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Abstract
There exists a utilitarian tradition à la Sidgwick of treating equal generations

equally in the form of anonymity. Diamond showed that no social evaluation
ordering over infinite utility streams satisfying the Pareto principle, Sidgwick’s
equity principle, and the axiom of continuity exists. We introduce two versions
of egalitarianism in the spirit of the Pigou-Dalton transfer principle and the
Lorenz domination principle, and examine their compatibility with the weak
Pareto principle in the presence of a semi-continuity axiom. The social evalua-
tion relation is not assumed to be either complete or transitive, yet Diamond’s
impossibility strenuously resurfaces.

JEL Classification Nos.: D63, D71
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1. Introduction

There is a strong utilitarian tradition of treating otherwise equal generations
equally. As Sidgwick (1907, p.414) put it, “the time at which a man exists can-
not affect the value of his happiness from a universal point of view.” However,
a serious doubt was raised by Koopmans (1960) on the sustainability of this
standpoint by showing that the rational, continuous, and stationary evaluation
of infinite allocation programs cannot but exhibit a phenomenon which he chris-
tened impatience, viz., the preference for advancement along the time axis of an
outcome yielding higher utility vis-à-vis another outcome yielding lower utility.
This intriguing thesis was elaborated further by Diamond (1965) into a general
impossibility theorem to the effect that there exists no social evaluation order-
ing over the set of infinite utility streams which satisfies the Pareto principle,
the equity principle à la Sidgwick in the form of anonymity, and continuity with
respect to the sup topology. His work was followed by, among others, Campbell
(1985), Lauwers (1997), Shinotsuka (1998), and Svensson (1980), who exam-
ined the sensitivity of Diamond’s theorem on the choice of underlying topology.
Basu and Mitra (2003) dealt with the case where social evaluation orderings
need not be continuous, but they can be represented by numerical functions.
Recent study by Zame (2006) showed that there exists no social evaluation or-
dering satisfying the Pareto principle and equity principle in a framework where
the axiom of choice is not assumed, and every set of real numbers is Lebesgue
measurable.
Recollect that the equity principle à la Sidgwick does not embody any pref-

erence for egalitarian distribution of utilities among generations. Recently,
there have been attempts to introduce equity principles that incorporate pref-
erences for egalitarian distribution of utilities among generations. For example,
Asheim and Tungodden (2004) and Bossert, Sprumont and Suzumura (2005)
extended Hammond’s (1976) equity axiom to the context of ranking infinite
utility streams. In this paper, we introduce two versions of distributional egali-
tarianism in the spirit of Atkinson (1970) and Sen (1997), viz., the Pigou-Dalton
transfer principle and the Lorenz domination principle. While the Pigou-Dalton
transfer principle is concerned with the comparison between two utility streams
differing from each other only in two generations, the Lorenz domination princi-
ple is concerned with the comparison between two utility streams differing from
each other in any finitely many generations. We then examine their compati-
bility with the weak, rather than strong, Pareto principle in the presence of a
semi-continuity axiom, while retaining the sup topology. The social evaluation
relation is not assumed to be complete or transitive. Nevertheless, we show
that the non-existence results strenuously come to the fore for both of these
two principles.
Apart from this Introduction, this paper consists of five sections. Section

2 introduces our notation, model and axioms. Section 3 introduces the first
class of distributional equity axioms in the spirit of the Pigou-Dalton trans-
fer principle, and establishes impossibility theorems in the presence of upper
semi-continuity with respect to the sup topology, and acyclicity of the social
evaluation relation. Section 4 introduces the second class of distributional eq-
uity axioms in the spirit of the Lorenz domination principle, and establishes
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impossibility theorems in the presence of upper semi-continuity with respect to
the sup topology, without imposing any rationality axiom on the social evalu-
ation relation. In section 5, we examine the extent to which our impossibility
theorems are robust with respect to the choice of alternative topologies. Section
6 concludes with some interpretative remarks.

