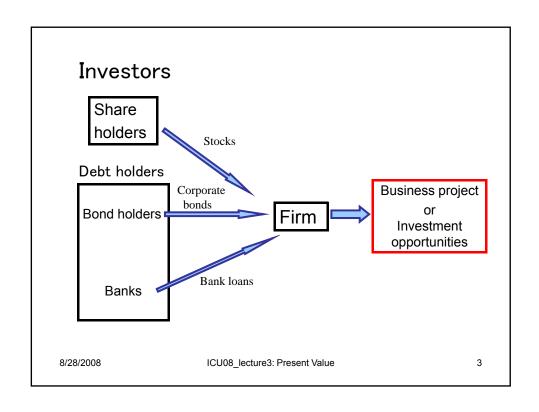
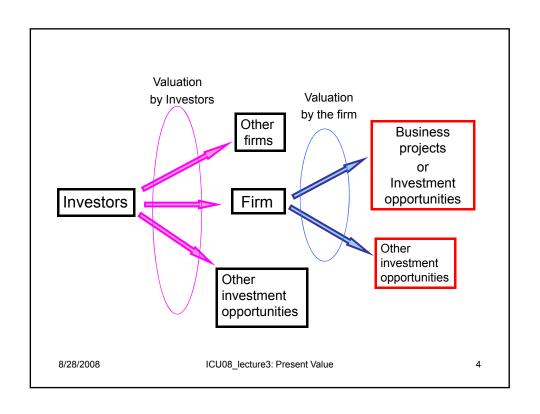
### Fall 2008 International Corporate Finance I

## Basic Theory of Interest and Project Valuation


#### Tokuo lwaisako HITOTSUBASHI UNIVERSITY


8/28/2008 ICU08\_lecture3: Present Value

# Part 1: Firm's investment decision making and present value principle

8/28/2008

ICU08\_lecture3: Present Value





### Valuation of business project(s): Examples

- Business project that requires \$1 million initial investment
  - \$1.2 million profits in one year
  - \$1.5 million profits in five years
  - Should the firm invest to such investment opportunities?
- Mutually exclusive projects
  - \$1.2 million profits in one year
  - \$1.5 million profits in five years
  - To which project should the firm invest?

8/28/2008

ICU08 lecture3: Present Value

5

### How should we determine the value of the investment opportunity?

- Present-value principle
  - Or discounted present value
- · "Discount" future earnings and costs.
- Evaluate them in the values today.

8/28/2008

ICU08\_lecture3: Present Value

### Investing to a project or buying government bonds?

- How much will you pay for the claim (=bond) that pays \$1 after one year?
  - Suppose people are willing to pay \$Y for the bond.
- There is the project that pays out \$X after one year.
- Investing to this project is same as buying
   X units of the bonds.

8/28/2008

ICU08 lecture3: Present Value

7

#### Discounting

- Buying X units of bonds costs \$XY today.
- Hence, the project should cost \$XY too.
- Alternatively, let D=1/Y and 1+d=D.
- Then the project should costs: X/(1+d).
  - "D" is called a "discount factor."
  - "d" is called a "discount rate."

8/28/2008

ICU08\_lecture3: Present Value

#### Part 2: Basic Theory of Interest

8/28/2008

ICU08\_lecture3: Present Value

9

### Basic theory of interest (1)

- The case of bank deposit
- Deposit \$100 today.
  - Interest rate is 1%  $\Rightarrow$  r = 1% = 0.01
  - After one year: \$101 in bank account  $(= \$100 \times 1.01)$

8/28/2008

ICU08\_lecture3: Present Value

#### Basic theory of interest (2)

- · The case of government (riskless) bond
- The claim for receiving \$100 after one year from today (the <u>maturity</u> of the bond is one year)

```
- Face value: P_1 = $100
- Bond price: P_0 = $99.01
```

- Interest rate:  $r = P_1 / P_0 - 1 = 0.01$ 

8/28/2008

ICU08\_lecture3: Present Value

11

### Basic theory of interest (3)

Algebraic representation

```
- Bonk deposit: (1+r)P_0=P_1
- Bond: P_1/P_0=1+r or (P_1-P_0)/P_0=r
```

- **P**<sub>0</sub>, **P**<sub>1</sub>, **r**: If two of them were given, the remaining is automatically determined.
- "Bond price" and "interest rate" have a one-on-one relationship.

