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Abstract

We study the representative consumer’s risk attitude and efficient risk-sharing rules in a single-

period, single-good economy in which consumers have homogeneous probabilistic beliefs but

heterogeneous risk attitudes. We prove that if all consumers have convex absolute risk tol-

erance, so must the representative consumer. We also identify a relationship between the

curvature of an individual consumer’s individual risk sharing rule and his absolute cautious-

ness, the first derivative of absolute risk-tolerance. Furthermore, we discuss some consequences

of these results and refinements of these results for the class of HARA utility functions.

JEL Classification Codes: D51, D58, D81, G11, G12, G13.

Keywords: Aggregation, heterogeneous consumers, absolute risk tolerance, mutual fund

theorem.



1 Introduction

We consider an exchange economy under uncertainty with a single good and a single consump-

tion period, in which all consumers hold common probability assessments over the state space

and yet differing expected utility functions. Two well known properties hold for each Pareto

efficient allocation in such an economy. First, every consumer’s consumption level is uniquely

determined by the aggregate consumption level. Hence every consumer’s state-contingent

consumption levels can be specified as a function, called the risk sharing rule, of aggregate

consumption levels. Second, there exists a representative consumer, having an expected utility

function, in the sense that the support price of the single-consumer economy consisting solely

of the representative consumer is also the support price for the Pareto efficient allocation of

the original, multi-consumer economy.

The benchmark result on this subject matter is the mutual fund theorem. The mutual

fund theorem states that if all consumers have a constant, common absolute cautiousness1,

then the representative consumer also has the same constant absolute cautiousness and all

individuals’ risk-sharing rules are linear (affine). It has been well perceived in the literature

that the assumptions for the mutual fund theorem are so stringent that the applicability of

the theorem is questionable. Recent empirical studies into individuals’ risk attitudes report

a substantial amount of heterogeneity. Barsky et al (1997)2 report that 5% of individuals

display an, assumed constant, relative risk aversion of 33 or higher, the median is around 7,

while only 5% of individuals display a relative risk aversion of 1.3 or lower.

While there have been many contributions dealing with cases in which the assumption of

a constant common cautiousness is not met, they tend to concentrate on rather special cases

with regards to consumers’ risk attitudes, the number of consumers in the economy, wealth

distributions across consumers, and probabilistic distributions of initial endowments and asset

returns. Moreover, they often appeal to numerical, as opposed to analytical, methods, without

fully clarifying the principles behind their results.

In this paper, we obtain qualitative results concerning the implications of heterogeneous

absolute cautiousness on the risk-sharing rules and the representative consumer’s risk atti-

tude which are true for any Pareto efficient allocation and do not depend on the particular
1Cautiousness, as defined in Wilson (1968), is the first derivative with respect to consumption of the

reciprocal of absolute risk aversion.
2We are grateful to an anonymous referee for drawing our attention to this paper.
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characteristics of the economy. Should financial markets be complete, equilibrium allocations

are Pareto efficient, and our results are therefore true for all equilibrium allocations. The

contribution of this paper is, in short, to provide a detailed description of the way in which

the representative consumer’s absolute cautiousness is not constant and the risk-sharing rules

are not linear in general environments.

There are essentially two main results in this paper. The first result is that heterogeneity of

individual risk attitudes has a convexifying effect on absolute risk tolerance. For instance, if all

individuals have HARA preferences3 (and, hence, linear risk-tolerance), but with heterogenous

cautiousness, then the representative consumer has strictly convex risk tolerance. In particular

this implies that the representative consumer may well be very different from any individual

in the economy, his utility function may not even be in the same class as every individual’s.

While it is impossible to provide closed-form solutions to the representative consumer’s utility

function we can say a lot about its qualitative properties.

The second result is about the shape of individual consumer’s risk sharing rules. While,

again, closed-form solutions are not obtainable, we can make very definite statements about

the curvature of risk-sharing rules as well as their limiting behavior. We obtain even more

concrete results in the case of heterogeneous consumers with HARA preferences.

Throughout the paper we establish our results for the static, one-period model. Hara

(2006) showed that it is possible to extend all the results to the multi-period case provided

all consumers have time-homogeneous and time-separable expected utility functions and the

same time-discount rate. Hence, our results are directly comparable with dynamic models

such as those of Mehra and Prescott (1985), Dumas (1989), Campbell and Cochrane (1999),

Wang (1996), Benninga and Mayshar (2000), and Chan and Kogan (2002), where there are

multiple consumption periods and a common discount rate is assumed.

This paper is organized as follows. Section 2 presents the model and preliminary results.

Section 3 provides a formula for the curvature of individual consumers’ risk-sharing rules,

while Section 4 gives a formula for the representative consumer’s absolute risk tolerance. Im-

plications of our results for asset pricing are also given here. Section 6 investigates the limiting

behavior of the risk-sharing rules and the representative consumer’s risk attitudes when aggre-

gate consumption tends to the upper or lower bounds. Section 7 takes up the special case of

HARA preferences and investigates consequences for portfolio insurance. Section 8 concludes.
3HARA stands for hyperbolic absolute risk aversion.
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2 Model

There are I consumers, i ∈ {1, . . . , I} . Consumer i has a von-Neumann Morgenstern (also

known as Bernoulli) utility function ui :
(
di, di

) → IR, where di ∈ IR ∪ {−∞}, di ∈ IR ∪ {∞},
and ui is infinitely many times differentiable and satisfies u′i(xi) > 0 and u′′i (xi) < 0 for every

xi ∈
(
di, di

)
.

The uncertainty of the economy is described by a probability measure space (Ω, F , P ).

The probability measure P specifies the common (objective) belief on the likelihood of the

states. Denote by E the expectation with respect to P . The aggregate endowment of the

economy and each consumer’s consumption are both random variables on the probability

measure space.

The assumption of a common probabilistic belief and expected utility allows the efficient

allocations to be represented in terms of risk-sharing rules. Write d =
∑

di and d =
∑

di.

A risk-sharing rule is an infinitely many times differentiable function f :
(
d, d

) → (
d1, d1

) ×
· · · × (

dI , dI

)
that satisfies

∑
fi(x) = x for every x ∈ (

d, d
)
, where fi is the i-th coordinate

function of f .

For each λ = (λ1, . . . , λI) ∈ IRI
++ and each x ∈ (

d, d
)
, consider the following maximization

problem:

max
(x1,...,xI)∈(d1,d1)×···×(dI ,dI)

∑
λiui(xi),

subject to
∑

xi = x.

(1)

By strict concavity for each x, there exists at most one solution to this problem, which we

denote by fλ(x). If, additionally, the ui satisfy the Inada condition, that is, u′i (xi) → ∞ as

xi → di and u′i (xi) → 0 as xi → di, then, for every λ and x, there exists a solution.

