

How should we determine the value of the investment opportunity?

- Present-value principle
- Or discounted present value
- "Discount" future earnings and costs.
- Evaluate them in the values today.

Investing to a project or buying government bonds?

- How much will you pay for the claim (=bond) that pays \$1 after one year?
- Suppose people are willing to pay $\$ Y$ for the bond.
- There is the project that pays out $\$ X$ after one year.
- Investing to this project is same as buying X units of the bonds.

Discounting

- Buying X units of bonds costs $\$ X Y$ today.
- Hence, the project should cost $\$ X Y$ too.
- Alternatively, let $D=1 / Y$ and $1+d=D$.
- Then the project should costs: $X /(1+d)$.
- " D " is called a "discount factor."
- "d" is called a "discount rate."

BASIC THEORY OF INTEREST

Basic theory of interest (1)

- The case of bank deposit
- Deposit \$100 today.
- Interest rate is $1 \% \Rightarrow r=1 \%=0.01$
- After one year: \$101 in bank account (= \$100 x 1.01)

Basic theory of interest (2)

- The case of government (riskless) bond
- The claim for receiving $\$ 100$ after one year from today (the maturity of the bond is one year)
- Face value: $\mathbf{P}_{1}=\$ 100$
- Bond price: $\mathrm{P}_{0}=\$ 99.01$
- Interest rate: $\mathbf{r}=\mathbf{P}_{1} / \mathbf{P}_{0}-1=0.01$

Basic theory of interest (3)

- Algebraic representation
- Bonk deposit: $(1+r) P_{0}=P_{1}$
- Bond: $\mathbf{P}_{1} / \mathbf{P}_{0}=1+r$ or $\left(\mathbf{P}_{1}-\mathbf{P}_{0}\right) / \mathbf{P}_{0}=r$
- $\mathbb{P}_{0}, \mathbb{P}_{1}, r$: If two of them were given, the remaining is automatically determined.
- "Bond price" and "interest rate" have a one-on-one relationship.

Basic theory of interest (4)

- Economic interpretation
- Face value P_{1} is given and fixed
- Suppose bond price P_{0} goes up.
- Today's price of " P_{1} yen in future" goes up.
- Interest rate goes down.
- Interest rate: relative price of future cash in terms of today's money

Two views on bond / loan market

	Issuing bond, bank borrowing	Financial asset		
What is traded	Funds	Payoff at maturity		
Demand side	Firm	Investor		
Supply side	Investor / creditor	Firm		
Price	Interest rate	Bond price		
$10 / 20 / 2008$	Icuo8_lecture3: Present Value			

Basic theory of interest multi-period case (1)

- Compounding
- $\mathbf{P}_{\mathrm{T}}=\mathrm{P}_{\mathbf{0}}\left(1+\mathrm{r}_{1}\right)\left(1+\mathrm{r}_{2}\right)\left(1+\mathrm{r}_{3}\right) \ldots\left(1+\mathrm{r}_{\mathrm{T}}\right)$
- Suppose $\mathrm{r}_{\mathrm{i}}=$ constant for $\mathrm{i}=1,2, \ldots, \mathrm{~T}$
- $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{0}(1+\mathrm{r})^{\mathrm{T}}$ or $\mathrm{P}_{0}=\mathrm{P}_{\mathrm{T}} /(1+\mathrm{r})^{\mathrm{T}}$

Basic theory of interest multi-period case (2)

- Coupon payment: C_{t}
- One period case: $\mathrm{P}_{0}=\left(\mathrm{P}_{1}+\mathrm{C}_{1}\right) /(1+\mathrm{r})$
- Multi-period case

$$
P_{0}=\frac{C_{1}}{1+r}+\frac{C_{2}}{(1+r)^{2}}+\frac{C_{3}}{(1+r)^{3}}+\ldots . .+\frac{P_{T}}{(1+r)^{T}}
$$

Notes on compounding

- Convenient approximation
$-\operatorname{Ln}(A)=$ Natural log of A
- If the absolute value of x was very small, $\operatorname{Ln}(1+x) \sim x$
$-\operatorname{Ln}(X Y)=\operatorname{Ln}(X)+\operatorname{Ln}(Y)$
- Let $\mathrm{P}_{2}=\mathrm{P}_{0}\left(1+\mathrm{r}_{1}\right)\left(1+\mathrm{r}_{2}\right)$ and $\mathrm{P}_{2} / \mathrm{P}_{0}=1+\mathrm{R}$
$-\operatorname{Ln}\left(\left(1+r_{1}\right)\left(1+r_{2}\right)\right)=\operatorname{Ln}\left(1+r_{1}\right)+\operatorname{Ln}\left(1+r_{2}\right) \sim r_{1}+r_{2}$
- Thus $\mathbf{R} \sim r_{1}+r_{2}$

