Intergenerational equity and an explicit construction

of welfare criteria

Toyotaka Sakai *f

August 19, 2008

Abstract

Ranking infinite utility streams includes many impossibility results, most
involving certain Pareto, anonymity, or continuity requirements. We introduce
the concept of the future agreement extension, a method that explicitly extends
orderings on finite time horizons to an infinite time horizon. The future agree-
ment extension of given orderings is quasi-transitive, complete, and pairwisely
continuous. Furthermore, it is a subrelation of any other pairwisely continuous
extension of the orderings. In case of anonymous and strongly Paretian order-
ings, their future agreement extension is variable step anonymous and strongly
Paretian. Characterizations of the future agreement extensions of the utilitarian

and leximin orderings are obtained as applications.
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1 Introduction

Dynamic economic environments are often modelled to incorporate an infinite number
of generations. However, ethically evaluating intergenerational welfare in such models
is non-trivial because of the difficulty of dealing with infinity. Indeed, since the seminal
work by Diamond (1965), various impossibility results have been obtained for the con-
struction of intergenerational welfare criteria satisfying basic normative requirements.
This is in contrast with the existence of many reasonable welfare orderings for finite
populations, and as a resolution, we shall consider extending such welfare orderings to
an infinite time horizon.

A sequence of finite generation orderings is R = {R;}ien, where each R; is a
welfare ordering at period ¢ that ranks Z-dimensional utility streams. Examples are
the sequences of the utilitarian and leximin orderings. Our idea of constructing an
intergenerational welfare criterion based on such a sequence is very simple. When
two infinite utility streams z = (x1, z3,...) and y = (y1, ya, . ..) are given, x is ranked
higher than y, if and only if there exists a time period s such that all future periods
t > s agree with the normative judgement at period s that ranks x higher than y,

where each period ¢ is concerned with the t-period histories given by x and y, that is,

(xlax%"'axt) Pt (ylay27"'7yt) VtZ S5

Otherwise, z and y are ranked indifferently. The binary relation so constructed is
called the future agreement extension of R. This method is quite useful as it applies to
any arbitrary sequence of finite generation orderings and considerable knowledge exists
about orderings defined on finite dimensions in social choice theory (see, d’Aspremont
and Gevers, 2002, for a survey).

Needless to say, all impossibility results in this literature apply to the future agree-
ment extension. For example, the non-existence of binary relations satisfying weak
Pareto, finite anonymity, and product continuity (Diamond, 1965) implies that the
future agreement extension of any sequence cannot satisfy the three requirements si-
multaneously. However, a great advantage of the future agreement extension is that
it generates a complete binary relation satisfying all standard requirements at some
good level. Particularly, whenever a sequence consists of anonymous orderings, its fu-
ture agreement extension satisfies a strong impartiality requirement of wvariable step
anonymity (Lauwers, 1997b). Furthermore, it is strongly Paretian if the orderings are
strongly Paretian. On transitivity conditions, the future agreement extension achieves
quasi-transitivity and finite transitivity but not transitivity. This impossibility is,
however, an inevitable consequence of the fact that no binary relation can be transi-

tive, weakly Paretian, and variable step anonymous (Lauwers, 1997b; Fleurbaey and



Michel, 2003).

For every sequence of finite generation orderings, its future agreement extension
satisfies a continuity condition based on the pairwise convergence of infinite utility
streams. This condition is weaker than the product, Campbell, and Mackey con-
tinuities. Since these three continuity conditions are incompatible even with finite
anonymity and weak Pareto (Diamond, 1965; Campbell, 1985; Shinotsuka, 1998), our
pairwise continuity can be seen as an appropriate relaxation of these continuity con-
ditions so as to be compatible with even stronger notions of variable step anonymity
and strong Pareto.

We obtain several characterization results. The future agreement extension of a
given sequence is a subrelation of any pairwisely continuous extension of the sequence,
and it is the unique extension under an additional requirement of Asheim and Tun-
godden’s (2004) continuity condition. We also show that a version of d’Aspremont’s
extension (2007) is a superrelation of any pairwisely continuous extension under a few
standard normative requirements. These results are applied to obtain characteriza-
tions of the extensions of the sequences of the utilitarian and leximin orderings.

This paper is organized as follows: Section 2 offers definitions. Section 3 introduces
the future agreement extension and investigates its properties. Section 4 provides main

results. Section 5 gives concluding comments.

2 Definitions

2.1 Basic notion

Let N = {1,2,...} be the set of infinite generations. A unit interval X = [0,1] is
called a domain, which is the set of possible utility levels of each generation. A wutility
stream is a vector x = (1, x2,...) € X, where each z; denotes the utility level of the
generation t. Given z,y € X and t € N, we define their “¢-head” and “t + 1-tail” by

ZU(t) = (‘/B17‘,’U27‘ : '7xt) € Xta
ylt + 1] = e, Yoo, - - ) € X,

respectively, and denote their combination stream by

(@(t), ylt +1]) = (x1, 02, Tty Yer1, Yer2, - - -) € X,

We also define, for ¢, s € N with ¢ < s,

(1‘(t),y[t+ 178]) = (1'1,1'2, e Tty Y15 Y42, - - '7ys) € X°.