Let ζ, measurable in (Ω, F , P ), denote the aggregate endowment in the economy. It is

well known (see e.g. Borch (1962, p. 428) and Wilson (1968), and is nicely explained in Kreps

(1990, Section 5.4)) that a feasible allocation (ζ∗1 , . . . , ζ∗I ) is efficient if and only if it there is

a λ ∈ IRI
++ such that ζ∗i = fλi(ζ) for every i.4

Let f be such an efficient risk-sharing rule. Denote the maximum attained in the problem

(1), with the same λ as corresponds to f , by u(x). We are thereby defining a function

u :
(
d, d

) → IR, which is the value function of the problem. Since
∑

λiE (ui(fi(ζ))) = E
(∑

λiui(fi(ζ))
)

= E (u(ζ))

4To be exact, to establish this equivalence, we need to guarantee that E (ui(fλi(ζ))) is finite for every i. A

sufficient condition for this is given in Huang (2002).
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the function u can be interpreted as the von-Neumann Morgenstern utility function of the

representative consumer corresponding to the efficient risk-sharing rule f . Note that the

assumption of the common probabilistic belief is crucial for this interpretation of u. By the

implicit function theorem, u is smooth. To contrast with the representative consumer, we

sometimes refer to the I consumers as individual consumers.

The Arrow-Pratt measure of absolute risk aversion of consumer i is defined as

ai(xi) = −u′′i (xi)
u′i(xi)

> 0.

The reciprocal of the absolute risk aversion, 1/ai (xi), is the absolute risk tolerance and denoted

by ti (xi). The Arrow-Pratt measure of relative risk aversion of consumer i is defined, for

xi > 0, as

bi(xi) = −u′′i (xi)xi

u′i(xi)
> 0.

The reciprocal of the relative risk aversion, 1/bi (xi), is the relative risk tolerance and denoted

by si (xi). All of these are smooth functions.

Wilson (1968, page 129) referred to the first derivative of the absolute risk tolerance,

t′i(xi), as cautiousness, but we shall call it the absolute cautiousness, to distinguish it from

the relative cautiousness, which is s′i(xi).

The absolute risk aversion a(x), absolute risk tolerance t(x), relative risk aversion b(x),

relative risk tolerance s(x), absolute cautiousness t′(x), and relative cautiousness s′(x) are

similarly defined for the representative consumer’s utility function u. Bear in mind that

they depend on the choice of an efficient risk-sharing rule f and hence on the choice of the

weights λ, although none of our analytical results depends on the choice of λ. In particular, if

markets are complete, then the first welfare theorem implies that every equilibrium allocation

is efficient. Hence our results are applicable to equilibrium allocations. The values of λ are

then determined by the individual consumers’ initial endowments as well as the choice of an

equilibrium in case there is more than one, but our analytical results always hold regardless

of the specification of initial endowments or the choice of an equilibrium.

The following lemma is due to Wilson (1968, Theorems 4 and 5).

Lemma 1 (Wilson (1968)) Let f be an efficient risk-sharing rule and t be the representa-
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tive consumer’s absolute risk tolerance corresponding to f , then, for every i and x ∈ (
d, d

)
,

t(x) =
1

f ′i(x)
ti(fi(x)), (2)

t(x) =
∑

ti (fi(x)) , (3)

t′(x) =
∑

f ′i(x)t′i (fi(x)) . (4)

Here are some implications of this lemma. First, by (2), f ′i(x) > 0, so that fi is strictly

increasing for every x. This property is called comonotonicity. Also note that
∑

f ′i(x) = 1 and

hence that f ′i(x) can be interpreted as a probability mass function over the set of individual

consumers. Equation (4) then states that the representative consumer’s absolute cautiousness

is the expected absolute cautiousness of the individual consumers with respect to the this

probability mass function. Third, both the absolute risk tolerance and absolute cautiousness

are bounded by the individual consumers’ counterpart via

max
{

max
i

ti (fi(x)) , I min
i

ti (fi(x))
}
≤ t(x) ≤ I max

i
ti (fi(x)) , (5)

min
i

t′i (fi(x)) ≤ t′(x) ≤ max
i

t′i (fi(x)) . (6)

An immediate corollary of inequality (6) is a sufficient condition for the monotonicity of t,

and hence of a.

Corollary 2 If ti (or ai) is non-decreasing (or non-increasing) for every i, then so is t (or

a).

3 Curvature of the Efficient Risk-Sharing Rules

The following proposition is rich in interpretations.

Proposition 3 For every i and x ∈ (
d, d

)
,

f ′′i (x)
f ′i(x)

=
1

t(x)
(
t′i (fi(x))− t′(x)

)
. (7)

Proof of Proposition 3 By equality (2),

ti (fi(x)) = t(x)f ′i(x) (8)

for every x ∈ (
d, d

)
. Differentiating both sides with respect to x, we obtain

t′i (fi(x)) f ′i(x) = t′(x)f ′i(x) + t(x)f ′′i (x). (9)
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Rearranging this, we complete the proof. ¥

The intuition behind Proposition 3 is quite simple: Since, by (2), the marginal risk-

sharing f ′i(x) is proportional to the absolute cautiousness t′i(fi(x)), it must be increased for

those consumers for whom the absolute cautiousness increases faster than the average, which

is t′(x) by (4).

The first implication of is that for every x ∈ (
d, d

)
and every i, f ′′i (x) > 0 if t′i (fi(x)) >

t′(x); f ′′i (x) = 0 if t′i (fi(x)) = t′(x); and f ′′i (x) < 0 if t′i (fi(x)) < t′(x). This seems similar to

Proposition II of Leland (1980) but in fact differs crucially from it in that the absolute risk

tolerance t is derived from the efficient risk-sharing rule f rather than exogenously given.5 Its

message is otherwise the same: an individual consumer’s risk-sharing rule is (locally) convex

if he is more absolutely cautious than the representative consumer; (locally) concave if he is

less so; and (infinitesimally) linear if they are equally absolutely cautious. In the context of

portfolio insurance, as in Leland (1980) and Brennan and Solanki (1981), it implies that only

those who are more absolutely cautious than the representative consumer at every level x of

aggregate consumption would purchase portfolio insurances.6

The second, finer, implication of the proposition is that for every x ∈ (
d, d

)
and all i and

j,

t′i (fi(x)) R t′j (fj(x)) if and only if
f ′′i (x)
f ′i(x)

R
f ′′j (x)
f ′j(x)

.

To appreciate this, recall that the ratios of the first and second derivatives, such as f ′′i (x)/f ′i(x)

and f ′′j (x)/f ′j(x), often appear in expected utility theory. They measure the curvatures of the

individual risk-sharing rules fi and fj . For example, f ′′i (x)/f ′i(x) ≥ f ′′j (x)/f ′j(x) for every x

if and only if fi is a convex function of fj . Proposition 3 therefore implies that the degree

of convexity of fi is positively related to consumer i’s absolute cautiousness. That is, the

marginal consumption that consumer i receives as the aggregate endowment increases grows

at a rate higher than its counterpart for consumer j if consumer i is more absolutely cautious

than consumer j. What this means in the context of portfolio insurance is that consumer i

5Section 8 contains a more detailed discussion.
6Note that Section 14 of Gollier (2001a) investigated a similar maximization problem to (1), albeit in a

somewhat different context. Specifically, our set of consumers is replaced by the state space, our utility weights

are replaced by the probability measure on the state space, our consumers’ utility functions are replaced by

state-contingent utility functions, and our resource-feasibility constraint is replaced by the budget constraint.