VALUATION BY DISCOUNTING CASH FLOW (DCF)

$$
\begin{aligned}
& \quad \text { Present value principle: } \\
& \quad \text { general formula } \\
& P_{0}=\frac{C_{1}}{1+r}+\frac{C_{2}}{(1+r)^{2}}+\ldots . .+\frac{P_{T}+C_{T}}{(1+r)^{T}} \\
& \text { But, } P_{T}=\frac{P_{T+1}+C_{T+1}}{1+r} \\
& P_{0}=\frac{C_{1}}{1+r}+\frac{C_{2}}{(1+r)^{2}}+\ldots . .+\frac{C_{T}}{(1+r)^{T}}+\frac{P_{T+1}+C_{T+1}}{(1+r)^{T+1}} \\
& \Rightarrow P_{0}=\sum_{j=1}^{\infty} \frac{C_{j}}{(1+r)^{j}}
\end{aligned}
$$

What is " C_{t} "? What is " T "?

- If stock: C_{t} is dividend payments
- If real estate: C_{t} is rent payments
- If bond: C_{t} is coupon payments
- Terminal period, T
- If bond: T is finite (e.g. $T=1,5, . ., 10$ years)
- Stocks and real estates: T is infinite

Some useful formula (1)

- Annuity
- financial asset that pays constant amount every period: $C=C_{1}=C_{2}=C_{3}=\ldots \ldots=C_{T}$
- Discount rate is constant: r
- Perpetuity: $T \rightarrow$ infinity

$$
\begin{aligned}
& P_{0}=\frac{C}{1+r}+\frac{C}{(1+r)^{2}}+\frac{C}{(1+r)^{3}}+\ldots . . \\
& \Rightarrow P_{0}=\frac{C}{r}
\end{aligned}
$$

Some useful formula (2)

- Growing perpetuity/Growing Gordon formula
- C grows every period at the rate of " g ":
$C_{1}=(1+g) C_{0}$
$P_{0}=\frac{C}{1+r}+\frac{(1+g) C}{(1+r)^{2}}+\frac{(1+g)^{2} C}{(1+r)^{3}}+\ldots .$.
$\Rightarrow P_{0}=\frac{C}{r-g}$

Discounting future cash-flows of the business project

- Suppose a project generates cash flow stream, $C_{0}, C_{1}, C_{2}, \ldots . ., C_{T}$.
$-C_{t}=$ "Period t sales" - "Period t costs"
- We discount future cash flows by the government bond interest rate.

Comparison with the investment to government bond

- Discounted cash flow (DCF) of the project

$$
D C F_{P R J}=C_{0}+\frac{C_{1}}{1+r}+\frac{C_{2}}{(1+r)^{2}}+\frac{C_{3}}{(1+r)^{3}}+\ldots . .
$$

- Investment to JGB: $C_{0}=-P_{0}, C_{1}=P_{1}=(1+r) P_{0}$

$$
D C F_{J G B}=-P_{0}+\frac{P_{1}}{1+r}=-P_{0}+\frac{(1+r) P_{0}}{1+r}=0
$$

Take "investment to JGB" as a benchmark

Valuation by present-value principle

- If $\mathrm{DCF}_{\mathrm{JGB}}<\mathrm{DCF}_{\mathrm{PRJ}}$, then the firm should invest to the project.
- But, always $\mathrm{DCF}_{\mathrm{JGB}}=0$. Thus, the firm should invest to the project only if $\mathrm{DCF}_{\mathrm{PRJ}}>0$.
- $\mathrm{DCF}_{\mathrm{PRJ}}$ is the present-value of the project when it is evaluated with appropriate discount rate r.

Important preservations

- In our discussions so far, we have completely ignored any "risk."
- If there is any risk, we have to assume risk neutrality.
- "Risk neutral" = investors care only expected payoffs, do not care its variance.
- Otherwise, we have to explicitly incorporate "the price of risk" or "risk premium" into the analysis. --- We will do this latter.

Comparing multiple projects

Choosing one of mutually exclusive projects.

	0	1	2	Total
	-7	11	12.1	16.10
Project 1	-1	22	-12.1	8.90
Project 2	-5	44	24.2	63.20
Project 3	-1	11	0	10.00
Project 4				

	Cash flow			Discount rate	PV
	0	1	2	20\%	
Project 1	-7	11	12.1	0.20	10.56944
Project 2	-1	22	-12.1	0.20	8.930556
Project 3	-5	44	24.2	0.20	48.47222
Project 4	-1	11	0	0.20	8.166667
	Cash flow			Discount rate	PV
	0	1	2	30\%	
Project 1	-7	11	12.1	0.30	8.621302
Project 2	-1	22	-12.1	0.30	8.763314
Project 3	-5	44	24.2	0.30	43.16568
Project 4	-1	11	0	0.30	7.461538
10/20/2008		8_lecture	Present	Value	28

PART 3

VALUATION BY ARBITRAGE

Arbitrage and present-value relations

- No arbitrage condition = law of one price
- hamburger + cola + potato
- The set of three and buying them individually should cost the same.
- Application of "No arbitrage condition"
- Using zero-coupon bond price to price coupon bonds.
- The price of zero-coupon bond that matures at time $T=$ The price of cash in period T.

