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Abstract

We provide a necessary and a sufficient condition on an individual’s expected util-
ity function under which any zero-mean idiosyncratic risk increases cautiousness (the
derivative of the reciprocal of the absolute risk aversion), which is the key determinant
for this individual’s demand for options and portfolio insurance.
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1 Introduction

Gollier and Pratt (1996) termed an expected utility function risk-vulnerable if any zero-
mean background risk increases its Arrow-Pratt measure of absolute risk aversion at
every consumption level.1 In other words, any gamble the decision maker turns down
in the absence of any background risk she will also turn down in the presence of a zero-
mean background risk. This has the consequence that the decision maker’s demand for
the risky asset decreases in the presence of a zero-mean background risk in the standard
portfolio choice problem where there only two assets to choose from, one risk-free (bonds)
and one risky (equity).

The decision maker would often have a much larger set of assets to choose from.
In a more general portfolio choice problem in which there are, in addition, derivative
assets, such as options, written on the risky asset, the decision maker’s consumption
resulting from her optimal portfolio is typically a non-affine function of the payoff of
the risky asset. This is the case when the decision maker’s portfolio includes not only
bonds and equity but also options. Conversely, once we know her optimal consumption
as a function of the payoff of the risky asset, we can work out how she can implement
this plan by holding a portfolio of the bond, equity, and a set of call options of various
strike prices. If the optimal consumption is a non-affine function of the payoff of the
risky asset then this portfolio must include options. Moreover, it can be shown that the
more curvature this function has the higher the decision maker’s wealth share invested
in options.

While the curvature of the decision maker’s optimal consumption function determines
her demand for options, this curvature is, in turn, determined not so much by her degree
of risk aversion but rather of cautiousness, the derivative of the absolute risk tolerance,
which in turn is the reciprocal of the Arrow-Pratt measure of absolute risk aversion. This
was shown in Chevallier and Müller (1994) and also Hara, Huang, and Kuzmics (2007).
The more cautious the decision maker is the more convex (relative to the slope) is her
optimal consumption function. Hence, the more cautious she is the more she demands
options relative to the risky asset.

The question we are addressing in this paper then is under what conditions on the
decision maker’s utility function she demands more options (portfolio insurance) if she

1To be exact, they termed an expected utility function risk-vulnerable if any background risk having
non-positive mean increases its Arrow-Pratt measure of absolute risk aversion at every consumption
level.
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faces any independent zero-mean background risk, i.e., under what conditions on her
utility function a non-hedgeable background risk makes her more cautious. This question
is very much analogous to Gollier and Pratt (1996)’s question, alluded to above, of what
makes a utility function risk-vulnerable.

The main results of this paper are Theorems 1, 2, and 3. Theorem 1 provides three
equivalent essentially necessary and sufficient conditions for cautiousness to be increased
under small background risks. The first is simply in terms of higher order derivatives of
the utility function. The second is in terms of the decision maker’s risk tolerance and
its higher-order derivatives, while the third is purely in terms of the decision maker’s
absolute risk aversion and its higher-order derivatives. All these equivalent conditions
are somewhat complicated. Under the additional assumption that the decision maker is
prudent (i.e. her utility function has a positive third derivative), which is often assumed,
Theorem 2 provides more insightful equivalent conditions for increased cautiousness un-
der small risks: a utility function exhibits increased cautiousness under small risks if and
only if the negative of its first derivative exhibits a higher degree of risk-vulnerability, in
the sense of equation (10) of Gollier and Pratt (1996), than the original utility function
itself. Finally, Theorem 3 provides a global sufficient condition in terms of cautious-
ness and its derivatives. In fact a sufficient condition for increased cautiousness under
any zero-mean background risk is that cautiousness be non-negative, non-increasing and
convex. The first condition is nothing but decreasing absolute risk aversion (DARA),
while the second implies convex risk aversion, which together with the first implies the
sufficient condition for risk-vulnerability (Corollary 1 of Gollier and Pratt (1996)). Espe-
cially given the third condition the sufficient condition for increased cautiousness under
any background risk provided in Theorem 3 is stronger than that for risk-vulnerability.
Finally to make sure that our results are not vacuous we should add that any util-
ity function exhibiting hyperbolic absolute risk aversion (HARA) satisfies our sufficient
condition.

The observation that curvature of the consumption function is related to the de-
mand for options2 was first made by Leland (1980) and Brennan and Solanki (1981).
Section 6, following Leland (1980)’s approach, establishes that the second derivative of
the consumption function can be interpreted as the density function of strike prices of

2Huang and Stapleton (2007) similarly established that cautiousness is the key determinant for the
demand for options even in the simpler portfolio choice problem in which the decision maker has the
choice between three assets only, the risk-free asset, a risky asset, and a single option with a fixed strike
price.
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options that the decision maker holds to implement her consumption function, as long
as the first derivative function is of bounded variation. Section 6 then provides the mo-
tivating result for the main part of this paper that an increase in the decision maker’s
cautiousness increases her demand for options relative to her demand for the risky asset.

Franke et al. (1998) were the first to point out the possibility that background risk
might increase a consumer’s cautiousness, and, hence, her demand for options. They
established this result for the case when the decision maker has a utility function from
the HARA class for which cautiousness is constant. We extend their result in this paper
by providing general conditions on utility functions that either are necessary or sufficient
for this result to be true.

The main part of the paper then proceeds as follows. Section 2 formulates our
problem. Section 3 shows that cautiousness is increased under any zero-mean background
risk if and only if it is increased under any two-point zero-mean background risk. This
is similar to Lemma 1 in Gollier (2001a) and related to the diffidence theorem of Gollier
and Kimball (1996), see also section 6.1 in Gollier (2001a). Section 4 provides a necessary
and sufficient condition on the utility function to exhibit increased cautiousness under
any small zero-mean risk. In this section we also provide a brief discussion of what it
exactly means for a risk to be small. This condition obviously also serves as a necessary
condition for increased cautiousness under all zero-mean background risks, small or not.
Section 5 finally provides a sufficient condition on the utility function that ensures that
cautiousness is increased under all zero-mean background risks, small or not.

2 Setup

Let v : (c,∞) → R be a von-Neumann Morgenstern utility function (also known as
Bernoulli utility function), where c > −∞. Note that the domain is assumed to be
bounded from below but not from above. Let v be at least twice continuously differen-
tiable3 and satisfy v′(x) > 0 and v′′(x) < 0 for every x > c, and let v satisfy the Inada
conditions, v′(x) →∞ as x → c and v′(x) → 0 as x →∞.

