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Abstract 

We explore the micro price setting behavior using micro data of  the 
consumer price index (CPI) in Japan. We estimate price hazard functions 
by the finite mixture model with multiple spells allowing the 
heterogeneity among price setters. Our estimation supports these striking 
findings. First, unlike much literature, our estimation finds increasing 
hazard functions and no decreasing hazard function. The estimated 
hazard functions are classified mainly into four groups: i) the flexible 
group; ii) the Calvo pricing group with low frequencies; iii) the Taylor 
pricing group with regular price changes; and iv) the increasing hazard 
group. Second, the decreasing empirical hazard function, observed in 
many countries as well as in Japan, is reproduced by estimated hazard 
functions of  those four groups. Third, the increasing hazard group is 
likely to follow the time-dependent pricing rather than the 
state-dependent pricing.  
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1 Introduction 

Price setting behavior is one of  the most challenging themes in monetary policy analysis. 
Price setting behavior is a starting point in a modern micro-founded monetary model1. 
Different price setting behavior carries a different monetary policy implication in the 
model. Albeit many kinds of  price setting behavior are developed and used in a monetary 
policy analysis, it remains a controversy over what kinds of  price setting behavior are 
empirically observed.  

Motivated by the needs for understanding price setting behavior, this paper explores 
the micro price setting behavior by estimating price hazard functions.  

The price hazard function, defined as a conditional probability of  price changes in 
terms of  time, is a key concept in understanding price setting behavior. It is closely related 
to micro-founded models. For instance, the Calvo (1983)2 and Taylor (1999)3 models have 
constant hazard functions. The probability of  price changes depends only on time 
regardless of  changes in state variables. Hence, the Calvo and Taylor models are classified 
as the time-dependent pricing models. On the other hand, the Dotsey, et al. (1999) model 
has the increasing hazard function which changes depending on state variables. It is one of  
the most popular state-dependent models in a general equilibrium framework. In addition 
to those models, Mash (2004) and Coenen, et al. (2006) generalize the Calvo model and 
allow a hazard function to have any functional forms including decreasing and increasing 
hazards.  

Our estimation of  hazard functions supports the three striking findings. First, unlike 
much literature, our estimation finds increasing hazard functions and no decreasing hazard 
function. Taking the heterogeneity among price setters into account, our estimation 
identifies eleven types for goods and six types for services. Those types are classified 
mainly into four groups: i) the flexible group; ii) the Calvo pricing group with low 
frequencies; iii) the Taylor pricing group; and iv) the increasing hazard group.  

Second, the decreasing empirical hazard function, observed in many countries as well 
as in Japan4, results from the aggregation bias. The decreasing hazard function of  prices 
                                                  
1 See Woodford (2003) for the comprehensive analysis of  monetary policy.  
2 The Calvo model is adopted in many monetary macro models which has been making exciting 
progress recently. See Christiano, et al. (2005) as a pioneer of  monetary macro models.   
3 Taylor (1980) originally developed his price setting model in terms of  nominal wage-setting behavior.  
4 See Dhyne, et al. (2006) for the evidence of  CPI micro data in European countries reported by the 
Inflation Persistent Network (IPN) of  the European Central Bank. Also, see Klenow and Kryvtsov 
(2005) for the United States and Higo and Saita (2007) for Japan. For the extensive survey of  micro data 
including producer prices as well as consumer prices, see Alvarez, et al. (2006).  
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has been thought of  as a puzzle because it is implausible that the longer the price setters 
fix their prices, the less opportunity to change their prices they have. However, the 
decreasing hazard function could be estimated if  an aggregated hazard function consists 
of  several types of  hazard functions. Alvarez, et al. (2005) clearly showed that the 
decreasing empirical hazard function can be reproduced by several Calvo pricing groups 
with a constant hazard function. Following Alvarez, et al (2005), we show that the 
empirical decreasing hazard function in Japan is reproduced by our estimated 
heterogeneous hazard functions.  

Third, we apply the method in Klenow and Kryvtsov (2005) to our sample data and 
show that the increasing hazard group is more likely to be the time-dependent rather than 
the state-dependent. Generally, increasing hazard functions do not necessarily mean 
state-dependent pricing. The result implies that the prices in Japan with increasing hazard 
functions are appropriate to the time-dependent models such as Mash (2004) or Coenen, 
et al (2006) models rather than the state-dependent model of  Dotsey, et al. (1999).  

As far as we know, this paper is the first to show the existence of  increasing hazards 
clearly. Our findings sharply contrast with Dhyne, et al. (2006) and, Higo and Saita (2007) 
who reported that the hazard functions of  the CPI micro data in Europe and in Japan are 
downward sloping respectively. Our estimation shows no decreasing hazard. The sharp 
contrast arises from the difference between the empirical methods not the difference 
between the data sources. Our estimated empirical hazard function is also downward 
sloping as Dhyne, et al. (2006) and, Higo and Saita (2007). However, our estimated 
heterogeneous parametric hazard functions are not downward sloping.  

The empirical methods in estimating hazard functions are mainly classified into the 
three categories: i) the non-parametric estimation that measures the empirical hazard 
function; ii) the semi-parametric estimation allowing heterogeneity; and iii) the parametric 
estimation allowing heterogeneity. Much literature using the first method including Klenow 
and Kryvtsov (2005) and Higo and Saita (2007) stated that the empirical hazard functions 
are downward sloping. Nakamura and Steinsson (2006), using the second method 
following Meyer (1990), reported that the hazard function is downward sloping for the 
first few months and then becomes flat for the longer period. Similarly, Fougere, et al. 
(2005) identified the heterogeneity among items by state variables and showed that the 
hazard function is rather flat. Alvarez, et al. (2005), using the third method, assumed 
several exponential hazard functions and estimated them taking the heterogeneity among 
price setters into account. Due to the assumption, Alvarez, et al. (2005) estimated several 
hazard functions with merely two types: the Calvo pricing type and the Taylor pricing type.  
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Our estimation is categorized as the third method, the parametric estimation allowing 
heterogeneity, and it is unique in two aspects. First, we extend the finite mixture model 
used by Alvarez, et al. (2005) in that the Weibull distribution is assumed as the hazard 
function. Alvarez, et al. (2005) assumed only the constant hazard function and excluded 
increasing or decreasing hazard functions. On the other hand, our assumption of  Weibull 
distribution enables us to estimate increasing or decreasing hazard functions, in addition to 
flat hazard functions. Although Alvarez, et al. (2005) is skeptical about the increasing 
hazard function, we show that the increasing hazard functions are significantly estimated.  

Second, we use multiple spells of  price changes in estimating hazard functions. 
Generally, in a given sample period, a sequence of  prices of  an item consists of  multiple 
spells. Our sample set consists of  all the spells in each sequence of  prices, while that in 
Alvarez, et al. (2005) consists of  one spell selected randomly from each sequence of  prices. 
The random sampling makes each item be characterized by only one randomly selected 
spell and that may lead to bias in the estimated hazard functions5. On the other hand, our 
method estimates hazard functions accurately because it makes use of  all the information 
in each item. In addition, we use the finite mixture model for our estimation in order to 
eliminate the aggregation bias. The estimated heterogeneous hazard functions should 
represent micro-level price setting behavior, given the assumption of  the Weibull 
distribution.  

The rest of  the paper is organized as follows. Section 2 reviews the relationship 
between price setting behavior and hazard functions. Section 3 introduces some definitions 
related to hazard functions and calculate the empirical hazard function as a benchmark. 
Section 4 explains the finite mixture model with multiple spells in estimating 
heterogeneous hazard functions, and Section 5 presents our estimation results. Section 6 
discusses some implications derived from the estimation results. Finally Section 7 
concludes the paper.  

