revisions are 
changes attributed to macroeconomic events.  Technical revisions are residual, containing 
changes that the agency attributes neither to policy nor to macroeconomic changes.  For 
example, a technical revision in revenue would result from a change in the rate of tax evasion, a 
shift in the composition of capital income from dividends to capital gains, or a change in the 
distribution of income. 
  We may express this revision process as: 

  tititititi repxx ,,,1,1, ++=− −+              (1) 

where tix ,  is the i-step-ahead forecast at date t, and tip , , tie , , and tir ,  are the policy, 

economic, and technical components of the revision in this forecast from period t-1.  For CBO, 
these semiannual data on revisions are available continuously from 1984 through the present.  
While OMB does not publish comparable forecasts, it has produced them internally for 
revenues over roughly the same period, for the same forecast horizons as are considered by 
CBO.  For the two agencies together, comparable semiannual data are continuously available 
for revisions during the period from the summer of 1985 to the winter or 19993.  Initially, I 

                                                   
2 Recently, CBO has begun to report forecasts over an eleven-year horizon. 
3 Actually, OMB and CBO data on overall revisions 

1,1, −+− titi xx  -- but not their breakdown by source – may be 

constructed for a longer period from successive revenue forecasts, 
tix ,
.  For an analysis of revisions during this 
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analyze the sample that begins one forecasting period later, with the revision between forecasts 
made in the summer of 1985 and the winter of 1986, for this is the first period for which I have 
been able to obtain comparable Data Resources, Inc. (hereafter, DRI) forecasts4.  For the 
corresponding DRI forecasts, though, only the aggregate revisions, 1,1, −+− titi xx , are available. 

  Because there are two forecasts made each year for revenues in each of six fiscal years, there 
are twelve forecast horizons and twelve corresponding revisions for the revenues of each fiscal 
year being predicted.  The last such revision, however, differs from the others, in that it reflects 
changes over the very brief period between the late summer forecast during the fiscal year itself 
and the September 30 end of that fiscal year5.  Thus, for the statistical analysis below, I 
consider only the first eleven forecast revisions for each fiscal year, labeling these revisions 1 
(shortest horizon, from winter to summer during the fiscal year itself) through 11 (longest 
horizon, five years earlier).  Odd-numbered revisions are those occurring between winter and 
summer; even-numbered revisions are those occurring between summer and winter.  I refer to 
the final revision, occurring between the final forecast and the end of the fiscal year, as revision 
0. 
 

3.3  Forecast Evaluation 
 

Using the individual revisions underlying the means, one can construct formal tests of forecast 
efficiency.  Consider the relationship between successive forecast revisions for the same fiscal 

year, tiy ,  and 1,1 −+ tiy .  According to theory, if each forecast is unbiased and uses all 

information available at the time, these revisions should have a zero mean and should be 
uncorrelated.  Letting ia  be the mean forecast revision for horizon i, we relate these 

successive forecasts by the equation: 

  tiitiiiti ayay ,11,1, )( ερ +−=− +−+             (2) 

or 

  tiitiiti yy ,1,1, εαρ ++= −+              (3) 

                                                                                                                                                     
earlier period, see Plesko (1988). 

4 DRI makes forecasts at 3-year horizons monthly, but publishes long-range (10-year) forecasts only twice a year – 
currently in May and November, but with some timing changes over the years.  For purposes of comparison with 
the forecasts of CBO and OMB, I align the May and November forecasts with the CBO and OMB forecasts 
immediately following. 

5 Indeed, CBO does not provide a breakdown of this last forecast revision into components. 
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where 1+−= iiii aa ρα  and ti,ε  has zero mean and is serially independent 6 .  The 

hypothesis of forecast efficiency implies that 0=iα  (no bias) and 0=iρ  (no serial 

correlation). 
  iα , in expression (2) is the mean values, Table 1 presents estimates7 of the coefficients iρ  

for OMB and CBO8.  The table presents estimates based on two alternative assumptions 
regarding the sample period.  The first is that values of ia  and iα  are constant throughout 

the period, the second that the means differ between the pre-Clinton and Clinton periods.  The 
table also lists standard errors for each coefficient, iρ .  At the bottom of each column of 

estimates are p-values corresponding to F-tests of three joint hypotheses related to forecast 
efficiency9.  The first is that all means are zero for the agency in question ( 0≡iα ); the second, 

for the case in which separate subsample means are allowed through the use of dummy 
variables iδ , is that the differences in means across subsamples are zero ( 0≡iδ ).  The third 
is that all correlation coefficients are zero ( 0≡iρ ).  Of the first two sets of tests, only the test 

of different means for CBO fails to be rejected at the .05 level of significance. 
 