We assume that there is a consumer with this utility function v, who in addition
to being exposed to tradeable macroeconomic risk (which we do not explicitly model),
also faces an independent background risk ξ, which is assumed to be stochastically

3The degree of continuous differentiability necessary for each of the subsequent results will be made
clear in its proof.
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independent of the market risk, and which the consumer cannot trade, i.e. is forced to
absorb. This risk is described by a probability measure space (Θ, G , Q), for which the
expectation operator is denoted by EQ or just E. The cumulative distribution function
of ξ is denoted by G : R → [0, 1]. For simplicity, we use the following assumptions
throughout the paper. First, the support of the distribution of G is bounded, that is,
there are two numbers e and e such that G (e) = 0 and G (e) = 1. Second, ξ has zero
mean, that is,

∫ e
e y dG(y) = 0. The first assumption guarantees that all the expected

values that we consider in the subsequent analysis are well defined and Leibnitz’s rule is
applicable, so that the order of integration and differentiation for smooth functions can
be swapped. The second is a normalization and implies that e ≤ 0 and e ≥ 0.

Following Kihlstrom et al. (1981) and Nachman (1982), we can define the consumer’s
induced utility function

u (x) = E (v (x + ξ)) .

This is the utility function the consumer takes to the market, i.e. he makes decisions
about what assets to buy on the basis of the induced utility function.

In this reformulation, the realized consumption level, inclusive of the realized back-
ground risk, must of course be in the domain (c,∞) almost surely. To guarantee this,
we concentrate on the consumption levels x > c− e. Denote d = c− e, then the domain
of the induced utility function u is [d0,∞).

Define the consumer’s original (absolute) risk tolerance, s : (c,∞) → R++, by

s (x) = − v′(x)
v′′(x)

.

This is just the reciprocal of the consumer’s Arrow-Pratt coefficient of absolute risk aver-
sion a (x) = −v′′(x)/v′(x). The (absolute) risk tolerance of the corresponding induced
utility function u shall be denoted by t : (c,∞) → R++. By Leibnitz’s rule,

t (x) = −E (v′ (x + ξ))
E (v′′ (x + ξ))

.

Following the terminology coined by Wilson (1968) the derivative of risk tolerance
shall be called (absolute) cautiousness. The consumer’s original cautiousness is therefore
given by s′(x), while the consumer’s induced (absolute) cautiousness is given by t′(x)
for x in the respective domain.
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Denote by ψ (x) the prudence of v of Kimball (1990):

ψ (x) = −v′′′ (x)
v′′ (x)

.

Also denote by ϕ the prudence of the induced utility function u, then we have

ϕ (x) = −E (v′′′ (x + ξ))
E (v′′ (x + ξ))

.

The following relationship among the risk tolerance, prudence, and cautiousness is easy
to prove and yet useful.

Lemma 1 1. For every x > c, s′(x) = s(x)ψ(x)− 1.

2. For every x > d, t′(x) = t(x)ϕ(x)− 1.

Gollier and Pratt (1996, Propositions 2 and 3) gave sufficient conditions under which,
if ξ has a positive variance, then t (x) ≤ s (x), that is, the background risk makes the
consumer less risk tolerant (more risk averse). They called utility functions having this
property risk vulnerable. The aim of this paper is to provide conditions on risk-tolerance
and its derivatives for t′ (x) ≥ s′ (x) for any zero-mean background risk.

3 Two-point background risks

In this section we attempt to provide necessary and sufficient conditions for the cau-
tiousness to increase under any zero-mean background risk, that is,

E (v′(x + ξ))E (v′′′(x + ξ))
(E (v′′(x + ξ)))2

≥ v′(x)v′′′(x)
(v′′(x))2

, (1)

or equivalently,

(
v′′(x)

)2
E

(
v′(x + ξ)

)
E

(
v′′′(x + ξ)

)− v′(x)v′′′(x)
(
E

(
v′′(x + ξ)

))2 ≥ 0. (2)

As for risk-vulnerability, (Gollier and Pratt, 1996, Proposition 2) gave an equivalent
condition, involving the absolute risk aversion, its derivative, and marginal utilities,
which are evaluated at two distinct consumption levels. Unfortunately, we do not know
whether there is any such equivalent condition for the cautiousness to be increased by
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any zero-mean background risk, involving the higher-order derivatives of s, evaluated at
two distinct consumption levels.

The nature of the difficulty is as follows: (Gollier and Pratt, 1996, Proposition 2) is
an application of the diffidence theorem, (Gollier, 2001a, Proposition 11 of Section 6),
which, in turn, is based on the separating hyperplane theorem. As is well known, for
the latter theorem to be applicable, the relevant sets or functions need to be convex;
and this prerequisite is met for the inequality defining risk vulnerability t(x) ≤ s(x), or,
equivalently,

v′′(x)E
(
v′(x + ξ)

)− v′(x)E
(
v′′(x + ξ)

) ≥ 0, (3)

because the left-hand side is linear in expectations. The left-hand side of our inequality
(2), in contrast, is quadratic in expectations, and the diffidence theorem cannot imme-
diately be applied to obtain an equivalent condition for increased cautiousness.

Although the diffidence theorem is not immediately applicable, the fact that the
left-hand side of (2) is quadratic allows us to derive the following equivalent condition
(Proposition 1) for increased cautiousness by two-point zero-mean background risks.
Define Z as the set of all mean-zero background risks of bounded support, and Zb as the
set of all ξ ∈ Z of which the supports of the distributions consist of at most two points.

Proposition 1 Suppose that v′′′(x) ≥ 0 for every x > c. Then the cautiousness is
increased, i.e. t′ (x) ≥ s′ (x) for every x > c, by every ξ ∈ Z if and only if it is increased
by every ξ ∈ Zb.

The cautiousness is increased by every background risk if and only if the infimum
of the left-hand side of (2) with respect to all ξ ∈ Z is non-negative. The proof of this
proposition boils down to showing that although the set Zb is strictly smaller than Z,
the infimum of the left-hand side of (2) with respect to all ξ ∈ Zb is equal to the infimum
of the left-hand side of (2) with respect to all ξ ∈ Z. This sort of property is well known
for the minimization problem of which the objective function is linear in expectations,
such as the left-hand side of (3).4 The crux of the proof lies in proving that the same
property holds for a quadratic function, such as the left-hand side of (2).