 

 

 

 
                                                  
5 If  true hazard functions are exponential, random sampling does not have serious problems with a 
large sample. Since Alvarez, et al. (2005) assume exponential functions, their methodology in estimating 
hazard functions do not have problems. However, if  one assumes non-flat functions like that of  ours, 
one may lose important information with random sampling.  
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2 Price Setting Behavior and Hazard Functions 

In general, micro-founded price setting models are classified into two models: the 
time-dependent model and the state-dependent model. In the time-dependent model, the 
conditional probability of  price changes depends only on the period in which a price is 
fixed. Then, the hazard function has a certain constant shape in terms of  the period in 
which a price is fixed. For instance, the Calvo (1983) model has a flat hazard function. It 
assumes that the opportunity of  a price change follows the Poisson process. That 
assumption means that a price setter has an opportunity of  price changes with a constant 
probability in every period. It is well known that the New Keynesian Phillips curve is 
derived from the Calvo model with the monopolistic competition. Also, the Taylor (1999) 
model has a constant hazard function which takes a hundred percent in certain periods and 
zero percent otherwise. It assumes that price setters change their prices only at the 
beginning of  the contract and don’t change their prices within the period of  contract. 
Then, its hazard rate takes the value of  unity at the beginning of  the contract and zero 
otherwise.  

In addition to the Calvo and the Taylor models, Mash (2004) and Coenen, et al. (2006) 
generalize the Calvo model6. They assign different probabilities to different periods, 
allowing the hazard function to have any functional forms including decreasing and 
increasing hazards. They show that the Phillips curves derived from their models depend 
not only on the current GDP gaps and the expected inflation rate in the next period as the 
New Keynesian Phillips curve, but also the expected inflation rates in some past and some 
future periods. 

In the state-dependent model, the conditional probability of  price changes depends on 
state variables such as relative prices and inflation rates. Then, the hazard function may 
change its shape in response to real or monetary shocks in a transition, while it has a 
certain constant shape in a steady state. For instance, Dotsey, et al. (1999) developed the 
state-dependent pricing models extending the basic menu cost models by Blanchard and 
Kiyotaki (1987). They assume that the menu cost follows the random process and varies 
across price setters. In that case, they show that the hazard function depends on inflation 
                                                  
6 Coenen, et al. (2006) estimated hazard functions using indirect inference methods. They set the 
maximal time interval of  fixed prices as four periods to ease the burden of  estimation. Let tρ  be the 
conditional probability of  price changes at time t . Their estimation results showed 

1 2 3 4[ , , , ] [0.43,0.00,0.14,1.00]ρ ρ ρ ρ =  in the United States and 1 2 3 4[ , , , ] [0.55,0.38,0.21,1.00]ρ ρ ρ ρ =  in 
Germany. The hazard functions are regarded as almost decreasing except in the fourth period. The 
conditional probability of  the fourth period must be unity since the maximal time interval of  fixed 
prices is assumed to be four periods.  
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rates and the distribution of  the random process. In addition, they indicate that the shape 
of  hazard function is increasing in a steady state. In a steady state, the longer the price 
remains fixed, the more the relative price deviates from the optimal relative price due to 
accumulated productivity shocks. Then, the conditional probability of  price changes rises 
up as a price remains to be fixed.  

Bakhshi, et al. (2004) showed that the Phillips curve derived from the Dotsey, et al. 
(1999) model has the complicated form. It depends not only on the current GDP gaps and 
the expected inflation rate in the next period, but also the expected inflation rates in some 
past and some future periods. Thus, regardless of  the time-dependent or state-dependent 
models, the Phillips curve has the complicated form if  the hazard function is not flat as 
the Calvo model.  

 

3 Definitions and Empirical Hazard Functions 

3.1. Definitions of  Hazard Functions 

Hazard functions represent the distribution of  the length of  time that elapses from the 
beginning of  some events until its end. For their usefulness, hazard functions are often 
used in survival analysis of  products, firm’s default analysis and biological analysis. In our 
paper, the hazard function depends on the duration of  prices, denoted by τ . It represents 
a probability of  a price change conditional on the event that a price has fixed for the 
previous 1τ −  periods. Its output is called the hazard rate. For instance, the hazard rate 
with 5τ =  means a probability of  a price change in period 5  conditional on the event 
that a price has fixed for the previous four periods.  

We give some definitions of  the hazard function. Figure 1 shows a sequence of  price 
changes. The time zero and the time T  show the beginning and the end of  the sample 
period respectively. The term spell means the duration of  prices, that is, the length of  time 
in which the price is fixed. The first spell 0τ  and the final spell Kτ  in figure 1 are called 
the left-censored data and the right-censored data respectively. The duration of  the left-censored 
data is uncertain since the period of  the last price change is unknown. Also the duration 
of  the right-censored data is uncertain since the next price change is unknown. The 
left-censored data is usually excluded from the sample. But the right-censored data is 
included in the sample since it is used for calculating the survival probabilities of  the final 
spell. The sequence of  spells is called the trajectory. In figure 1, the trajectory of  prices is 

1 2( , , ..., )Kτ τ τ=τ . The left-censored data is excluded from the trajectory.  
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Figure 1: Sequence of  price changes during a sample period 

 

 

 

 

3.2. Empirical Hazard Functions 

We calculate empirical hazard functions using the Japanese CPI micro data before 
estimating the parametric hazard functions. Empirical hazard functions are calculated by 
the Kaplan-Meier product limit estimator and are widely used because of  their simple 
calculation. Dhyne, et al. (2006), Klenow and Kryvtsov (2005) and Higo and Saita (2007) 
reported that empirical hazard functions of  price changes are downward sloping. Though 
empirical hazard functions tend to be biased as a result of  the heterogeneity problem, they 
play an important role as a benchmark of  hazard functions.  

Figure 2(1) shows the basic statistics used for calculating the empirical hazard function.  
The price data used here are those of  the Ministry of  Internal Affairs and 
Communications’ “Retail Price Survey” which is the individual item data of  the Consumer 
Price Index in Japan7. The sample period is from January 2000 to December 2004. The 
empirical hazard function tp  obtained from the Kaplan-Meier product limit estimator is 
expressed as: 

 t
t

t

dp
r

=  

where td  is the number of  data whose prices were revised in period t  and tr  is the 
risk set in period t . The risk set tr  is the number of  spells at risk in period t . Spells are 
at risk if  they have not yet revised. In other words, the risk set indicates the number of  
spells in which prices were not revised until period 1t − .8 For instance, the risk set in 
                                                  
7 The price data of  each item is semi-aggregated. For instance, the price data of  major cities is the 
average of  5 prices of  the same item. See Higo and Saita (2007) for definitions of  the data in detail.  
8 The empirical hazard in figure 2 does not account for the weights of  the CPI. It simply counts the 
number of  samples, and it also excludes left-censored data and samples without a price change. 
Following Alvarez, et al. (2005), samples are compiled from one spell chosen randomly from each 
trajectory in each item. Although it is possible to draw empirical hazards using all spells, items with high 
probability of  price changes include a large number of  spells with a short duration in their trajectories.  
Consequently, since the number of  samples of  td  with a small t  increases substantially, this in turn 
leads to an upward bias in the hazard. This problem is avoided when one spell per item is used. 

Spells ・・・

Left-censored data

Price
change

Price
change

Price
change

Price
change

Price
change

Right-cencored data
0τ 1τ 2τ 1Kτ − Kτ

0 T
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period 5t =  is the number of  spells whose lengths of  time are at least 4  periods.9 Let 

tm  be the number of  data of  the right-censored data in period t . Then the risk set in 
period 1t +  follows the law of  the motion:  

 1t t t tr r d m+ = − −  

The equation indicates that the risk set in period t  falls under one of  the following three 
data: (i) td , the data whose prices are revised in period t ; (ii) tm , the right-censored data 
in period t ; and (iii) +1tr , the data whose prices are not revised and are not 
right-censored in period t , which becomes the risk set in period 1t + .  

The law of  the motion of  the risk set has the distinctive feature. The items with high 
frequency of  price changes are excluded from the risk set in a short period, while those 
with low frequency of  price changes continues to be included in the risk set in a long 
period. Then, the empirical hazard function has the aggregated bias to be decreasing. Its 
hazard is high in a short period and low in a long period. In fact, figure 2(2) shows the 
empirical hazard functions, and confirms a clear decreasing function for goods.  