Table 1 Serial Correlation of Successive Economic + Technical Forecast Revisions, by 

Horizon, 1986-99 
Treatment of Subsamples:        Common Means               Separate Means        

Forecast Horizon: 
OMB CBO OMB CBO 

Coefficient Standard 
Error Coefficient Standard 

Error Coefficient Standard 
Error Coefficient Standard 

Error 
1 0.52 0.17 0.70 0.24 0.34 0.25 0.57 0.28 
2 0.81 0.21 0.56 0.14 0.69 0.23 0.34 0.16 
3 0.19 0.19 0.61 0.26 0.03 0.22 0.42 0.24 
4 1.28 0.21 0.67 0.16 1.30 0.27 0.37 0.21 
5 0.11 0.24 0.59 0.31 -0.03 0.20 0.38 0.29 
6 1.28 0.17 0.71 0.14 1.45 0.31 0.37 0.22 
7 0.07 0.24 0.50 0.32 -0.01 0.19 0.31 0.31 
8 1.21 0.26 0.71 0.14 1.35 0.42 0.34 0.22 
9 0.08 0.19 0.39 0.32 0.05 0.15 0.19 0.32 

10 1.16 0.39 0.60 0.16 1.37 0.53 0.21 0.20 
p-value (F-test) 0≡iα  .0290  .0213  .0037  .0012  
p-value (F-test) 0≡iδ  ---  ---  .0009  .1165  
p-value (F-test) 0≡iρ  .0000  .0011  .0006  .2218  

 
  The coefficients in the first panel of the table, based on common means, show substantial 
                                                   
6 For revisions at horizon 11, there is no lagged revision, so expressions (2) and (3) become 

ttt ay ,1111,1111,11 εαε +=+= . 
7 The estimation is based on the full sample, using lagged values from the summer, 1985 revision. 
8 Formally, these coefficients are correlation coefficients only if the variances of forecasts at successive horizons are 

the same.  However, sample variances typically do not vary much across horizons. 
9 These tests are based on the estimated variance-covariance matrix of each agency’s contemporaneous revisions for 

different horizons, and so reflect the strong correlation among these revisions. 
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serial correlation for both agencies.  The finding of serial correlation in revenue forecasts is not 
a new one.  For example, Campbell and Ghysels (1995) report some evidence of serial 
correlation in aggregate annual OMB forecasts.  As discussed above, one might have expected 
some of this serial correlation to be due to the presence of the policy component in each forecast.  
However, it turns out that eliminating the policy components of the successive revisions actually 
strengthens the results, typically increasing the estimated serial correlation coefficients. 
  All serial correlation coefficients based on the common means are positive, and the 
hypothesis that all are zero is strongly rejected.  This suggests a partial adjustment mechanism, 
with not all new information immediately incorporated into forecasts.  One can readily 
imagine institutional reasons for such inertia.  For example, it might be perceived as costly to 
change a forecast and then rescind the change, leading to a tendency to be cautious in the 
incorporation of new information in forecasts.  However, the serial correlation patterns differ 
between the two agencies. 
 

3.4  The Potential Impact of Taxpayer Behavior 
 

Another implication of forecast efficiency is that forecast revisions should not depend on 
information available to the forecasters at the time that the initial forecast was made.  Failing 
to take account of such information is one potential source of bias and serial correlation, 
depending on the nature of the information being ignored.  When on considers the behavioral 
impact of tax changes, “ignoring” information would amount to incorporating systematically 
incorrect forecasts of taxpayer response; for example, forecasts might systematically understate 
the strength of taxpayer reaction. 
  The logic is simple.  If revenue estimates overstate the impact of tax increases then, during 
the period after which taxes increase, there will be subsequent downward revisions in estimated 
revenue, as estimators in estimated revenue, as estimators realize that they initially had 
overestimated the impact of the policy change10.  If this realization occurs over time, it would 
impart serial correlation to the revisions.  If the tax changes being evaluated tend to be in one 
direction or another during the sample period, this could also impart a bias to the forecast 
revisions, causing excessive optimism in a period of tax increases and excessive pessimism in a 
period of tax reductions. 
  One approach to testing this hypothesis involves regressing the combined economic and 
technical revisions on lagged policy revisions (thus far excluded from the statistical analysis) for 