Proof of Proposition 1 It suffices to show that if inequality (1) is satisfied for every
ξ ∈ Zb, then it is satisfied for every ξ ∈ Z. This will be done in three stages. In the first

4This is stated, for example, as (Gollier, 2001a, Lemma 1).
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step we will prove that if inequality (1) is satisfied for every ξ ∈ Zb, then

E
[
v′(x + ξ1)

]
E

[
v′′′(x + ξ2)

]
+ E

[
v′(x + ξ2)

]
E

[
v′′′(x + ξ1)

]

− 2
v′(x)v′′′(x)
(v′′(x))2

E
[
v′′(x + ξ1)

]
E

[
v′′(x + ξ2)

] ≥ 0 (4)

for every pair (ξ1, ξ2) ∈ Zb × Zb. We then show in the second step that if inequality
(4) is satisfied for every pair (ξ1, ξ2) ∈ Zb × Zb, then it must be satisfied for every pair
(ξ1, ξ2) ∈ Z×Z. The final step is then to show that if inequality (4) is satisfied for every
pair (ξ1, ξ2) ∈ Z × Z, then inequality (1) is satisfied for every ξ ∈ Z.

Step 1: Since the arithmetic mean is no less than the geometric mean,

E [v′(x + ξ1)]E [v′′′(x + ξ2)] + E [v′(x + ξ2)]E [v′′′(x + ξ1)]
E [v′′(x + ξ1)]E [v′′(x + ξ2)]

≥ 2

√
E [v′(x + ξ1)]E [v′′′(x + ξ2)]
E [v′′(x + ξ1)]E [v′′(x + ξ2)]

E [v′(x + ξ2)]E [v′′′(x + ξ1)]
E [v′′(x + ξ1)]E [v′′(x + ξ2)]

= 2

√
E [v′(x + ξ1)]E [v′′′(x + ξ2)]

[E [v′′(x + ξ1)]]2
E [v′(x + ξ2)]E [v′′′(x + ξ1)]

[E [v′′(x + ξ2)]]2
.

for every pair (ξ1, ξ2) ∈ Zb × Zb. By applying inequality (1) twice (for ξ1 ∈ Zb

and ξ2 ∈ Zb), we see that the far right-hand side is no less than

2

√(
v′(x)v′′′(x)
(v′′(x))2

)2

= 2
v′(x)v′′′(x)
(v′′(x))2

.

Thus inequality (4) holds for every pair (ξ1, ξ2) ∈ Zb × Zb.

Step 2: It suffices to show that for every pair (ξ∗1 , ξ
∗
2) ∈ Z×Z, there exists a pair (ξ1, ξ2) ∈

Zb × Zb such that the two pairs give rise to the same value of the left-hand side
of (4). So let (ξ∗1 , ξ

∗
2) ∈ Z × Z and consider the function

ξ2 7→E
[
v′(x + ξ∗1)

]
E

[
v′′′(x + ξ2)

]
+ E

[
v′(x + ξ2)

]
E

[
v′′′(x + ξ∗1)

]

− 2
v′(x)v′′′(x)
(v′′(x))2

E
[
v′′(x + ξ∗1)

]
E

[
v′′(x + ξ2)

]

of ξ2. This is a linear function in the expectations for ξ2. Thus there exists a
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ξ2 ∈ Zb such that (ξ∗1 , ξ2) and (ξ∗1 , ξ
∗
2) give rise to the same value of the left-hand

side of (4). Then, by applying the same argument with respect to ξ1, we can show
that there exists a ξ1 ∈ Zb such that (ξ1, ξ2) and (ξ∗1 , ξ2) give rise to the same value
of the left-hand side of (4). Thus (ξ1, ξ2) and (ξ∗1 , ξ

∗
2) give rise to the same value

of the left-hand side of (4).

Step 3: Inequality (1) follows from inequality (4) taking ξ1 = ξ2 = ξ ∈ Z in inequality (4).

///

4 Necessary and sufficient conditions for small risks

Gollier and Pratt (1996, Equation (12)) provide necessary and sufficient conditions for
risk aversion to increase under any small zero-mean background risk. Their proof is
based on Taylor series expansions on relevant derivatives of the utility function v. We
can similarly provide an analogous result of this necessary and sufficient condition for
small background risks for the question at hand. The utility function v is real analytic
if for each point in the domain of v, there exists a neighborhood of the point on which v

coincides with an absolutely convergent power series. Every real analytic utility function
is infinitely many times differentiable but the converse does not hold. Yet the class of
real analytic utility functions is broad enough to contain all utility functions exhibiting
hyperbolic absolute risk aversion.

Theorem 1 Let (ξm)m be a sequence of random variables with mean zero and support
in the interval [−bm, bm] for every m, where bm → 0 as m →∞. Assume that v is real
analytic and denote by tm by the induced risk tolerance of the decision maker having the
background risk ξm. Then, for every x > c, if t′m(x) ≥ s′(x) for infinitely many m, then

v′′(x)(v′′′(x))2 + v′(x)v′′(x)v(5)(x)− 2v′(x)v′′′(x)v(4)(x) ≤ 0, (5)

or, equivalently,

(s(x))2 s′′′(x)− 2s(x)(1 + 2s′(x))s′′(x) + 2
(
s′(x)

)2 (1 + s′(x)) ≤ 0, (6)
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or, equivalently,

a(x)a′′′(x)− 2
(
a′(x) + (a(x))2

)
a′′(x) + 2a(x)

(
a′(x)

)2 ≤ 0. (7)

Conversely if either (and, hence, all) of the above three inequalities holds as a strict
inequality, then t′m(x) > s′(x) for every sufficiently large m.

Proof of Theorem 1 Let x ∈ (c,∞) and b ∈ (0, x− c) be such that v is an absolutely
convergent power series on (x− b, x + b). Then, for every n = 1, 2, . . . , v(n) is also an
absolutely convergent power series on (x− b, x + b) and, more specifically, can be written
as

v(n)(x + z) =
∞∑

k=0

v(n+k)(x)
k!

zk

for every z ∈ (−b, b).
We can assume without loss of generality that E

(
ξ2
m

)
> 0 and 0 < bm < min{b, 1}

for every m. Then |ξm|k ≤ bm|ξm|k−1 and hence E
(|ξm|k

) ≤ bmE
(|ξm|k−1

)
. Thus∣∣E (

ξk
m

)∣∣ ≤ bk
m < bk for every k ≥ 1 and the infinite series

∞∑

k=0

v(n+k)(x)
k!

E
(
ξk
m

)

is absolutely convergent. Moreover, as m →∞,

E
(
ξk
m

)
→ 0 for every k ≥ 2 and

E
(
ξk
m

)

E (ξ2
m)

→ 0 for every k ≥ 3. (8)

Write

σ2
m = E

(
ξ2
m

)
and γn

m =
1

σ2
m

∞∑

k=3

v(n+k)(x)
k!