2. Notation, Model and Axioms

Let R and N denote the set of all real numbers, and the set of all positive
integers, respectively. Let l∞ be the set of all bounded infinite sequences of
real numbers. In what follows, X ⊂ l∞ is the set of all infinite utility streams,
viz., x = (x1, x2, . . . , xn, . . .) ∈ X denotes an infinite sequence of utilities, where
xn ∈ R denotes the utility of generation n ∈ N. For all x = (x1, x2, . . . , xn, . . .),
y = (y1, y2, . . . , yn, . . .) ∈ X , x ≥ y means that xn ≥ yn for all n ∈ N; x >
y means that x ≥ y and x 6= y; x >> y means that xn > yn for all n ∈
N. Denote by l∞+ the set of all x ∈ l∞ with x ≥ 0. We assume that X 6= ∅
and X + l∞+ ⊆ X . The sup distance being invariant under translation, we may
moreover assume that l∞+ ⊆ X . The sup distance between x and y is defined
by

ds(x,y) = sup
n
|xn − yn|, (1)

which induces the sup topology on the space X .

Let R be a social evaluation relation defined over X, viz., xRy for any pair
x,y ∈ X means that the infinite utility stream x is judged to be at least as
good as another infinite utility stream y. P (R) denotes the asymmetric part of
R, viz., for all x,y ∈ X , xP (R)y holds if and only if xRy and not yRx. For
any fixed x ∈ X, define the lower contour set of P (R) at x ∈ X by

LP (R)(x) = {y ∈ X | xP (R)y}, (2)

R is said to be complete if and only if, for all x, y ∈ X, xRy or yRx holds.
R is said to be transitive if and only if, for all x, y, z ∈ X , xRy and yRz imply
xRz. R is said to be an ordering if and only if it satisfies completeness as well
as transitivity. Unlike most of the preceding work along the line of Koopmans
and Diamond, where the social evaluation relation is assumed to be an ordering
on X , this paper requires a much weaker property of acyclicity in Section 3,
which is defined as follows. For any t ∈ N, a finite subset {x1,x2, . . . ,xt} ofX is
called a P (R)-cycle of order t if and only if x1P (R)x2,x2P (R)x3, . . . ,xtP (R)x1

hold. R is said to be acyclic if and only if there exists no P (R)-cycle of any
order t, where 2 < t < +∞. It is clear that the transitivity of R implies the
acyclicity thereof, and the converse implication does not hold in general. Even
acyclicity is not required in Section 4, while both completeness and transitivity
are required in parts of Section 5.
Concerning the continuity requirement on R, we will invoke the following

upper semi-continuity axiom, which is weaker than Diamond’s full continuity
axiom.

Upper Semi-Continuity with Respect to the Sup Topology (USCs)
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For all x ∈ X, LP (R)(x) is open with respect to the sup topology on X.

Another axiom, which is often invoked in the literature, is the following:

Strong Pareto Principle (SP)
For all x, y ∈ X, if x > y, then xP (R)y.

Although the Strong Pareto Principle has been seldom challenged in the litera-
ture in the context of economies with finite population, it has much less appeal
in the context of economies with infinite population. However, the following
weaker variant thereof seems to be founded on much safer ground.

Weak Pareto Principle (WP)
For all x, y ∈ X , if x >> y, then xP (R)y.

It should be noted that, throughout this paper, a weak preference relation R
is used in formulating the axioms of rationality, egalitarianism and continuity.
This formulation is adopted in order to facilitate comparisons with other work,
but all the axioms and the methods of proof may be given in terms of the
asymmetric part thereof, viz., the strict preference relation P .

3. Pigou-Dalton Transfer Principle and Its Variant

In contrast with the equity principle à la Sidgwick and Diamond in the
form of anonymity, we are now introducing an axiom which embodies a form
of preference for egalitarian distribution of utilities among generations (see also
Bossert, Sprumont and Suzumura (2005)). To be precise, our axiom reads as
follows:

Pigou-Dalton Transfer Principle (PDT)
For any x, y ∈ X, and any pair of positive integers i, j ∈ N, if there exists

an ² > 0 such that

yi = xi + ² ≤ xj − ² = yj, xk = yk for all k ∈ N\{i, j} (3)

holds, then yP (R)x must also hold.