                                                   
10  Systematic errors of this sort would not occur simply as a result of the convention of excluding macroeconomic 

feedback effects from estimates of the impact of policy changes.  While such feedback effects are not attributed 
to individual policies, they are, in principle, incorporated in subsequent macroeconomic forecasts.  Thus, if 
feedback effects were estimated correctly, there would be no need for subsequent forecast revisions. 
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the same fiscal year, a procedure introduced in Auerbach (1994, 1995).  However, estimation 
using the OMB and CBO data, for a variety of lagged policy revisions, in no cases led to a 
significant effect, and in most cases led to insignificant effects of the wrong sign (a positive 
coefficient). 
  These findings stand in contrast to those reported in Auerbach (1995), where Auerback 
founds significant effects in an examination of short-horizon OMB revenue forecasts.  
However, there are at least four differences between the two data sets that can help explain the 
difference in findings.  First, the prior study did not include observations from recent years, 
during which the large tax increases of 1993 were followed by stronger than predicted revenue 
growth.  Second, the earlier paper considered just technical forecast errors, which Auerback 
argued there should show more evidence of behavioral response, for they represent precisely the 
errors that cannot be explained by macroeconomic phenomena.  Third, that study found 
significant effects only for certain disaggregate revenue categories (corporate tax revenues and 
excise tax revenues), not for the aggregate revenue category being considered here.  Finally, as 
emphasized above, the policy revisions to forecasts do not necessarily measure true changes in 
policy, but simply changes in the “baseline”, which need not reflect actual current policy.  
Auerback’s earlier paper made use of an alternative series that better measured the policy effects 
of legislative changes, but such a series is available only for OMB, and only at annual 
frequencies. 
  Thus, the current findings do not contradict Auerback’s earlier ones; we simply lack the data 
necessary to address the question of taxpayer response in the current context.  More generally, 
these findings in no way rule out the possibility that there could be other types of information 
available to forecasters at CBO and OMB that are not incorporated in the forecast revisions 
studied here. 
 

3.5  Implications for Forecasting and Policy 
 

It requires a certain boldness to draw strong implications from the empirical results presented 
above.  We do not really know why the revisions of government forecasts exhibit serial 
correlation and seasonality, and hence we cannot predict whether this pattern will continue.  
We cannot rule out the possibility that the seemingly huge and persistent forecast revisions of 
recent years occurred by chance.  But we can safely conclude that the information conveyed by 
these forecasts and the process by which they are produced is not adequately summarized by the 
point estimates delivered twice a year to policy makers. 
  Budget rules currently in effect, and those of earlier periods, do not account for the fact that 
revisions are persistent.  Nor do they make any allowance for the very large standard errors 
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surrounding each forecast, and the fact that a rational policy response to uncertainty might 
include some fiscal precaution, much as a household would engage in precautionary saving 
when facing an uncertain future11.  For example, even if a zero deficit were an appropriate 
target (and there are good reasons why it probably is not, given the looming fiscal pressures of 
demographic transition), it might be optimal to structure revenues and expenditures so that an 
unbiased forecast would predict a surplus.  Therefore, in reaction to the fact that budget rules 
are based only on point estimates of revenue, it might be optimal to build a downward bias into 
these point estimates.  This illustrates the difficulty of producing forecasts intended 
simultaneously to provide information and to act as inputs to the budget process. 
  To this state of affairs, one might suggest a number of responses. 
  First, take whatever measures may be available to improve current forecasting methods.  
This recommendation undoubtedly falls into the category of “easier said than done”, but there 
must be some explanation for the anomalous pattern of forecast revisions discussed above.  
Perhaps the explanation lies in the use of mechanical rules, even for the economic and technical 
components of forecasts, in accordance with certain requirements of the budget process.  
Alternatively, the pattern may reflect the various incentives present when budget forecasts play 
such a central role in the policy process.  If either of these explanations applies, then the 
problem may also be addressed by some of the remaining suggestions. 
  Second, as it is probably unrealistic (and perhaps also unwise) to consider incorporating 
greater sophistication into budget rules, reduce the mechanical reliance of policy on such rules.  
As a vast literature elucidates, there are trade-offs of costs and benefits in adopting rules.  As 
to the benefits, many believe that the rules provide credibility to fiscal discipline that would be 
lacking otherwise.  This may or may not be so.  But rules also impose costs, by restricting the 
flexibility of policy responses.  While such restriction is inevitable when rules are imposed, 
being bound by budget rules that so fully ignore available information seems to present very 
significant costs as well. 
  Third, do not ask even more of the forecasting process than we presently do, at least until the 
previous two recommendations are accepted.  In particular, do not require “dynamic scoring” 
for official purposes, or other projections likely to be based on limited information.  In brief, 
dynamic scoring” for official purposes or other projections likely to be based on limited 
information.  In brief, dynamic scoring involves incorporating macroeconomic feedback into 
each individual revenue estimate, as opposed to the current practice simply of updating the 
baseline over time to take all changes, including those induced by legislation, into account12.  
In principle, dynamic scoring is a good idea, for it permits the legislative process to be based on 

                                                   
11  For a discussion of the impact of uncertainty on optimal fiscal policy, see Auerbach and Hassett (1998). 
12  Auerbach (1996) discusses dynamic scoring and the associated issues in more detail. 