Then Proposition 52 of Gollier (2001a) can be seen to be quite similar to this implication. We are grateful to

an anonymous referee for drawing our attention to this analogy.

6



purchases more portfolio insurance (or options) relative to the size of the reference portfolio

he holds than consumer j does.

Our result also shows that the levels of risk tolerance do not matter for the curvatures of

the risk-sharing rules, although they do matter for the slopes.7

4 Representative Consumer’s Risk Tolerance

Throughout this section, we let f be an efficient risk-sharing rule and denote by a, t, b, and

s the representative consumer’s absolute risk aversion, absolute risk tolerance, relative risk

aversion, and relative risk tolerance, corresponding to f .

We show that if every consumer exhibits convex absolute risk-tolerance (non-decreasing

absolute cautiousness), then so does the representative consumer. Moreover, even the slightest

heterogeneity in consumers’ absolute cautiousness would cause the representative consumer’s

absolute risk-tolerance to be strictly convex (that is, the representative consumer’s cautious-

ness would be strictly increasing). The following formula establishes these conclusions.

Theorem 4 For every x ∈ (
d, d

)
,

t′′(x) =
∑(

f ′i(x)
)2

t′′i (fi(x)) +
1

t(x)

∑
f ′i(x)

(
t′i (fi(x))− t′(x)

)2
. (10)

Recall that, by equality (4), the mean of the individual consumers’ absolute cautiousness

t′i(fi(x)) with respect to the probability mass function f ′i(x) equals the representative con-

sumer’s cautiousness t′(x). The sum of the second term on the right hand side of (10) is thus

the variance of the t′i(fi(x)) with respect to the same probability mass function. It represents

the contribution of heterogeneity in absolute cautiousness to the derivative of the representa-

tive consumer’s absolute cautiousness. As we will see in the subsequent analysis, this theorem

has many implications, but its proof is surprisingly simple.

Proof of Theorem 4 Differentiate both sides of equality (4), then we obtain

t′′(x) =
∑

f ′′i (x)t′i (fi(x)) +
∑(

f ′i(x)
)2

t′′i (fi(x)) . (11)

By
∑

f ′′i (x) = 0 and Proposition 3,

∑
f ′′i (x)t′i (fi(x)) =

∑
f ′′i (x)

(
t′i (fi(x))− t′(x)

)

=
∑

f ′i(x)
f ′′i (x)
f ′i(x)

(
t′i (fi(x))− t′(x)

)
=

1
t(x)

∑
f ′i(x)

(
t′i (fi(x))− t′(x)

)2.

7We thank Christian Gollier for clarifying this point.
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Plug this result into equality (11), then we obtain (10). ¥

The proof makes it clear how the heterogeneity in the individual consumers’ absolute cau-

tiousness contributes to the convexity of the representative consumer’s absolute cautiousness:

By (4), the latter is the weighted average of the former, and, by Proposition 3, the weights

f ′i(x) are increased for those consumers with higher absolute cautiousness. With differing ab-

solute cautiousness, therefore, the representative consumer’s counterpart increases, resulting

in the convexity of his absolute risk tolerance.

A corollary of this theorem, in terms of the absolute risk tolerance, is:

Corollary 5 If ti is a convex function for every i, then so is t. If, moreover, the in-

dividual consumers’ absolute cautiousness are not completely equal at any aggregate con-

sumption level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that

t′i (fi(x)) 6= t′j (fj(x))), then t is strictly convex.

Formula (10) suggests that even if all consumers exhibit concave, rather than convex, risk

tolerance, the representative consumer may exhibit convex risk tolerance. We can therefore

say that the aggregation over heterogeneous consumers tends to induce the representative

consumer to exhibit convex risk tolerance.

Calvet, Grandmont, and Lemaire (1999) gave a similar result for the representative con-

sumer’s relative risk tolerance. Specifically, denote by si(xi) consumer i’s relative risk tol-

erance ti(xi)/xi and by s(x) the representative consumer’s relative risk tolerance t(x)/x.

Rewriting their equality (6.10), multiplying x/s(x) to both sides, and rearranging the terms,

we obtain the following formula.8

Proposition 6 For every x ∈ (
d, d

)
, if fi(x) > 0 for every i, then

s′(x) =
∑ fi(x)

x
f ′i(x)s′i(fi(x)) +

1
s(x)x

∑ fi(x)
x

(si(fi(x))− s(x))2 . (12)

It is possible to derive from equality (3) that the mean of the individual consumers’ rela-

tive risk tolerance si(fi(x)) with respect to the probability mass function fi(x)/x equals the

representative consumer’s relative risk tolerance s(x). The sum in the second term on the

right hand side of (10) is thus the variance of the si(fi(x)) with respect to this probability

mass function. It represents the contribution of heterogeneity in relative risk tolerance to the

representative consumer’s relative cautiousness s′(x).
8We owe this proof to an anonymous referee
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Denote the relative risk aversions by bi(xi) =
1

si(xi)
and b(x) =

1
s(x)

. A corollary to

Proposition 6, which is analogous to Corollary 5 is the following.

Corollary 7 Assume that di ≥ 0 for every i.

1. If si is a non-decreasing function for every i, then so is s. If, moreover, the individual

consumers’ relative risk tolerances are not completely equal at any aggregate consumption

level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that si (fi(x)) 6=

sj (fj(x))), then s is strictly increasing.

2. If bi is a non-increasing function for every i, then so is b. If, moreover, the individual

consumers’ relative risk aversions are not completely equal at any aggregate consumption

level (that is, for every x ∈ (
d, d

)
, there exist two consumers i and j such that bi (fi(x)) 6=

bj (fj(x))), then b is strictly decreasing.

The symmetry between formulas (10) and (12) is remarkable. The first derivative of the

representative consumer’s relative risk tolerance and absolute cautiousness are increased by

heterogeneity of individual consumers’ risk attitudes. Neither of the two formulas is strictly

more general than the other, as either accommodates some cases that the other cannot.

5 Implications of Our Findings

We now explore how the aggregate endowment (market portfolio) and its options may be

mis-priced if a modeler ignores the issues of aggregation and postulates some particular and,

given the actual heterogeneous economy, erroneous form for the representative consumer’s

utility function. Just to simplify the argument, we will assume throughout this section that

the individual consumers exhibit constant relative risk aversion, but of differing levels. This

implies, in particular, that
(
d, d

)
= IR++.

Recall that any positive multiple of the representative consumer’s marginal utility u′(ζ) is

a state price deflator (also known as the state price density and as the pricing kernel). Since
d

dx
ln u′(x) =

u′′(x)
u′(x)

= − 1
t(x)

,

u′(x) = u′(y) exp
(
−

∫ x

y

1
t(s)

ds

)

for any x > 0 and y > 0. Thus, if we define, for any fixed y > 0, a function π : IR++ → IR++

9



by

π(x) =
exp

(
−

∫ x

y

1
t(s)

ds

)

E

(
exp

(
−

∫ ζ

y

1
t(s)

ds

)) , (13)

then π(x)/u′(x) does not depend on x and E(π(ζ)) = 1. Thus π(ζ) has the property of a

density function. A derivative asset is a function ϕ : IR++ → IR, which specifies its own

payoff as a function of the aggregate endowment. Then the payoff of the derivative asset as

a random variable is therefore ϕ(ζ) and the relative price with respect to the risk-free bond

equals E (π(ζ)ϕ(ζ)).