Alvarez, et al. (2005) pointed out the aggregation bias of  the decreasing empirical 
hazard. They showed that the decreasing hazard function is reproduced by the several flat 
hazard functions, that is, the Calvo type pricing models. Apart from that finding, few 
papers resolved the decreasing hazard puzzle. And few papers found increasing hazard 
functions.  

From the following section, we extend the model of  Alvarez, et al. (2005) and estimate 
heterogeneous hazard functions. We estimate hazard functions taking into the 
heterogeneity not only of  flat types but also of  various patterns including increasing 
hazards and the Taylor pricing hazards. The Taylor pricing hazards have a high probability 
of  price changes in certain periods. We include the Taylor pricing hazards because services 
mainly follow the Taylor pricing as indicated in figure 2(2).  

 

                                                                                                                                                  
 
9 The risk set of  the 1st term represents the number of  all spells included in the samples. 
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Figure 2: Empirical hazard functions 
(1) Basic data used for calculating empirical hazard functions 
 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Shapes of  empirical hazard functions 
① Goods ② Services

Source: Ministry of Internal Affairs and Communications, "Retail Oruce Servey."
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① Goods ②　Services

Risk Set Revision Right-censored Hazard rate Risk Set Revision Right-censored Hazard rate

t r t d t m t d t /r t t r t d t m t d t /r t

1 21,641 10,310 194 0.476 1 4,536 307 40 0.068
2 11,137 2,389 125 0.215 2 4,189 188 36 0.045
3 8,623 1,377 139 0.160 3 3,965 143 53 0.036
4 7,107 739 136 0.104 4 3,769 86 20 0.023
5 6,232 621 69 0.100 5 3,663 79 28 0.022
6 5,542 432 100 0.078 6 3,556 76 38 0.021
7 5,010 366 96 0.073 7 3,442 66 53 0.019
8 4,548 342 347 0.075 8 3,323 80 426 0.024
9 3,859 279 56 0.072 9 2,817 81 27 0.029

10 3,524 188 142 0.053 10 2,709 53 33 0.020
11 3,194 200 88 0.063 11 2,623 59 47 0.023
12 2,906 184 29 0.063 12 2,517 449 12 0.178
13 2,693 116 32 0.043 13 2,056 42 15 0.020
14 2,545 113 44 0.044 14 1,999 48 12 0.024
15 2,388 103 29 0.043 15 1,939 36 21 0.019
16 2,256 88 56 0.039 16 1,882 24 50 0.013
17 2,112 116 28 0.055 17 1,808 23 18 0.013
18 1,968 86 23 0.044 18 1,767 20 19 0.011
19 1,859 70 112 0.038 19 1,728 25 28 0.015
20 1,677 97 40 0.058 20 1,675 29 102 0.017
21 1,540 76 22 0.049 21 1,544 33 21 0.021
22 1,442 47 33 0.033 22 1,490 25 16 0.017
23 1,362 49 39 0.036 23 1,449 21 45 0.015
24 1,274 63 14 0.050 24 1,383 110 8 0.080
25 1,197 46 25 0.038 25 1,265 17 8 0.013
26 1,126 46 30 0.041 26 1,240 16 25 0.013
27 1,050 30 27 0.029 27 1,199 13 18 0.011
28 993 37 209 0.037 28 1,168 18 35 0.015
29 747 26 10 0.035 29 1,115 14 12 0.013
30 711 19 15 0.027 30 1,089 8 14 0.007
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4 Estimation Method Using the Finite Mixture Model 

Multiple types of  hazard functions are estimated by the finite mixture model.10 We outline 
the estimation method in this section. 
 
4.1  Hazard Functions 
We focus on the shapes of  the hazard functions. Are hazard functions increasing or 
decreasing? To answer the question we assume the Weibull distribution as the distribution 
function for price changes. The Weibull distribution is commonly used to statistically 
express a degradation phenomenon or life expectancy. Also it is widely applied to survival 
analysis in economics. Its hazard function is monotonously increasing or decreasing and 
cannot be hump-shaped. Nevertheless, the Weibull distribution is useful in two respects. 
First increasing, flat, and decreasing hazards are expressed by only two parameters. Second 
the simple formula reduces the computational burden.  

The distribution function of the Weibull distribution ( )F τ  is defined as: 

 ( ) ( )( )θτ λ τ= − −1 exp expF  (1) 

( )F τ  is interpreted as the probability of price changes within time interval τ . The 
probability density function ( )f τ  and the survival probability function ( )S τ  are 

derived from the equation (1) as follows: 

 ( )
( )

( ) ( )( )θ θττ λ θτ λ τ
τ

−= = −1exp exp expdFf
d

 (2) 

 ( ) ( ) ( )( )θτ τ λτ= − = −1 exp expS F  (3) 

The probability density ( )f τ  expresses the probability of  price changes in period τ  and 
the survival probability ( )S τ  expresses the probability of  which prices are not revised 
during τ  periods. Furthermore, the hazard function ( )h τ  is defined as follows: 

 ( )
( )

( )
( ) θττ λ θτ

τ
−= = 1expfh

S
 (4) 

The hazard function ( )h τ  is the probability of  price changes in period τ  under the 

                                                  
10 See Cameron and Trivedi (2005) for further explanations on the estimation method. 
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condition that prices are not revised during the previous 1τ−  periods. In the equation (4) 
λ  is a parameter measuring the level of  the probability of  price changes and θ  is a 
parameter measuring the slope of  the hazard function. The parameter θ  and the hazard 
function ( )h τ  have the following relationship: 

 
If 1 :  ( ) is increasing
If 1 :  ( ) is constant
If 1 :  ( ) is decreasing

h
h
h

θ τ
θ τ
θ τ

>
=
<

 

Alvarez, et al. (2005) treated the case θ=1  only. We primarily focus on whether θ  is 
above or below 1. 

Taking into account the Taylor types pricing, we define below the hazard function 
whose probability of  price changes has spikes at the twelfth and twenty-forth month. 

 
( ) ( ) 1

0, 12, 12 24, 24exp j
j j j j jh dummy dummy θτ λ λ λ θ τ −= + +

 

where dummy12 and dummy24 are dummy variables which take 1 only when 12τ =  and 24 , 
respectively.11   

 

4.2  Likelihood Function 

Figure 3 shows the developments of  price changes of  item i . The subscript i  indicates 
the item’s number. The left-censored data are excluded from estimation since the interval 
of  price changes is unobserved. The 1K −  price changes and one right-censored data are 
observed. The unconditional probability of  price changes of  the spell ,i kτ  
( 1, 2, ..., 1)k K= −  is defined as ,( )i kf τ . Also, the survival probability of  the 
right-censored data ,i Kτ  is defined as ,( )i KS τ .  

                 Figure 3: Developments in price changes of  item i  

Spells ・・・
Probability ・・・

change
Price

change
Price

change
Price

change
Price

change
Price

τ ,1i τ ,1i τ ,3i τ −, 1ii K τ , ii K

0 T

τ ,1( )if τ ,2( )if τ ,3( )if τ −, 1( )
ii Kf τ ,( )

ii Kf
 

                                                  
11 Hereafter, we will discuss this paper based on formula (4) which does not include a dummy variable, 
but the essence of  the discussion remains unchanged even with the dummy variable included. 
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The joint density function of  item i  with trajectory iτ ( 1, 2, ..., )i N=  is expressed as:12 

 ( ) ( ) ( ) ( )θ λ τ τ τ−=iτ ,1 , 1 ,| ,
i ii i K i Kg f f S  

The above equation points out our distinctive estimation method. We use trajectories, 
that is, all the spells within the sample period13 in our estimation. In our estimation it is a 
trajectory that characterizes each item’s pricing behavior. On the contrary, the joint density 
function in Alvarez, et al. (2005) is written as: 

( )
( )τ

θ λ
τ

⎧⎪ ≠⎪⎪= ⎨⎪ =⎪⎪⎩
iτ

,

,

  if   
,

 if  ( )

ii k

ii k

k Kf
g

k KS
 

Alvarez, et al. (2005) randomly chooses one spell from each trajectory and uses it in their 
estimation. In their estimation it is a spell that characterizes each item’s pricing behavior. 
Since trajectories have more information than spells, the estimation using trajectories must 
reveal pricing behavior more accurately.  