A binary relation is a subset 7—C X x X*° and its asymmetric and symmetric parts
are defined by == {(x,y) €7 (y,z) ¢22} and ~= {(z,y) €7 (y, ) €7}, respectively.
We often write = 7 y instead of (z,y) €7

~)

and the same notational rule applies to >

and ~. Given x,y € X, vector inequalities are defined by

T2y < [z, >y VtEN],
r>y < [z, >y VteNand z;, >y, Js € N|,
r>y < [z, >y VteN.

We define various properties of binary relations:

Order properties A binary relation - is transitive if x 7~ y and y - z imply = =~ z
for every z,y,2 € X, is quasi-transitive if x > y and y > z imply x > z for
every x,vy,z € X, is finitely transitive if x > y and y > 2z imply x > z for
every z,y,z € X such that z[t + 1] = y[t + 1] = z[t + 1] for some ¢ € N, and is
complete if x 7~ y or y 7~ x for every z,y € X*.

Pareto properties A binary relation - is weakly Paretian if x > y for every z,y € X

with x >y, and is strongly Paretian if x > y for every z,y € X with x > y.

Anonymity properties A permutation is a bijection 7 : N — N. The set of all
permutations is denoted by II. Given IT C II, a binary relation = on X satisfies
IT-anonymity if m(x) = (Tx@))en ~ @ for every x € X and every m7 € IL

Interesting classes of permutations are as follows:

e A permutation 7 € Il is a finite permutation if there exists an integer s > 0
such that for each ¢t > s, w(t) = t. Let II; be the set of finite permutations.
IT;-anonymity is called finite anonymity. Finite anonymity has been the
most studied in the literature since Diamond (1965). It is known that there
exists a binary relation satisfying transitivity, completeness, strong Pareto,

and finite anonymity (Svensson, 1980).!

e A permutation 7 € Il is a fized step permutation if there exists a “length”

integer s > 0 such that for each “step” integer n > 0,

{1,2,...,ns} ={n(1),7(2),...,7(ns)}.

Let Il be the set of fixed step permutations. II,-anonymity is called fized

step anonymity. This axiom is introduced by Lauwers (1997b). Likewise

!Studies that focus on finitely anonymous binary relations include Diamond (1965), Svensson
(1980), Campbell (1985), Lauwers (1997a,c), Shinotsuka (1998), Fleurbaey and Michel (2003), and
Sakai (2003a,b).



as finite anonymity, there exists a binary relation satisfying transitivity,
completeness, strong Pareto, and fixed step anonymity (Lauwers, 1997b;
Fleurbaey and Michel, 2003).2

e A permutation 7 € II is a variable step permutation if there exists a se-
quence of integers s, s9,53,... with 0 < s; < s9 < s3 < --- such that for

each member s, of the sequence,

(1,2,..., 86} = {m(1), 7(2), ..., 7w(s)}.

Let II3 be the set of variable step permutations. Ils-anonymity is called
variable step anonymity. This axiom is sketched by Lauwers (1997b) and is
studied by Fleurbaey and Michel (2003), however, not much effort has been
taken to understand its implications. Fleurbaey and Michel (2003) simul-
taneously demonstrate the existence of a binary relation satisfying quasi-
transitivity, completeness, strong Pareto, and variable step anonymity, with
the non-existence of a binary relation satisfying transitivity, weak Pareto,

and variable step anonymity.

Moreover, IT-anonymity, the strongest anonymity condition, is called infinite
anonymity.® There exists no binary relation satisfying strong Pareto and infinite
anonymity (e.g., van Liedekerke and Lauwers, 1997). It is obvious that II; C

I, C I3 C TI; however, the choice of permutations is controversial.

2.2 Extensions of finite generation orderings

Given t € N, a binary relation on X' is denoted by R;, where its asymmetric and
symmetric parts are denoted by P, and I, respectively. Order properties and Pareto
properties of R; are defined by the same way as 77 on X*°. When there are only finite
generations, there is a unique definition of anonymity, because the choice of the class
of permutations is not a problem. That is, R, on X" is anonymous if z(t) I; (zr(s))'=
for every z(t) € X' and every permutation w on {1,2,...,¢}. A binary relation R; on
X' is an ordering if it is transitive and complete.

The following are two famous examples of strongly Paretian and anonymous or-

derings on X*:

2This desirability has attracted the attention of recent researches (e.g., Fleurbaey and Michel,

2003; Banerjee, 2006; Mitra and Basu, 2007; Kamaga and Kojima, 2007a,b; Kamaga, 2008).
3A further stronger axiom, called “reinforcement”, can be found in Chambers (2008). This axiom

states invariance of ranking under any arbitrary permutation and concatenation of utility streams.



