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Abstract 

There is strong empirical evidence that the degree of price stickiness 

is fairly different across commodity items and the nonparametric 

hazard function of price changes is downward sloping and has some 

spikes. We introduce the item-specific heterogeneity into the standard 

single-sector model of Calvo (1983) and estimate a hazard function of 

price adjustment applying the framework of duration analysis. This 

paper presents the appropriate form of heterogeneity for the data 

structure and shows that the decreasing (population) hazard function 

can be well-described. In the presence of item-specific heterogeneity, 

probability that prices remain unchanged is predicted higher than that 

of the single-sector model.  
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1.  Introduction 

 

Previous studies (Bils and Klenow, 2004; Dhyne et al., 2005; Saita et al., 2006) 

showed that the degree of price stickiness is fairly different across commodity items. 

The time-dependent pricing model (Calvo, 1983) in which one single parameter 

represents the price stickiness cannot reproduce the strong empirical evidence such 

that the nonparametric hazard function of price changes is decreasing (Álvarez, Burriel 

and Hernando, 2005). Each item has specific factors which relate to its survival 

experience. These specific factors, whether observable or not, change the shape of the 

(individual) hazard function. If the variability in hazard is not fully captured by 

covariates, it is necessary to model unobserved heterogeneity.  

In many empirical works of price-setting behavior, however, the unobserved 

heterogeneity has left unspecified. Therefore, we introduce the item-specific 

heterogeneity into the standard single-sector model of Calvo (1983) and estimate the 

hazard function of price adjustment applying the framework of duration analysis. This 

paper provides the appropriate form of heterogeneity for the data structure and shows 

that the decreasing (population) hazard can be well-described by modeling 

item-specific heterogeneity.   

Recent papers analyzing monetary shock by using calibrated dynamic general 

equilibrium model shows that the degree of monetary non-neutrality implied by a 

multi-sector model is larger than that implied by its single-sector counterpart 

calibrated to the mean frequency of price change. The response to the monetary shock 

is much larger in sticky sector. These findings is consistent with our result that the 

existence of heterogeneity implies the speed of price adjustment slows down because as 

time elapses the effect of price spells with long duration gradually dominates.  

The organization of the paper is as follows. In Section 2, we briefly summarize our 

approach to this problem. In section 3, we present the model with unobserved 

heterogeneity which is shared across price spells within an item. This model is called 

shared frailty model1. In Section 4, the results are discussed. 

                                                  
1 Unobserved heterogeneity is also referred to as frailty in the context of biostatistics. Shared frailty 
models can be understood as correlated heterogeneity models in the sense that observations within a 
group are correlated through the unobserved heterogeneity they share. 

 2



2. Duration Approach to the Problem of Price Stickiness  

 

Following Aucremann and Dhyne (2004), methods used in this field of research can 

be classified into two approaches; frequency approach and duration approach. The 

method we use in this paper is the latter one. 

In frequency approach, we first calculate the monthly frequency of price changes by 

items which is equal to the total number of price changes devided by the total number 

of observed prices. Then we aggregate the frequencies weighted by CPI weight to get 

the mean frequency. The expected value of waiting time is a reciprocal of the frequency 

of price change. Therefore the mean frequency implies the expected length of price 

spell as follows2:  

 

)1ln(
11
λδ −

−= ,       (1) 

 

where λ   is monthly frequency and δ  is implied instantaneous frequency. This 

follows from the derivation of the expected waiting time for the Poisson process. The 

median of price-change frequency is the middle value of weighted frequency which 

implies the median duration in the same way. Bils and Klenow (2004), for instance, use 

the "frequency" approach. They first compute the frequency of price changes and then 

infer the implied average duration of a price spell for each product category used in the 

US CPI. 