Taking the heterogeneity among items into consideration, we assume that J  types of  
hazard functions exist and that individual items follow any one of  those types. Also we 
assume that the j th type has a fraction π =( 1, 2, ..., )j j J  of  the total population. Then 

the logarithmic likelihood function is expressed as: 

 π θ λ π θ λ
=

= + +∑ i iθ, λ τ τ τ1 1 1
1

( | ) log( ( | , ) ... ( | , ))
N

J J J
i

l g g  

where 

1

1
J

j
j

π
=

=∑
 

Using the likelihood function we estimate the unknown parameters to obtain the J  
heterogeneous hazard functions and their weights. The unknown parameters are 

θ θ=θ 1( , ..., )J , λ λ=λ 1( , ..., )J  and π π=π 1( , ..., )J . 

 

                                                  
12 In this paper, we examine a case with the right-censored data included.  Without the right-censored 
data, the joint density function is ( ) ( ) ( ),1 ,,

ii i Kg f fθ λ τ τ=iτ " . 
13 Mealli and Pudney (1996) conduct a more complex analysis using multiple spells. 
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4.3 EM Algorithm 

We estimate the parameters of  the hazard functions using the EM algorithm. First, the 
joint density function of  trajectory iτ  is rewritten as follows: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

,1 , 1 ,

1 1
,1 ,1 , 1 , 1 ,

11
1 11

, ,
1 1

, | , | , | ,

exp exp exp

exp ,

i i

j j j j j j j j j j

i i i

ii
i j j j ji

j j j i j j j i k j j j i k j j

j i i j i k i k i k

kk
k k

j i l i l
l l

g f f S

e e e e e

e e i

λ θ λ θ λ θ λ θ λ θ

λ θ λ θ

θ λ τ θ λ τ θ λ τ θ λ

θ τ τ θ τ τ τ

θ τ τ

−

− −
− −

−−
− −−

= =

=

= − − ⋅ −

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟= ⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠∑∏

iτ "

"

1, , , 1, , .N j J= =" "

 (5) 

Let us introduce the J  by 1  vector id  to deal with the unobservable types of  item i . 
The vector id  is called the latent variable. When the item i  belongs to the type j  the 
latent variable vector id  takes unity for the j th element and zero for others. Assume 
that the trajectory iτ  conditional on id  is independently and identically distributed. 
Then the density is given by 

 ( ) ( )
1

, , ,  i.i.d. , ij
J d

j j
j

g θ λ
=
∏i i iτ d θ λ π τ∼  (6) 

Also assume that the latent variable id  is independently and identically distributed with 
the multinomial distribution:  

 π
=
∏id θ λ π ∼

1

( | , , )  i.i.d. ij
J

d
j

j

 (7) 

The above two assumptions imply that the trajectory iτ  follows 

 ( ) ( )
1

, ,  i.i.d. , ijij
J dd

j j j
j

gπ θ λ
=
∏i iτ θ λ π τ∼  (8) 

From the density (8) the likelihood function is formed as follows. 

 ( ) ( )
1 1

, , , , ijij
N J dd

j j j
i j

L gπ θ λ
= =

=∏∏ iθ λ π τ d τ  (9) 

The log-likelihood is given by 

 
( ) ( )( )

( ) ( ) ( )

,
1 1

1

, ,
1 1 1 1

, , , log log

1 1 log 1 log log
i i

j j

N J

ij j j j
i j

k kN J

ij i j i j j i l i l j
i j l l

l d g

d k k eλ θ

θ λ π

λ θ θ τ τ π

= =

−

= = = =

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= − + − + − − +⎢ ⎥⎣ ⎦

∑∑

∑∑ ∑ ∑

iθ λ π τ d τ
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The parameters ( )θ  λ  π are estimated by these three steps. First, given the guess of  
( )θ  λ  π , for each item i  and each type j , calculate the posterior probability that the 
trajectory iτ  belongs to type j  as follows. 

 
( )
( )

1

,ˆ
,

j j j
ij J

j j j
j

g
d

g

π θ λ

π θ λ
=

=
∑

i

i

τ

τ
 (10) 

The îjd  in (10) is used as the estimator of  the expected value of  ijd . This first setp is 
called the Expectation step (E-step). Second, given îjd s calculated in the first step, 
estimate the parameters of  hazard functions θ  and λ by maximizing the expected 
log-likelihood. The log- likelihood is given by 

 ( ) ( )
1 1

ˆ, , , log , log
N J

ij j j j
i j

El d g θ λ π
= =

⎡ ⎤= +⎢ ⎥⎣ ⎦∑∑ iθ λ π τ d τ  (11) 

The estimated values θ̂  and λ̂  are obtained from the following first order conditions. 

 

( )

( )

1

, , ,
1 1 1

,
1 1

ˆ, , , 1ˆ log log 0

ˆ, , , ˆ 1 0

i i
j j

i
j j

k kN
i

ij i l i l i l
i l lj j

kN

ij i i l
i lj

El kd e

El
d k e

λ θ

λ θ

τ τ τ
θ θ

τ
λ

−

= = =

= =

⎡ ⎤∂ −⎢ ⎥= + − =⎢ ⎥∂ ⎢ ⎥⎣ ⎦
∂ ⎡ ⎤

⎢ ⎥= − − =⎢ ⎥∂ ⎣ ⎦

∑ ∑ ∑

∑ ∑

θ λ π τ d

θ λ π τ d
 (12) 

Similarly, the estimated value of  π  is obtained from the following first order condition. 

 
1

1 ˆˆ
N

j ij
i

d
N

π
=

= ∑  (13) 

This second step is called the Maximization step (M-step). Third, if  ˆ ˆ( ˆ)θ  λ  π  converges 
within a certain small enough criterion value, stop here. The set of  converged parameters 
ˆ ˆ( ˆ)θ  λ  π  is the final set of  estimated values. Otherwise, with the new guess of  ( )θ  λ  π , 

return to the first step (E step) and repeat the process until ˆ ˆ( ˆ)θ  λ  π  converges. We give 
appropriate default values of  ( )θ  λ  π  as the first guess and repeat the process until 
ˆ ˆ( ˆ)θ  λ  π  converges. 
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5 Estimation Results 

In this section we report the data source and the estimation results.  

5.1 Data 

We use data of  the “Retail Price Survey” of  the Ministry of  Internal Affairs and 
Communications.14 The Retail Price Survey is the basic data used for compiling the CPI, and 
data by item of  71 cities are released. Here, for individual items included in the CPI, we use 
data covering the period from January 2000 to December 2004. Similar to Higo and Saita 
(2007), however, the following three items are removed from our analysis: (i) items whose 
price data are not available throughout the year due to its seasonality; (ii) items not 
appropriate for analyzing the frequency of  price changes due to the vast number of  data 
aggregated in released prices; and (iii) items whose sequences of  prices are too short.15 As 
a result, the number of  prices used for analysis adds up to a total of  26,177 made up of  
493 items of  71 cities. Figure 4 shows that the weight of  data in the CPI used for our 
analysis is 67.8 percent. Among that, 42.8 percent accounts for the weight of  goods and 
25.0 percent for services. 

Figure 4: Coverage of  data 

CPI Our data CPI Our data
598 493 100.0% 67.8%

Goods 456 372 50.5% 42.8%
Services 142 121 49.5% 25.0%

Note: Weights are on the 2000 base.

Number of items CPI weight

Total

 

 

5.2 Number of  Types 

The number of  types is estimated in ascending order starting the number of  types equal 1 . 
The number of  types is judged by the Bayesian Information Criterion (BIC).16 It is 
determined when the BIC of  the number m  ( 1,2,...)m =  is larger than that of  1m + . 
                                                  
14 See Higo and Saita (2007) for details on the data and analysis on the frequency of  price changes. 
15 In principle, items of  the CPI which are compiled using price data other than the Retail Price Survey 
are not included here. Nevertheless, it is included for analysis when the price data of  the Retail Price 
Survey represents price developments.  For details, see Higo and Saita (2007). 
16 BIC is defined as = −θ λ π τ dBIC ( , , | , ) (1/2) log( )l k n  where θ λ π τ d( , , | , )l  is the logarithmic 
likelihood, k  is the number of  parameters and n  is the number of  samples. 
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Otherwise, the new BIC with 2m +  is calculated and compared with the old one with 
1m + . We repeat the process until the number of  types is determined.  