E
(
ξk
m

)
. (9)

By (8), as m → ∞, σ2
m → 0 and γn

m → 0 for every n. By the dominated convergence
theorem,

E
(
v(n) (x + ξm)

)
=

∞∑

k=0

v(n+k)(x)
k!

E
(
ξk
m

)
= v(n)(x) +

(
v(n+2)(x) + γn

m

)
σ2

m (10)

for every n and every m.
Suppose that t′m(x) ≥ s′(x) for infinitely many m. By taking a subsequence if
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necessary, we can assume that t′m(x) ≥ s′(x) for every m. Thus, by (2),

(
v′′(x)

)2
E

(
v′(x + ξm)

)
E

(
v′′′(x + ξm)

)− v′(x)v′′′(x)
(
E

(
v′′(x + ξm)

))2 ≥ 0 (11)

for every m. By (10), the left-hand side of (11) is equal to

(
v′′(x)

)2
(

v′(x) +
(

v′′′(x)
2

+ γ1
m

)
σ2

m

) (
v′′′(x) +

(
v(5)(x)

2
+ γ3

m

)
σ2

m

)

− v′(x)v′′′(x)

(
v′′(x) +

(
v(4)(x)

2
+ γ2

m

)
σ2

m

)2

.

Rearranging these terms and dividing them by σ2
m, we obtain

(
v′′(x)

)2
v′(x)

(
v(5)(x)

2
+ γ3

m

)
+

(
v′′(x)

)2
v′′′(x)

(
v′′′(x)

2
+ γ1

m

)

−v′(x)v′′′(x)2v′′(x)

(
v(4)(x)

2
+ γ2

m

)

+


(

v′′(x)
)2

(
v′′′(x)

2
+ γ1

m

)(
v(5)(x)

2
+ γ3

m

)
−

(
v(4)(x)

2
+ γ2

m

)2

σ2

m ≥ 0 (12)

for every m. As m → ∞, σ2
m → 0 and γn

m → 0 for every n. Thus the left-hand side of
(12) converges to

(
v′′(x)

)2
v′(x)

v(5)(x)
2

+
(
v′′(x)

)2
v′′′(x)

v′′′(x)
2

− v′(x)v′′′(x)2v′′(x)
v(4)(x)

2
, (13)

and this is nonnegative, because it is the limit of a sequence of nonnegative numbers.
By multiplying 2/v′′(x), which is negative, we obtain (5).

We shall now rewrite (5) in terms of s(x) and its higher-order derivatives to arrive
at (6). Since dividing expression (5) by (v′(x))3 does not change its sign,

v′′(x)
v′(x)

(
v′′′(x)
v′′(x)

)2

+
v′′(x)
v′(x)

v(5)(x)
v′(x)

− 2
v′′′(x)
v′(x)

v(4)(x)
v′(x)

≤ 0. (14)

By definition,
v′′(x)
v′(x)

= − 1
s(x)

.
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Differentiating both sides of −s(x)v′′(x) = v′(x) with respect to x and using the above
equality to eliminate v′′(x) from the expression, we obtain

v′′′(x)
v′(x)

=
1 + s′(x)
(s(x))2

.

We can similarly obtain

v(4)(x)
v′(x)

=
1

(s(x))2

(
s′′(x)− 1

s(x)
(
1 + s′(x)

) (
1 + 2s′(x)

))
,

v(5)(x)
v′(x)

=
1

(s(x))2

(
s′′′(x)− 2

s(x)
(
2 + 3s′(x)

)
s′′(x) +

1
(s(x))2

(
1 + s′(x)

) (
1 + 2s′(x)

) (
1 + 3s′(x)

))
.

Using these terms expression (14) is equal to

(
1 + s′(x)

)2

+
(
(s(x))2 s′′′(x)− 2s(x)

(
2 + 3s′(x)

)
s′′(x) +

(
1 + s′(x)

) (
1 + 2s′(x)

) (
1 + 3s′(x)

))

+2
(
1 + s′(x)

) (
s(x)s′′(x)− (

1 + s′(x)
) (

1 + 2s′(x)
))

divided by −(s(x))5 < 0. Then (5) is equivalent to this expression being nonnegative.
Rearranging the terms, we obtain (6).

As for (7), we can analogously show that

v′′(x)
v′(x)

= −a(x),

v′′′(x)
v′(x)

= (a(x))2 − a′(x),

v(4)(x)
v′(x)

= − (a(x))3 + 3a(x)a′(x)− a′′(x),

v(5)(x)
v′(x)

= (a(x))4 − 6 (a(x))2 a′(x) + 3
(
a′(x)

)2 + 4a(x)a′′(x)− a′′′(x).

Plugging these terms into expression (14) and rearranging the terms, we establish (7).
Suppose conversely that (5) holds as a strict inequality. Then (13) is strictly positive.

Thus the right-hand side of (12) is strictly positive for every sufficiently large m. Since
it is equal to the left-hand side of (11) divided by σ2

m > 0, this implies that the left-hand
side of (11) is strictly positive. The proof is thus completed. ///
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The crucial step in the above proof was to ensure that the sequences
(
σ2

m

)
and (γn

m),
defined in (9), converge to zero as m →∞. This property, in turn, is guaranteed by (8),
which asserts that all moments converge to zero (E

(
ξk
m

) → 0) and also that the higher
moments do so faster than the second moment (E

(
ξk
m

)
/E

(
ξ2
m

) → 0). The convergence
of all moments does not always imply the faster convergence of higher moments. For
example, if ξm takes value 1 and −1 with probability 1/m each, and 0 with probability
1−2/m, then, for every even k, E

(
ξk
m

)
= 2/m → 0 and yet E

(
ξk
m

)
/E

(
ξ2
m

)
= 1 for every

m. To eliminate such cases, we assumed in Theorem 1 that the sequence of supports
converges to {0} (bm → 0). Although the meaning of being small in “small risks” should
be carefully specified, the need for convergence in supports has, as far as we know, not
been explicitly stated in the relevant literature, such as Gollier and Pratt (1996).