In duration approach, we start off by specifying the functional form of hazard 

function. The price setting behavior described by the Calvo model corresponds to the 

exponential model with constant hazard rate. Calvo (1983) assumes the probability 

                                                  

)
2Monthly frequency and instantaneous frequency satisfy the equality , or equivalently δλ −−= e1

( λδ −−= 1ln . If we divide 1 month into n equidistant intervals tΔ  and assume all firms change 

their price with probability tΔδ  during the period ),( ttt Δ+ , the probability that price change 

does not occur for one month becomes ( )ntΔ−δ1 . Therefore the monthly probability of price change 
is 
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density function of a price spell with duration t as follows: 

 

0, >⋅ − δδ δ te .      (2) 

 

This pdf is devided into two parts. The first one, δ , is equal to the price-change 

probability, i.e., the hazard rate in the Calvo model. The second one, , is the 

survivor function which means the probability that a price has not been changed until 

t. Then we construct likelihood function according to this functional form and 

maximize it using all of the data to obtain the maximum likelihood estimators which 

summarize the shape of hazard function and survivor function. The median duration is 

the elapsed time which satisfies the condition that the survival probability is 0.5, that 

is, the proportion of the unchanged price spells is just 50 percent.  

te δ−

One advantage of this approach is that we can clearly evaluate the pattern of price 

adjustment. As shown in later, the nonparametric hazard rate is significantly higher at 

12, 24, and 36 month, which suggests price changes tend to occur annually. Secondly, 

we can introduce the various types of heterogeneity. Álvarez, Burriel and Hernando 

(2005) use finite mixture models, which suppose that population consists of some 

homogeneous subpopulations. They specify the hazard function for each subpopulation 

and show that the mixture of hazard functions varies according to how they specify 

functional forms and how many subpopulations in the model. They document that it is 

optimal to estimate a model composed of 3 groups with a different but constant hazard 

rate, plus 1 group with a positive hazard rate at every 12 month3. In our shared frailty 

model, we assume a priori that population consists of heterogeneous items, which is 

supported by the result that the degree of price stickiness is fairly different across 

items as we mentioned earlier. Formally, the difference between the finite mixture 

model and our shared frailty model is that the former is a fixed effects model with 

random groups, whereas the latter is a random effects model with known groups4.  

                                                  
3 Ikeda and Nishioka (2007) slightly modified the model of Álvarez, Burriel and Hernando (2005)’s. 
They apply the Weibull hazard model to each component, which is monotonically increasing (or 
decreasing) according to the parameter value.     
4 See Mosler (2003) and Cameron and Trivedi (2005) for further discussion. 
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3. Shared frailty model for price-setting behaviors 

 

In this analysis, we exploit a sample of retail prices underlying the computation of 

the Japanese CPI. These prices are collected on a monthly basis by the Statistic 

Bureau, Ministry of Internal Affairs and Communication and appeared in Monthly 

Report on the Retail Price Survey. Prices are reported at each of the cities with 

prefectural governments and the cities with a population of 150,000 or more. The 

period covered by this analysis starts in January 2000 and ends in December 2005. 

Our raw data set considers 498 items which covers 68 % of the Japanese CPI in 2000 

and consists of 2,063,148 price records. 

Our data is a Japanese counterpart to that of previous studies after Bils and 

Klenow (2004). Whereas these previous studies use outlet-level price data, we use the 

average of prices quoted at each outlet. Since we cannot access price data of each outlet 

where the price report has been carried out, our data set provides the best available 

information in Japan for measuring the degree of price stickiness. Saita et al. (2006) 

also uses the source of data. As they have pointed out, the frequency of price change 

may have upper bias when we use average prices. Because we count the number of 

price changes even if some of the outlet-level prices do not change.  

We assume that price change does not occur more than twice because our data is 

monthly data, so that we can observe the price of each category only once a month. 

This is the limitation of our analysis as well as all of the previous studies using 

monthly data.  

 

Table 1. Descriptive statistics 

mean min median max
Number of items  498
Number of price spells 677169
(First) entry time 0 0 0 0
(Final) exit time 2.721 1 1 71

Time at risk 1798327 2.656 1 1 71
Number of uncensored spells 656581 0.970 0 1 1

Category total Per price spell

Source.－Retail price data used for the calculation of the Japanese CPI (2000-2005).
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Our data set is described in Table 1. In our retail price data, several price spells are 

observed per item and thus we call them multiple-spell data. 

When we compute directly the duration of price spells, we need some trimming of 

the original dataset. First, we discard all left-censored spells. The duration of price 

spells quoted before the beginning of our observation period cannot be calculated 

because we do not know the starting time of price spells. This is called the problem of 

left-censoring (Amemiya, 1984). Since our data is multiple-spell data and the 

observation period is long enough, this exclusion does not lead to a severe problem. 

Second, we remove price spells which end with an item substitution. This is also 

negligible because the number of these spells is relatively small compared to the total 

number of price spells.  