Taking into account that the shapes of  empirical hazard functions differ largely 
between goods and services, we estimate them separately. Figure 5 shows the BIC by the 
number of  types. For goods, the BIC determined the number of  types as 11. For services, 
the BIC determined the number of  types as 6 among which 5 types were without dummies 
and one type was with dummies.17 

 

Figure 5: The BIC and the number of  types 

(1) Goods (2) Services

No. of Type BIC
1 -314,520 1 2
2 -66,282 1 -27,438 -26,657
3 10,240 2 -26,660 -26,464
4 35,085 3 -26,380 -26,372
5 50,118 4 -26,336 -26,366
6 282,380 5 -26,284 -26,354
7 287,529 6 -26,297 -26,388
8 287,851
9 288,750
10 289,386
11 289,546
12 289,542

No. of type with dummy

No. of type
without
dummy

 

 

5.3 Estimation Results 

The estimation results show that 17 types are identified with goods and services. And they 
are roughly classified into these four groups: (1) the flexible group, in which price changes 
occur every quarter; (2) the increasing hazard group which has an increasing hazard 

                                                  
17 As for the number of  types, more than 11 types for goods, and 5 types without dummies and 2 types 
with dummies for services are not identified.  For instance, when assuming the number of  type for 
goods at 12, the weight of  the 12th type becomes zero, and also the estimated parameter basically 
matches with the parameter of  any one of  the 11 types.  
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function; (3) the Calvo group, which has a flat hazard with low probability of  price 
changes; and (4) the Taylor group in which price changes occur on a regular interval. 

 

5.3.1 Goods 

Figure 6(1) shows the estimation results for goods. The number of  types in figure 6(1) is 
affixed to each type in descending order of  λ . Figure 6(1) shows that the null hypothesis, 

1θ < , is rejected significantly for types 1 to 9. Therefore, types 1 to 9 must have 1θ > . 
And they are classified as the flexible group or the increasing hazard group. In contrast, the 
null hypothesis is not rejected for types 10 and 11. That implies that they may still have 
decreasing hazards. Nevertheless, their value of  θ s are close to 1. The estimated value is 

0.949θ =  for type 10 and 0.968θ =  for type 11.  

Figure 7(1) shows the shape of  the estimated hazard functions for each type. 
According to the figure 7(1), we find that hazard functions of  types 1 to 5 belong to the 
flexible group in which the frequency of  price changes is extremely high with an almost a 
hundred percent probability of  price changes after one quarter (after three months). The 
types 6 to 8 belong to the increasing hazard group. The types 9 to 11 belong to the Calvo 
group. They have almost flat hazard functions in which the probability of  price changes is 
low.18 The test of  θ  shows that the type 9 does not have a decreasing hazard. And the 
test of  θ  shows that the types 10 and 11 do not have increasing hazard functions.  

The weight shown in parenthesis in figure 7(1) tells the composition of  groups for 
goods. The flexible group (types 1 to 5), which has a high probability of  price changes, 
account for about 20 percent of  all items for goods. The increasing hazard group (types 6 
to 8), which has a medium frequency of  price changes, accounts for almost 30 percent. The 
Calvo group (types 9 to 11), which has a low frequency of  price changes, accounts for 
almost 50 percent. 

 

 
                                                  
18 As regards the number of  types and the pattern of  hazards, when the number of  types increases to a 
certain number, the overall differences between the two become subtle.  For example, it may well be 
said that for goods, a rough characteristic can be expressed at around type 7 (in fact, the BIC in Figure 4 
shows that there is hardly any difference from type 7 and above).  When the number of  type is 7, types 
2 to 6 are aggregated into two types as is the case when the number of  type is 11, and types 10 and 11 
are aggregated into one type.  As the number of  types ascends from 8 onward, the type splits up in 
descending order of  probability of  price changes.  In the end, when the number of  type is 11, types 10 
and 11 split up.  A new type is not identified from type 12 and onward. 
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5.3.2. Services 

Figure 6(2) shows the estimation results for services. The type 6 is classified as the Taylor 
group which has a significantly higher probability of  price changes at a specific time, 
twelfth and twenty- fourth months, than other months. The dummy variables 12λ  and 

24λ  are both significantly positive. The test of  θ >1 supports that the hazard functions of  
all types except for type 4 are not decreasing.   

Figure 7(2) shows the shapes of  hazard functions for services. It indicates rather 
noticeably that the types 1 and 2 belong to the increasing hazard group, while the types 3 to 
5 belong to the Calvo group. The values of  θ  of  the Calvo group (types 3 and 4) are 
close to 1. The probability of  price changes of  the type 5 is extremely low, that is, the value 
of  λ  is so small. 

The weight of  the increasing hazard group (types 1 and 2), which has a relatively high 
frequency of  price changes, accounts for only one to two percent of  all services. That 
percentage is considerably small compared to goods. On the other hand, the weight of  the 
Calvo group (types 3 to 5), which has a low frequency of  price changes, accounts for just 
below 70 percent. Finally, the Taylor group (type 6), in which price changes occur on a 
regular interval, constitutes about 30 percent of  all services. 
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Figure 6: Estimation result 
(1) Goods 

192.0 *** 174.8 *** 0.053 ***
(1.022) (0.942)

4.799 *** 4.709 *** 0.038 *** ***
(0.256) (0.555) (0.001)

3.750 *** 3.867 *** 0.043 *** ***
(0.186) (0.423) (0.002)

2.675 *** 2.975 *** 0.032 *** ***
(0.010) (0.014) (0.001)

1.880 *** 2.367 *** 0.039 *** ***
(0.010) (0.012) (0.002)

1.280 *** 1.924 *** 0.060 *** ***
(0.008) (0.008) (0.002)

0.739 *** 1.564 *** 0.094 *** ***
(0.007) (0.006) (0.003)

0.250 *** 1.285 *** 0.130 *** ***
(0.008) (0.005) (0.003)

-0.286 *** 1.079 *** 0.193 *** ***
(0.011) (0.005) (0.005)

-0.988 *** 0.949 *** 0.212 ***
(0.026) (0.008) (0.007)

-2.160 *** 0.968 *** 0.108 ***
(0.101) (0.027) (0.008)

112.1

90.97

52.95

14.51

Type 7

Type 8

184.5

6.680

6.781

144.3

Type 1

Type 2

Type 3

Type 4

Test of  θ>1

Type 11 -1.178

112.4

-6.066

Type 5

Type 10

Type 6

Type 9

λ θ π

 
(2) Services 

1.183 *** 1.955 *** 0.002 ***
(0.039) (0.077)

0.050 1.330 *** 0.015 *** ***
(0.035) (0.033) (0.002)

-0.731 *** 1.068 *** 0.124 *** ***
(0.033) (0.018) (0.010)

-1.741 *** 0.972 *** 0.444 ***
(0.049) (0.017) (0.015)

-11.01 *** 3.786 *** 0.117 *** ***
(1.931) (0.687) (0.017)

-5.609 *** 4.612 *** 3.478 *** 1.746 *** 0.298 *** ***
(0.076) (0.123) (0.127) (0.015) (0.033)

Type 4 -1.657

Type 5 4.053

Test of  θ>1

Type 1 12.49

Type 2 10.07

Type 3 3.685

Type 6 50.09

πλ0 λ12 λ24 θ

 

Notes 1. Figures in parentheses indicate standard errors. 
2. *** indicates significance at the 1% level. 
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Figure 7: Shapes of  hazard functions 
(1) Goods

(2) Services
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5.4 Empirical Hazard Replicated from the Estimated Model 

We examine whether the empirical hazard replicated from the estimated model fits the 
original empirical hazard function provided in figure 1. The empirical hazard replicated 
from the model is calculated as follows. First, we decide the type of  each individual item 
from equation (10), which gives the posterior probability of  item i  belonging to the j th 
type. Next, we draw a trajectory of  price changes by producing random numbers from the 
estimated Weibull distribution for each item. And we reproduce basic data for calculating 
the same empirical hazard as in figure 1. Finally, we calculate the aggregated empirical 
hazard function using that table. 

