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1 Introduction
In this paper, we will use quarterly data on the performance of 50 Real Estate Income Trusts
(REITs) that have single location commercial office buildings in Tokyo. The period covered
is the first quarter of 2007 through the second quarter of 2012 or 22 quarters in all. We will
make use of the quarterly assessed value information that is required for REIT properties and
treat these end of quarter assessed property values as approximations to the beginning of the
quarter market value of the properties. In addition to assessed value information, we also have
information on the age of the building, the floor space area of the structure and the area of
the land plot. We also have data on some other characteristics of the property but for this
paper, we will only use information on assessed values, age of structure, floor space area, land
space area and two other variables: quarterly capital expenditures on the property and an
exogenous construction price index for the construction of new office buildings in Tokyo.
Our goal is to obtain not only an overall commercial property price index for this group
of 50 properties but to have a decomposition of the overall index into structure and land
components. This decomposition is required in order to construct industry balance sheets and
to measure the Total Factor Productivity of a commercial building.
In section 2, we briefly describe our data set.
In section 3, we construct our first (overall) price index that requires only information on
assessed values of the properties. This index is conceptually flawed because it does not take
into account depreciation of the building or capital expenditures that have been made to the
property. However, as we shall see, this very simple index does provide a useful approximation
to a more accurate index.*1

In section 4, we develop an overall price index and component subindexes for capital expendi-
tures, the basic structure and the land area of the properties using the same type of techniques
that national income accountants use to construct estimates of the capital stock. “Reason-
able” assumptions about the form of structure depreciation are required in order to implement
this method.
In section 5, we try out the traditional approach to hedonic regressions where the logarithm
of the selling price of a property is the dependent variable and the various characteristics of
the property are used as explanatory variables. For our hedonic regressions, we use property
assessed values in place of selling prices.
In sections 6 and 7, we move away from the traditional hedonic regression approach and use
assessed value as the dependent variable (in place of the logarithm of assessed value) and we
are able to decompose overall value into separate land and structure components. In section
6, we use a geometric model of structure depreciation where there is only one constant over
time depreciation rate that is estimated by the hedonic regression. In section 7, we generalize
this model to allow for changing geometric depreciation rates as the building ages.
The models described in sections 6 and 7 provide a decomposition of the assessed value of a
commercial property into the sum of a land plot value plus the value of the structure. However,
our sample of properties includes only properties where the same structure continued to exist
throughout the sample period. Our models capture the decline in structure value throughout
the sample period but they do not capture the (unanticipated) depreciation of structures that

*1 This index is an assessed value counterpart to a repeat sales index, which also suffers from the same
conceptual problems.

2



are prematurely demolished during the sample period. This unanticipated decline in structure
asset value needs to be estimated separately. In section 8, we show how this can be done with
the help of historical data on the demolition of commercial office structures in Japan.
Section 9 concludes.

2 The Tokyo REIT Data
This paper uses published information on the Japanese Real Estate Investment Trust (REIT)
market in the Tokyo area.*2 We used a balanced panel of observations on 50 REITs for 22
quarters, starting in Q1 of 2007 and ending in Q2 of 2012. The variables that were used in this
paper were V , the assessed value of the property;*3 CE, the quarterly capital expenditures
made on the property during the quarter; L, the area of the land plot in square meters (m2);
S, the total floor area of the structure in m2 and A, the age of the structure in quarters. V
and CE were reported in yen. In order to reduce the size of these variables, we divided by
one million so the units of measurement for these financial variables is in millions of yen. The
basic descriptive statistics for the above variables are listed in Table 1 below.*4

Table. 1 Descriptive Statistics for the Variables

Name No. of Obs. Mean Std. Dev. Minimum Maximum

V 1100 4984.8 3417.8 984.3 18600.0
S 1100 5924.8 3568.1 2099.0 18552.0
L 1100 1106.3 718.2 294.5 3355.0
A 1100 83.9 25.2 16.7 156.7
CE 1100 6.08 11.94 0.06 85.49