Although the Pigou-Dalton Transfer Principle may be construed to be egal-
itarian in nature in that the utility sacrifice made by generation j, which is
rewarded by the utility gain of the same size accruing to generation i, is judged
to be socially beneficial, it may make even more sense to require that the in-
tergenerational transfer should be judged socially beneficial if the gain may be
larger than the sacrifice. We are thus led to the following:

Altruistic Equity Principle (AE)
For any x,y ∈ X , and any pair of positive integers i, j ∈ N, if there exist

an ² > 0 and a δ > 0 such that δ < ² and

yj = xj + ² ≤ xi − δ = yi, xk = yk for all k ∈ N\{i, j} (4)
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holds, then yP (R)x must also hold.

Although PDT and AE are in general logically independent, PDT is at
least as strong as AE if R is transitive and SP holds. To verify this fact, let
x,y ∈ X and i, j ∈ N be such that there exist positive numbers ² and δ with
δ < ² satisfying yj = xj + ² ≤ xi − δ = yi and xk = yk for all k ∈ N\{i, j}.
Consider y∗ ∈ X such that y∗k = yk for all k ∈ N\{j} and y∗j = yj − (² − δ) =
xj + δ. It follows from PDT that y∗P (R)x, whereas SP implies yP (R)y∗. By
virtue of the transitivity of R, we are led to yP (R)x. Thus, AE is implied by
PDT in this case.1

Weak though PDT and AE may seem to be, we are thereby led to the
following impossibility theorems.

Theorem 1
There exists no acyclic social evaluation relation R satisfying PDT, WP,

and USCs.

Theorem 2
There exists no acyclic social evaluation relation R satisfying AE,WP, and

USCs.

Proof of Theorem 1 and Theorem 2
Denote by c0++ the set of all strictly positive sequences converging to 0, which

is a subset of l∞. Define a mapping ϕ : c0++ → c0++ as follows: Let x ∈ c0++ and
define

I =

½
i = 1, 2, . . . | xi >

2kxk
3

¾
and I =

½
i = 1, 2, . . . | xi <

kxk
3

¾
,

where kxk = ds(x, 0). Since I is non-empty, we can write I = {k1, k2, . . .}, with
k1 < k2 < · · · . Since I is non-empty and finite, we can write I = {j1, j2, . . . , jH},
with j1 < j2 < · · · < jH . Then define

ϕi(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2kxk
3

if i = jh for some h ∈ {1, . . . , H},

xi +

µ
xjh −

2kxk
3

¶
if i = kh for some h ∈ {1, . . . , H},

xi otherwise;

and define ϕ(x) = (ϕ1(x),ϕ2(x), . . .). Then kϕ(x)k = 2kxk/3. Moreover, if
R satisfies PDT, then there is an increasingly (strictly) preferable sequence of
utility streams, of length H, that starts with x and ends up with ϕ(x).
For any n ∈ N, we can apply this result n times to show that kϕn(x)k =

(2/3)nkxk for every x ∈ c0++ and every n, and hence that ϕn(x) → 0 as
n → ∞ with respect to the sup topology for every x ∈ c0++. Moreover, if R
satisfies PDT, then there is an increasingly (strictly) preferable sequence of
utility streams, of finite length, that starts with x and ends up with ϕn(x).

1It is clear that this property holds true under a weaker requirement of quasi-transitivity
of R, viz., transitivity of P (R).
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We can now prove Theorem 1 by a contradiction argument. Take any
x ∈ c0++. Then, by WP, xP (R)0. Hence, by USCs, xP (R)ϕn(x) for every
sufficiently large n. On the other hand, since, by PDT, there is an increasingly
(strictly) preferable sequence of utility streams, of finite length, that starts with
x and ends up with ϕn(x), the acyclicity implies that not xP (R)ϕn(x) for any
n. This is a contradiction.
Theorem 2 can be proved by using the same argument and adding kxk/6

to xi + (xjh − 2kxk/3) in the definition of ϕi(x).