Lectures on Public Finance Part1_Chap3, 2006 version   P.8 of 23  
Last updated 30/5/2006 

all available information.  But it would require the use of more speculative forecasting 
procedures, to the extent that reasonable forecasts easily might differ not only in magnitude but 
also in the sign of estimated policy feedback effects. 
  Attempting to carry out dynamic scoring in an environment in which forecasts already have 
statistical difficulties, are produced under political pressure, and are relied on without sufficient 
caution seems ill-advised, a point that has been recognized for some time.  For example, 
Penner (1982) advocates the use of very mechanical rules for constructing official forecasts, not 
because they produce the most accurate forecasts, but because there will be little disagreement 
about how the forecasts should be constructed, and hence little bias in the process.  The 
Appendix 1 below presents a simple model that formalizes this trade-off, confirming that the 
use of more ambitious, and less easily monitored, forecasting methods should hinge on how 
uncertain these methods are and how much additional information they have the potential to 
impart. 
  Fourth, given the current environment in which forecasts are produced, an attractive evolution 
of the government forecasting process may be the further development of a parallel, and more 
ambitious, “unofficial” forecasting approach.  An illustration is the long-term budget forecasts 
produced in recent years by CBO (1997), incorporating macroeconomic feedback, long-term 
projections, and, to some extent, uncertainty.  These forecasts have arisen because they serve 
an important purpose, helping us to understand the long-run fiscal effects of factors such as 
population aging and the growth of medical expenditures.  But they are even less suited than 
short-run forecasts to a budget process that ignores uncertainty and, inevitably, applies political 
pressure.  If they can remain unhindered by the constraints of budget rules of the type presently 
in effect, the development of such forecasts actually might provide information of use to 
thoughtful policy design. 
  Ultimately, we must confront the fact that budget forecasts currently serve two distinct 
purposes that are inconsistent, as summary statistics of available information and inputs to the 
policy process.  If we are not able to alter the nature of this second function, then we face a 
challenge in performing the first.  To do so, perhaps it is time to apply to fiscal policy what we 
have learned about the benefits of an independent monetary authority, and provide some 
additional autonomy and protection to those in government charged with providing the budget 
forecasts. 
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3.6  Empirical Evidence from Japan 
 

(to be added) 
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Appendix 113  
 

This appendix presents a simple, static model that may be used to illustrate the trade-off that 
may exist in asking more from the forecasting process, as in the case of “dynamic scoring”. 
  Suppose that there is a basic information set, say Ω , which is commonly observed by all.  
On the basis of this information, the expected value of revenue is x , is )/( Ω=Ω xEx .  One 
can think of Ωx  as the prediction of a relatively simple, commonly understood forecasting 

methodology.  Let us also assume that the forecasting agency has access to a more 
comprehensive information set, say Π  (fo which Ω  is a subset), that allows more precise 
forecasts.  The additional information included in Π  may be viewed as the greater accuracy 
of a more sophisticated forecasting process that is not transparent or easily verified, such as the 
incorporation of dynamic feedback effects.  This greater accuracy means that, if the true value 
of x  equals the prediction )/( Π=Π xEx  plus a zero-mean stochastic error term, ε , then 

there is an additional, independent, error term, v , involved when forecasting x  with the 
information set Ω , equal to the error in forecasting Πx .  That is, εε ++=+= ΩΠ vxxx . 

  Imagine that the government (as distinct from the agency) wishes to ensure that the agency’s 
estimates are as accurate as possible, as represented by minimizing the value of a loss function 
of its expected squared deviation, ])ˆ[( 2 Ω−= xxEL , of actual revenue, x , from that predicted 

by the agency to use all its own available information, Π , in formulating x̂ .  However, if the 
agency’s forecasting process is biased, its use of this superior information will not result in a 
forecast equal to the expected value, Πx . 

  To make this point concrete, suppose that the agency desires to minimize its own loss 
function, ])ˆ([ 2 Π−−=Λ θγ xxE , where θ  represents the bias in its forecasting process.  