Thus over the sample period, the sample average assessed value of the properties was ap-
proximately 4985 million yen, the average structure area was 5925m2, the average lot size was
1106m2, the average age of the structure was 84 quarters or 21 years and the average quarterly
capital expenditure was about 6 million yen.
There were fairly high correlations between the V, S and L variables. The correlations of the
selling price V with structure and lot area S and L were 0.725 and 0.532 respectively and the
correlation between S and L was 0.840. Given the large amount of variability in the data and
the relatively high correlations between V, S and L, we can expect multicollinearity problems
in a simple linear regression of V on S and L.*5

In order to eliminate the multicollinearity problem between the lot size L and floor space area
S for an individual REIT property when running hedonic regressions in later sections, we will
assume that the value of a new structure in any quarter is proportional to a Construction

*2 REIT data were supplied by MSCI-IPD, Japan. The authors thank Toshiro Nishioka and Hideaki Suzuki
for their assistance.

*3 The REITs were chosen so that each REIT consisted of a single commercial property located somewhere
in Tokyo. The assessed values are reported at the end of each quarter. However, the actual assessments
take place either during the quarter or prior to it. We will regard the published assessed values as
approximations to the true market values of the property as of the beginning of the relevant quarter.

*4 Additional variables were made available to us such as (quarterly) net operating income, property taxes,
rentable floor space, number of basement floors, number of above ground floors and the distance to the
Tokyo main station. We did not use these property characteristics in the present paper.

*5 See Diewert, de Haan and Hendriks (2011a)[13] (2011b)[14] for evidence on this multicollinearity problem
for house prices using Dutch data.
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Cost Price Index for Tokyo.*6 In order to approximate beginning of the quarter values for
this construction cost index, we will lag the official index by one quarter. In section 4 below,
we also will require an estimate of construction cost per square meter for the first quarter in
our sample. We obtained a starting value for construction cost at the beginning of our sample
period from a commercial provider of data, Turner and Townsend (2012)[35].*7

3 The Asset Value Price Index for Commercial Properties in Tokyo
Denote the estimated asset value for REIT n during quarter t by Vtn for t = 1, ..., 22 and
n = 1, ..., 50 where t = 1 corresponds to the first quarter of 2007 and t = 22 corresponds to
the second quarter of 2012. If we ignore capital expenditures and depreciation of the structures
on the properties, each property can be regarded as having a constant quality over the sample
period.*8 Thus each property value at time t for REIT n, Vtn, can be decomposed into a price
component, Ptn, times a quantity component, Qtn, which can be regarded as being constant
over time. We can choose units of measurement so that each quantity is set equal to unity.
Thus the price and quantity data for the 50 REITs has the following structure: Qtn ≡ 1;
Ptn = Vtn for t = 1, ..., 22 and n = 1, ..., 50. The asset value price index for period t for this
group of REITs is the following Lowe (1823)[27]*9 index:

P t
A ≡

∑50
n=1 PtnQ1n∑50
n=1 P1nQ1n

=
∑50

n=1 Vtn∑50
n=1 V1n

; t = 1, ..., 22. (1)

Thus the asset value price index for period t is simply the total asset value for the 50 REITs in
period t divided by the corresponding total asset value for sample period 1. The series P t

A is
graphed in Figure 1 in the following section and the series is listed in Table 2 in the Appendix.
This index is very much analogous to a repeat sales index,*10 except instead of using actual
sales of properties, the index uses the assessed values for the properties that are supplied by
professional assessors.
There are three major problems with the assessed value price index:

• The index relies on assessed values for the properties and there is some evidence that
assessed values are smoother and lag behind indexes that are based strictly on sales at
market values;*11

*6 This index, denoted as PSt for quarter t, was constructed by the Construction Price Research Association
which is now an independent agency but prior to 2012 was part of the Ministry of Land, Infrastructure,
Transport and Tourism (MLIT), a ministry of the Government of Japan. The quarterly values for this
index are listed in Table 2 in the Appendix; see the listing for the variable PS . The quarterly values were
constructed from the Monthly Commercial Construction Cost index for Tokyo for reinforced concrete
buildings.