An application: Pricing coupon bonds

- Face value: \$100

Maturity: 36 months
Coupon: $\$ 5$ yen coupon payment at 12 months and 24 months later.

- Data (Face value = 100 thousand)
- Zero-coupon bond price ($\mathrm{T}=12$ months): 97.5
- Zero-coupon bond price ($\mathrm{T}=24$ months): 94.3
- Zero-coupon bond price (T=36 months): 90.7

Replicating payoffs of the coupon bond using zero-coupon bonds

- $Y_{12}=5, Y_{24}=5, Y_{36}=100$
- Zero-coupon bond ($\mathrm{T}=12$): 0.05 units
- Zero-coupon bond ($\mathrm{T}=24$): 0.05 units
- Zero-coupon bond ($\mathrm{T}=36$): 1unit
- This synthetic coupon bond has exactly same payoff pattern.

Theoretical value of coupon bond price

- 97.5x0.05 + 94.3x0.05 + 90.7x1
$=4.875+4.715+90.7$
$=100.29$
- Theoretical value: \$100.29

A digression

- How risk-free interest rate will be determined?
- Simple answer: "Demand and supply"
- Demand and supply of what?

Remember...

There are two views on bond / loan market

	Issuing bond, bank borrowing	Financial asset
What is traded	Funds	Payoff at maturity
Demand side	Firm	Investor
Supply side	Investor / creditor	Firm
Price	Interest rate	Bond price

Bond market equilibrium:
 Equilibrium bond price and interest rate

Relation between bond price and its interest rate

- Face value P_{1} is given and fixed
- Suppose bond price P_{0} goes up.
- Today's price of " P_{1} yen in future" goes up.
- Interest rate goes down.
- Interest rate: relative price of future cash in terms of today's money

Demand for bond = supply of loans

Demand for bond by lenders

Supply of bond = demand for loans

Eg.Expected profitability falls \rightarrow Bond price will increases

Factors shift supply curve for bonds

- Corporate tax on profit
- Tax subsidies for investment
- Expected inflation
- Government borrowing

Factors shift demand curve for bonds

- Investors wealth
- Expected returns on bonds
- Expected returns on other assets
- Riskiness of bonds relative to other assets
- Expected inflation
- Liquidity of bonds relative to other assets

Methodology of arbitrage pricing

- You have an asset (or business project) that you would like to price. Check the payoff pattern of your asset.
- Replicate the payoff pattern of the asset using existing assets. Construct the replicating portfolio.
- The valuation of an asset must be equal to the value of assets used to construct the replicating portfolio.

Use tracking portfolio to value investment projects

- Find some asset or combination of assets that perfectly tracks the cash flows of the investment project.
- Apply no-arbitrage condition.
- The price of a tracking portfolio is the value of the investment project.

Limit of tracking portfolio approach

- For example, oil price can be used to price oil well.
- However, there will not be a perfectly replicating portfolio in practice. There are always tracking errors.
- If there are significant tracking errors, use asset pricing models.
\rightarrow Theme of the next lecture.

Arbitrage: Formal definition

- An arbitrage opportunity is:
- A riskless profit opportunity that any individual who prefers more wealth to less will exploit.
- Riskless profit opportunity
- The opportunity never loses money today or tomorrow.
- The opportunity sometimes makes money today or tomorrow.
- No-arbitrage condition: there is no arbitrage opportunity

Examples of arbitrage pricing Currency forward contract

- Currency forward contract
- Investment in one-year JGB: $r_{J G B}$
- Make an investment to US treasury bill ($r_{\text {Tbill }}$) by spot FX rate (E). Use forward contract (F) to hedge FX risk.
- Both investment opportunities are riskless, hence must yield same rate of return.
$-\left(1+r_{J G B}\right)=\left(1+r_{\text {Tbill }}\right)(E / F)$
$-r_{J G B}=r_{\text {Tbill }}+e-f$
- Various derivative products such as B-S formula.

Problem of tracking portfolio approach

- For example, oil price can be used to price oil well.
- However, there will not be a perfectly replicating portfolio in practice. There are always tracking errors.
- when is tracking error relevant for pricing?
- If there are tracking errors, use asset pricing models.