This would lead to a forecast of θ+Πx .  If θ  were observable, the bias would present no 

problem for the government, which could then make the appropriate adjustment to the agency’s 
biased forecast to recover Πx .  But, as it may be difficult to know what the inherent 

forecasting bias is, it makes sense to treat θ  as a random variable from the governmnet’s 
viewpoint.  For simplicity, we also let the mean of θ  equal 0, for, as just shown, the 
deterministic part of θ  is unimportant. 
  The government faces a difficult choice in deciding whether to let the agency use its 
“superior” forecasting process, for this will then also open the door to the inclusion of bias.  To 
see how different factors affect this trade-off, suppose that the government may influence the 
extent to which the agency bases its forecast on Ω , rather than Π , by imposing a penalty on 
the agency, 2)ˆ( Ω−= xxP β , determined by the deviation of the agency’s forecast from that 

                                                   
13 This appendix draws from Auerbach (1999, pp.781-2). 
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based on common information.  Setting 0=β  will lead the agency to use Π  to minimize 
its own loss function, Λ , while setting ∞=β  will cause the agency simply to report the 

common forecast, Ωx .  More generally, its choice of x̂  to minimize the sum of its own loss 

function and the additional penalty, P+Λ , will be the weighted average, 
))('1(' θββ +−+ ΠΩ xx , where )/(' γβββ +=  ranges from 0 to 1 as β ranges from 0 to ∞ .  

It is straightforward to show that the value of the relative penalty 'β  that minimizes the 
government’s expected loss function, L , is )]()(/[)( vVVV +θθ , the ratio of the variance of θ  

to the sum of this variance and the variance of v . 
  Thus, the agency should be encouraged to use its superior information, the greater this 
informational advantage is (i.e., the larger )(vV  is), and the less unpredictable the influence of 
bias on its unobservable forecasting process (i.e., the smaller )(θV  is). 
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Appendix 2  Box – Jenkins Forecasting Methods14 
 
Provided procedures for the fitting of autoregressive integrated moving average (ARIMA) 
models, and their seasonal variants, to a particular time series were known.  It will be recalled 
that the fitting procedures consisted of an iterative cycle of identification, estimation, and 
diagnostic checking.  Essentially a particular model is chosen from the general ARIMA class, 
its coefficients estimated, and its adequacy of representation checked, possibly leading to the 
choice of an alternative form and a repeat of the model building cycle.  In this section, it will 
be shown how forecasts can be generated from the fitted models.  The whole process of 
constructing an ARIMA model and the generation of forecasts from that model will be referred 
to as the Box – Jenkins forecasting method since, although a number of elements in the 
methodology were well known before these authors wrote, it is their contribution that has 
allowed an integrated and well-defined approach to time series forecasting via model building 
stimulating a good deal of practical application over a wide range of actual time series. 
  As a first step, a number of known results are summarized. 
(i) Let tX  follow the stationary, invertible ARIMA (p,q) process 

 

  ∑∑
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Standing at time n, let hnf ,  be the forecast of hnX +  which has smallest expected squared 
error among the set of all possible forecasts which are linear in 0, ≥− jX jn .  Now write 
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Then a recurrence relation for the forecasts hnf ,  is obtained by replacing each element in (2) 

by its “forecast” at time n, as follows: 
(a) replace the unknown values knX +  by their forecast knf ,  for 0>k ; 

(b) “forecasts” of 0, ≤+ kX kn , are simply the known values knx + ; 
(c) since tε  is white noise, the optimal forecast of 0, >+ kknε , is simply zero; 
(d) “forecasts” of 0, ≤+ kknε , are just the known values kn+ε . 

 
(ii) The ARIMA (p,q) process tt BbXBa ε)()( =  can be written as an infinite moving average 

tt BcX ε)(=  where the elements of +++= 2
210)( BcBccBc  can be obtained by 

                                                   
14 This section draws selectively from Granger and Newbold (1986, Chapter5). 
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equating coefficients of ,2,1, =jB j , in )()()( BbBcBa = .  Then the forecast errors are 
given by 
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and hence the variances of the forecast errors are given by 
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(iii) An “updating” formula for the forecasts is given by 
 

  )( 1,11,1, −+− −+= nnhhnhn fXcff             (8) 

 
  These results hold for stationary time series.  However, it is very often the case in dealing 
with economic time series that the integrated model is of importance.  That is, for a particular 
process tX , one may need to difference d times to produce a stationary series 

t
d

t XBY )1( −= .  In the case of seasonal time series, it is often the case that a multiplicative 

difference filter is required to produce stationarity.  However, for the present purposes, this 
involves no new principle, and so for simplicity of exposition, attention will be restricted to the 
nonseasonal case.  A sensible procedure, then, is to derive forecasts of the series X from those 
of the stationary series Y.  x

hnf ,  for forecasts of X and y
hnf ,  for forecasts of Y, an obvious 

formula for generating forecasts of X is then 
 

  x
hn

dy
hn fBf ,, )1( −=                (9) 

 
where here B operates on the index h, so that, for example, in the case d=1, 
 

  y
hn

x
hn

x
hn fff ,1,, += −                (10) 