In order to analyze item-specific effects, we must assume the heterogeneities are 

not specific for price spell, but instead are shared within each items. Therefore, the 

multiple-spell data lead to the following hierarchical structure.  

 

 

 

More precisely, let  ),,1( Gii L=υ  be independently and identically distributed 

random variables with a common distribution. And we assume the hazard function for 
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the th subject in thei j th group given the j th heterogeneity is 

 
 )|()( ijiij Xtt λυλ ⋅= .      (3) 

 

This implies that the cumulative hazard function for the same subject conditional on 

the j th heterogeneity is 

 

)|()|()()(
0 iji

t t

o ijiijij XtdsXsdsst Λ⋅==≡Λ ∫ ∫ υλυλ .   (4) 

 

Using the identity { )(ln)( tSt −= }Λ , we obtain the conditional survivor function 

 

[ i
ijij XtStS υ)|()( = ] .      (5) 

 

For the th subject in thei j th group, the shared frailty model treats the hazard as 

equation (3). We assume that the shared frailties are i.i.d. sample from a Gamma 

distribution. Since the scale parameter of the distribution is unidentifiable, the mean 

and variance is normalized to set [ ] 1=υE  and [ ] δυ =V , respectively5. The density 

becomes therefore 

 

0,
)/1(

)/exp()( /1

)1/1(

>
Γ

−
=

−

υ
δδ

δυυυ δ

δ

g .     (6) 

 

The joint survivor function for the th group is given by  i

 

                                                  
5 The gamma distribution ),( δkΓ  has δυ kE =][ , . Setting2][ δυ kV = δ/1=k , we obtain the 
normalized parameter values.  
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Here, )][exp()( xExLP υυ −=  is the Laplace transform of the frailtyυ . See Appendix 

A for the derivation in detail. The log-likelihood contribution of the th group is  i

 

)/1(

11

)|(1
)/1(

)/1()|(),,(
i

i
i

i
ij

Dn

j
ijij

Di
n

j

d
ijiji XtDXtL

+−

==
⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Γ
+Γ

⎥
⎦

⎤
⎢
⎣

⎡
= ∑∏

δ

δδ
δ

δλβλδ , (8) 

where  is the indicator of the price change and ijd ∑ =
= in

j iji dD
1

is the number of price 

changes in the th group. We discuss in detail in Appendix B. We then obtain the full 

log-likelihood  

i

 

.),,(log),,(
1
∏
=

=
G

i
iLl βλδβλδ      (9) 

 

We specify that the baseline hazard function is constant over time, that is, the 

baseline hazard function and the cumulative hazard function becomeλ |(t  

t

λ=)ijX  and

ij tX λ=) , resΛ |( pectively. Referring to equation (3), even though the baseline hazard 

is constant and the same across the items, the individual hazard function )(tijλ  can 

fferent to each other due to frailty ibe di υ . This exponential model with Gamma 

shared frailty is the natural extension of Calvo model, which allows the price 

stickiness to vary across the items.  
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4. The Estimation Results 

 

Since we specify the baseline hazard function, the maximum likelihood estimators 

are obtained by maximizing equation (6) using Newton-Raphson method6.  

Figure 1 shows the predicted hazard from the parametric shared frailty model and 

nonparametric hazard function, i.e., the Kaplan-Meier product limit estimators of 

hazard rate. The shared frailty model reproduces the decreasing hazard function and 

describes the shape of the nonparametric hazard function fairly well except for the 

short-run prediction. If we ignore unobserved heterogeneity, the hazard rate is 

constant at 0.365 as shown in Table 2. This means that Calvo model overestimates the 

hazard rate for a long term spell.  

 

Table 2.  The Comparison of Calvo Model and Shared Frailty Model 

Mean 25% Median 75%

Calvo (1983) model 0.37 2.74 3.60 1.90 0.72
Shared frailty model - - 9.36 2.87 0.72

Duration of price spells Hazard rate
of  price
change

Source.－Retail price data used for calculation of the Japanese CPI (2000-2005).
Note. － Hazard rate of price change is unweighted predicted hazard function. Price
spell durations are reported in months.  

 

One reason is that, in Calvo model, hazard rate of price changes is common to all 

items, because it assumes that economy consists of homogeneous firms: they adjust 

their price randomly but they share a common probability of price change. But this 

assumption of homogeneity cannot be supported empirically. The estimated frailty 

variance  is 1.149. Examining the likelihood-ratio test of δ̂ 0:0 =δH , the null 

hypothesis is soundly rejected at the 1% level of significance. Therefore, we conclude 

that the prediction errors are caused by item-specific heterogeneity. 