4. Lorenz Domination and Its Variant

As in the case of egalitarianism on the atemporal income distributions, we
may introduce an alternative formulation of egalitarian preferences over the set
of infinite utility streams in terms of the concept of Lorenz domination. For
each x ∈ X and each n ∈ N, let 1xn be defined by 1xn = (x1, x2, . . . , xn).
For any n ∈ N, let us say that 1xn Lorenz dominates 1yn if and only if (i)Pn

t=1 xt =
Pn

t=1 yt and (ii) the Lorenz curve of 1xn lies uniformly above the
Lorenz curve of 1yn; similarly, let us say that 1xn Bentham-Lorenz dominates

1yn if and only if (i)
Pn

t=1 xt >
Pn

t=1 yt and (ii) the Lorenz curve of 1xn lies
uniformly above the Lorenz curve of 1yn.
With the help of the above concepts, we are now ready to introduce the

following Lorenz type domination principles.

Lorenz Domination Principle (LD)
For any x,y ∈ X, if there exists n∗ ∈ N such that (1) 1xn∗ Lorenz dominates

1yn∗, and (2) xn = yn for all n ∈ N such that n > n∗, then not yP (R)x.

Bentham-Lorenz Domination Principle (BLD)
For any x,y ∈ X, if there exists n∗ ∈ N such that(1) 1xn∗ Bentham-Lorenz

dominates 1yn∗, and (2) xn = yn for all n ∈ N such that n > n∗, then not
yP (R)x.

It may be observed that, when the transitivity of R is not assumed, LD and
PDT are not the same and BLD is different from AE. On the other hand, it
may be noted that, if R is transitive and satisfies SP, LD implies BLD even
though LD and BLD are logically independent in general.2 The proof of this
fact is similar to the proof for establishing the similar relation between PDT
and AE.

We note that LD (and BLD) can be significantly weakened, without af-
fecting the subsequent analysis, to the following condition: For any x ∈ X and
y ∈ X, if x 6= y and there exists n∗ ∈ N such that (1) xn = (y1+y2+. . .+yn∗)/n∗
for every n ≤ n∗ and (2) xn = yn for every n > n∗, then not yP (R)x. That
is, it suffices for R to prefer the constant stream of the average utility level (for
finitely many generations).

2This property holds true under the weaker rationality requirement of quasi-transitivity.
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As the following two results show, in the presence of semi-continuity axiom
and without any rationality requirement imposed on R, it cannot simultane-
ously satisfy the weak Pareto principle and either of the domination principles
introduced above.

Theorem 3
There exists no social evaluation relation R satisfyingWP, LD, and USCs.

Theorem 4
There exists no social evaluation relation R satisfying WP, BLD, and

USCs.

Proof of Theorem 3 and Theorem 4
For each n ∈ N, define ψ(n) : c0++ → c0++ by

ψ(n)(x) =
³ 1
n

nX
i=1

xi, . . . ,
1

n

nX
i=1

xi| {z }
n times

, xn+1, xn+2, . . .
´
.

Then, for every x ∈ c0++, ψ(n)(x) → 0 as n → ∞ with respect to the sup
topology. Indeed, let x ∈ c0++ and ² > 0. Let n∗ ∈ N be such that xn ≤ ²/2 for
every n > n∗. Then, for n > max{n∗, (2kxk/²)n∗},

0 <
1

n

nX
i=1

xi =
1

n

Ã
n∗X
i=1

xi +

nX
i=n∗+1

xi

!

≤ n∗

n
kxk+ n− n

∗

n

²

2

=
²

2
+
n∗

n

³
kxk− ²

2

´
<

²

2
+

1

2kxk/²
³
kxk− ²

2

´
= ²− ²2

4kxk < ².