 
Thus, forecasts could be obtained by a two-step procedure, where the stationary series Y is first 
forecast and then forecasts of X are obtained from (6).  However, a moment’s reflection should 
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indicate that this is unnecessary.  Write 
 
  dP

P BBaBABABA )1)(()1( 2
21 −=−−−−           (11) 

 
Then, corresponding to (2), one can write 
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0

0
1    ,ε          (12) 

 
and forecasts may be derived from this equation in the same way as in the stationary case. 
  Now, define +++= BCBCBC 211)(  where 

 
  )()()( BbBCBA =                (13) 

 
Then, it is clear that, corresponding to (3) and (4), the forecast errors in the integrated case are 
given by jhnj

h
jhn Ce −+
−
=∑= ε1

0, , and hence the error variance is 

 

∑
−

=

==
1

0
0

22 1C     ,)(
h

j
jChV εσ              (14) 

 
Further, the updating formula (5) is now given by 
 

  )( 1,11,1, −+− −+= nnhhnhn fXCff             (15) 

 
  All the necessary equipment for the efficient computation of point forecasts from a fitted 
ARIMA model, or its seasonal variant, is now at hand.  Further, since an expression for the 
variance of forecast error has been derived, it is possible, provided distributional assumptions 
are made, to derive interval forecasts.  In the remainder of this section, practical procedures for 
the computation of these forecasts are outlined and the methods involved illustrated with a few 
specific examples. 
 
Initial Calculation of Point Forecasts 
 
Suppose now that one has a set of observations nxxx ,, 21   on a process X, an that an 

ARIMA model has been fitted.  Then forecasts of future values of the series can be obtained 
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from (5), substituting in that equation forecasts of each individual term.  The forecasting 
formula can then be written as 
 

  ∑∑
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where 
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Equations (17) require some further explanation.  The theoretical development concerned the 
forecasting of hnX +  given 0, ≥− jX jn .  That is, it was assumed that an infinite past record 
of the series to be forecast was available, in which case 0, ≥− jjnε  would also be known.  
However in the practical situation, where only a finite run of data is available, the jn−ε  will 

not be known, but must be estimated. 
  In practice, we employ as estimates the residuals jn−ε̂  from the fitted model.  These 

residuals, are routinely produced by model estimation programs. 
  Once a forecasting model has been estimated, the procedure for deriving point forecasts is 
then quite straightforward.  Equation (16) is employed one step at a time for h=1,2,3,…, 
substituting appropriate values from (17).  Hence, for h=1, the forecast 1,nf  is obtained 
immediately from (16).  Next, setting h=2, in (16), the two-steps-ahead forecast 2,nf  is 
obtained using 1,nf , which has already been calculated.  Forecasts can then be obtained as far 

ahead as is required.  To illustrate these calculations, some of the examples will be further 
considered. 
 
Calculation of Interval Forecasts 
 
While it is almost certainly the case that more attention is paid to point forecasts than to any 
others, it is generally worthwhile to calculate wherever possible confidence intervals associated 
with these forecasts, if only to provide an indication of their likely reliability.  Now, the 
variance of the error of the point forecast is given by (14), where the 

jc  are defined in (13).  

In fact this is an underestimate of the true variance since it assumes that the coefficients of the 
forecasting model are known, whereas in fact they must be estimated leading to a corresponding 
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decrease in accuracy in the resulting forecasts.  However, for moderately long time series, this 
factor will be of relatively small importance. 
  In fact, our proposed procedure for estimating forecast error variance is a somewhat crude 
approximation for estimating forecast error variance is a somewhat crude approximation for two 
reasons.  We do not in fact know the infinite past of the time series, and the parameters of the 
model must be estimated.  The quality of these estimates is examined in some detail by Ansley 
and Newbold [1981] who provide a modified estimate that tends to be somewhat more reliable, 
especially for relatively short seasonal time series.  The details of this procedure are a little 
cumbersome and will not be discussed further here.  For most general purposes it should prove 
adequate to substitute the parameter estimates in (14). 
  If, in addition, one is prepared to assume that the forecast errors come from a normal 
distribution, it is possible to derive, in an obvious way, confidence intervals for the forecasts.  
Thus an approximate 95% interval is given by 
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±
1

0

2
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h

j
jhn cf εσ               (18) 

 
where εσ̂  is the estimated standard deviation of tε , obtained in estimating the coefficients of 

the fitted model.  Similarly, approximate 75% intervals are given by  
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Updating the Forecasts 
 
Once a forecasting equation has been built, it is generally not necessary to refit a model when a 
new piece of data becomes available.  Neither is it necessary to employ the rather lengthy 
procedures just described to recomputed forecasts.  A convenient algorithm, based on (15), is 
available for the updating of previously computed forecasts. Writing n+1 for n in that 
expression, produces 
 