To facilitate a comparison with Gollier and Pratt (1996)’s necessary and sufficient
conditions for risk-vulnerability for small risks (inequality (12) in Gollier and Pratt
(1996)), we define, for each n ∈ {1, . . . , 5}, an(x) = −v(n+1)(x)/v(n)(x) whenever
v(n)(x) 6= 0. Then a1(x) is nothing but the absolute risk aversion a(x), a2(x) is the
absolute prudence ψ(x), and a3(x) is what Kimball (1992) termed temperance. Then
Gollier and Pratt (1996)’s necessary condition for risk vulnerability for small risks, de-
rived from their expression (10), is that

a2(x) (a3(x)− a1(x)) ≥ 0, (15)

while the sufficient condition is obtained by replacing the weak inequality by a strict
inequality in (15).

The following theorem restates the necessary and sufficient conditions of Theorem 1
in terms of the an(x) when the decision maker is prudent.

Theorem 2 If v′′′(x) > 0, then (5) is equivalent to

v′′′(x)
v′(x)

+
v(5)(x)
v′′′(x)

− 2
v(4)(x)
v′′(x)

≥ 0. (16)

If, in addition, v(4)(x) 6= 0, then (16) is equivalent to each of the following three inequal-
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ities:

a3(x) (a4(x)− a2(x)) ≥ a2(x) (a3(x)− a1(x)) , (17)

2a2(x)a3(x) ≤ a1(x)a2(x) + a3(x)a4(x), (18)

d

dx

(
a2(x)
a1(x)

(a3(x)− a1(x))
)
≤ 0. (19)

The equivalence remains to hold when the weak inequalities in (16), (17), (18), and (19)
are all replaced by strict inequalities.

Proof of Theorem 2 Inequality (16) follows from inequality (5) by dividing both sides
by v′(x)v′′(x)v′′′(x), which is strictly negative. Further rearranging yields

v(5)(x)
v′′′(x)

− v(4)(x)
v′′(x)

≥ v(4)(x)
v′′(x)

− v′′′(x)
v′(x)

and hence, if v(4)(x) 6= 0, then

−v(4)(x)
v′′′(x)

(
−v(5)(x)

v(4)(x)
+

v′′′(x)
v′′(x)

)
≥ −v′′′(x)

v′′(x)

(
−v(4)(x)

v′′′(x)
+

v′′(x)
v′(x)

)
.

By the definition of the an(x), the last inequality is equivalent to inequality (17), which
after rearranging delivers inequality (18). (19) is equivalent to (18), because

d

dx

(
a2(x)
a1(x)

(a3(x)− a1(x))
)

=
a2(x)
a1(x)

(2a2(x)a3(x)− a1(x)a2(x)− a3(x)a4(x)) .

///

Note that the right-hand side of (17) is exactly the same as the left-hand side of (15).
Note moreover that the left-hand side of (17) is the same as its right-hand side except
that every expression is of exactly one degree higher. This has a couple of easy-to-grasp
implications. Suppose that v is risk-vulnerable for small risks, i.e., the right-hand side
of inequality (17) is positive. Then a necessary condition for v to exhibit increased
cautiousness under small risks is that the utility function −v′ is also risk-vulnerable for
small risks. For another implication, recall that inequality (10) in Gollier and Pratt
(1996) shows that the percentage increase in absolute risk aversion due to a small zero-
mean background risk is proportional to a2(x) (a3(x)− a1(x)). Hence the expression

13



a2(x) (a3(x)− a1(x)) can be interpreted as a measure of risk vulnerability for small
risks. (17) says that v exhibits increased cautiousness for small risks if and only if −v′ is
more risk-vulnerable than v. Finally, (19) states that the Gollier-Pratt measure of risk
vulnerability divided by the Arrow-Pratt measure of absolute risk aversion is a decreasing
function of consumption levels x if and only if v exhibits increasing cautiousness, and
also if and only if −v′ is more risk-vulnerable than v. This means that once we know the
ratio between the Gollier-Pratt and Arrow-Pratt measures as a function of consumption
levels, we can tell whether v exhibits increased cautiousness for small risks.

5 Sufficient condition for increased cautiousness

In this section, we present a sufficient condition for the cautiousness to be increased by
all zero-mean background risks, small or not.

Theorem 3 If s′(x) ≥ 0, s′′(x) ≤ 0, and s′′′(x) ≥ 0 for every x > c, then for every
zero-mean background risk ζ and for every x > d, t′(x) ≥ s′(x). The inequality is strict
if, in addition, s′(x) 6= 0 for every x > c.

This theorem says that at any given consumption level x > d, the cautiousness t′(x)
of the induced utility function u is not exceeded by the cautiousness s′(x) of the original
utility function v if the cautiousness s′ is a non-negative, non-increasing, and convex
function of consumption levels. The first sign condition is nothing but non-increasing
absolute risk aversion (DARA). The second sign condition is that the risk tolerance s

be concave, which implies that the absolute risk aversion a is convex.5 It is easy to
see that the three sign conditions imply the necessary and sufficient conditions (6 and
7) in Theorem 1 for the cautiousness to be increased by small risks, as well as the
sufficient condition for risk vulnerability of (Gollier and Pratt, 1996, Corollary 1). Thus
t(x) ≤ s(x). By Lemma 1, t′(x) ≥ s′(x) if and only if ϕ(x)t(x) ≥ ψ(x)s(x). Hence
ϕ(x) ≥ ψ(x), that is, the prudence is also increased by the background risk.

5The converse, however, does not hold. Even when the absolute risk aversion is convex, the absolute
risk tolerance may not be concave. An undesirable implication of concave absolute risk tolerance, which
is not implied by convex absolute risk aversion, is increasing relative risk aversion: Let c = 0, then, by
the Inada condition, s (x) → 0 as x → 0. Thus the concavity of s implies that its elasticity is not greater
than one; and it is strictly less than one beyond any point at which s′′ is strictly negative. But it can
be shown that the elasticity is strictly less than one if and only if the first derivative of the relative risk
aversion is strictly positive.
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Proof of Theorem 3 Let x > d. By Lemma 1 and direct calculation,

t′ (x) =
E (v′ (x + ξ))E (v′′′ (x + ξ))

(E (v′′ (x + ξ)))2
− 1

=E

(
v′ (x + ξ) v′′′ (x + ξ)

(v′′ (x + ξ))2
(v′′ (x + ξ))2

v′ (x + ξ)

)
E (v′ (x + ξ))

(E (v′′ (x + ξ)))2
− 1

=E

(
(
s′ (x + ξ) + 1

) (v′′ (x + ξ))2

v′ (x + ξ)

)

×E

(
v′ (x + ξ)
−v′′ (x + ξ)

−v′′ (x + ξ)
E (−v′′ (x + ξ))

)
1

E (−v′′ (x + ξ))
− 1.