We will consider two types of erroneous postulates a modeler might make for the represen-

tative consumer’s risk attitudes. First, suppose that the modeler assumes that the representa-

tive consumer exhibits linear absolute risk tolerance (hyperbolic absolute risk aversion), such

that the absolute risk tolerance and cautiousness are chosen to match the true values at some

aggregate consumption level.9 Specifically, for any choice of y > 0, if we define t̂ : IR++ → IR

by t̂(x) = t′(y)(x− y) + t(y), then t̂ is the best linear approximation of t at y. Let π be as in

(13) and define t̂ : IR++ → IR++ by

π̂(x) =
exp

(
−

∫ x

y

ds

t̂(s)

)

E

(
exp

(
−

∫ ζ

y

ds

t̂(s)

)) . (14)

This would be the state-price deflator if the representative consumer’s risk tolerance were t̂.

The following proposition states that this linear approximation π̂(ζ) underestimates the price

of every derivative asset ϕ(ζ) whenever ϕ is an increasing function.

Proposition 8 Suppose that all individual consumers exhibits constant relative risk aversion

and their levels are not completely equal. If a derivative asset ϕ : IR++ → IR is a non-constant

and non-decreasing function, then

E (π(ζ)ϕ(ζ)) > E (π̂(ζ)ϕ(ζ)) . (15)
9This is equivalent to saying that the absolute risk tolerance of the hypothetical representative consumer

is a linear approximation of that of the true representative consumer at some aggregate consumption level.

Since the absolute risk tolerance of the (true) representative consumer is a strictly convex function of aggregate

consumptions levels and is equal to zero at zero consumption, the absolute risk tolerance of the hypothetical

representative consumer is zero at some strictly positive consumption level, and the resulting relative risk

aversion is strictly decreasing.
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Proof of Proposition 8 By Theorem 4, t′′(x) > 0 for every x > 0 and hence t̂(x) < t(x)

for every x 6= y. Note that

π(x)
π̂(x)

=
E

(
exp

(
−

∫ ζ

y

ds

t̂(s)

))

E

(
exp

(
−

∫ ζ

y

ds

t(s)

)) exp
(∫ x

y

(
1

t̂(s)
− 1

t(s)

))
. (16)

Thus π(x)/π̂(x) is a strictly increasing function of x. Hence the distribution of ζ with respect

to the probability measure whose Radon-Nikodym derivative is π(ζ) first-order stochastically

dominates the distribution of ζ with respect to the probability measure whose Radon-Nikodym

derivative is π̂(ζ). Then the strict inequality (15) follows from the assumption that ϕ is non-

constant and non-decreasing. ¥

The above proposition states that the price of any asset with an increasing payoff function

(of aggregate endowment) would be under-estimated. Since the aggregate endowment is an

increasing function of itself, this implies that the equity premium is under-estimated. Hence

a modeler would find it more difficult to match the observed equity premium with reason-

able risk preferences if she ignores the convexifying effect of aggregation on the representative

consumer’s absolute risk tolerance. Note that the proposition above and its proof immedi-

ately extend to the more general case of linearly approximating the representative consumer’s

absolute risk tolerance in any economy in which his utility function exhibits strictly convex

absolute risk tolerance.

To consider the second type of an erroneous postulate a modeler might make for the

representative consumer’s risk attitudes, suppose that a modeler assumes that the represen-

tative consumer exhibits constant relative risk aversion.10 According to Corollary 7,11 the

representative consumer’s relative risk aversion is a strictly decreasing function of aggregate

consumption levels, ranging from the maximum to the minimum of the individual consumers’

constant relative risk aversion. Thus, if we take, as the hypothetically constant relative risk

aversion for the representative consumer, the true relative risk aversion at any consumption

level, then neither the actual nor the approximated relative risk aversion would always be

higher than the other. Hence it is impossible to obtain a result comparable to Proposition 8.
10This implies that the absolute risk tolerance of the hypothetical representative consumer is a linear function

with the zero intercept on the horizontal axis. When it comes to specifying a utility function, therefore, imposing

constant relative risk aversion is a more severe restriction than imposing linear absolute risk tolerance.
11And also by Proposition 20, to be presented in Section 7.

11



Yet, to further explore this question, and its implications for the equity premium puzzle

of Mehra and Prescott (1985), note that π(x) = u′(x)/E (u′(ζ)). Then the equity premium

is E (ζ) /E (π(ζ)ζ)− 1 = E (ζ) E (u′(ζ)) /E (ζu′(ζ))− 1. According to Gollier (2001a, p. 69),

when the variance (and other higher order moments) of ζ is much smaller than its expected

value, the equity premium can be approximated by
(
Var(ζ)/ (E(ζ))2

)
b(E(ζ)). Barsky et al

(1997, Footnote 18) report that in their experimental study, five percent of subjects display a

relative risk aversion of 33 or more; the median relative risk aversion is 7; and only five percent

display a relative risk aversion of 1.3 or less. Since the representative consumer’s relative risk

aversion would then range from levels higher than 33 for very low aggregate endowment to

levels lower than 1.3 for very high levels of aggregate endowment, in a growing economy, as in

the US, we would expect the equity premium to be decreasing over time. This is very much

consistent with recent empirical studies by, for example, Blanchard (1993) and Jagannathan

et al (2000). If we use the estimate of Var(ζ)/ (E(ζ))2 = 0.056 from Gollier (2001a, p. 69),

then we obtain an equity premium of roughly 2% for early years (low aggregate consumption)

and one of roughly 0.07% for later years (with high aggregate consumption). Thus, to argue

that the heterogeneity in risk aversion can explain the equity premium, we need to show

that the relevant aggregate consumption is so low that the representative consumer is mostly

driven by the most risk-averse individuals in the economy. Otherwise, the puzzle may even

be further deepened.

Franke, Stapleton, and Subrahmanyam (1999) showed that even if the relative risk aversion

is chosen such that the theoretical equity premium is matched to the true equity premium (of

the aggregate endowment), the price of any asset with a convex payoff function (of aggregate

endowment), such as call and put options, is under-estimated. We should note its consistency

with empirical findings: Aı̈t-Sahalia and Lo (2000) derived the representative consumer’s

relative risk aversion from option prices in a non-parametric, non-linear way. They find that it

is decreasing (almost) everywhere. Numerical examples of mis-pricing of options were given in

Benninga and Mayshar (2000) and Huang (2003). In particular, Benninga and Mayshar (2000)

calculated ratios of the true prices to the predictions based on the assumption of constant

relative risk aversion (which is greater than one in most cases) for various exercise prices

and various choices of the values of the constant relative risk aversion for the representative

consumer. Huang (2003) did a similar exercise for the case where the decreasing relative risk

aversion arose from heterogeneous probabilistic beliefs among consumers on the distribution

12



of aggregate endowments. Gollier (2005) considered the aggregation problem of heterogeneous

probabilistic beliefs when the risk attitudes are also heterogeneous.

