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1. Introduction

There is a strong utilitarian tradition of treating otherwise equal generations equally. In

the parlance of Henry Sidgwick (1908, p.414), “the time at which a man exists cannot affect
the value of his happiness from a universal point of view; and that the interests of posterity
must concern a Utilitarian as much as those of his contemporaries ... .” However, a serious
doubt was raised by Tjalling Koopmans (1960) on the sustainability of this viewpoint by
showing that the rational, continuous, and stationary evaluation of infinite allocation programs
cannot but exhibit a phenomenon which Koopmans christened impatience, viz., the preference
for advancement along the time axis of an outcome yielding higher utility vis-a-vis another
outcome yielding lower utility. This intriguing thesis was elaborated further by Peter Diamond
(1965) into a couple of general impossibility theorems to the effect that there exists no social
evaluation ordering over the set of infinite utility streams which satisfies the Pareto principle,
the equity principle a la Sidgwick, and the technical axiom of continuity. Note that Diamond’s
continuity axiom was defined with respect to the sup topology, on the one hand, and the
product topology, on the other. Some of the subsequent work along the Koopmans-Diamond
line such as Donald Campbell (1985), Luc Lauwers (1997), Tomoichi Shinotsuka (1998), and
Lars-Gunnar Svensson (1980) examined the sensitivity of Diamond’s theorems on the choice
of underlying topology.

A recent paper by Kaushik Basu and Tapan Mitra (2003) critically reexamined one of
Diamond’s impossibility theorems, where their critical axe fell exclusively on his continuity
axiom which “is a technical axiom (in contrast to the other two axioms) [Basu and Mitra (2003,
p-1557)].” Note, however, that their paper retained the numerical representability of the social
evaluation ordering, which, in itself, is a highly restrictive technical requirement. As a matter
of fact, their impossibility theorems seem to have much to do with this retained technical axiom
of numerical representability.

The present paper also reexamines Diamond’s impossibility theorems, but the focus of
our reexamination is completely different from that of Basu and Mitra (2003). Recollect that
the equity principle a la Sidgwick is purely procedural in nature, and it does not embody any
preference for egalitarian distribution of utilities among generations. Two versions of distribu-
tional egalitarianism in the spirit of Anthony Atkinson (1970) and Amartya Sen (1997) are
introduced, and their compatibility with the strong Pareto principle in the presence of weaker
version of the continuity axiom is examined. Unlike Basu and Mitra (2003), we do not require
numerical representability of social evaluation relation. As a matter of fact, the social evalua-
tion relation is assumed to satisfy neither completeness nor transitivity, so that it is not
numerically representable in general. These differences notwithstanding, it is shown that the

non-existence results strenuously come to the fore.



Apart from this Introduction, this paper consists of four sections. Section 2 introduces
our basic model and axioms. Section 3 introduces the first distributional equity axiom in the
spirit of the Pigou-Dalton transfer principle, and establishes the first impossibility theorem in
the presence of upper semi-continuity with respect to the sup topology and acyclicity of the
social evaluation relation. Section 4 introduces the second distributional equity axiom in the
spirit of the Lorenz domination principle, and establishes the second impossibility theorem in
the presence of upper semi-continuity with respect to the sup topology and asymmetry of the
social evaluation relation. A generalization of the second impossibility theorem is also shown
to hold by establishing that the sup topology can be generalized without upsetting the validity
of the impossibility theorem. Section 5 concludes this paper with some interpretative remarks.

2. Basic Model and Axioms

Let R and N denote the set of all real numbers and the set of all positive integers,
respectively. The set of all non-negative real numbers is denoted by R,. For the sake of
simplicity, we assume that X := ]Ri’ is the set of all infinite utility streams, viz., u = (uq, u,,
«evs Uy, ... ) € X denotes an infinite sequence of utilities, where u, denotes the utility of
generation n € N. For all u = (uq,up, ..., Uy, ... ), vV=V1,V2, co0s Vppy ... ) €E X, u 2 v

means that u, =v, forall n € N; u > v meansthat u = v and u = v;u >> v means that u, >

v, forall n € N. The sup distance between u and v is defined by

(1) d(u,v)=sup, |u, —u_jvn|,

which induces the sup topology on the space X .
Let R be the social evaluation relation on X, viz., u Rv for any pair #, v € X means

that the infinite utility stream # is judged to be at least as good as another infinite utility stream
v. For any fixed u € X, define the lower contour set of P(R) at u € X by