By applying Jensen’s inequality to the hyperbolic function and noting that the function
z 7→ −v′′ (x + z) /E (−v′′ (x + ξ)) has the property of a Radon-Nikodym derivative, we
obtain

E

(
v′ (x + ξ)
−v′′ (x + ξ)

−v′′ (x + ξ)
E (−v′′ (x + ξ))

)

≥ 1

E

(−v′′ (x + ξ)
v′ (x + ξ)

−v′′ (x + ξ)
E (−v′′ (x + ξ))

)

=
E (−v′′ (x + ξ))

E

(
(v′′ (x + ξ))2

v′ (x + ξ)

) ,

where the weak inequality ≥ holds as a strict inequality unless s′ (x + ξ) = 0. Thus

t′ (x) ≥ E

(
(
s′ (x + ξ) + 1

) (v′′ (x + ξ))2

v′ (x + ξ)

)
1

E

(
(v′′ (x + ξ))2

v′ (x + ξ)

) − 1.

Since −v′′ (x + z) /v′ (x + z) and −v′′ (x + z) are non-increasing functions of z, so is
their product (v′′ (x + z))2 /v′ (x + z). Since s′′ ≤ 0, s′ (x + z) is also a non-increasing
function of z. Thus

E

(
(
s′ (x + ξ) + 1

) (v′′ (x + ξ))2

v′ (x + ξ)

)
≥ E

((
s′ (x + ξ) + 1

))
E

(
(v′′ (x + ξ))2

v′ (x + ξ)

)
.
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Hence
t′ (x) ≥ E

(
s′ (x + ξ) + 1

)− 1 = E
(
s′ (x + ξ)

)

Finally, since s′′′ (x + z) ≥ 0, s′ (x + z) is a convex function of z. Thus, by Jensen’s
inequality, E (s′ (x + ξ)) ≥ s′ (x), which completes the proof. ///

Although we assumed in this theorem that s′(x) ≥ 0 for every x > c, this assumption
can be derived from the assumption that s′′(x) ≤ 0 for every x > c. Indeed, if s′′(x) ≤ 0
for every x > c and yet there were an x0 > c such that s′(x0) < 0, then s would be
a concave and strictly decreasing function on [x0,∞), and hence s(x) < 0 for every
sufficiently large x > c, which is a contradiction. Thus, if s′′(x) ≤ 0 for every x > c,
then s′(x) ≥ 0 for every x > c.

Although we imposed the three sign conditions over the entire domain [c,∞) of
consumption levels, the conclusion t′(x) ≥ s′(x) still holds as long as they are met on
the interval [x + e, x + e] of realizable consumption levels. Bear in mind, however, that
s′ need no longer be non-negative even if s′′ is non-positive on [x + e, x + e].

The conditions for Theorem 3 are satisfied by every HARA utility function, with the
second and third derivatives being always zero.

Assumption 1 There exist a τ ∈ R and a γ ∈ R++ such that s (x) = τ + γx for every
x > c.

Corollary 1 Under Assumption 1, if Var(ξ) > 0, then t′ (x) > s′(y) for every x > d

and every y > c

Corollary 1 shows that if the cautiousness s′ of the original utility function v is
constant, then we have t′(x) > s′(y) regardless of the choice of x > d and y > c.
This corollary could be used to provide an alternative and simple proof of Franke et al.
(1998)’s Theorem 3.

6 Consequences for portfolio selection

In this section we consider how the cautiousness is related to portfolio choices in general,
and the demand for call options in particular. The issue we deal with here is nothing
intrinsic to background risks. Rather, we simply conduct a comparative statics exercise
with respect to changes in cautiousness. If, for example, the sufficient condition of
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Theorem 3 is satisfied, then any zero-mean background risk would increase cautiousness,
and we can then apply the results of this section to see how the portfolio demand would
be affected by the presence of the background risk.

We first lay out the setting for the analysis of consumption choices. The risk the
economy is faced with is described by a probability measure space (Ω, F , P ), for which
the expectation operator is given by EP , to distinguish it from the expectation operator
E = EQ with respect to the background risk. The aggregate endowment of the economy
is given by a measurable function ζ : Ω → (d0,∞), where d0 is interpreted as the
minimum subsistence level for the entire economy and is often taken to be zero, and the
state-price density is π : (d0,∞) → R++.

The payoffs of all the assets we shall consider are functions of the aggregate endow-
ment ζ, and thus we identify an asset with a function ϕ : (d0,∞) → R. The price at the
time of transactions of an asset ϕ is EP (π(ζ)ϕ(ζ)).

A decision maker is characterized by his utility function u : (d,∞) → R and his
wealth level w ∈ R. A consumption choice is characterized by a function f : (d0,∞) →
(d,∞), so that his state-contingent consumption is f(ζ) and the corresponding expected
utility level is EP (u (f(ζ))). His utility maximization problem is therefore6

max
f

EP (u (f(ζ)))

subject to EP (π(ζ)f(ζ)) ≤ w.
(20)

Let t(x) = −u′(x)/u′′(x) and t0(x) = −π(x)/π′(x), then t is the absolute risk tolerance
of the decision maker and t0 can be considered as the absolute risk tolerance of the
representative agent. Their derivatives, t′ and t′0, are the cautiousness. It then follows
from the first-order condition for utility maximization and part a) of Theorem 2 of
Chevallier and Müller (1994)7 that

f ′′(x)
f ′(x)

=
1

t0(x)
(
t′ (f(x))− t′0(x)

)
. (21)

From this, we know that if a utility function always exhibits higher cautiousness than
6We are considering consumption plans that are contingent only on the aggregate endowment ζ, but

this involves no essential loss of generality. Since the state-price deflator π is a function of ζ and the
utility function u exhibits risk aversion, he would optimally choose a single consumption level on any
event over which the realized levels of ζ are common.

7The result was also given as Proposition 3 of Hara et al. (2007).
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another even when the consumption levels at which the two cautiousness are evaluated
are not equal, then the curvature of the optimal consumption function f is higher for
the first utility function than for the second.

Proposition 2 Let u1 : (d1,∞) → R and u2 : (d2,∞) → R be utility functions satisfy-
ing the conditions at the beginning of Section 2. Assume that

t′1(x1) ≥ t′2(x2) (22)

for every x1 > d1 and every x2 > d2. Let w1 ∈ R and w2 ∈ R be wealth levels.
Let f1 : (d0,∞) → (d1,∞) be the solution to the utility maximization problem (20) of
(u,w) = (u1, w1) and f2 : (d0,∞) → (d2,∞) be the solution to the utility maximization
problem (20) of (u,w) = (u2, w2). Then

f ′′1 (x)
f ′1(x)

≥ f ′′2 (y)
f ′2(y)

for every x > d0 and every y > d0. The weak inequality holds as a strict inequality if
the weak inequality of (22) holds as a strict inequality.