While the model of this paper is a static one, the results can be extended to dynamic

models, as mentioned in the introduction. The impact of heterogeneity on the risk-free interest

rate can then be shown to consist of two factors. First, since the representative consumer

displays decreasing relative risk aversion, he tends to become more willing to substitute future

consumptions for current consumptions in a growing economy. This causes interest rates to

decrease. Second, as discussed in Hara (2006), even if the representative consumer’s relative

risk aversion is correctly estimated at a given aggregate consumption level, if it is, erroneously,

assumed to be constant rather than decreasing, then the representative consumer’s relative

prudence, which measures the strength of the precautionary saving motive, is underestimated.

This leads to an overestimation of the risk-free interest rates. In short, the risk-free interest

rates tend to be lower in a heterogenous economy than in a representative-consumer economy.

Note that all our results are true regardless of the particular choice of a fixed vector of

utility weights λ1, . . . , λI in the maximization problem (1), and hence, true whether there is

wealth inequality among consumers or not. We can also use our findings to study the effect

of wealth inequality in the absence of any other form of consumer heterogeneity. To see this

point, suppose, as Gollier (2001b) did, that the individual consumers have the same utility

function. If all the λi are equal, then f1(x) = · · · = fI(x) = x/I and, in particular, all the

fi are linear. However, if not, then, by Lemma 1, fi(x) > fj(x) and f ′i(x) > f ′j(x) for all x

whenever λi > λj , because the ti are all the same and strictly increasing. If the common utility

function exhibits linear absolute risk tolerance, then f ′′i (x)/f ′i(x) = 0 for all i and x, regardless

of the values of the λi. This is nothing but the mutual fund theorem.12 However, if the

common utility function exhibits strictly convex absolute risk tolerance, then, by Proposition

3, f ′′i (x)/f ′i(x) > f ′′j (x)/f ′j(x) for all x whenever λi > λj , that is, the wealthier consumers have

more convex risk-sharing rules than the poorer ones. If, on the other hand, the common utility

function exhibits strictly concave absolute risk tolerance, then this relation is reversed. As for

the representative consumer’s risk attitudes, we can use Theorem 4 and Proposition 6 to obtain

some interesting observations. If all the λi are equal, then f1(x) = · · · = fI(x) = x/I and hence

the second term of the right-hand side of (10) is zero. Thus, whenever the common utility

function exhibits concave absolute risk tolerance, so does the representative consumer’s utility
12This theorem will be stated in Section 7.
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function. However, if there is some wealth inequality, then the representative consumer’s

utility function may exhibit convex absolute risk tolerance over some range of aggregate

consumption levels, because the second term is positive. Similarly, Proposition 6 shows that

even if the common utility function exhibits increasing relative risk aversion, the representative

consumer’s utility function may exhibit decreasing relative risk aversion over some range of

aggregate consumption levels in the presence of wealth inequality.

6 Limit Behavior

In this section, we investigate the limit behavior of the representative consumer’s absolute

cautiousness, relative risk tolerance (and hence relative risk aversion), and the risk-sharing

rules. Roughly speaking, we show that the representative consumer’s absolute cautiousness

tends to the limit of the most absolutely cautious consumers’ counterpart as the aggregate

consumption level tends to its upper bound d (which may be infinite); and these consumers’

share of both the consumption levels, out of the aggregate consumption level, and of marginal

consumptions, converges to one. This result is particularly relevant in the analysis of a dy-

namic growing economy. We also provide an analogous result when the aggregate consumption

level tends to its lower bound d (which may be negative infinite), but the dominant consumers

are then the least absolutely cautious ones. This result is relevant in the analysis of a dynamic

contracting economy.13 We also make statements of the limit behavior of the representative

consumer’s relative risk tolerance (and hence relative risk aversion). In the next section, we

will apply all of these results to the case where all consumers have HARA preferences.

As a convention of this paper, we allow lim to be ∞ or −∞; max and min may be ∞ or

−∞ accordingly. From the outset, we impose the following assumption.

Assumption 9 For every consumer i, both lim
xi→di

t′i (xi) and lim
xi→di

t′i (xi) exist.

It is possible to generalize the following propositions by replacing lim by lim sup or lim inf, if

the limits do not exist.

6.1 Absolute Cautiousness and Risk-Sharing Rules

We first consider the following additional condition. It is intended to cover the case of in-

creasing absolute risk tolerance (and hence decreasing absolute risk aversion).
13Dumas (1989) and Wang (1996) gave an analysis of this kind in a dynamic economy.
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Assumption 10 For every consumer i, di > −∞, di = ∞, and lim
xi→di

ti (xi) = 0.

Define I as the set of consumers i such that lim
xi→∞

t′i(xi) ≥ lim
xj→∞

t′j(xj) for every j, and

I as the set of consumers i such that lim
xi→di

t′i(xi) ≤ lim
xj→dj

t′j(xj) for every j. The following

proposition states that the share of consumers in I in the aggregate consumption level, as well

as in the marginal consumptions, converges to one as the aggregate consumption level diverges

to infinity, and that the representative consumer’s absolute cautiousness eventually equals

these consumers’ absolute cautiousness. It also states that the share of extra consumption

in excess of the lower bound which is consumed by consumers in I converges to one as the

aggregate consumption level converges to the lower bound. Also the representative consumer’s

absolute cautiousness eventually equals these consumers’ absolute cautiousness.

Proposition 11 Under Assumptions 9 and 10,

1. lim
x→∞

∑

i∈I

fi(x)
x

= lim
x→∞

∑

i∈I

f ′i(x) = 1.

2. lim
x→∞ t′(x) = max

i∈{1,...,I}
lim

xi→∞
t′i(xi).

3. lim
x→d

∑

i∈I

fi(x)− di

x− d
= lim

x→d

∑

i∈I

f ′i(x) = 1.

4. lim
x→d

t′(x) = min
i∈{1,...,I}

lim
xi→di

t′i (xi).

We defer the proof of this proposition to Appendix A, but can now mention its idea in passing:

While it is in general difficult to obtain the closed-form solution for each consumer’s risk-

sharing rule fi(x), it is much easier to identify the relationship between two consumers’ risk-

sharing rules fi(x) and fj(x). If they both have constant (but differing) absolute cautiousness,

then one can be written as a power function of the other, with the power equal to the ratio of

the two cautiousness. When either of the two is not constant, the equality no longer holds, but

some inequality holds for a power function, which is sufficient to establish the limit equalities

of Proposition 11.

We next consider the following additional condition. It is intended to cover the case

of decreasing absolute risk tolerance (and hence increasing absolute risk aversion), such as

quadratic utility functions.

Assumption 12 For every consumer i, di = −∞, di < ∞, and lim
xi→di

ti (xi) = 0.
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Define H as the set of consumers i such that lim
xi→di

t′i(xi) ≥ lim
xj→di

t′j(xj) for every j, and H

as the set of consumers i such that lim
xi→−∞

t′i(xi) ≤ lim
xj→−∞

t′j(xj) for every j.

Proposition 13 Under Assumptions 9 and 12,

1. lim
x→d

∑

i∈H

di − fi(x)
d− x

=
∑

i∈H

f ′i(x) = 1.