Hence, by n > n∗, kψ(n)(x)k < ². Thus ψ(n)(x)→ 0.
By WP, xP (R)0. Thus, by USCs, xP (R)ψ(n)(x) for every sufficiently

large n. On the other hand, 1ψ
(n)(x)n (the first n generations of ψ

(n)(x))
Lorenz dominates 1xn for every sufficiently large n. To verify this fact, note
that, as shown above, (1/n)

Pn
i=1 xi → 0 as n → ∞. Also, by the definition

of c0++, x1 > 0. Hence x1 > (1/n)
Pn

i=1 xi for every sufficiently large n. Thus,
in particular, 1ψ

(n)(x)n 6= 1xn for every large enough n. Since 1ψ
(n)(x)n is a

constant sequence, this means that 1ψ
(n)(x)n Lorenz dominates 1xn. As for

generations n + 1 onwards, x and ψ(n)(x) share the same utility levels. Thus,
it follows from LD that not xP (R)ψ(n)(x) for every large enough n. This is a
contradiction. This completes the proof of Theorem 3.
To prove Theorem 4, use (1/n)(

Pn
i=1 xi+1) in place of (1/n)

Pn
i=1 xi when

defining ψ(n)(x).
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Unlike Theorem 1 and Theorem 2 in the previous section, Theorem 3
and Theorem 4 do not require a social evaluation relation even to be acyclic,
to say nothing of full transitivity. The intuition behind this sharp contrast may
be given as follows. While PDT and AE are concerned with the comparison
between two utility streams differing from each other only in two generations,
LD and BLD are concerned with the comparison between two utility streams
differing from each other in any finitely many generations. In proving all of these
theorems, the crucial step was to construct an increasingly more egalitarian
sequence of utility streams. While LD and BLD allow a social evaluation
relation to directly compare any two streams along the sequence, PDT and AE
do not. This is why we need acyclicity in proving Theorem 1 and Theorem
2.

5. Robustness

The impossibility theorems obtained so far commonly invoked the axiom
of upper semi-continuity of social evaluation relation with respect to the sup
topology. In view of the foregoing studies, e.g. Campbell (1985), Lauwers
(1997), Shinotsuka (1998) and Svensson (1980), which showed that some of the
impossibility theorems are not robust with respect to the choice of topology, it
is important to check whether or not the validity of our impossibility theorems
hinges on the choice of topology. This whole section is devoted to this problem.
In the first sub-section, we show that our theorems can be generalized to social
evaluation relation which is upper semi-continuous with respect to any locally
solid linear topology. This fact can be established by showing that every locally
solid linear topology on l∞ is equal to, or coarser than, the sup topology. This
is reassuring to some extent, but we are still in the dark as to the case of
topologies stronger than the sup topology. In the second sub-section, we assume
that the social evaluation relation satisfies the axiom of completeness and that
of transitivity, viz., it is an ordering, and identify a condition, called linear
upper semi-continuity, under which the social evaluation ordering is upper semi-
continuous with respect to the sup topology. The identified condition is, though
fairly general, rather abstract. In the third sub-section, we obtain two corollaries
giving simpler sufficient conditions for the upper semi-continuity with respect to
the sup topology. These results do not settle our problem once and for all, but
they seem to be enough to assure the relevance of our impossibility theorems.

5.1. For each x ∈ X, let |x| be the infinite sequence of non-negative real
numbers obtained from x by replacing each term xn with the absolute value
thereof. A subset A of X is said to be solid if, for every x,y ∈ l∞, |x| < |y| and
y ∈ A, imply x ∈ A. A linear topology on l∞ is said to be locally solid if it has
a basis for 0 consisting of solid sets. The sup topology is locally solid, because
the sets of the form {x ∈ l∞|ds(x,y) ≤ δ} with δ > 0 define a fundamental
system of neighborhoods of y. See Aliprantis and Burkinshaw (1978) for the
characterizations and basic properties of locally solid linear topologies. Note
also that the locally solid linear topologies have been used in the literature on
general equilibrium theory; see, for example, Mas-Colell (1986).
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The following result is mathematically trivial, but still worth keeping on
record, as our subsequent analysis depends on it.