The utility maximization problem (20) is formulated in terms of a consumption
function f , without specifying what kind of portfolio would implement the optimal
consumption function. Let’s now consider this implementation problem.

The types of assets of special interest are the risk-free bond, the market portfolio,
and call options written on the market portfolio. They are characterized by the constant
function taking values one, i.e., ϕ(x) = 1 for every x > d; the identity function, i.e.,
ϕ(x) = x for every x > d; and the piecewise-linear convex function ϕ(x) = max {x −
k, 0} = (x − k)+ for every x > d, where k ∈ [d0,∞) is the exercise price of the call
option.

If the optimal consumption function f : (d0,∞) → (d,∞) is affine, then it is enough
to hold the risk-free bond and the market portfolio. Specifically, if there are a θ ∈ R and
a κ ∈ R such that f(x) = θx + κ for every x > d,8 then the optimal portfolio consists
of κ units of the risk-free bond and θ units of the market portfolio. However, if f is
not affine, then it is necessary to hold options, possibly with infinitely many varieties of
exercise prices, to implement f .

8Since both u and π satisfy the Inada condition, we in fact have κ = d − θd0 and hence f(x) =
θ (x− d0) + d.
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We now formulate a portfolio of options of infinitely many exercise prices. First,
denote by G the set of all right-continuous functions G : R → R such that its restriction
on any interval of finite length is of bounded variation and that G(x) = 0 for every
x < d0.9 For every G ∈ G , there are two non-decreasing right-continuous functions,
G+ : R → R+ and G− : R → R+, such that G+(x) = G−(x) = 0 for every x < d0 and
G(x) = G+(x)−G−(x) for every x ∈ R. Moreover, for every x ∈ R, G ([d0, x]) is bounded
from both above and below, and hence the restriction of G onto [d0, x] induces a (unique)
finite signed measure M on the Borel σ-field B ([d0, x]) via M ((y, z]) = G(y) − G(z)
for every y ∈ [d0, x] and z ∈ [d0, x] with y < z. If either G+ ([d0,∞)) or G− ([d0,∞))
is bounded from above, then G induces a (unique) signed measure on B ([d0,∞)) via
M ((y, z]) = G(y)−G(z).

A portfolio of assets can now be characterized as a triple (yb, ym, G) ∈ R ×R × G .
Here yb is interpreted as the units of the risk-free bond held in the portfolio; ym as the
units of the market portfolio; and G is the distribution of the units of the call options
held in the portfolio, identified by their exercise prices. The payoff given by portfolio
(yb, ym, G) ∈ R×R× G is

yb + ymx +
∫

[d0,∞)
(x− k)+ dG(k). (23)

Strictly speaking, the integral of the last term need not be well defined because G need
not induce a signed measure. However, since (x− k)+ = 0 for every k ≥ x, we can
think of this integral as being with respect to the finite signed measure induced by
the restriction of G onto [d0, x]. With this understanding, (23) is well defined. If, in
particular, G is continuous at d0 and differentiable on (d0,∞), with its derivative denoted
by g, then (23) can be rewritten as

yb + ymx +
∫ x

d
(x− k) g(k) dk, (24)

where the integral is a Riemann integral.
Let’s now analyze how we can relate the optimal consumption function f to the

portfolio (yb, ym, G). For this, note first that the Inada condition implies that limx↓d0
t(x)

9Since the call option of exercise price d0 has the same payoff as the portfolio of holding one stock
and selling d0 bonds, we could assume without loss of generality that G(d0) = 0 as well. Then G is
continuous at d0.
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exists and is equal zero and limx↓d0
f(x) exists and is equal to d. Moreover, f is twice

differentiable. We then obtain the following proposition regarding when and, if so, how
to implement f by holding a portfolio of the bond, the market portfolio, and call options.

Proposition 3 Let f : (d,∞) → R be a twice differentiable consumption function.
Then f ′ is of bounded variation on any sub-interval of (d0,∞) of finite length if and
only if there exists a (yb, ym, G) ∈ R×R×G such that

f(x) = yb + ymx +
∫

[d0,∞)
(x− k)+ dG(k) (25)

for every x > d0. Moreover, then, limx↓d0
f ′(x) exists and we can take yb = d −

d0 limx↓d0
f ′(x), ym = limx↓d0

f ′(x), and

G(k) =

{
0 if k ≤ d0,

f ′(k)− limx↓d0
f ′(x) if k > d0.

(26)

Since G′(k) = f ′′(k) by (26), this proposition implies that f ′′ is the density function G.
This fact has been noted by Leland (1980), (Huang, 2000, Proposition 1), (Huang, 2002,
Proposition 2) and (Huang, 2005, Theorem 5). In these contributions, however, f ′ was
not assumed to be of bounded variation. They obtained an equality of the sort

f(x) = yb + ymx +
∫ ∞

d0

(x− k)+ f ′′(k) dk,

but this would not well defined if f ′ were not of bounded variation, because, then, the in-
tegrals of both positive and negative parts,

∫∞
d0

(x− k)+ (f ′′(k))+ dk and
∫∞
d0

(x− k)+ (f ′′(k))− dk,
would be infinite.

Proof of Proposition 3 Suppose first that f ′ is of bounded variation. Then the
image f ′ ((d0, x)) is bounded for each x > d0. Thus, if limx↓d0

f ′(x) did not exist, then
there would exist two sequences of (d0,∞) that converges to d0 but the sequences of
their values by f ′ have two different limits. This is a contradiction to the assumption
that f ′ is of bounded variation. Thus limx↓d0

f ′(x) exists and we denote it by θ. Define
(yb, ym, G) as in the proposition, then G belongs to G and is differentiable satisfying
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G′ = f ′′ on (d0,∞). By integration by parts,

∫

[d0,∞)
(x− k)+ dG(k) =

∫ x

d0

(x− k) f ′′(k) dk

=
[
(x− k)f ′(k)

]x

d0
+

∫ x

d0

f ′(k) dk

= − (x− d0) θ + (f(x)− d) .

Thus the right-hand side of (25) equals

d− θd0 + θx− (x− d0) θ + (f(x)− d) = f(x)

We have thus established the existence of a (yb, ym, G) ∈ R × R × G for which (25)
holds.