Utilitarian ordering, RY: For all z(t),y(t) € X*,
t t
) R y(t) = Y 0> Yy
s=1 s=1

Leximin ordering, RF: For all z(t),y(t) € X?,

z(t) I} y(t) <= z(t) = y(1),
o(t) PEy(t) = 3s <t, [20), > y(0), and 2(0), = y(D), V' < s,

where z(t) and y/(t) are t-dimensional utility streams obtained by permuting x(¢)

and y(t) in ascending order, respectively.

A sequence of finite generation orderings is a sequence R = {R;};en where R;
is an ordering on X! for every ¢ € N. Such a sequence R is correlated if for every
x,y,z € X>® and every t € N,

z(t) Ry y(t) <= (2(t), 2e41) Resr (Y1), 2e41)-

The sequences of the utilitarian and leximin orderings, RV = {RY},cny and RF =
{RF}ien, are examples of correlated sequences of finite generation orderings.

While the existence of desirable binary relations on an infinite dimensional space is
a very non-trivial question, welfare economics has provided various desirable orderings,
such as R{ or R}, on finite dimensional spaces. Therefore, as an efficient use of
accumulated knowledge, we shall somehow obtain binary relations on X* by extending
a sequence of finite generation orderings R = {R;}4eny to X*°. For this, we need
formal definitions of “extension”: A binary relation 7~ on X* is a weak ezxtension of
R = {R;}en if for every z,y, 2z € X*° and every t € N,

v(t) R y(t) = (a(2), [t + 1)) 75 (y(0), 2]t + 1)),
and is a strict extension of R = {R;}en if for every z,y,z € X°° and every ¢t € N,
z(t) Ry y(t) <= (x(t), 2[t + 1]) Z (y(2), 2[t + 1]).

d’Aspremont (2007, Section 3) is an earlier work on extensions of a sequence of
finite generation orderings. He considers the concept of a “proliferating” sequence in-
stead of our correlated sequence, and defines the concept of “extension” with adding a
flavor of strong Pareto. However, the definition of proliferation involves a consistency
requirement to extended binary relations, so that checking the satisfaction is not triv-
ial. Contrastingly, our simple definition of correlation does not involve any condition
on extension, so it is purely defined as a condition on sequences. Furthermore, our
weak and strict extensions are defined independent of strong Pareto, implying that

non-Paretian welfare criteria are not excluded from the scope of our analysis.



3 Future agreement extension

3.1 Definition and basic properties

We propose an extension called the future agreement extension, which is based on the
idea of respecting evaluation over histories by each generation. The idea of constructing
the future agreement extension -% of R is as follows: Pick any z,y € X*°, and assume
z(t) P, y(y) for some ¢t € N. This means that history z(t) is normatively better than
history y(¢) when they are evaluated at period t. If this normative evaluation is
unanimously agreed by all future generations, i.e., z(s) Py y(s) for all s > ¢, then we

set © =% y:
>4y < JFeEN, Vs>t x(s) Ps y(s). (1)

Consider the case that some future generation s > ¢ does not agree the evaluation at ¢.
Then we consider the evaluation at ¢ as imprecise, since it is not approved by a future
generation whose informational bases x(s), y(s) are richer than x(t),y(¢). When such a

reversal occurs at each and every time period, we set the two steams to be indifferent:
xr ~% y <= neither z >% y nor y >4 . (2)

More formally, the future agreement extension of R is defined to be the binary relation
=% on X such that

roRy <= VteN, ds > t, x(s) Rs y(s), Va,y e X*. (3)

It is obvious that (1) and (2) together are equivalent to (3).

One may consider that the future agreement extension admits large indifference
classes and hence is not decisive, but our Theorem 1 will show that this extension
is still the best in view of decisiveness under some conditions. We are not saying
that the future agreement extension is ideal, but saying that this can be a possible
compromise given indeed many impossibility results in the literature. Its performance
will be tested in this and the next sections.

The explicit formula of the future agreement extension is quite rare for welfare
criteria with regard to infinite generations. As pointed out by Fleurbaey and Michel
(2003, p.794), despite the presence of some well-behaved complete binary relations in
the literature, their existence are proved using Szpilrajn’s lemma (e.g., Svensson, 1980;

Fleurbaey and Michel, 2003; Sakai, 2003a), which is a very non-constructive method.*

4This non-constructiveness is formally proved by Zame (2007) and Lauwers (2007) in terms of

measurability or the axiom of choice.



Since any welfare criterion is supposed to be used for welfare evaluation, invisibility of
its explicit formula is a serious drawback in understanding how its value judgement is

given. Our future agreement extension overcomes this problem. Note also that
xr%y <= |{teN:z(t) Ryy(t)}| > [{t e N:y(t) Ry x(t)}| Vo,y e X, (4)

In view of (4), the future agreement extension can be seen as a plurality rule when the
infinite generations are voters and each generation evaluates their histories by their
welfare criterion.