2. lim
x→d

t′(x) = max
i∈{1,...,I}

lim
xi→di

t′i (xi).

3. lim
x→−∞

∑

i∈H

fi(x)
x

= lim
x→−∞

∑

i∈H

f ′i(x) = 1.

4. lim
x→−∞ t′(x) = min

i∈{1,...,I}
lim

xi→−∞
t′i (xi).

The proof of this proposition is analogous to that of Proposition 11. We thus omit it.

6.2 Relative Risk Tolerance and Relative Risk Aversion

Having done the analysis for the absolute cautiousness, we now move on to the analysis of

the relative risk tolerance and relative risk aversion. The key observation for the analysis

of the limit behavior of the representative consumer’s relative risk tolerance and relative

risk aversion is that under suitable assumptions, lim
xi→∞

si(xi) = lim
xi→∞

ti(xi)/xi = lim
xi→∞

t′i(xi)

and lim
xi→0

si(xi) = lim
xi→0

ti(xi)/xi = lim
xi→0

t′i(xi) by L’Hôpital’s rule. This allows us to apply

Proposition 11 to the relative risk aversion. The additional assumption we need for this

argument is the following.

Assumption 14 For every consumer i, di = 0, and ti is a convex function.

This assumption can be satisfied by utility functions exhibiting constant relative risk aversion.

Along with other assumptions, it implies that t′i is a strictly positive, non-decreasing function.

Thus ti(xi) →∞ as xi →∞ and lim
xi→∞

si(xi) = lim
xi→∞

t′i(xi) and lim
xi→0

si(xi) = lim
xi→0

t′i(xi).

The following proposition generalizes Proposition 3 of Benninga and Mayshar (2000).

Proposition 15 Under Assumptions 9, 10, and 14,

1. lim
x→∞ s(x) = max

i∈{1,...,I}
lim

xi→∞
si(xi) and lim

x→0
s(x) = min

i∈{1,...,I}
lim

xi→0
si(xi).

2. lim
x→∞ b(x) = min

i∈{1,...,I}
lim

xi→∞
bi(xi) and lim

x→0
b(x) = max

i∈{1,...,I}
lim

xi→0
bi(xi).
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Proof of Proposition 15 1. By Proposition 11, lim
x→∞ t′(x) exists and, by L’Hôpital’s rule,

equals lim
x→∞ s(x). By the same proposition, lim

x→∞ t′(x) equals lim
xi→∞

t′i(xi) for every i ∈ I, which

equals max
i

lim
xi→∞

si(xi). Hence lim
x→∞ s(x) = max

i∈{1,...,I}
lim

xi→∞
si(xi).

As for the limit as x → 0, note that as x → 0, fi(x) → 0 and hence ti(fi(x)) → 0. Thus

t(x) =
∑

ti(fi(x)) → 0. This shows that L’Hôpital’s rule is applicable and the rest of the

argument is as before.

2. This follows from part 1 and the definition of b and s. ¥

Now define J as the set of consumers i such that lim
xi→∞

si(xi) ≥ lim
xj→∞

sj(xj) for every

j, which is equivalent to lim
xi→∞

bi(xi) ≤ lim
xj→∞

bj(xj) for every j. Analogously, define J as

the set of consumers i such that lim
xi→0

si(xi) ≤ lim
xj→0

sj(xj) for every j, which is equivalent to

lim
xi→0

bi(xi) ≥ lim
xj→0

bj(xj) for every j. We have already seen that J = I and J = I under

Assumption 14. Proposition 11 thus implies the following:

Proposition 16 Under Assumptions 9, 10, and 14,

1. lim
x→∞

∑

i∈J

fi(x)
x

= lim
x→∞

∑

i∈J

f ′i(x) = 1.

2. lim
x→0

∑

i∈J

fi(x)
x

= lim
x→0

∑

i∈J

f ′i(x) = 1.

7 Linear Absolute Risk Tolerance

Combining the preceding results and assuming that all consumers’ utility functions exhibit

linear absolute risk tolerance, we show in this section that an individual consumer’s risk-

sharing rule is either everywhere concave, everywhere convex, or has a unique inflection point

below which it is convex and above which it is concave.

Mathematically, a utility function ui :
(
di, di

) → IR exhibits linear absolute risk tolerance

if, for the corresponding absolute risk tolerance ti, there exist two numbers τi and γi such that

ti (xi) = τi + γixi. (17)

for every xi ∈
(
di, di

)
. This is equivalent to hyperbolic absolute risk aversion ai (xi) =

1
τi + γixi

and constant absolute cautiousness t′i(xi) = γi.

Note that the right hand side of equality (17) is of course positive for every xi ∈
(
di, di

)

but τi and γi may be positive, zero, or negative. However, if γi = 0, then τi > 0 and we take
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di = −∞ and di = ∞. On the other hand, if γi > 0 then we take di = −τi/γi and di = ∞
and hence ti(xi) = γi (xi − di) and ti(xi) → 0 as xi → di. If γi < 0, then di = −∞ and

di = −τi/γi and hence ti(xi) = −γi

(
di − xi

)
and ti(xi) → 0 as xi → di. Indeed, although we

do not provide the proof here, these choices of di and di are the only ones that allows ui to

satisfy the Inada condition.

As in the previous sections, let f :
(
d, d

) → (
d1, d1

) × · · · × (
dI , dI

)
be an efficient risk-

sharing rule, and denote the representative consumer’s absolute risk aversion, absolute risk

tolerance, and relative risk aversion by a, t, and b, all corresponding to f .

As documented in, for example, Wilson (1968), Huang and Litzenberger (1988, Sections

5.15 and 5.26), Magill and Quinzii (1996, Proposition 16.3), Gollier (2001a, Section 21.3.3),

and LeRoy and Werner (2001, Section 15.6)), the celebrated mutual fund theorem says, in

our notation, that if γ1 = · · · = γI , then fi is affine for every i and t is affine as well14.

Denote γ = max {γ1, . . . , γI} and γ = min {γ1, . . . , γI}. Then, according to the notation

in the previous section, I = {i | γi = γ} and I =
{
i | γi = γ

}
. Then I is the set of the most

absolutely cautious consumers and I is the set of the least absolutely cautious consumers. All

consumers are equally cautious if and only if γ = γ. Of course, this case has been dealt with

by the mutual fund theorem, and we thus assume in the remainder of this section that γ > γ.

The first result of this section is concerned with the representative consumer’s absolute

risk tolerance.

Proposition 17 Assume that γ > γ. Then t′′(x) > 0 for every x ∈ (
d, d

)
, lim

x→d
t′(x) = γ, and

lim
x→d

t′(x) = γ.

Proof of Proposition 17 The first part of this proposition follows from Corollary 5. The

second and third parts follow from Propositions 11 and 13, respectively.15

The main result of this section is the following classification of risk-sharing rules.

Theorem 18 Assume that γ > γ.