Figure 8 shows the replicated empirical hazard functions of  goods and services. The 
replicated empirical hazard function of  goods is decreasing and matches the original 
empirical hazard function very well. And that of  services has a spike every 12-month and 
captures the characteristic of  services very well. Hence, even without an individual item 
with a decreasing hazard, the heterogeneity allows the empirical hazard function to be 
decreasing. In addition, even with an individual item with an increasing hazard, the 
empirical hazard function is decreasing.  

Figure 8: Empirical hazards replicated from the estimated model 

(1) Goods (2) Services
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5.5 Relationship between types and items 

This subsection explains the relationship between the estimated types and items in detail. 
The clear relationship between types and items exits. It helps us understand the 
characteristic of  both types and items. 

5.5.1 Goods 

Figure 9(1) shows the relationship between types and items for goods. For simplicity, the 
estimated types are classified into these three groups (i) the flexible group (types 1 to 5); (ii) 
the increasing group (types 6 to 8); and (iii) the Calvo group (types 9 to 11). First, the upper 
left of  figure 9(1) shows the contents of  items in each group of  types. The flexible group, 
which has high frequencies of  price changes, mainly consists of  fresh agricultural and 
aquatic products (35.0%). The increasing group, which has increasing hazards, mainly 
consists of  food products (44.2%). The Calvo group, which has a flat hazard function with  
low frequencies of  price changes, mainly consists of  other industrial products (33.3%).  

Second, the upper right of  figure 9(1) shows the contents of  groups in each item. If  we 
focus on the items with more than 60% of  group weights, fresh agricultural and aquatic 
products is classified as the flexible group and petroleum products is classified as the 
increasing group. Also textiles, the other industrial products, electricity, gas and water, and 
publications are classified as the Calvo group.  

Third, the lower left of  figure 9(1) indicates the sharp difference between major large 
cities and small and middle cities. The flexible group and the increasing group have the 
highest weights of  major cities’ items (67.5% and 56.5% respectively). The Calvo group has 
the highest weights of  small and middle cities’ items (54.4%). In other words, major cities 
have more flexible price setters than small and middle cities do. That is because 
competition between price setters is higher in large cities. Also the sampling of  the 
statistics may affect the difference. The number of  surveyed stores is larger in major cities 
so that semi-aggregated prices in major cities tend to be more flexible than small and 
middle cities.  

Finally, the lower right of  figure 9(1) indicates a high weight of  the Calvo group on 
each group of  cities. For all group of  cities, the Calvo group accounts for more than 
one-third of  all group of  types. Especially, it accounts for more than 90% for the 
nationwide items. Nationwide items, whose prices are same for all cities, are very sticky.  
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5.3.2 Services 

Figure 9(2) shows the relationship between types and items for services. For simplicity, the 
estimated types are classified into these three groups (i) the increasing group (types 1 to 2); 
(ii) the Calvo group (types 3 to 5); and (iii) the Taylor group (type 6). In contrast to goods, 
services do not have the flexible group but have the Taylor group. First, the upper left of  
figure 9(2) shows the contents of  items in each group of  types. The increasing group 
mainly consists of  eating out (51.5%). The Calvo group also mainly consists of  eating out 
(31.3%). The Taylor group, which has a spike every 12-month, mainly consists of  
education in general services (42.0%). Albeit all groups do not have the high weight of  
public services, the flat group has the relatively high weight of  public services.  

Second, the upper right of  figure 9(2) shows the contents of  groups in each item. If  we 
focus on the items with more than 60% of  group weights, no item is classified as the 
increasing group. The two public services, medical care & welfare and education, and one 
general service, education, are classified as the Taylor group. The other groups are all 
classified as the Calvo group. The high number of  items classified as the flat group is 
consistent with the low frequencies of  services as shown in figure 8(2).  

Third, as same as goods, the increasing group, the group with relatively high 
frequencies, concentrates in major cities as shown in the lower left of  figure 9(2). However, 
as for the Taylor group, no sharp difference between major cities and small and middle 
cities is observed.  

Forth the share of  the Calvo group is highest for all groups of  cities as shown in the 
lower right of  figure 9(2). For items of  small and middle cities and nationwide, the share of  
the increasing group is almost zero. Then, for services, almost no item with high 
frequencies exits in small and middle cities and nationwide.  
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Figure 9: Relationship between types and items 
(1) Goods
① By item

1～5 6～8 10～11 Total 1～5 6～8 9～11 Total
Agricultual and aquatic products

Fresh agricultual and
aquatic products 35.6% 1.4% 0.4% 8.1% 92.5% 5.3% 2.3% 100.0%
Other fresh agricultual
and aquatic products 12.2% 5.7% 1.8% 5.2% 49.7% 33.2% 17.2% 100.0%
Other agricultual and
aquatic products 2.9% 4.2% 1.1% 2.5% 25.2% 52.4% 22.4% 100.0%

Industrical products

Food products 31.2% 44.2% 25.2% 32.2% 20.4% 41.6% 38.0% 100.0%

Textiles 3.1% 4.8% 6.7% 5.4% 12.1% 27.2% 60.7% 100.0%

Petroleum products 0.8% 14.9% 4.9% 7.1% 2.4% 64.1% 33.4% 100.0%

Other industrial products 13.3% 22.6% 33.3% 25.9% 10.8% 26.6% 62.6% 100.0%

0.0% 1.8% 22.2% 11.3% 0.0% 4.9% 95.1% 100.0%

0.9% 0.3% 4.3% 2.4% 7.8% 3.7% 88.5% 100.0%

100.0% 100.0% 100.0% 100.0% 21.1% 30.4% 48.6% 100.0%

② By city

1～5 6～8 10～11 Total 1～5 6～8 10～11 Total
Major cities 67.1% 56.5% 39.6% 50.5% 28.0% 34.0% 38.0% 100.0%
Small and middle cities 32.0% 43.2% 54.4% 46.3% 14.6% 28.3% 57.1% 100.0%
Nationwide 0.9% 0.3% 6.1% 3.2% 5.8% 2.7% 91.6% 100.0%

100.0% 100.0% 100.0% 100.0% 21.1% 30.4% 48.6% 100.0%

(2) Services
① By item

1～2 3～5 6 Total 1～2 3～5 6 Total
Public services

Domestic duties 0.0% 14.2% 5.7% 11.1% 0.0% 86.4% 13.6% 100.0%

Medical care & welfare 0.0% 0.5% 5.3% 1.8% 0.0% 19.9% 80.1% 100.0%
Forwarding &
communication 0.0% 5.2% 6.4% 5.2% 0.0% 67.2% 32.8% 100.0%

Education 0.1% 0.9% 7.5% 2.6% 0.3% 22.9% 76.9% 100.0%

Reading & recreation 0.6% 3.5% 0.3% 2.4% 1.5% 95.7% 2.8% 100.0%

General services

Eating out 51.5% 31.3% 10.6% 27.1% 12.2% 77.4% 10.4% 100.0%

Domestic duties 23.1% 24.0% 13.1% 21.1% 7.0% 76.5% 16.5% 100.0%

Medical care & welfare 0.0% 1.6% 1.2% 1.4% 0.0% 77.6% 22.4% 100.0%

Education 0.0% 4.7% 42.0% 14.3% 0.0% 22.2% 77.8% 100.0%

Reading & recreation 24.7% 14.1% 8.0% 13.1% 12.0% 71.8% 16.1% 100.0%

100.0% 100.0% 100.0% 100.0% 6.4% 67.1% 26.5% 100.0%

② By city

1～2 3～5 6 Total 1～2 3～5 6 Total
Major cities 96.9% 47.3% 47.9% 50.6% 12.2% 62.7% 25.1% 100.0%
Small and middle cities 3.1% 37.9% 46.8% 38.1% 0.5% 66.9% 32.6% 100.0%
Nationwide 0.0% 14.7% 5.4% 11.3% 0.0% 87.4% 12.6% 100.0%