Suppose conversely that there is a (yb, ym, G) ∈ R × R × G for which (25) holds.
Define h : R → R by

h(x) =
∫

[d0,∞)
(x− k)+ dG(k).

Then h is twice differentiable because h(x) = f(x)−yb−ymx. Moreover, for every ε > 0,

h(x + ε)− h(x) = εG (x) +
∫

(x,x+ε]
(x + ε− k) dG(k).

Since 0 ≤ x + ε− k ≤ ε for every k ∈ (x, x + ε],

− ε
(
G−(x + ε)−G−(x)

)

≤−
∫

(x,x+ε]
(x + ε− k) dG−(k)

≤
∫

(x,x+ε]
(x + ε− k) dG(k)

≤
∫

(x,x+ε]
(x + ε− k) dG+(k)

≤ ε
(
G+(x + ε)−G+(x)

)
.

Thus

G(x)− (
G−(x + ε)−G−(x)

) ≤ h(x + ε)− h(x)
ε

≤ G(x) +
(
G+(x + ε)−G+(x)

)
.
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Since G+ and G− are right-continuous, both the left- and right-hand sides of these
inequalities converge to G(x) as ε → ∞. Thus h′(x) = G(x) for every x > d0. Since
h′(x) = f ′(x) − ym for every x > d0 and f ′ is of bounded variation on any sub-interval
of (d0,∞) of finite length, G is also of bounded variation on any sub-interval of (d0,∞)
of finite length. ///

If f ′ is of bounded variation and differentiable, we obtain the following result on the
relationship between cautiousness and the optimal portfolio.

Proposition 4 Let u1, u2, f1, and f2 be as in Proposition 2. Let (yb1, ym1, G1) and
(yb2, ym2, G2) be defined as in Proposition 3 for f1 and f2, respectively. Assume that
f ′1 and f ′2 are differentiable and of bounded variation on any sub-interval of (d0,∞) of
finite length. Then G1 and G2 are differentiable on (d0,∞) and

G′
1(k1)

ym1 + G1(k1)
≥ G′

2(k2)
ym2 + G2(k2)

for every k1 > d0 and every k2 > d0. The weak inequality holds as a strict inequality if
the weak inequality of (22) holds as a strict inequality.

This proposition compares the optimal portfolios of two decision makers with differing
cautiousness. Since Gi is the cumulative distribution function and G′

i is the density
function of the portfolio of options, the fraction G′

i(ki)/ (ymi + Gi(ki)) is the ratio of
the units of options of exercise price ki held in the portfolio relative to the total units
of the market portfolio and the options of exercise prices not higher than ki. Thus the
proposition states that the more cautious the decision maker is, the higher the percentage
increase of option demands as a function of their exercise prices. Note that this does not
mean that more options are held in the portfolio the more cautious the decision maker
is. Rather, the result here is concerned with the units of options demanded relative to
the units of options with lower exercise prices and the market portfolio.10

In some cases, f ′ is can be easily shown to be of bounded variation. For example, if
the absolute risk tolerance of all decision makers are affine functions and their slopes are

10When the risk-free bond is available for trade, the market portfolio can be identified with the call
option with exercise price d0. Then we can take ymi = 0 while retaining the differentiability of Gi on
(d0,∞), and the fraction the fraction G′i(ki)/ (ymi + Gi(ki)) can be replaced by G′i(ki)/Gi(ki) for every
k1 > d0. Since G′i(ki)/Gi(ki) = d (ln Gi(ki)) /dki, Proposition 4 can then be restated as saying that the
logarithm of the cumulative distribution function of option demands increases faster the more cautious
the decision maker is.
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equal, then the efficient risk-sharing rules of all decision makers are affine functions, and
thus of bounded variation. More generally, Propositions 4 and 8 of Hara (2007) imply
that as long as the absolute risk tolerance of all decision makers are affine functions,
possibly having different slopes, f ′ is of bounded variation.

There are, on the other hand, some cases in which f ′ is not of bounded variation.

Example 1 Let d = d0 = 0. Define h : [0, 1] → (1/3, 2/3) by

h(x) =





1
2

if x = 0,

x

6
sin

(
1
x

)
+

1
2

otherwise.

Then h is continuous on [0, 1], continuously differentiable on (0, 1], but not of bounded
variation. We extend h to R+ by setting h(1) + h′(1)(x− 1) for every x > 1. Then h is
continuous on R+ and continuously differentiable on R++. We define f1 : R++ → R++

by f1(x) =
∫ x
0 h(y) dy, then, f1 is twice continuously differentiable, f ′1(x) = h(x) ∈

(1/3, 2/3) for every x > 0, f ′1 is not of bounded variation (although limx↓0 f ′1(x) exists
and equals 1/2), and f1 (R++) = R++. Define f2 : R++ → R++ by letting f2(x) =
x − f1(x) for every x > 0. Then f1(x) + f2(x) = x and f ′2(x) ∈ (1/3, 2/3) for every
x > 0, f ′2 is not of bounded variation (although limx↓0 f ′2(x) exists and equals 1/2), and
f2 (R++) = R++. Let π : R++ → R++ be any twice continuously differentiable function
satisfying π′ < 0 and the Inada condition. Then, by Theorems 2 and 3 of Hara (2007), for
each i, there exists a three times continuously differentiable function ui : R++ → R such
that u′′i < 0 < u′i and the Inada condition, and that f1 and f2 are optimal consumption
functions for two decision makers having utility functions u1 and u2, and π is the state-
price deflator supporting (decentralizing) (f1, f2). Hence, if the economy is populated by
these two decision makers and the aggregate wealth is appropriately distributed between
the two, then each decision maker i chooses the consumption fi(ζ) such that f ′i is not of
bounded variation.

7 Conclusion

The decision-maker’s cautiousness (the derivative of the reciprocal of the Arrow-Pratt
measure of absolute risk aversion) determines her demand for options relative to the risky
asset. We have investigated how this cautiousness for macroeconomic risks is affected by
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the presence of idiosyncratic (background) risks and were interested in conditions under
which cautiousness, and, hence, the demand for options relative to the risky asset, is
increased in the presence of any background risk.

We gave a necessary and sufficient condition on a consumer’s utility function to ex-
hibit increased cautiousness under small background risks (Theorem 1), which, of course,
is also a necessary condition for a consumer’s utility function to exhibit increased cau-
tiousness under any background risk. We also provided a sufficient condition (Theorem
3) on the original utility function under which the cautiousness, at any given level of
consumption, is higher in the presence of a background risk than in its absence.
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