8/28/2008

ICU08\_lecture3: Present Value

#### Basic theory of interest (4)

- Economic interpretation
  - Face value  $P_1$  is given and fixed
  - Suppose bond price  $P_0$  goes up.
  - Today's price of " $P_1$  yen in future" goes up.
  - Interest rate goes down.
- Interest rate: relative price of future cash in terms of today's money

8/28/2008

ICU08\_lecture3: Present Value

13

#### Two views on bond / loan market

|                | Issuing bond, bank borrowing | Financial asset    |
|----------------|------------------------------|--------------------|
| What is traded | Funds                        | Payoff at maturity |
| Demand side    | Firm                         | Investor           |
| Supply side    | Investor / creditor          | Firm               |
| Price          | Interest rate                | Bond price         |

8/28/2008

ICU08\_lecture3: Present Value

### Basic theory of interest multi-period case (1)

- Compounding
- $P_T = P_0(1+r_1) (1+r_2) (1+r_3)... (1+r_T)$
- Suppose  $r_i = constant$  for i=1, 2, ..., T
- $P_T = P_0(1+r)^T$  or  $P_0 = P_T/(1+r)^T$

8/28/2008

ICU08 lecture3: Present Value

15

### Basic theory of interest multi-period case (2)

- Coupon payment: C<sub>t</sub>
- One period case:  $P_0 = (P_1 + C_1)/(1+r)$
- Multi-period case

$$P_0 = \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \dots + \frac{P_T}{(1+r)^T}$$

8/28/2008

ICU08\_lecture3: Present Value

#### Notes on compounding

- Convenient approximation
  - Ln(A)= Natural log of A
  - If the absolute value of x was very small,
     Ln(1+x)~x
  - -Ln(XY) = Ln(X) + Ln(Y)
- Let  $P_2 = P_0(1+r_1) (1+r_2)$  and  $P_2/P_0 = 1+R$ 
  - $-Ln((1+r_1)(1+r_2)) = Ln(1+r_1)+Ln(1+r_2) \sim r_1+r_2$
  - Thus  $\mathbf{R} \sim \mathbf{r}_1 + \mathbf{r}_2$

8/28/2008

ICU08 lecture3: Present Value

17

#### Part 3: Back to investment problem

8/28/2008

ICU08\_lecture3: Present Value

### Present value principle: general formula

$$P_{0} = \frac{C_{1}}{1+r} + \frac{C_{2}}{(1+r)^{2}} + \dots + \frac{P_{T} + C_{T}}{(1+r)^{T}}$$

$$But, P_{T} = \frac{P_{T+1} + C_{T+1}}{1+r}$$

$$P_{0} = \frac{C_{1}}{1+r} + \frac{C_{2}}{(1+r)^{2}} + \dots + \frac{C_{T}}{(1+r)^{T}} + \frac{P_{T+1} + C_{T+1}}{(1+r)^{T+1}}$$

$$\Rightarrow P_{0} = \sum_{i=1}^{\infty} \frac{C_{j}}{(1+r)^{j}}$$

8/28/2008

ICU08 lecture3: Present Value

19

### What is " $C_t$ "? What is "T"?

- If stock: C<sub>t</sub> is dividend payments
- If real estate: C<sub>t</sub> is rent payments
- If bond: C<sub>t</sub> is coupon payments
- Terminal period, T
- If bond: *T* is finite (e.g. *T* =1, 5, .., 10 years)
- Stocks and real estates: T is infinite