                                                  
6 If we fit a Cox model with shared frailty in which the baseline hazard function is not specified, the 
estimates are obtained by using an EM algorithm. See Klein and Moeschberger (1997) and Yu (2006) 
for further discussion. Nakamura and Steinsson (2006b) use Cox proportional hazard model with 
covariates (seasonal dummies) and Gamma frailty and analyze the baseline hazard function by sector. 
I tried to estimate Cox proportional hazard in full sample, but the speed of convergence was so slow 
that I could not obtain the likelihood estimator for the Cox model. 
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Figure 2 shows that survival probabilities of Calvo model are significantly smaller 

than those of the shared frailty model. The median duration from the shared frailty 

model is slightly longer than the one from Calvo model. The predicted median duration 

is 2.87 months, which is about 1.5 times longer than the median duration implied by 

the price-change frequency of single-sector model. But the significant difference lies in 

the predictions at longer duration. The smaller probabilities in Calvo model arise 

because it ignores the effect of sticky items which gradually dominates as time elapses.  

The implication of our findings relates to a matter of great importance for monetary 

economics, since the dynamics of monetary economies is depend on to some extent how 

to deal with the sectors with lower frequency of price change.  

Recent papers analyzing monetary shock by using dynamic stochastic general 

equilibrium model show that the degree of monetary shock implied by a multi-sector 

model is larger and more persistent than that implied by a single-sector model 

calibrated to the mean frequency of price change (Carvalho, 2006; Nakamura and 

Steinsson, 2006a). Carvalho (2006) introduces heterogeneity into Calvo (1983)’s model 

and concludes that in order to better approximate a single-sector model requires much 

lower frequency of price changes than that of multi-sector model. Our main finding can 

be restated as follows: the existence of heterogeneity implies the speed of price 

adjustment slows down as time elapses. In order to approximate the survivor function 

of the shared frailty model, it is necessary to use a lower value for the hazard rate in 

the Calvo model. This conclusion is consistent with that of Carvalho (2006)’s.   
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5. Conclusion 

 

In this paper, we analyze the heterogeneity in price-setting behavior using the 

framework of duration analysis. We introduce the item-specific heterogeneity into the 

single-sector model and show that the shared frailty model reproduces the decreasing 

hazard function and describes the shape of the nonparametric hazard function fairly 

well.  

In the Calvo (1983) model, the hazard rate of price changes is common to all items, 

because it assumes that economy consists of homogeneous firms. We present that this 

assumption of homogeneity cannot be supported empirically. We examine the 

likelihood-ratio test of the null hypothesis that the frailty variance is equal to zero. The 

hypothesis is soundly rejected at the 1% level of significance, which suggests that the  

CPI basket consists of highly heterogeneous components. Therefore, we conclude that 

the prediction errors are caused by item-specific heterogeneity. 

We find that in the presence of item-specific heterogeneity, the probability that 

prices remain unchanged is higher than that of the single-sector model. This is because 

the Calvo model ignores the effect of sticky items which gradually dominates as time 

elapses. We document that in order to approximate the survivor function of the shared 

frailty model, it is necessary to use a lower value for the hazard rate in the Calvo model.
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Figure 1: Population hazard from the exponential model with Gamma shared frailty vs. 

Kaplan-Meier estimator: Retail price data in Japan from 2000–2005: Unweighted 

sample (498 items). 
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Figure 2: Survivor function from the shared frailty model and the Calvo (1983) model. 

Same data as Figure 1. 
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Appendix A. The derivation of the joint survivor function for the th item. i

From equation (7), we obtain 
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Appendix B. The likelihood function for the th item i

Given the th heterogeneity i iυ , the contribution to the likelihood for the j th price 

spell in th item is i
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Using the expression of cumulative hazard function, equation (B.1) can be written as  
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Consequently, the conditional likelihood function for the th item is  i
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where . Integrating out ∑ =
= in

j iji dD
1 iυ , we obtain the unconditional likelihood  
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where )( ig υ  is the density function given in equation (6). Therefore we have 
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Following from the same manner as in Appendix A, the integration in the last equality 

becomes 
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Substituting (B.5) into (B.4), we recover equation (8). 
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