  )( 1,11,,1 nnhhnhn fXcff −+= +++             (20) 
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where 11,1 ++ =− nnn fX ε  is the error made in forecasting 1+nX  at time n.  In words, the 
forecast of hnX ++1  made at time n+1 can be obtained by adding to the forecast of the same 

quantity, made at time n, a multiple of the error made in Forecasting 1+nX  at time n.  Further, 
the weights hC  required in this expression will already be known since they will have been 

calculated for the derivation of interval forecasts.  The forecast generating mechanism can thus 
be viewed as an “error learning process”.  That is to say, forecasts of future values of the series 
are modified in the light of past forecasting errors.  It is not, of course, necessary to 
recomputed estimates of the widths of appropriate confidence intervals since the estimated 
variance for an h-step ahead forecast does not change when another observation becomes 
available. 
  To illustrate, consider once again the series on construction begun in England and Wales.  
The forecast of 1+nX  made at time n was 917471, =nf .  In fact, the actual value turned out 

to be 863321 =+nX .  Thus the point forecast turned out to be an overestimate.  The one-step 

ahead forecast error is  
 

  541591747863321,1 −=−=−+ nn fX           (21) 

 
Thus, using (20), the forecasts can be updated by the formula  
   

hhnhn Cff 54151,,1 −= ++               (22) 

 
where the C weights are given.  Thus, for example, the revised forecast of 6+nX  is 

  

 119320)83.0)(5415(1238145415 56,5,1 =−=−=+ Cff nn       (23) 

 
The updated forecasts for this series are given in Table 1. 
 
Table 2 Updated Forecasts of Construction Begun Series 

h: 1 2 3 4 5 6 7 8 9 10 11 

hnf ,1+ : 112555 106413 102911 94452 119320 113179 109676 101217 126086 119945 116502 
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Forecast Errors as a Check for Change in Model Structure 
 
If an ARIMA model has been fitted to a moderately long series of data, it is not necessary to go 
to the trouble of refitting the model each time a new piece of data becomes available.  Rather, 
the originally estimated model can be retained and forecasts updated in the manner just 
described.  However, this procedure would not be appropriate if the model structure were to 
change.  If such a change is suspected, a check can be based on the forecast errors, following a 
proposal of Bhattacharyya and Andersen [1974] and Box and Tiao [1976]. 

  Let hnf , , Hh ,,2,1 =  be forecasts of hnX + , Hh ,,2,1 = , all made at time n, with 

errors 

  hnhnhn fXe ,, −= + ,    Hh ,,2,1 =    

Then, assuming the model structure has remained unchanged, 

  [ ] 0, =hneE ,    Hh ,,2,1 =    

and, 
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0

2
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h

j
kjjkhnhn CCeeE εσ ,    0≥k          

 (24) 
Now, let 

  [ ] ijjnin veeE 2
,, εσ= ,    Hi ,,2,1 = , Hj ,,2,1 =   

and V be the HH ×  matrix whose thji ),(  element is ijv .  Then, assuming normality of 

the forecast errors and an unchanged model structure, the quantity 
 

  HHQ eVe 12 ' −−= εσ                (25) 

 

is distributed as 2x  with H degree of freedom, where 

),,(' ,2,1, HnnnH eee =e  

Box and Tiao show that a computationally simpler, but equivalent, version of (22) is 
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where the 1,jne +  are the one-step errors made at time )1,,1,0( −=+ Hjjn  . 

  Thus, the hypothesis of no change in model structure can be checked by computing (26), with 
the estimated error variance 2ˆ εσ  in place of the unknown 2

εσ , and comparing with tabulated 

values of 2x . 
 

Stepwise Autoregression 
 

The basic exponential smoothing procedures discussed in the previous section generally 
postulate a single model from which forecasts are to be generated, and thus do not possess the 
great virtue of the Box-Jenkins approach, whereby the eventual form of the forecast function is 
dictated ,through the processes of identification and diagnostic checking, by the data itself.  Of 
course, there is some room for experimentation within Brown’s generalized exponential 
smoothing framework, but even here there does not exist any clear-cut identification procedure 
(In addition, the restriction to a single parameter renders this approach overly parsimonious in 
many situations).  The identification and diagnostic checking phases of the Box-Jenkins cycle 
require manual intervention, however, and it would be desirable for some routine forecasting 
purposes to eliminate such a requirement.  A compromise might be achieved through the 
design of a forecasting procedure which, while remaining fully automatic, contained a 
mechanism for discriminating among various possible forms of forecast function.  That is, one 
would like a system to contain an identification procedure which was itself fully automatic.  
One method for achieving this, briefly introduced by Newbold and Granger [1974], is via 
stepwise autoregression.  The objective is to construct autoregressive models to describe the 
behavior of given time series.  However, for economic data, it is preferable to work with 
changes 1−−= ttt XXY  rather than with levels of the series.  Consider, now, the general kth 

order autoregressive model 
 

  ∑
=

− +=
k

j
tjtjt YaY

1
ε   (27)             