The next lemma ensures that the future agreement extension of any correlated

sequence is in fact a strict extension.

Lemma 1. Let R = {R,;}ien be any correlated sequence of finite generation orderings.

Then =% is a strict extension of R.

Proof. Let x,y,z € X and t € N.
Assume z(t) R; y(t). Then by correlation of R,

(x(t),z[t +1,s]) Rs (y(t), 2]t +1,s]) Vs>t
Hence, by definition of =%,
(@(t), 2[t + 1]) Zh (y(1), 2[t + 1]).

Assume next (z(t), z[t + 1]) =% (y(¢), z[t + 1]). By definition of =%, there exists
s >t such that

(z(t), z[t +1,s]) Rs (y(t), z[t + 1, s]). (5)
If y(t) P, x(t), then correlation of R implies
(y(t), z[t + 1,s]) Ps (x(t), 2]t + 1,5]) Vs>t
a contradiction to (5). O

The next lemma shows that axioms satisfied by finite generation orderings can be

lifted to infinite horizon by the future agreement extension.’

% Although many other axioms can be lifted, we here deal only with the ones that are most relevant
to the present study. An important example of such axioms is the Pigou-Dalton transfer principle.
This axiom and its variants can be found in Fleurbaey and Michel (2001), Sakai (2003a, 2006),
Bossert, Sprumont, and Suzumura (2007), and Hara, Shinotsuka, Suzumura, and Xu (2008).



Lemma 2. Let R = {R;}ien be any sequence of finite generation orderings that sat-
isfy strong Pareto and anonymity. Then =% satisfies quasi-transitivity, completeness,
strong Pareto, and variable step anonymity. If R is correlated, then 2% also satisfies

finite transitivity.

Proof. Let us prove quasi-transitivity. Assume that =%, y and y >% 2. Then there
exist t',t" € N for which

so z(t) P, z(t) for all ¢ > max{t',¢"}. Hence z =9 z.

Completeness is trivial.

Next we shall prove variable step anonymity. Let x € X*>. Let m € II3 be
associated with the set of steps {s1, s9, s3,...} € N. Then by anonymity of each Ry,

x(sy) Is, y(s,) Vs, € {s1,59,83,...}.

Hence, by definition of the future agreement extension, x ~% y.
It remains to prove strong Pareto. If x Pareto dominates y, then for s € N such

that x5 > y,, strong Pareto of each R; implies
z(t) Py y(t) Vt > s.

Hence x ~% y.

Let us prove finite transitivity under the assumption of correlation. Assume that
T =%y, y =% 2z and zft + 1] = y[t + 1] = 2[t + 1] for some ¢t € N. Since R is
correlated, Lemma 1 implies that =% is a strict extension of R. Hence, z(t) R; y(t)
and y(t) Ry z(t), so that x(t) R, z(t) by transitivity of R;. Since =% weakly extends
R, we have x = (x(t), [t + 1]) =% (2(2), z[t + 1]) = 2. O

As mentioned earlier, no binary relation satisfies transitivity, weak Pareto, and vari-
able step anonymity. Therefore, quasi-transitivity and finite transitivity in Lemma 2
cannot be strengthened to transitivity. Fleurbaey and Michel (2003) define %, as
a variant of the overtaking criterion, and point out that it satisfies quasi-transitivity,
completeness, strong Pareto, and variable step anonymity. Lemma 2 generalizes this
observation for every binary relation that is the future agreement extension of any

sequence of finite generation orderings.



3.2 Pairwise continuity

Continuity means robustness of ranking with respect to small perturbations in data.
Though this condition is largely met in the finite dimensional setting, it is quite severe
in the setting with an infinite number of generations. It is known that no reasonable
finitely anonymous binary relation is continuous with respect to the product (Diamond,
1965), Campbell (Campbell, 1985), or Mackey topology (Shinotsuka, 1998).6 We shall
introduce a mild continuity condition that is weaker than continuity with respect to
these topologies. It is based on the pairwise comparison of utility streams.

Consider any pair z,y € X°° and a sequence {z"},cn in X°° such that, for some

positive integers s; < S < §3 < - -,
2" = (x(sy),yls, +1]) Yv e N

Under various topologies including those aforementioned, the sequence {z"},cn con-

verges to y.” Hence, whenever

2V —y Vv eN,
continuity with respect to those topologies implies
We define this weaker notion as a continuity axiom:

Pairwise continuity For every z,y € X, if there exists an infinite set N' C N such
that (x(t),y[t + 1]) = y for all t € N, then x = y.