100.0% 100.0% 100.0% 100.0% 6.4% 67.1% 26.5% 100.0%

Electiricity, gas and water

Publications

Ratio of group of types in each item
Group of types

Ratio of item in each group of types
Group of types

Group of types

Total

Group of types
Ratio of group of cities in each group of types Ratio of group of types in each group of cities

Ratio of group of types in each group of cities
Group of types

Ratio of group of types in each item
Group of types Group of types

Ratio of group of cities in each group of types

Total

Total

Total

Group of types

Ratio of item in each group of types

 
Notes 1: The weight of  each price series is obtained by multiplying the weight by item and the 

weight by municipality in the CPI weight (2000 base). 
2. Major cities are designated cities under article 252-19 of  the Local Autonomy Law. 
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5.6 Developments of  Price Indices by Group of  Types 

We examine the developments of  price indices of  types. For simplicity the types are 
classified into four groups: (i) the flexible group; (ii) the increasing group; (iii) the Calvo 
group; and (iv) the Taylor group. The price indices are calculated for those groups by taking 
weighted average of  the individual price indices in each group using the CPI weight.19  

Figure 10 shows the year-on-year changes of  the price indices by group. Albeit the 
estimation only covers the period from 2000 to 2004, the period is extended backward to 
1995 to capture developments in the price indices in the long run.20 The figure shows the 
three findings: (i) the flexible group fluctuates substantially without a trend; (ii) the 
increasing group changes pro-cyclically to business cycles; (iii) the Calvo group changes 
moderately; and (iv) the Taylor group changes in a lumpy manner. The classification by 
group of  those hazard functions is almost the same as that by the frequency of  price 
changes. It results in extracting the group of  items with different frequencies.  

Figure 10: Developments of  price indices by group of  types (year-on-year-changes) 
(i) Flexible type (ii) Increasing type

(iii) Calvo type with low frequency (iv) Taylor type
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Notes 1: The 2000 base CPI is used for the price indices and weights of  items. 

2. Shaded areas indicate recessions. 

                                                  
19 For simplicity, the type of  each item is determined by averaging the type among cities, and then the 
price index of  each group is calculated by taking weighted average of  the CPIs of  items in each group. 
20 Note that the estimation here should be discounted to a certain degree since the possibility that types 
may change around 2000 is not taken into consideration. 
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6 Implications 

6.1 Does the Increasing Hazard Imply a State-dependent Pricing? 

In the previous section, we obtained increasing hazard functions for goods. That, however, 
does not instantly mean that the items of  goods classified as the increasing hazard group 
fall under the state-dependant model of  Dotsey, et al. (1999).  In this section, we verify 
the relative significance between the state-dependent and the time-dependent pricing using 
the method developed by Klenow and Krystov’s (2005).  

Let us explain the method of  Klenow and Krystov (2005) briefly. First, the price 
change indicator itI  of  item i  at time t  is defined as follows: 
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where itp  is the logarithm of  the price. Using the price change indicator (14), the inflation 
rate tπ  is expressed as 

 
( )

( )1
1

1
1 1

1

N

it it itN N
i

t it it it it it N
i i

it it
i

t t

w p p
w p p w I

w I

fr dp

π
−

=
−

= =

=

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟⎟ ⎜⎜ ⎟= − = ×⎟ ⎜⎜ ⎟⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
≡ ×

∑
∑ ∑

∑  (15) 

where itw is the weight of  the price. The equation (15) shows that the inflation is 
decomposed into two terms: (i) the fraction of  items changing prices ( tfr ) and (ii) the 
weighted-average magnitude of  price changes ( tdp ). The first order Taylor approximation 
around the average of  tfr  and tdp  gives 

 ( ) ( )t t tfr dp dp fr fr fr dp dpπ ⋅ + − + −�  (16) 

where fr  and dp  are the averages of  tfr  and tdp  respectively.  The variance of  tπ  
is calculated as:  

 ( ) ( ) ( ) ( )2 2var var var 2 cov ,t t t t tfr dp dp fr fr dp fr dp
TDP SDP

π = + + ⋅�����	����
 ����������������	���������������
  (17) 

The above equation indicates that the variance of  the inflation rate is decomposed into two 
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terms: time dependent pricing (TDP) term and state dependent pricing (SDP) term. On 
the one hand, if  the price setting behavior follows the time-dependent pricing, the 
var( )tfr  and cov( , )t tfr dp  are zero since the price change ratio tfr  is constant21. Hence, 
the variance of  the inflation rate depends only on the TDP term. On the other hand, if  the 
price setting behavior follows the state-dependent pricing, the SDP term affects the 
variance of  the inflation rate since the fraction tfr  fluctuates in response to shocks. 

Klenow and Kryvstov (2005) broke down the variance of  the inflation rate using micro 
data of  the U.S. CPI (from 1998 to 2003) as explained above. That breakdown 
consequently shows that 88-101 percent of  the variance of  the inflation rate is explained 
by the TDP term. Also, calibrating the state-dependent model of  Dotsey, et al. (1999), 
Klenow and Kryvstov (2005) claim that under standard parameters of  the state-dependent 
model of  Dotsey et al. (1999), the TDP and SDP terms must be explanatory by 20 percent 
and 80 percent, respectively. Furthermore, they stated that the time-dependent pricing is 
more plausible than the state dependent pricing. They set the distribution of  the menu 
costs so as to replicate the actual TDP and SDP terms and showed that the distribution 
with the state-dependent pricing becomes that with time-dependent pricing approximately.  

Figure 11 shows the Klenow and Kryvstov’s decomposition using our data. It shows 
that most of  the fluctuations in the inflation rate are explained by the TDP term. The same 
decomposition for types 5 to 8 among goods, which have increasing hazard functions, 
shows that the weight of  the TDP term is dominant for those types as well. It displays only 
a subtle difference from Klenow and Kryvstov (2005).   

Those results imply that Japanese prices follow the time-dependent pricing. The 
implication of  the results, however, requires the attention. The sample period used for the 
analysis is from 2000 to the end of  2004 when inflation rates in Japan were relatively 
stable.22 

                                                  
21 Rigorously the fraction tfr  fluctuates even under the assumption of  a time-dependent pricing 
because the weight itw is different among items. We assume that there are many items and the weights 
are enough small to have a constant tfr  under a time-dependent pricing.  
22 That implication does not necessarily eliminate the possibility of  the other state-dependent models.  
Golosov and Lucas (2003) focused on the point that while the rate of  change in the aggregated price 
level is small and stable, that in the micro price level is substantial with many items. And many items 
change their prices frequently. Based on those facts, they constructed the state-dependent model which 
incorporates idiosyncratic productivity shocks to each firm. In that case, even when the inflation rate is 
stable, the micro-level prices fluctuate substantially depending on the state of  the individual productivity 
shocks. Furthermore, Gertler and Leahy (2005) simplified Golosov and Lucas (2003) model and derived 
the New Keynesian Philips curve whose hazard function is flat. In addition, Angeloni, et al. (2005) 
referred that among micro data analysis of  Europe by the INP, there exits evidence indicating the 
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Figure 11: Decomposition of  the variance  

TDP term SDP term
All types (all goods and services) 102.1% -2.1%

Goods: type 5 96.5% 3.5%
Goods: type 6 90.2% 9.8%
Goods: type 7 85.9% 14.1%
Goods: type 8 84.0% 16.0%

Klenow and Kryvtsov (2005) 88%～101% -1～12%  

 

6.2 Heterogeneity 

In the previous section, we have demonstrated the multiple types of  individual items and 
strong heterogeneity among those items. It is known that the heterogeneity has influence 
on the price-setting behavior. The model with the heterogeneity among price setters leads 
to two different implications from the standard representative agent model. First, the price 
stickiness estimated from the aggregated price level may possibly underestimate that 
estimated from the micro data. Carvalho (2006), extending Aoki (2004), constructed the 
model consisting of  multiple Calvo types. His model shows that even when the average 
frequency of  price changes at a macro level is the same, the price stickiness is larger in an 
economy with heterogeneous agents than in an economy with representative agents. We 
have confirmed the heterogeneous agents from an almost-perfect flexible agent to a 
sticky-pricing agent, and thus the intuition of  the above discussion applies to our results. 