Lemma 1 Every locally solid linear topology on l∞ is equal to, or coarser
than, the sup topology.

Proof of Lemma 1
Let be a locally solid linear topology on l∞. Since it is translation-

invariant, it suffices to show that for every neighborhood U of 0 with respect to
, there exists a neighborhood V of 0 with respect to the sup topology such that

V ⊆ U . So let U be a neighborhood of 0 with respect to . Since is locally
solid, there exists a solid neighborhood W of 0 with respect to such that
W ⊆ U . Since the scalar multiplication δ 7→ δ1 is continuous with respect to
, there exists a δ > 0 such that δ1 ∈ W , where 1 is the infinite utility stream

which repeats 1 indefinitely. Note that for every x ∈ l∞, |x| ≤ δ1 if and only if
ds(x, 0) ≤ δ. Since W is solid, this implies that {x ∈ l∞ | ds(x,0) ≤ δ} ⊆ W .
Since {x ∈ l∞ | ds(x,0) ≤ δ} is a neighborhood of 0 with respect to the sup
topology, we can complete the proof by taking V = {x ∈ l∞ | ds(x,0) ≤ δ}.

Back, then, to the evaluation of infinite utility streams. Concerning the
continuity requirement of social evaluation relations, we introduce the upper
semi-continuity with respect to an arbitrarily given topology on l∞.

Upper Semi-Continuity with Respect to (USC )
For all x ∈ X, LP (R)(x) is an open set in X with respect to the topology

in X.

By Lemma 1, if is a locally solid linear topology, then USC implies
USCs. Hence the impossibility theorems of Sections 3 and 4 lead to the fol-
lowing:

Theorem 5
Let be a locally solid linear topology on l∞. Then, there exists no acyclic

social evaluation relation R which satisfies WP, USC and either PDT or
AE.

Theorem 6
Let be a locally solid linear topology on l∞. Then, there exists no social

evaluation relation R which satisfiesWP, USC , and either LD or BLD.

5.2. The next order of our business is to show that there is a good rea-
son to believe that the class of social evaluation relations which are upper
semi-continuous with respect to the sup topology is large enough in the con-
text where we examine the compatibility, or the lack thereof, of continuity, the
Pareto principle and the egalitarian principle. This point, if established, makes
our impossibility theorems, which are technically confined to the sup topology
and other coarser topologies, economically relevant beyond their prima facie
restrictions. With this purpose in mind, let us begin with the class of social
evaluation relations which satisfy completeness and transitivity, so that R is an
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ordering, as well as another condition, called linear upper semi-continuity. It is
admittedly less standard than completeness and transitivity, but similar condi-
tions appeared in Herstein and Milnor (1953) for their study on the expected
utility representation; it was also used much more recently by Inoue (2006) in
the context of equilibrium analysis. As in the proof of Lemma 1, we denote by
1 the infinite stream which repeats 1 indefinitely.

Linear Upper Semi-Continuity (LUSC)
For all x,y ∈ X , {α ∈ R | y + α1 ∈ LP (R)(x)} is an open subset of

{α ∈ R | y + α1 ∈ X} (with respect to the Euclidean topology).

LUSC is nothing but the upper semi-continuity of R when the comparison
to a utility stream x is restricted to the line in the direction of 1 going through
another utility stream y. We shall explore some implications of this condition
in the next sub-section.
We are now ready to state the following:

Lemma 2
If X + l∞++ ⊆ X and if the social evaluation ordering R satisfies WP and

LUSC, then R satisfies USCs.