14We should also add that Kurosaki (2001) claimed that if all consumers exhibit constant relative risk aver-

sion, then the logarithmic risk-sharing rule, which assigns the mean of the logs of the consumers’ consumption

levels to the log of each individual consumer’s consumption level, is linear with a slope proportional to his own

relative risk tolerance.
15Strictly speaking Propositions 11 and 13 were shown to hold only under the assumption that the consumers’

levels of cautiousness are either all strictly negative or strictly positive. Proposition 17 is still true even without

these assumptions.
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1. f ′′i (x) > 0 for every i ∈ I and x ∈ (
d, d

)
.

2. f ′′i (x) < 0 for every i ∈ I and x ∈ (
d, d

)
.

3. For every i /∈ I ∪ I, there exists a unique yi ∈
(
di, di

)
such that f ′′i (x) > 0 for every

x < yi and f ′′i (x) < 0 for every x > yi.

4. For the yi defined as in part 3, yi < yj if γi < γj; yi = yj if γi = γj; and yi > yj if

γi > γj.

Proof of Theorem 18 By Proposition 17, γ < t′(x) < γ for every x ∈ (
d, d

)
. Parts 1

and 2 then follow from Proposition 3. As for part 3, note that Proposition 17 implies that

t′ :
(
d, d

) → (
γ, γ

)
is strictly increasing and onto. Hence, for every i /∈ I ∪ I, there exists

a unique yi ∈
(
di, di

)
such that γi = t′(yi). Since γi = t′i (fi(x)) for every x, Proposition 3

implies that yi has the property of part 3. Part 4 also follows from this property of yi and

the fact that t′ is strictly increasing. ¥

Parts 1 and 2 of Theorem 18 have been obtained by Leland (1980) and Brennan and

Solanki (1981), who considered the expected utility maximization problem of a consumer who

chooses over state-contingent claims of a reference portfolio. Holding the underlying asset

and a put option is equivalent to holding cash and a call option of the same exercise price,

but these are also equivalent to having a portfolio insurance as well. In all of these cases, the

generated return is a convex function of the values of the portfolio. They were thus led to

identify conditions on the consumer’s utility function for his optimal choice of return to be a

convex function of the value of the portfolio.

The most important differences between this work and theirs is that they took the repre-

sentative consumer’s risk aversion as given, while we derive it as a result of efficient risk-sharing

among heterogeneous consumers. In fact, our result shows that the case Leland (1980) an-

alyzed on page 589, where the individual and the representative consumers exhibit constant

but differing relative risk aversion, is in fact impossible, if all the other consumers also exhibit

constant relative risk aversion.

Also, the importance of part 3 of Theorem 18, i.e. the fact that risk-sharing rules for

intermediate linearly risk tolerant consumers are initially convex and eventually concave, can-

not be overemphasized. It is exactly the point that is not present in the analysis of Leland

(1980) and Brennan and Solanki (1981). When individual consumers have differing degrees
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of absolute cautiousness, the representative consumer’s absolute cautiousness is strictly in-

creasing, ranging from the smallest to the largest. If an individual consumer has neither the

smallest nor the largest absolute cautiousness, then his absolute cautiousness must be caught

up with by the representative consumer’s counterpart at some aggregate consumption level.

Below this level, his risk-sharing rule is convex, and, above this level, it is concave. Then only

consumers with the smallest relative risk aversion (the largest absolute cautiousness) would

buy portfolio insurance, as the others’ risk-sharing rules would eventually become concave.

This significantly undermines the applicability of the results of Leland (1980) and Brennan

and Solanki (1981). They are valid in a two-consumer economy, but do not generalize to an

economy with a large number of consumers with diverse levels of relative risk aversion. This

confirms a conjecture by Dumas (1989), who concentrated on a two-consumer economy but

concluded by suggesting that the equilibrium behavior of a three-consumer economy may be

critically different from that in his two-consumer economy.

Part 3 of Theorem 18 can be partially extended to the general case. Call an intermediate

consumer a consumer whose absolute cautiousness is neither the largest nor the smallest when

aggregate endowment tends to either of its limits. Then this intermediate consumer’s risk-

sharing rule must be initially convex and eventually concave. Given smoothness of all utility

functions, this consumer’s risk-sharing rule must have at least one inflection point.

The next proposition is concerned with the total proportion of consumption levels con-

sumed by those consumers with the largest or smallest absolute cautiousness. It immediately

follows from Propositions 11 and 13. We thus omit the proof.

Proposition 19

1. If γ > 0, then lim
x→∞

∑

i∈I

fi(x)
x

= 1 and lim
x→d

∑

i∈I

fi(x)− di

x− d
= 1.

2. If γ < 0, then lim
x→−∞

∑

i∈I

fi(x)
x

= 1 and lim
x→d

∑

i∈I

di − fi(x)
d− x

= 1.

If we further assume that di = 0, τi = 0, and γi > 0 for every i, then bi (xi) = 1/γi and

hence ui exhibits constant relative risk aversion 1/γi. The following result, which follows from

Proposition 17, is concerned with this case.

Proposition 20 Assume that di = 0, τi = 0, and γi > 0 for every i, and that γ > γ.

1. lim
x→∞ s(x) = γ and lim

x→0
s(x) = γ.
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2. lim
x→∞ b(x) = 1/γ and lim

x→0
b(x) = 1/γ.

8 Conclusion

We have presented detailed properties of the efficient risk-sharing rules and the representative

consumer’s risk attitude in an economy under uncertainty where individual consumers have

homogeneous probabilistic beliefs over the state space but heterogeneous risk attitudes. In

particular, we have shown that heterogeneity in the consumers’ absolute cautiousness, which

is the derivative of the reciprocal of the Arrow-Pratt measure of absolute risk aversion, is a

key factor for the curvature of the risk-sharing rules. We have also shown that the heterogene-

ity in the individual consumers’ risk attitudes tends to make the representative consumer’s

absolute risk tolerance convex and relative risk aversion decreasing. We have explored the

implications of these findings for asset pricing and portfolio insurance. In particular, we have

identified the source of underestimation of the equity premium when the representative con-

sumer is erroneously assumed to exhibit certain types of risk attitudes, and the nature of the

optimal portfolio insurance for consumers who are neither the most nor least risk-averse in

the economy.

A Proof of Proposition 11

To prove Proposition 11, we need two lemmas. The first one is concerned with the limit

behavior of the ratio of two individual consumers’ risk-sharing rules and their derivatives

when the aggregate consumption levels diverge to infinity.

Lemma 21 Under Assumptions 9 and 10, if lim
xi→∞

t′i(xi) < lim
xj→∞

t′j(xj), then lim
x→∞

fi(x)
fj(x)

=

lim
x→∞

f ′i(x)
f ′j(x)

= 0.