The first continuity axiom based on the pairwise comparison is Axiom 3 in Brock
(1970), which is used in his axiomatization of a Ramsey-Atsumi-von Weizsécker over-
taking criterion (Ramsey, 1928; Atsumi, 1965; von Weizsicker, 1965). Following
Brock’s idea, Asheim and Tungodden (2004) and Kamaga and Kojima (2007b) offer
interesting variants of his Axiom 3; however, their continuity axioms have no logical
relations to continuity with respect to the aforementioned topologies. Conversely, pair-
wise continuity is implied by continuity with respect to those topologies, and hence
any result on this condition has direct logical relevance to Diamond-style impossibil-
ity results. Therefore, pairwise continuity derives its idea from both the “topological
approach” and the “pairwise approach”. This condition will play a crucial role in

understanding the future agreement extension. This is the first step:

6Relations among these and other topologies are summarized by Lauwers (1997a).
"In the words of Brown and Lewis (1981), any topology that has some “myopic” feature achieves

this convergence. Although the sup topology is a widely studied topology in the literature, it does
not have such a feature.

10



Lemma 3. Let R = {R,;}ien be any correlated sequence of finite generation orderings.

Then 2% is pairwisely continuous.
Proof. Let x,y € X be such that, for some infinite set N' C N,
(z(t),ylt+1]) =%y VteN.
Since 7% is a strict extension of R by Lemma 1,
x(t) Ry y(t) VteN.

Thus by definition of =%, x =% v. O

4 Main results

4.1 Characterizations of the future agreement extension

The null ordering 7™ is the binary relation on X defined by [z " y Vz,y € X,
which fails to distinguish utility streams from any normative perspective. We deal
with this non-fascinating ordering to make its comparison to the future agreement
extension. The next theorem shows that, contrary to the null ordering, the future
agreement extension best distinguishes the utility streams among the class of weak

extensions satisfying pairwise continuity:

Theorem 1. Let R = {R;}ien be any correlated sequence of finite generation order-
ings. Then for every binary relation =, on X*° that is a weak extension of R satisfying
pairwise continuily,

ZHCLCL"

Furthermore, =% and =" are weak extensions of R satisfying pairwise continuity.

Proof. Let 77, be any weak extension of R satisfying pairwise continuity. Let us show
that =% C. Pick z,y € X*™ with x =% y. Then there exists an infinite set N C N
such that

z(t) Ry y(t) Vt e N.
Since 7~ weakly extends R,
(@(®),ylt +1]) Z (y(@),y[t+1]) =y VtEN.

Thus by pairwise continuity, x 7 y, as desired.
Since ZC 2™ trivially holds, we have 22%,C>~C>~". Lemmas 1 and 3 imply that =%
is a weak extension of R satisfying pairwise continuity. It is obvious that 77" is a weak

extension of R satisfying pairwise continuity, too. O

11



Given completeness of 7%, the minimality of 7% among the class of binary rela-
tions satisfying pairwise continuity implies that 7% is more decisive than any other
> belonging to the class. Indeed, for every z,y € X, x ~% y implies z ~ y, but
[z =% y and x ~ y] is possible. In the same sense, the maximality of 2™ implies the
least decisiveness of " among the class. A possible critique to the future agreement
extension is that it admits large indifferent classes, but Theorem 1 implies that this
extension still keeps the smallest indifferent classes among the class of weak extensions
satisfying pairwise continuity.

The next axiom is Asheim and Tungodden’s (2004) continuity condition that ap-

plies to asymmetric parts of binary relations.®

Asheim-Tungodden continuity For every z,y € X if there exists s € N such
that (x(t),y[t + 1]) = y for all ¢ > s, then x > y.

Our second main theorem pins down the future agreement extension by strength-

ening weak extension to strict extension and adding Asheim-Tungodden continuity.’

Theorem 2. Let R = {R;}ien be any correlated sequence of finite generation or-
derings. A strict extension of R satisfies pairwise continuity and Asheim-Tungodden

continuity if and only if it is the future agreement extension of R.

Proof. Lemmas 1 and 3 imply =% is a strict extension of R satisfying pairwise con-
tinuity. We next show that =% is Asheim-Tungodden continuous. Let z,y € X* be

such that, for some s € N,
(@(t),ylt +1]) =Ry Vi=s.
Since 7—% is a strict extension of R by Lemma 1,
z(t) =% y(t) Vt>s.

Thus by definition of =%, = =% v, as desired.

8 Asheim and Tungodden call this condition “weak preference continuity”.
9Both devises are necessary: the null ordering is a weak extension of RV satisfying pairwise

continuity and Asheim-Tungodden continuity, but it is not a strict extension of RY; the binary
relation ?\:dRU, which will be defined and studied in Section 4.2, is a strict extension of RV satisfying
pairwise continuity but not Asheim-Tungodden continuity. Finally, the following Ramsey-Atsumi-von
Weizsécker overtaking criterion
t t
T iOT y < IT, Vt>T, sz > Zys, Ve, y e X°°

s=1 s=1
is a strict extension of RY satisfying Asheim-Tungodden continuity but not pairwise continuity. These
arguments imply the tightness of the conditions in Theorem 2.