Proof of Lemma 2
For each x ∈ X , define UR(x) = {y ∈ X | yRx}. R being complete, we

obtain X \ UR(x) = LP (R)(x). It thus suffices to show that UR(x) is a closed
subset of X with respect to the sup topology. So let y ∈ X and (yn)n∈N be
a sequence in UR(x) that converges to y with respect to the sup topology. It
then suffices to show that y ∈ UR(x).
By LUSC and completeness of R, the set {α ∈ R | y + α1 ∈ UR(x)},

which we denote by A, is a closed subset of the set {α ∈ R | y + α1 ∈ X},
which we denote by B. Since X + l∞++ ⊆ X , B ⊇ R+. Then, for every n ∈ N,
y + kyn − yk1 ≥ yn. Hence, byWP,µ

y +

µ
kyn − yk+ 1

n

¶
z

¶
P (R)yn.

Since yn ∈ UR(x), transitivity of R implies that

y +

µ
kyn − yk+ 1

n

¶
z ∈ UR(x).

Thus, kyn − yk+ 1/n ∈ A. Since kyn − yk+ 1/n→ 0 ∈ B as n→∞, LUSC
implies that 0 ∈ A. That is, y ∈ UR(x).

A similar proof appeared in Inoue (2006). Note that by an analogous argu-
ment in which we use

y −
µ
kyn − yk+ 1

n

¶
1,

we can show that R is lower semi-continuous when restricted onto {x ∈ X |
there exists a δ > 0 such that x− δ1 ∈ X}.
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The following impossibility theorem is an immediate consequence of Theo-
rem 1 to Theorem 4 and Lemma 2.

Theorem 7
There exists no social evaluation ordering which satisfiesWP, LUSC, and

any one of PDT, AE, LD, and BLD.

5.3. We now explore two corollaries of Theorem 7.
Note first that the linear operation α 7→ y + α1 in the proof of Lemma 2

is continuous with respect to every linear topology on l∞. Thus, if a social
evaluation ordering R satisfies USC for some linear topology , then it also
satisfies LUSC. We thus obtain the following:

Theorem 8
Let be a linear topology on l∞. Then, there exists no social evaluation

ordering which satisfies WP, USC , and any one of PDT, AE, LD, and
BLD.

For social evaluation orderings, Theorem 8 generalizes the impossibility
theorems of Sections 3 and 4 to the case where the requirement of upper semi-
continuity is with respect to any linear topology. It should be stressed that
this generalization is not vacuous. Although the sup topology is the strongest
topology among all the locally solid topologies on l∞, it is not the strongest
even among the locally convex ones. Kolmogorov and Fomin (1971, Problem
10 of Section 17, Chapter 4) describes how to construct the strongest locally
convex topology.
To extract a second implication ofTheorem 7, we consider the case in which

the social evaluation ordering R is represented by a concave utility function.
We define X∗ as the set of all x ∈ X for which there exists a δ > 0 such that
x− δ1 ∈ X. The theorem to be proved is the following:

Theorem 9
There exists no social evaluation ordering R on the domain X which is

represented by a concave function f : X → R, and the restriction of which onto
X∗ satisfiesWP and any one of PDT, AE, LD, and BLD.

Note that no continuity condition is directly imposed on R. We will see in
the proof that LUSC can be derived from the concavity of the utility function
f .
To appreciate the significance ofTheorem 9, recall that a Bergson-Samuelson

social welfare function is a function that maps each possible profile of utility
levels for finitely many individuals to a single social utility level. In the wel-
fare analysis, it is common to assume that a Bergson-Samuelson social welfare
function satisfies the Pareto Principle, so as to embody the idea of respecting
efficiency, as well as concavity, so as to embody the idea of respecting egalitarian-
ism. The function f : X → R in Theorem 9 can be considered as an extension
of the Bergson-Samuelson social welfare functions to the case of infinitely many
individuals. We can then view Theorem 9 as claiming that once the Weak
Pareto Principle and concavity are accepted for an infinite-dimensional Bergson-
Samuelson social welfare function, the upper semi-continuity with respect to the
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sup topology is no additional restriction on social welfare functions as long as
the comparison is restricted onto the utility streams that are uniformly bounded
away from the minimum levels in X .