) Lpg () ={x € X|uP(R)x},

where P(R) denotes the asymmetric part of R, viz., for all u, v € X, uP(R)v holds if and
only if #Rv and ~ vRu. R is said to be complete if and only if, forall u, v € X, uRv or
vRu holds. R is said to be transitive if and only if, for all u, v, w € X, uRv and vRw

imply uRw. R is said to be an ordering if and only if it satisfies completeness as well as



transitivity. Unlike most of the preceding work along the line of Koopmans and Diamond,
where the social evaluation relation is assumed to be an ordering on X, this paper will invoke
much weaker properties of R, which are defined as follows. For any 7 € N, a finite subset
{ul, u?, ..., u'} of X is called a P(R)-cycle of order ¢ if and only if u'P(R)u?, u?P(R)u?,
..., w'P(R)u! hold. R is said to be acyclic if and only if there exists no P(R)-cycle of any
order ¢, where 3 < ¢ < +00. Itis clear that the transitivity of R implies the acyclicity of R, and
the converse implication does not hold in general. Concerning the continuity requirement on

R, we will invoke the following semi-continuity axiom, which is weaker than Diamond’s full
continuity axiom.

Upper Semi-Continuity (USC)
Forallu € X, Lp(g)(u) is an open set in X.

Unless otherwise stated, the underlying topology of X is assumed to be the sup topology in-
duced by the sup distance function (1).
Another axiom which we will maintain throughout this paper is the following:

Strong Pareto Principle (SP)
Forallu,v € X, ifu >v, thenuP(R)v.

3. Pigou-Dalton Transfer Principle and Acyclic Social Evaluation

In contrast with the purely procedural equity principle a la Sidgwick and Diamond, we

will introduce an axiom which embodies the consequentialist value in the form of preference
for egalitarian distribution of utilities among generations. To be precise, our axiom reads as
follows:

Pigou-Dalton Transfer Principle (PDT)

For any u, v € X, if there exists a positive number ¢ > 0 and a pair i, j € N such that

B3 v,=u+tesu-¢e=v

; is W = vy forallk € N - {7 j}

holds, then v P(R)u must be true.

Although the Pigou-Dalton Transfer Principle is substantially different from Diamond’s

@]



purely procedural equity axiom, we cannot yet escape from the impossibility impasse in the
presence of the continuity axiom (even in the much weaker form of upper semi-continuity), the
Strong Pareto Principle, and the rationality postulate (even in the much weaker form of
acyclicity).

Theorem 1

There exists no acyclic social evaluation relation R which satisfies the Upper Semi-
Continuity (USC) with respect to the sup topology, and satisfies the Pigou-Dalton Transfer
Principle (PDT) and the Strong Pareto Principle (SP).

Proof: Let ., 0 be the infinite utility stream which repeats the utility level of O in-

definitely. Start from u° = (1 0) and define an infinite sequence of infinite utility streams

> con

{u" € X|n € N} by

1_/1
u =(=,
2

By virtue of the axiom PDT, this infinite sequence satisfies

4 u*P(R)u™P(R) - P(R)ulP(R)u®

forall n € N, which implies that

3 ~uPR)u

for all # € N by virtue of the acyclicity of R. On the other hand, the axiom SP ensures that
(6)  uP(R) con0.

Observe that each and every term of the subsequence {u" -1 € X | n € N} of the original infi-



nite sequence {#” € X |n € N} takes the form of

@) u-1 = ( 1 , 1 , "t L, 0) (L is repeated 2" times),
2n 2n 2n con 2n

so that we are assured that

1 n’- - It 1 —_
® lmd@™!, 0)=1lm L =0

n-w n-o Q"

holds. By assumption, R is upper semi-continuous with respect to the sup norm. Thus, we
are assured by (6) and (8) that

9) In*eN,VneN:in>n*=ulPR)ur-!

holds in contradiction with (5). ||

4. Egalitarian Preference in Terms of the Lorenz Domination

Foreachu € X and eachn € N, let ;u, be defined by ju,, = (u;, uy, ..., u,). We may

now introduce an alternative axiom of egalitarian preference in terms of the Lorenz domination
between the truncated infinite utility streams as follows:

Lorenz Domination Principle (LD)
For any u, v € X, if there exists n* € N such that (1) yu,+ Lorenz dominates 1v ,+,

and (2) u, = v, holds for all n € N such thatn > n*, then u P(R)v must be true.

Recollect that . Lorenz dominates . ifandonly if(i) Y, u = Y v and (ii) the
n n nol B n

n=1

Lorenz curve of qu,* lies uniformly above the Lorenz curve of ;v,*. Recollect also that the

Pigou-Dalton Transfer Principle and the Lorenz Domination Principle can be demonstrated to
be equivalent if the social evaluation relation R is an ordering, but not necessarily otherwise.

Nevertheless, the Lorenz Domination Principle can replace the Pigou-Dalton Transfer Principle



without vitiating the validity of the impossibility theorem even if we get rid of the rationality
postulate in the form of completeness, transitivity or acyclicity of R altogether.