Proof of Lemma 21 Let two real numbers δi and δj be such that lim
xi→∞

t′i (xi) < δi < δj <

lim
xj→∞

t′j (xj). Since di = ∞ and ti(xi) > 0 for every xi, lim
xi→∞

t′i (xi) ≥ 0. Hence δi > 0 and

δj > 0. Then let x > d be such that t′i (xi) < δi < δj < t′j (xj) for every xi ≥ fi (x) and

xj ≥ fj (x). Then, for such xi and xj ,

ti(xi) <δi (xi − fi (x)) + ti (fi(x)) ,

tj(xj) >δj (xj − fj (x)) + tj (fj(x)) .
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By equality (2) and the fact that a consumer’s absolute risk aversion ai(·) is the reciprocal of

his absolute risk tolerance ti(·),
∫ x

x
ai (fi(z)) f ′i(z) dz =

∫ x

x
aj (fj(z)) f ′j(z) dz

for every x ≥ x. By integration by parts, this is equivalent to
∫ fi(x)

fi(x)
ai (z) dz =

∫ fj(x)

fj(x)
aj (z) dz. (18)

Thus ∫ fi(x)

fi(x)

dz

δi (z − fi (x)) + ti (fi (x))
<

∫ fj(x)

fj(x)

dz

δj (z − fj (x)) + tj (fj (x))
.

Take the integral and then the exponential of both sides, then we obtain
(

δi (fi(x)− fi (x)) + ti (fi (x))
ti (fi (x))

)1/δi

<

(
δj (fj(x)− fj (x)) + tj (fj (x))

tj (fj (x))

)1/δj

,

because 0 < δi < δj . Thus

fi(x)− fi (x) +
ti (fi (x))

δi
< k

(
fj(x)− fj (x) +

tj (fj (x))
δj

)δi/δj

,

where

k =
ti (fi (x))

δi

(
δj

tj (fj (x))

)δi/δj

> 0.

Since 0 < δi/δj < 1,

fi(x)− fi (x) +
ti (fi (x))

δi

fj(x)− fj (x) +
tj (fj (x))

δj

→ 0 (19)

as x →∞. Hence fi(x)/fj(x) → 0 as x →∞.

By equality (1),

f ′i(x)
f ′j(x)

=
ti (fi(x))
tj (fj(x))

<
δi

δj

fi(x)− fi (x) +
ti (fi (x))

δi

fj(x)− fj (x) +
tj (fj (x))

δj

.

By (19), the far right hand side converges to 0. Hence f ′i(x)/f ′j(x) → 0. ¥

The next lemma is concerned with the limit behavior of the risk-sharing rules when the

aggregate consumption levels converge to the lower bound.

Lemma 22 Under Assumptions 9 and 10, if lim
xj→dj

t′i(xj) < lim
xi→di

t′i(xi), then lim
x→d

fi(x)− di

fj(x)− dj

=

lim
x→d

f ′i(x)
f ′j(x)

= 0.
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Proof of Lemma 22 Let two real numbers δi and δj be such that lim
xj→dj

t′j (xj) < δj < δi <

lim
xi→di

t′i (xi). Since tj (xj) ≥ 0 for every xj and tj (xj) → 0 as xj → dj , we have lim
xj→dj

t′j (xj) ≥
0. Hence δj > 0 and δi > 0. Then let x > d be such that t′j (xj) < δj < δi < t′i (xi)

for every xi ≤ fi (x) and xj ≤ fj (x). Thus, for such xi and xj , ti (xi) > δi (xi − di) and

tj (xj) < δj

(
xj − dj

)
. Since, for every x ∈ (d, x),

∫ fj(x)

fj(x)

dz

tj (z)
=

∫ fi(x)

fi(x)

dz

ti (z)
,

we have ∫ fj(x)

fj(x)

dz

δj

(
z − dj

) <

∫ fi(x)

fi(x)

dz

δi (z − di)
(20)

Thus (
fj (x)− dj

fj (x)− dj

)1/δj

<

(
fi (x)− di

fi (x)− di

)1/δi

.

Hence there exists a positive number k such that

fi (x)− di < k
(
fj (x)− dj

)δi/δj . (21)

Recall that both fi :
(
d, d

) → (
di, di

)
and fj :

(
d, d

) → (
dj , dj

)
are smooth, one-to-one, and

onto, and have strictly positive derivatives. Hence there exists a ϕ :
(
0, dj − dj

) → (
0, di − di

)

that is smooth, one-to-one, and onto, has strictly positive derivatives, and satisfies fi (x)−di =

ϕ
(
fj (x)− dj

)
. Thus, also by inequality (21), 0 < ϕ(z) < kzδi/δj for every z ∈ (

0, dj − dj

)
.

Hence, by δj/δi > 1, ϕ(z)/z → 0 and ϕ′(z) → 0 as z → 0. If z and x satisfy z = fi(x) − di,

then z → 0 if and only if x → d. Hence (fi(x)− di) /
(
fj(x)− dj

) → 0 as x → d. Moreover,

since ϕ′(z) = f ′j(x)/f ′i(x), f ′j(x)/f ′i(x) → 0 as x → d. ¥

We can now turn to the proof of Proposition 11.

Proof of Proposition 11 To show the first two parts, let i ∈ I and j 6∈ I. Since

lim sup
x→∞

fi(x)/x ≤ 1,

0 ≤ lim inf
x→∞

fj(x)
x

≤ lim sup
x→∞

fj(x)
x

≤ lim sup
x→∞

fj(x)
fi(x)

lim sup
x→∞

fi(x)
x

≤ lim sup
x→∞

fj(x)
fi(x)

.

By Lemma 21, the far right hand side equals zero. Thus fj(x)/x → 0. Since this is true for

every j 6∈ I and
∑I

i=1 fi(x)/x = 1, we must have
∑

i∈I fi(x)/x → 1 as x →∞.

Also, since 0 < f ′i(x) < 1, we have 0 < f ′j(x) <
f ′j(x)

f ′i(x)
and, for such i and j as in the

preceding paragraph, the far right hand side converges to zero as x → ∞. Hence f ′j(x) → 0
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as x → ∞. We must have
∑

i∈I f ′i(x) → 1 as x → ∞. Since lim
xj→∞

t′j(xj) < lim
xi→∞

t′i(xi) ≤ ∞
for every i ∈ I and j 6∈ I, t′j (fj(x)) f ′j(x) → 0 as x →∞ for every j 6∈ I. Thus, by Lemma 1

and 0 <
∑

i∈I f ′i(x) ≤ 1, we have

lim supx→∞ t′(x) = lim supx→∞
∑I

i=1 t′i (fi(x)) f ′i(x) = lim supx→∞
∑

i∈I t′i (fi(x)) f ′i(x)

≤ lim supx→∞maxi∈I t′i (fi(x)) ≤ maxi∈{1,...,I} limxi→∞ t′i (xi).

The other inequality,

max
i∈{1,...,I}

lim
xi→∞

t′i (xi) ≤ lim inf
x→∞ t′(x),

can be shown analogously. This proves the first two parts of this proposition.

To prove part 3, let i ∈ I and j 6∈ I. Since 0 <
fi(x)− di

x− d
< 1 for every x,

0 ≤ lim inf
x→d

fj(x)− dj

x− d
≤ lim sup

x→d

fj(x)− dj

x− d
≤ lim sup

x→d

fj(x)− dj

fi(x)− di

lim sup
x→d

fi(x)− di

x− d
≤ lim sup

x→d

fj(x)− dj

fi(x)− di

.

By Lemma 22, the far right hand side equals zero. Hence

∑
i∈I (fi(x)− di)

x− d
→ 1 as x → d.

Part 4 can be shown in the same manner as for part 2. ¥
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