12



Let - be any strict extension of R satisfying pairwise continuity and Asheim-
Tungodden continuity. By Theorem 1, 2% C>. To prove -Cx=%, it suffices to show
that, for every z,y € X*°, if x =% vy, then = > y. If © >% y, then there exists s € N
such that

z(t) Py y(t) Vt > s. (6)
Since 77 strictly extends R, (6) implies
(@(t), ylt +1]) = (y(@),ylt + 1)) =y Vt = s.

Hence, by Asheim-Tungodden continuity, x > y. O

4.2 Future domination extension

Given a sequence of finite generation orderings R = {R;}icn, the future domination

extension of R is the binary relation =% on X defined by, for all z,y € X,

r =%y if N, x(t) P, y(t) and z[t + 1] = y[t + 1] (7)

x ~% 1y otherwise. (8)

d’Aspremont (2007) defines an extension of R only by (7). However, then the binary
relation so extended fails to be complete.'® Adding (8) makes it complete. One may
consider that the future domination extension does not generate a well-defined binary
relation, since two “¢” might exist in (7). However, we do not have to worry about it

if R is correlated and strongly Paretian, which is proved in (i) of the next lemma:

Lemma 4. Let R = {R; }1en be any correlated sequence of finite generation orderings
satisfying strong Pareto. Then the following statements hold:

(i) =% is well-defined as a binary relation on X>°;

(ii) =% is a strict extension of R;

(iii) =% is quasi-transitive, finitely transitive, complete, strongly Paretian, and pair-
wisely continuous;

(iv) ZHC TR

(v) If R is anonymous, then =% is variable step anonymous.
Proof. See, Appendix. O

The next theorem identifies the future agreement extension and the future domina-
tion extension as the minimal and maximal strict extensions of strongly Paretian finite

generation orderings under quasi-transitivity, strong Pareto, and pairwise continuity:

104’ Aspremont calls this extension “the simplified criterion”.

13



Theorem 3. Let R = {R;}en be any correlated sequence of finite generation orderings
satisfying strong Pareto. Then for every binary relation = on X*° that is a strict

extension of R satisfying quasi-transitivity, strong Pareto, and pairwise continuity,
d
ZREZCZR -

Furthermore, =% and =% are strict extensions of R satisfying quasi-transitivity, strong

Pareto, and pairwise continuity.

Proof. By (i) in Lemma 4, =% is a well-defined complete binary relation. Let
be a strict extension of R satisfying quasi-transitivity, strong Pareto, and pairwise
continuity. Theorem 1 implies 5% C>, which in turn implies completeness of .

We shall show =C>%. By completeness of 7 and =%, it suffices to show that, for
every z,y € X, x =% y implies x > y. Assume = =% y. Then there exists ¢ € N such
that z(t) P, y(t) and z[t+ 1] = y[t + 1]. Consider the case z[t+ 1] = y[t+1]. Then, by
strict extension, x = (x(t), [t + 1]) > (y(t),z[t + 1]) = y, as desired. Next, consider
the case x[t + 1] > y[t + 1]. By strong Pareto, (x(t),z[t + 1]) > (x(¢),y[t + 1]). By
strict extension, (z(t), y[t +1]) = (y(¢),y[t + 1]). Thus by quasi-transitivity, z > y, as
desired.

The “furthermore part” follows from Lemmas 1-4. O

4.3 Applications

Using axiomatization results in finite horizon, we can easily characterize extensions of
interesting sequences of finite generation orderings. d’Aspremont and Gevers (1977)
show that, in the finite horizon setting, the utilitarian ordering is the unique ordering
satisfying strong Pareto, anonymity, and an interpersonal comparability condition of

utility gains, which is defined in our setting by:

Cardinal unit comparability For every z,y, 2,y € X, if there exist a vector

a = (a1, as,...) and an integer b > 0 such that
' = (ay + bxy, az + bxy, az + brs,...) and y' = (ay + by, as + by, az + bys, .. .),
then x —y <— 2/ Z ¢

Lemma 5. If a binary relation = on X satisfies finite transitivity, completeness,
strong Pareto, anonymity, and cardinal unit comparability, then = is a strict extension
of RV.
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Proof. Let z € X* and t € N. It suffices to show that

}:x,>§:%<¢¢ (t), 2[t + 1]) = (y(t), [t + 1]) Vz,y € X*. (9)

Define the binary relation R} on X* by
2(t) By y(t) <= (x(t),2[t +1]) Z (y(1), 2[t + 1]) Yo,y € X*.