8/28/2008

ICU08\_lecture3: Present Value

#### Some useful formula (1)

- Annuity
  - financial asset that pays constant amount every period:  $C = C_1 = C_2 = C_3 = \dots = C_T$
  - Discount rate is constant: r
- Perpetuity:  $T \rightarrow \text{infinity}$

$$P_{0} = \frac{C}{1+r} + \frac{C}{(1+r)^{2}} + \frac{C}{(1+r)^{3}} + \dots$$

$$\Rightarrow P_{0} = \frac{C}{r}$$

8/28/2008

ICU08 lecture3: Present Value

21

#### Some useful formula (2)

- Growing perpetuity/Growing Gordon formula
  - C grows every period at the rate of "g":  $C_1 = (1+g)C_0$

$$P_{0} = \frac{C}{1+r} + \frac{(1+g)C}{(1+r)^{2}} + \frac{(1+g)^{2}C}{(1+r)^{3}} + \dots$$

$$\Rightarrow P_{0} = \frac{C}{r-g}$$

8/28/2008

ICU08\_lecture3: Present Value

### Discounting future cash-flows of the business project

- Suppose a project generates cash flow stream, C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>, ....., C<sub>T</sub>.
  - $-C_t$  = "Period t sales" "Period t costs"
- We discount future cash flows by the government bond interest rate.

8/28/2008

ICU08 lecture3: Present Value

23

### Comparison with the investment to government bond

· Discounted cash flow (DCF) of the project

$$DCF_{PRJ} = C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \frac{C_3}{(1+r)^3} + \dots$$

• Investment to JGB:  $C_0 = -P_0$ ,  $C_1 = P_1 = (1+r)P_0$ 

$$DCF_{JGB} = -P_0 + \frac{P_1}{1+r} = -P_0 + \frac{(1+r)P_0}{1+r} = 0$$

8/28/2008

ICU08\_lecture3: Present Value



### Valuation by present-value principle

- If DCF<sub>JGB</sub><DCF<sub>PRJ</sub>, then the firm should invest to the project.
- But, always DCF<sub>JGB</sub>=0. Thus, the firm should invest to the project only if DCF<sub>PRJ</sub>>0.
- DCF<sub>PRJ</sub> is the present-value of the project when it is evaluated with appropriate discount rate r.

8/28/2008

ICU08\_lecture3: Present Value

#### Important preservations

- In our discussions so far, we have completely ignored any "risk."
- If there is any risk, we have to assume risk neutrality.
- "Risk neutral" = investors care only expected payoffs, do not care its variance.
- Otherwise, we have to explicitly incorporate "the price of risk" or "risk premium" into the analysis. -- We will do this latter.

8/28/2008

ICU08 lecture3: Present Value

27

#### Comparing multiple projects

Choosing one of mutually exclusive projects.

|           | 0  | 1  | 2     | Total |
|-----------|----|----|-------|-------|
| Project 1 | -7 | 11 | 12.1  | 16.10 |
| Project 2 | -1 | 22 | -12.1 | 8.90  |
| Project 3 | -5 | 44 | 24.2  | 63.20 |
| Project 4 | -1 | 11 | 0     | 10.00 |
|           |    |    |       |       |

8/28/2008

ICU08\_lecture3: Present Value

### Different discount rates and present value

|           |    | Cash flow |       |  | Discount rat | е | PV |
|-----------|----|-----------|-------|--|--------------|---|----|
|           | 0  | 1         | 2     |  | 10%          |   |    |
| Project 1 | -7 | 11        | 12.1  |  | 0.10         |   | 13 |
| Project 2 | -1 | 22        | -12.1 |  | 0.10         |   | 9  |
| Project 3 | -5 | 44        | 24.2  |  | 0.10         |   | 55 |
| Project 4 | -1 | 11        | 0     |  | 0.10         |   | 9  |

8/28/2008

ICU08\_lecture3: Present Value

29

|           | Cash flo | Cash flow |       | Discount rate |      | PV       |  |
|-----------|----------|-----------|-------|---------------|------|----------|--|
|           | 0        | 1         | 2     |               | 20%  |          |  |
| Project 1 | -7       | 11        | 12.1  |               | 0.20 | 10.56944 |  |
| Project 2 | -1       | 22        | -12.1 |               | 0.20 | 8.930556 |  |
| Project 3 | -5       | 44        | 24.2  |               | 0.20 | 48.47222 |  |
| Project 4 | -1       | 11        | 0     |               | 0.20 | 8.166667 |  |

|           | Cash flow |    |       | Discount rate |      | PV       |  |
|-----------|-----------|----|-------|---------------|------|----------|--|
|           | 0         | 1  | 2     |               | 30%  |          |  |
| Project 1 | -7        | 11 | 12.1  |               | 0.30 | 8.621302 |  |
| Project 2 | -1        | 22 | -12.1 |               | 0.30 | 8.763314 |  |
| Project 3 | -5        | 44 | 24.2  |               | 0.30 | 43.16568 |  |
| Project 4 | -1        | 11 | 0     |               | 0.30 | 7.461538 |  |