Proof of Theorem 9
Let x ∈ X∗ and define A as the set of all α ∈ R such that x + α1 ∈ X .

Then A is an interval with inf A < 0 and supA = ∞. Define A∗ = (inf A,∞),
then x+α1 ∈ X∗ if and only if α ∈ A∗. Define ϕ : A→ R by ϕ(α) = f(x+α1)
for every α ∈ A. Then ϕ is concave on A and thus continuous on A∗. Hence,
for every y ∈ X , {α ∈ A∗ | ϕ(α) = f(x+ α1) < f(y)} is an open subset of A∗.
Thus the restriction of R onto X∗ satisfies LUSC. This theorem now follows
from Lemma 2 and Theorem 7.

6. Concluding Remarks

Diamond’s impossibility theorems on the evaluation of infinite utility streams,
as well as most of the subsequent impossibility theorems in this arena, have the
following structure in common: the strong Pareto principle cannot but con-
flict with the Sidgwick-Pigou-Diamond anonymity axiom in the presence of
the technical axiom either in the form of continuity, or in the form of numer-
ical representability of the social evaluation ordering. In sharp contrast, the
impossibility theorems established in this paper show that the weak Pareto
principle cannot but conflict with the egalitarian axiom either in the form of
the Pigou-Dalton transfer principle, or in the form of the Lorenz domination
principle in the presence of semi-continuity and weak rationality of social eval-
uation relation. In replacing the Sidgwick-Pigou-Diamond anonymity axiom by
the Pigou-Dalton-Lorenz egalitarian axiom, our approach has much in common
with Fleurbaey and Michel (2001; 2003) and Sakai (2006).
Two further remarks on the Lorenz domination and related concepts may be

in order. First, if a utility stream Lorenz-dominates another utility stream, the
former can be arrived at from the latter by conducting Pigou-Dalton transfers
from the richer to the poorer. In principle, this may take very many steps, but,
in sharp contrast with PDT, LD requires a social evaluation relation to regard
the Lorenz-dominating stream as more desirable than the Lorenz-dominated
stream, irrespective of how many steps it may take to arrive at the former from
the latter. Second, the Lorenz domination is essentially identical to the second
order stochastic dominance (when the relevant set of finitely many generations
is equipped with a uniform probability measure), just as the Suppes grading
principle is essentially equivalent to the first-order stochastic dominance.
In conclusion, let us call the reader’s attention to the following three char-

acteristic features of our impossibility theorems.

(1) Recollect that most, if not all, existing impossibility theorems in this area
invoked the strong Pareto principle rather than the weak Pareto principle. Since
there is a conspicuous gap in appealingness between the weak Pareto principle
and the strong Pareto principle in the present context, it is interesting to know
that Theorem 1 to Theorem 4 hold with the weak Pareto principle and the
weak rationality postulate of acyclicity or even less.
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(2) Although our analysis relied greatly on the continuity requirement on social
evaluation relation, Basu and Mitra (2003) did not impose any such require-
ment. Instead, they assumed that social evaluation relations must be repre-
sentable by numerical functions. Representability implies completeness and
transitivity. Hence any impossibility theorem that does not impose complete-
ness or transitivity is outside the scope of their impossibility theorems. This
highlights the difference between their and our approaches, as our impossibility
theorems use acyclicity, or even less, in place of completeness and transitiv-
ity. The same can be said of the approach by Zame (2006). As he himself
exemplified, his non-measurability result would not hold for incomplete social
evaluation relations.

(3) Our impossibility theorems are based on the conceptual framework of car-
dinal measurability and full intergenerational comparability of utilities. This
is in conspicuous contrast with the framework used by Diamond (1965), where
ordinal and intergenerationally non-comparable utilities are assumed. Our im-
possibility theorems are meant to suggest that the conflict between the Pareto
principle, even in its weak version, and the egalitarian social preference persists
even within the framework that permits cardinality and intergenerational full
comparability. This is in sharp contrast with the social choice impossibility
theorems due to Arrow (1951) and Sen (1970).
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