Second, when the heterogeneity exists, the Phillips curve depends on the relative price 
of  each type as shown in Aoki (2004) and Carvalho (2006). In addition, regardless of  the 
heterogeneity and the pricing models, the Phillips curve drawn from agents with increasing 
hazard functions depends on past inflation rates and future expected inflations of  many 
periods.23 The heterogeneity obtained from our analysis implies that the Phillips curve has 
the complicated structure and does not necessarily hold the widely-used simple Calvo 
model. 

 

 

                                                                                                                                                  
state-dependent pricing including Dotsey, et al. (1999). 
23 See Mash (2004) and Coenen, et al. (2006) for the time-dependent model and Bakhshi, et al. (2004) 
for the state-dependent model. 
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7 Conclusion 

We estimated the price hazard functions using the Japanese CPI micro data. For empirical 
analysis, we applied the finite mixture model with multiple spells to deal with the 
heterogeneity among items. We assumed the Weibull distribution to estimate various types 
of  hazard functions including decreasing and increasing types. And we used a trajectory, a 
sequence of  spells, in calculating the likelihood of  each item to use all the information of  
the item. 

Our estimation demonstrates the strong heterogeneity among items. Specifically, items 
are classified into these four groups: (i) the flexible group in which price changes occurs 
every quarter; (ii) the increasing group which has an increasing hazard function; (iii) the 
Calvo pricing group whose frequency of  price changes is low; and (iv) the Taylor pricing 
group in which price changes occurs on a regular period. Unlike existing literature, the 
increasing hazard functions are estimated significantly while decreasing hazard functions 
are not. Second, the deceasing empirical hazard reported in many countries is likely to be 
caused by aggregation bias. In fact, by reproducing the empirical hazard function from 
several hazard functions estimated in the finite mixture model, we found that the 
aggregated empirical hazard function is deceasing, even though it includes no items with a 
sharp-decreasing hazard. Third, as for our sample period from 2000 to 2004, types with 
increasing hazards are possibly appropriate to the time-dependent model. The probability 
of  price changes does not change through time.   

   Albeit we found new results about shapes of  individual hazard functions, we are still 
on the long way to incorporate those findings into monetary models and obtain new 
implications of  monetary policy. The heterogeneity among price setters is obvious in the 
actual world. So, what kinds of  heterogeneity are important to the monetary policy 
analysis? We focused on hazard functions that have close relationship with the existing 
micro-founded price setting models. And we estimated several types of  hazard functions. 
However, we do not get clear implications of  monetary policy from the results since no 
model deals with the complicated heterogeneity estimated in this paper. In order to get 
clear implications of  monetary policy, we need simple micro data facts that fit existing 
models or new models dealing with complicated facts. In this paper we reported the rather 
complicated facts. Linking models and rich micro data facts is our primary theme in our 
future research.  



 29

References 

Alvarez, L. J., P. Burriel and I. Hernando (2005), “Do Decreasing Hazard Functions for 
Price Changes Make Any Sense?” European Central Bank Working Paper Series, 
No.461. 

Alvarez, L. J., E. Dhyne, M. M. Hoeberichts, C. Kwapil, H. L. Bihan, P. Lunnemann, F. 
Martins, R. Sabbatini, H. Stahl, P. Vermeulen and J. Vilmunen (2006), “Sticky Prices in 
the Euro Area: A Summary of  New Micro-Evidence”, Journal of  the European Economic 
Association, Vol.4, pp.575-584. 

Angeloni, I., L. Aucremanne, M. Ehrmann, J. Gali, A. T. Levin, and F. Smets (2005), “New 
Evidence on Inflation Persistence and Price Stickiness in the Euro Area: Implications 
for Macro Modeling,” mimeo. 

Aoki, K., (2001), “Optimal Monetary Policy Responses to Relative Price Changes,” Journal 
of  Monetary Economics, Vol.48, pp.55-80. 

Aucremanne, L. and E. Dhyne (2005), “Time-Dependent Versus State-Dependent Pricing: 
A Panel Data Approach to the Determinants of  Belgian Consumer Price Changes,” 
European Central Bank Working Paper Series, No.462. 

Bakhshi, H., H. Khan, and B. Rudolf  (2004), “The Phillips Curve under State-Dependent 
Pricing,” mimeo. 

Blanchard, O. J., and N. Kiyotaki (1987), “Monopolistic Competition and the Effects of  
Aggregate Demand,” American Economic Review, Vol.77, pp.647-666. 

Calvo, G. A. (1983), “Staggered Prices in a Utility-Maximizing framework,” Journal of  
Monetary Economics, Vol.12, pp.383-398. 

Cameron, A. C. and P. K. Trivedi (2005), “Microeconometrics: Methods and Applications,” 
Cambridge University Press 

Carvalho, C. (2006), “Heterogeneity in Price Stickiness and the New Keynesian Phillips 
Curve,” mimeo. 

Christiano, L. J., M. Eichenbaum and C. L. Evans (2005), “Nominal Rigidities and the 
Dynamic Effects of  a Shock to Monetary Model,” Journal of  Political Economy, Vol. 113, 
pp.1-45. 



 30

Coenen, G., A. T. Levin and K. Christoffel (2006), “Identifying the Influences of  Nominal 
and Real Rigidities in Aggregate Price-Setting Behavior,” mimeo. 

Dhyne, E., L. J. Alvarez, H. L. Bihan, G. Veronese, D. Dias, J. Hoffmann, N. Jonker, P. 
Lunnemann, F. Rumler, and J. Vilmunen (2006), “Price Changes in the Euro Area and 
the United States: Some Facts from Individual Consumer Price Data,” Journal of  
Economic Perspectives, Vol. 20, pp.171-192 

Dotsey, M., R. G. King, and A. L. Wolman (1999), “State-Dependent Pricing and the 
General Equilibrium Dynamics of  Money and Output,” Quarterly Journal of  Economics, 
Vol.114, pp.655-690. 

Fougere, D., H. L. Bihan, and P. Sevestre (2005), “Heterogeneity in Consumer Price 
Stickiness: A Microeconometric Investigation,” European Central Bank Working 
Paper Series, No.536. 

Gertler, M. and J. Leahy (2005), “A Phillips Curve with an Ss Foundation,” mimeo. 

Golosov, M. and R.E. Lucas (2003), “Menu Costs and Phillips Curves,” NBER Working 
Paper Series No.10187. 

Klenow, P. J. and O. Kryvtsov (2005), “State-Dependent or Time-Dependent Pricing: Does 
It Matter for Recent U.S. Inflation?” mimeo. 

Mash, R. (2004), “Optimizing Microfoundations for Inflation Persistence,” Oxford 
University Department of  Economics Discussion Paper No.183. 

Mealli, F., and S. Pudney (1996), “Occupational Pensions and Job Mobility in Britain: 
Estimation of  a Random-Effects Competing Risks Model,” Journal of  Applied 
Econometrics, Vol.11, pp.293-320. 

Meyer, B. D. (1990), “Unemployment Insurance and Unemployment Spells,” Econometrica, 
Vol.58, pp.757-782. 

Nakamura, E. and J. Steinsson (2006), “Five Facts About Prices: A Reevaluation of  Menu 
Cost Models,” mimeo. 

Higo, Masahiro and Yumi Saita (2007), “Price-setting in Japan: Evidence from CPI Micro  
Data”, mimeo. 

Taylor, J. B., (1980), “Aggregate Dynamics and Staggered Contracts,” Journal of  Political 
Economy, Vol. 88, pp.1-24. 



 31

Taylor, J. B., (1999), “Staggered Price and Wage Setting in a Macroeconomics,” Chapter 15 
in J. B. Taylor and M. Woodford (eds), Handbook of  Macroeconomics, Vol.1B, 
North-Holland. 

Woodford, M. (2003), Interest and Prices: Foundations of  a Theory of  Monetary Policy, Princeton 
University Press. 

 