By the properties of -, R} so defined is an ordering satisfying strong Pareto, anonymity,
and cardinal unit comparability on X*. Therefore, by the characterization of the util-
itarian ordering by d’Aspremont and Gevers (1977), we have R? = RY (this holds
independent of the choice of z). Therefore, (9) holds. O

Lemma 5 and our theorems together establish the following characterization of the

extensions of the sequence of the utilitarian orderings:

Theorem 4. For every binary relation 7= on X satisfying finite transitivity, quasi-
transitivity, completeness, strong Pareto, finite anonymity, cardinal unit comparability,

and pairwise continuity,

kv CLC TR -
Furthermore, =%, and >RU satisfy all these axioms. Whenever 7, also satisfies Asheim-
Tungodden continuity, 7% =2

Proof. Given Lemma 5 and Theorems 2 and 3, it remains to prove that 2%, and 7 NRL

satisfy cardinal unit comparability, but we omit its easy proof. O

Many studies on utilitarian binary relations on infinite utility streams have been
conducted, including Brock (1970), Svensson (1980), Lauwers (1997b,c), Fleurbaey and
Michel (2003), Sakai (2003a), Asheim and Tungodden (2004), Basu and Mitra (2007),
Banerjee (2006), d’Aspremont (2007), and Kamaga and Kojima (2007a), among oth-
ers. Roughly speaking, the main difference between these studies and ours is that,
they attribute more importance to transitivity than completeness, which we do not.
They initially assume transitivity and use Szpilrajn’s lemma to obtain complete ex-
tensions when necessary'!, whereas we directly construct complete orderings so as to
satisfy quasi-transitivity and finite transitivity. This difference suggests a trade-off
between transitivity and constructiveness. However, it should be noted that we are
still achieving quasi-transitivity and finite transitivity, which decreases the cost of los-

ing transitivity. Indeed, by paying it, we even succeeded in reconciling with strong

H1See, Svensson (1980) for how to use Szpilrajn’s lemma.
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Pareto and a strong impartiality requirement of variable step anonymity, which is
incompatible with weak Pareto under transitivity (Fleurbaey and Michel, 2003).

The logic used to establish Theorem 4 applies for not only the utilitarian ordering
but also for any other ordering. That is, if a set of axioms characterizes strict extensions
of some sequence of finite generation orderings as in Lemma 5 and if the binary relation
is assumed to be pairwisely continuous, then the same conclusion as that of Theorem 4
holds. This means that our main results can be used as “theorem generators”. The

following equity axiom is introduced by Hammond (1976):

Hammond equity For every x,y € X, if there exist ¢, € N such that x, = y, for
all s # t,t" and
Yo > Ty > Ty > Yy,

then =z > y.

Lemma 6. If a binary relation = on X satisfies finite transitivity, completeness,

strong Pareto, anonymity, and Hammond equity, then = is a strict extension of R".

Proof. Let z € X* and t € N. Define the binary relation R on X' by
z(t) Rf y(t) <= (x(t), 2t +1]) Z (y(1),2[t +1]) Yo,y € X

By the properties of 77, R} so defined is a transitive, complete, strongly Paretian,
anonymous, and Hammond equitable binary relation on X*t. Therefore, by Hammond’s
characterization of the leximin ordering!?, we have R? = RF (this holds independent
of the choice of z). Therefore, = strictly extends RL. O

The next theorem characterizes the extensions of the sequence of the leximin or-

derings:

Theorem 5. For every binary relation 7= on X satisfying finite transitivity, quasi-
transitivity, completeness, strong Pareto, finite anonymity, Hammond equity, and pair-

wise continuity,
=, C=Crt,

=~ =~u

Furthermore, =%, and >RL satisfy all these axioms. Whenever 7, also satisfies Asheim-

Tungodden continuity, %, =2.
Proof. Given Lemma 6 and Theorems 2 and 3, it remains to prove that *RL and ~ NRL

satisfy Hammond equity, but we omit its easy proof. O

2Hammond’s model is more structured, but it is possible to obtain this characterization from his
argument. The proof of Proposition 1 in Asheim and Tungodden (2004) contains a direct proof of

this fact. They characterize two versions of the leximin ordering in the same model as ours.
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We remark that Asheim and Tungodden (2004) and Bossert, Suzumura, and Spru-
mont (2007) also study intergenerational versions of the leximin ordering; however, as
in the case of the utilitarian ordering, no explicit formula is given to satisfy complete-
ness. This is in contrast with %, and =%, .

5 Concluding comments

We introduced the notions of weak extension, strict extension, and correlated se-
quences to systematically analyze how to construct welfare criteria on infinite utility
streams using welfare criteria on finite dimensional spaces. We then proposed an ex-
plicit method for constructing intergenerational welfare criteria, the future agreement
extension. This method always achieves quasi-transitivity, finite transitivity, complete-
ness, and pairwise continuity as well as all standard normative requirements including
strong Pareto and a strong impartiality requirement of variable step anonymity. The
cost of obtaining these desirable properties is the violation of transitivity, but it was
an inevitable consequence from the non-existence of transitive, weakly Paretian, and
variable step anonymous binary relations. However, since we still successfully achieve
quasi-transitivity and finite transitivity, our arguments suggest that the relaxation of
transitivity is an attractive way to obtain reasonable intergenerational welfare crite-
ria, given indeed many non-existence and non-constructive existence results involving
transitivity. This approach is in line with the study by Sen (1970), who considers a
departure from Arrow’s impossibility theorem by relaxing transitivity of social pref-
erences to quasi-transitivity in his famous Pareto-extension theorem. Our study also
highlights the possibility of respecting variable step anonymity, which has so far re-
ceived little attention.