 
Typically, models of the form (27) can, as has been seen, easily be fitted to a given set of data.  
However, unless k is taken to be quite small, it is likely that the resulting model will be 
overparametrized.  One way out of this dilemma is to employ the technique of stepwise 
regression.  This has been studied in great detail by Payne [1973], and the treatment given here 
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depends heavily on Payne’s work. 
  One way to proceed is to first select the value jtY −  which, one the criterion of residual sum 

of squares, contributes most toward “explaining” tY .  At the second step, the lagged value that 

most improves the fit of the regression equation obtained at step one is added, and so on until 
addition of further variables produces no significant improvement in the fit of the regression.  
Variables, entered at an earlier stage, which cease to contribute significantly, can be dropped.  
An alternative, favored by Payne on the basis of his experience with a number of simulation 
experiments, is to proceed in the reverse direction, having initially fitted the complete model 
(27).  At the first step, the lagged-value contributing least to overall explanation of tY  is 

dropped from the regression.  At the second step the lagged value that contributes least in the 
model so achieved is dropped, and so on until deletion of further terms significantly worsens the 
fit of the regression equation.  Variables, dropped at an earlier stage, can later be added if doing 
so would produce a significant improvement in the fit of the achieved regression.  The 
procedure is set out schematically in Figure 1．One might also include a constant term in the 
formulation (27).  The constant could be treated as any other variable within the stepwise 
framework, or alternatively a decision as to its inclusion or exclusion could be made on purely 
subjective grounds. 
 
Figure 1  Payne’s scheme for stepwise regression procedure 
 

Fit complete equation 
Set r=k 

Delete variable with 
smallest contribution 

(=c, say) 
Set r=r-1 
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  Having decided to undertake the fitting of an autoregressive model by stepwise regression 
methods, three decisions must be taken: 

(i) A value k for the maximum permitted lag in (27) must be chosen. 
(ii) A significance level for testing for inclusion or exclusion of further variables must be 

decided upon. 
(iii) An appropriate hypothesis test to determine suitable stopping rules needs to be 

determined. 
Choice of the maximum contemplated lag k is likely to be dictated in part by the nature of the 

time series under study and by the amount of data available.  Our experience indicates that for 
all nonseasonal series, for quarterly seasonal series and shorter monthly seasonal series, a value 
k=13 is generally adequate.  For longer monthly seasonal time series, a value k=25 is 
preferable.  The question of choosing a suitable significance level for testing variable inclusion 
or exclusion is by no means a trivial one form a theoretical viewpoint.  Looked at in this light, 
it might be desirable to reflect in one’s choice preconceived notions as to how simple a model 
(in terms of number of parameters) is likely to provide reasonable forecasts.  It is possible that 
one would like the significance level to vary according to how many lagged values have already 
been included in the model.  Nothwithstanding these considerations, however, we have found 
use of a constant 5% level to be adequate (in terms of forecasting accuracy of the resulting 
model) for most general purposes. 

  Testing of hypotheses presents one critical difficulty.  Suppose that a stage has been 
reached where r terms are included in the regression.  Clearly if each of the remaining k-r 
terms was tested for further inclusion at the 5% level, the probability of finding at least one term 
that apparently significantly improved the fit would be greater than 0.05 even if the true 
associated coefficient valued were also zero.  Payne suggests a number of procedures for 
overcoming this problem, and prefers use of the statistic 
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where 
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=

regressionin teh  included are terms when squares of sum residual
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and m is the effective number of observations for regression, so that if the original sample is 

nxx ,,1  , one observation is “lost” by differencing and a further k by formulation of the 
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autoregressive model (24), so that 1−−= knm .  Under the null hypothesis that the 
coefficients on the excluded variables are all zero, the statistic F’ is distributed approximately as 
Fisher’s F with k-r and m-k degree of freedom (One is justified asymptotically in employing the 
usual normal theory regression tests in the context of autoregressive models as a result of Mann 
and Wald [1943]). 
  Stepwise autoregression, then, would appear to provide a reasonable alternative to 
exponential smoothing as a fully automatic forecasting technique.  Its great advantage lies in 
the wide class of models contemplated, together with a built-in identification structure.  
Calsulation of forecasts from the fitted model is straightforward along the lines described above. 
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