Theorem 2

There exists no social evaluation relation R which satisfies the Upper Semi-Continuity
(USC) with respect to the sup topology, and satisfies the Lorenz Domination Principle (LD)
and the Strong Pareto Principle (SP). ‘

Proof: By virtue of the axiom SP, it is clear that

(10) (1, con0) P(R) conl

holds true. Invoking the axiom USC with respect to the sup topology, there exists n* € N
such that

1. R U ) (_L_ is repeated 2" times),

( . . .
2" 2 2" 2"

1) (1, 0, _0)P(R)

whereas the axiom LD implies that

1 1 1 . 1
12 S T cono)P(R) a, 202” ’ cono) ( n

is repeated 2" times).
2% 2n 2" 2

.

It is clear that (11) and (12) are incompatible in view of the asymmetry of P(R). ||

As the first auxiliary step in generalizing Theorem 2 in several respects, let us define

[” and 7 as the set of all bounded infinite sequences of real numbers and the set of all

bounded infinite sequences of non-negative real numbers, respectively. In what follows, we

assume that X is a non-empty subset of /*, which is comprehensive above, viz., for each u €
Xande€l7, u+ecX.

The second auxiliary step is the definition of the Weak Lorenz Domination Principle,
which is given as follows.

Weak Lorenz Domination Principle (WLD)
For any u, v € X, if there exists n* € N such that (1) ju,+ Lorenz dominates v ,+,



and (2) u, = v, holds foralln € N such thatn > n*, then ~ v P(R)u must be true.

The third auxiliary step is the introduction of the locally solid linear topology on /*.

For eachu € X, let | u| be the infinite sequence of non-negative real numbers obtained from u

by replacing each term u, with the absolute value thereof. A subset A of X is said to be solid

if, forallu, v € [® with |u| < [v]|and v € A, we haveu € A. A linear topology on [* is said
to be locally solid if it has a basis for .,,0 consisting of solid sets. The sup topology is clearly
locally solid. Note also that the locally solid linear topologies have been used in the literature
on general equilibrium theory such as Andreu Mas-Collel (1986). See also Charalambos
Aliprantis and Owen Burkinshaw (1978) for the characterizations and basic properties of the

locally solid linear topologies.
The following simple fact is crucial for the generalization of Theorem 2.

Fact: Foreachn € N, let &" = (1/2", 1/2°, ..., 1/2", _,,0), where 1/2" is repeated 2" times.

> con

Then the sequence {#"}},_; converges to .., 0 with respect to any locally solid linear topology.

To verify this fact, let U be a set taken from the neighbourhood base of ,,0 consisting
of solid sets. Then (1/2")-.,,1 € U for large n, where ;1 is the infinite stream which repeats

1 indefinitely. Since U is solid, #” € U for large n. This completes the proof.
Concerning the requirement of continuity of the social evaluation relation, we introduce

the upper semi-continuity with respect to an arbitrary locally solid linear topology 7 on [*.

Upper Serﬁi-Continuity with respect to T (USC-T)
Forallu € X, Lp(g)(u) is an open set in X with respect to the topology T.

We may now announce the following:

Theorem 3

There exists no social evaluation relation R which satisfies the Upper Semi-Continuity
with respect to the topology T (USC-T), and satisfies the Weak Lorenz Domination Principle
(WLD) and the Strong Pareto Principle (SP).

Proof: Takeanyv € X and define u = (1, (,n0) + v. X being comprehensive above,

we have u € X. By virtue of the axiom SP, we have uP(R)v. Let u" = (127, 1/2", ...,



1/2%, .5n0) + v, where 1/2" is repeated 2" times. X being comprehensive above, we have u”
€ X forall n € N. By virtue of the Fact, the sequence {u"};_; converges to v with respect

to the topology 7. By virtue of the axiom USC-T, u P(R)u" for some n € N. By virtue of
the axiom WLD, ~ uP(R)u” foralln € N. It is clear that these two statements cannot both be

true. ||

5. Concluding Remarks

Diamond’s impossibility theorems, as well as most of the subsequent impossibility
theorems, had a structure in common to the effect that the consequentialist axiom of the Strong
Pareto Principle cannot but conflict with the purely procedural (hence non-consequentialist)
axiom of Equity in the presence of the technical axiom either in the form of Continuity or in the
form of Numerical Representability of the social evaluation relation. In sharp contrast, the
impossibility theorems established in this paper differ from these prevailing results in that they
show that the consequentialist axiom of the Strong Pareto Principle cannot but conflict with
another consequentialist axiom of egalitarianism either in the form of the Pigou-Dalton Transfer
Principle or in the form of the Lorenz Domination Principle in the presence of the weak version
of Upper Semi-Continuity of the social evaluation relation. The message of our impossibility
theorems seem to be rather different in this sense from the traditional im-possibility theorems.

The purpose of this paper is served if we could bring this contrast into clear relief.
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