We are not insisting that the future agreement extension is a perfect way of exten-
sion, since it admits large indifference classes as the cost of completeness. However,
as Theorem 1 shows, this is the most decisive way under weak extension and pairwise
continuity. We consider that, given many existing impossibility results in the litera-
ture, this extension is an acceptable compromise to obtain positive results as much as
possible. In fact, we found its compatibility with various desirable properties includ-
ing strong Pareto, variable step anonymity, or Hammond equity. We hope that this
study motivates the further future research that contributes to other explicit ways of

extending finite dimensional welfare criteria.
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Appendix

Proof of Lemma 4. 'The proof makes use of the following fact:

Fact. For every x,y € X°°, if }dR Yy, then there exists s € N such that
for every t > s, x(t) P; y(t): Let z,y € X* be such that z =% y. Then there
exists s € N for which z(s) Ps y(s) and z[s + 1] 2 y[s + 1]. By correlation of R,

(z(s),y[s + 1,t]) P (y(s),y[s +1,t]) Vi >s+1. (10)
For every t > s+ 1 such that x[s + 1,t] = y[s + 1, t], reflexivity of R; implies
(x(s),z[s + 1,t]) I; (z(s),y[s + 1,¢]).
For every t > s+ 1 such that x[s + 1,t] > y[s + 1, t], strong Pareto of R; implies
(x(s),z[s + 1,t]) Py (x(s),y[s + 1,t]).
In both cases, (10) and transitivity of R; imply
z(t) = (z(s), z[s + 1,1]) P (y(s),yls + 1,1]) = y(t) Vt > s+1,

as desired.

(i) Let us show that - is well-defined as a binary relation. It suffices to prove
that there exist no z,y € X such that z =% y and y =% x. If such z,y exist, then
Fact implies that for any large ¢, x(t) P, y(t) and y(t) P, z(t), a contradiction.

(ii) We shall prove that =% strictly extends R. Let z,y,2 € X® and T € N. If
x(T) Pr y(T), then by definition of =4,

(@(T), 2T + 1)) =5 (y(T), 2[T + 1)),

as desired.
Next, assume z(T") Iz y(T'). Then by correlation of R,

(@(T), 2[T + 1,4)) I, (y(T), 2[T + 1,1]) V¢ >T. (11)

Let v = (z(T),2[T + 1)) and w = (y(T), 2[T + 1]). To prove v ~% w, suppose, by
contradiction, that v =% w. Then there exists S € N such that

v(S) Ps w(S) and v[S + 1] 2 w[S + 1].
Therefore, by strong Pareto, correlation, and transitivity,

(v(S),v[S +1,s]) Rs (v(S),w[S +1,s]) Ps (w(S),w[S+1,s]) Vs>S5, (12)
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where (v(5), 2[S+1, s]) Is (v(S), w[S+1, s]) holds if and only if 2[S+1, s] = w[S+1, s].
By definitions of v, w and (12),

(x(T), z]T + 1,t]) P, (y(T), 2[T + 1,t]) ¥Vt > max{T, S},

which contradicts (11).

(iii) Completeness and strong Pareto are trivial. Let us prove quasi-transitivity.
Assume z =% y and y =% 2. Then, by Fact, there exists a large ¢’ € N such that

z(t) Poy(t) vt =,
y(t) Py z(t) Vt>1t,

and then transitivity of R; implies
z(t) P, 2(t) vVt >t (13)
Since x =% y and y =% 2, by definition of =%, there exists a large ¢" € N such that
[t + 1] 2 y[t" + 1] 2 2[t" + 1] vt > t". (14)
Let s = {t',¢"}. Then by (13, 14),
z(s) Ps z(s) and x[s + 1] = z[s + 1],

and hence z =% 2 by definition of =%.

Let us prove finite transitivity. Let x,y,2 € X*® and ¢ € N be such that x =% v,
y =% 2z, and x[t + 1] = y[t + 1] = 2[t + 1]. Since 7 strictly extends R,

z(s) R, y(s) and y(s) Ry 2(s) Vs >,
so by transitivity of R,
z(s) Rs z(s) Vs > t. (15)

By Fact, z =% x contradicts (15), and hence by completeness, = =% z.

We shall next prove pairwise continuity. Let z,y € X be such that, for some
infinite set N C N,

(x(®),ylt+1]) Zhy VtEN.
Since =% strictly extends R,

x(t) Ry y(t) VteN. (16)
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If y =% x, then Fact implies the existence of s € N such that
y(t) P, x(t) Vt> s,

which contradicts (16). Therefore, by completeness, x =% v.

(iv) To prove =% C=% we use a contraposition argument. If y =4 z, then by Fact,
there exists s € N such that for every ¢t > s, y(¢t) P, x(t). This immediately implies
Yy =% .

(v) We omit the easy proof. O
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