8/28/2008

ICU08\_lecture3: Present Value

#### Part 4: Valuation by arbitrage

8/28/2008

ICU08 lecture3: Present Value

31

### Arbitrage and present-value relations

- No arbitrage condition = law of one price
  - hamburger + cola + potato
  - The set of three and buying them individually should cost the same.
- Application of "No arbitrage condition"
- Using zero-coupon bond price to price coupon bonds.
- The price of zero-coupon bond that matures at time *T* = The price of cash in period *T*.

8/28/2008

ICU08\_lecture3: Present Value

### An application: Pricing coupon bonds

 Face value: \$100 Maturity: 36 months

Coupon: \$5 yen coupon payment at 12

months and 24 months later.

- Data (Face value = 100 thousand)
  - Zero-coupon bond price (T=12 months): 97.5
  - Zero-coupon bond price (T=24 months): 94.3
  - Zero-coupon bond price (T=36 months): 90.7

8/28/2008

ICU08\_lecture3: Present Value

33

### Replicating payoffs of the coupon bond using zero-coupon bonds

- Y<sub>12</sub>=5, Y<sub>24</sub>=5, Y<sub>36</sub>=100
- Zero-coupon bond (T=12): 0.05 units
- Zero-coupon bond (T=24): 0.05 units
- Zero-coupon bond (T=36): 1unit
- This synthetic coupon bond has exactly same payoff pattern.

8/28/2008

ICU08\_lecture3: Present Value

### Theoretical value of coupon bond price

- 97.5x0.05 + 94.3x0.05 + 90.7x1 =4.875+4.715+90.7 =100.29
- Theoretical value: \$100.29

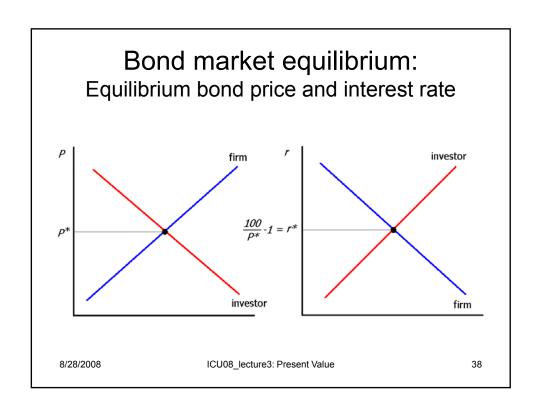
8/28/2008

ICU08\_lecture3: Present Value

35

#### A digression

- How risk-free interest rate will be determined?
- Simple answer: "Demand and supply"
- · Demand and supply of what?

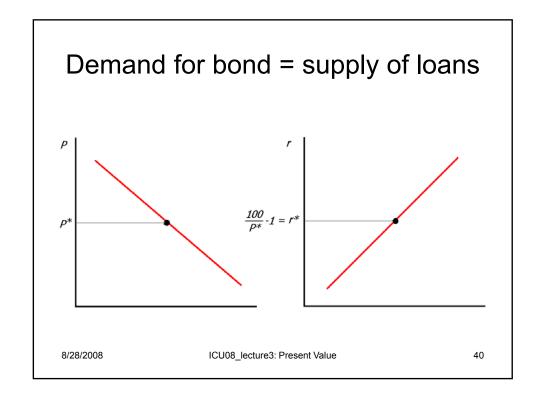

8/28/2008

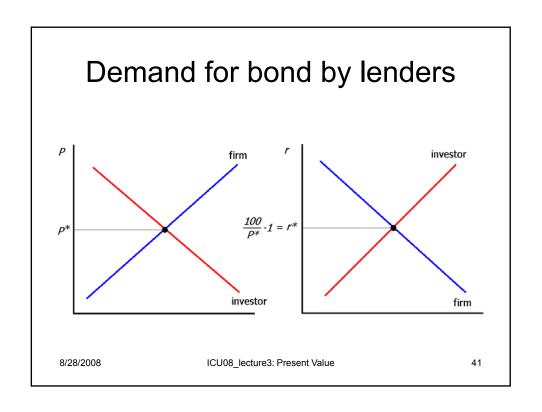
ICU08\_lecture3: Present Value

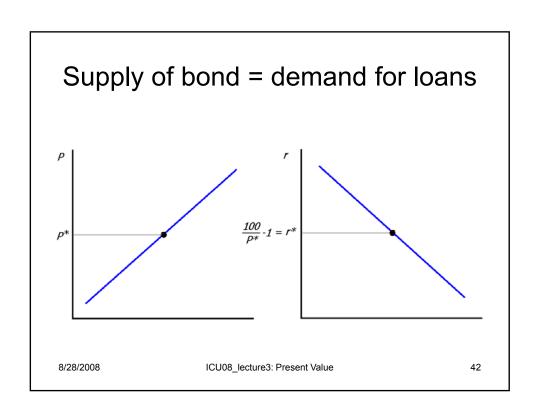
### Remember... There are two views on bond / loan market

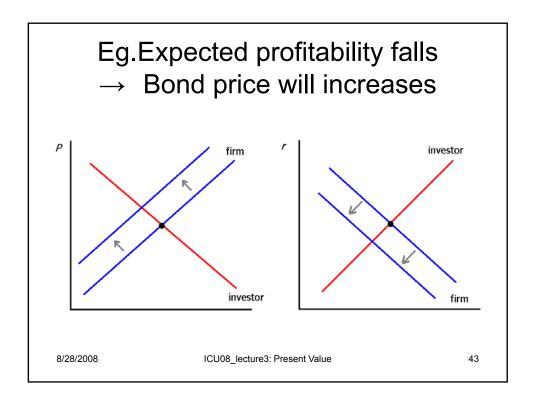
|                | Issuing bond, bank borrowing | Financial asset    |
|----------------|------------------------------|--------------------|
| What is traded | Funds                        | Payoff at maturity |
| Demand side    | Firm                         | Investor           |
| Supply side    | Investor / creditor          | Firm               |
| Price          | Interest rate                | Bond price         |

8/28/2008 ICU08\_lecture3: Present Value 37





### Relation between bond price and its interest rate


- Face value P1 is given and fixed
  - Suppose bond price P<sub>0</sub> goes up.
  - Today's price of "P₁ yen in future" goes up.
  - Interest rate goes down.
- Interest rate: relative price of future cash in terms of today's money


8/28/2008

ICU08\_lecture3: Present Value









#### Factors shift supply curve for bonds

- · Corporate tax on profit
- · Tax subsidies for investment
- Expected inflation
- · Government borrowing

8/28/2008

ICU08\_lecture3: Present Value

### Factors shift demand curve for bonds

- Investors wealth
- Expected returns on bonds
- Expected returns on other assets
- · Riskiness of bonds relative to other assets
- Expected inflation
- Liquidity of bonds relative to other assets

8/28/2008

ICU08\_lecture3: Present Value

45

#### Methodology of arbitrage pricing

- You have an asset (or business project) that you would like to price. Check the payoff pattern of your asset.
- Replicate the payoff pattern of the asset using existing assets. Construct the replicating portfolio.
- The valuation of an asset must be equal to the value of assets used to construct the replicating portfolio.

8/28/2008

ICU08\_lecture3: Present Value

### Use tracking portfolio to value investment projects

- Find some asset or combination of assets that perfectly tracks the cash flows of the investment project.
- Apply no-arbitrage condition.
- The price of a tracking portfolio is the value of the investment project.

8/28/2008

ICU08 lecture3: Present Value

47

#### Limit of tracking portfolio approach

- For example, oil price can be used to price oil well.
- However, there will not be a perfectly replicating portfolio in practice. There are always tracking errors.
- If there are significant tracking errors, use asset pricing models.
  - → Theme of the next lecture.

8/28/2008

ICU08\_lecture3: Present Value