*7 On page 20 of Turner and Townsend (2012)[35], the 2011 construction cost for a prestige CBD office in
Japan is listed as 303, 800 yen per m2. Since construction prices in 2011 were very close to construction
prices in 2007, in section 4 we will assume that the construction cost of a new commercial office was
approximately 300, 000 yen per m2 at the start of our sample period.

*8 We are also ignoring changes in the amenities around the property over the sample period.
*9 A Lowe index is a fixed basket price index where the quantity basket remains fixed over the sample

period.
*10 The Repeat Sales Method for measuring property prices dates back to Bailey, Muth and Nourse (1963)[1].

See Shimizu, Nishimura and Watanabe (2010)[32] for a comparison of the Repeat Sales Method and
hedonic regression methods. Clapp and Giaccotto (1992)[4] and Gatzlaff and Ling (1994)[19] noted the
structural similarity of an assessed value index to a repeat sales index in the housing context.

*11 See for example, Shimizu and Nishimura (2006)[31].
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• The index does not take into account that capital expenditures will generally change the
quality of each property over time (so that the Qtn are not in fact constant) and

• The index does not take into account depreciation of the underlying structure, which
of course also changes the quality of each property.

The last problem mentioned above will generally impart a downward bias to the asset value
indexes, PAt.*12 We cannot address the first problem mentioned above but in the following
section, we will attempt to address problems 2 and 3 listed above.

4 A National Balance Sheet Accounting Approach to the

Construction of Commercial Property Price Indexes
In this section, we will implement an approach to the construction of commercial property
price indexes that is similar to the approach used by national income accountants to construct
capital stock estimates.*13 National income accountants build up capital stock estimates for
a production sector by deflating investments by asset and then adding up depreciated real
investments made in prior periods. For commercial property capital expenditures and for the
expenditures on the initial structure, we will more or less follow national income capital stock
construction procedures. Next, we will assume that the assessed values for each property
represents a good estimate for the total value of the structure and the land that the structure
sits on. Once we have formed estimates for the stock values for capital expenditures and the
value of the initial structure on the property, the value of land is set equal to assessed value
of the property less our imputed value for the initial structure and the capital improvements
made to the structure. The weakness in this approach is that one must make estimates for
the structure depreciation rates based on limited information.
We postulate that the assessed asset value of REIT n in quarter t, Vtn, is equal to the sum of
three components:

• The value of the land plot VLtn for the property;
• The value of the initial structure on the property, VStn, and
• The value of the cumulated (but also depreciated) capital expenditures on the property

made in prior periods, VCEtn.

Thus we assume that the following asset value decomposition holds for property n in period
t:*14

Vtn = VLtn + VStn + VCEtn; n = 1, ..., 50; t = 1, ..., 22. (2)

We know the assessed values, Vtn, on the left hand side of equations (2) and our strategy
will be to determine the components of the values on the right hand side of equations (2) by
making plausible assumptions about the prices and quantities involved in the right hand side
values. We start off by considering the decomposition of the property land values, VLtn, into

*12 Repeat sales price indexes are also subject to this downward bias due to the neglect of depreciation but
this downward bias can often be negated by an upward bias due to sample selectivity problems associated
with the repeat sales index. In any case, the repeat sales method is in general not very workable for
the construction of a commercial property price index due to the infrequency of sales of commercial
properties (and their heterogeneity).

*13 See Schreyer (2001)[29] (2009)[30] and Diewert (2005)[9] for a detailed explanation of these techniques.
*14 This assumption is a strong one. In particular, we are assuming that capital expenditures immediately

add to asset value, an assumption that is unlikely to hold precisely.
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price and quantity components; i.e., we assume that the following equations hold:

VLtn = PLtnQLtn; QLtn = Ltn = Ln; n = 1, ..., 50; t = 1, ..., 22 (3)

where Ln (which is equal to Ltn) is the area of the land plot for REIT n, which is part of our
data base (and constant from period to period), and PLtn is the price of a square meter of
land for REIT n in quarter t (which is not known yet).
Turn now to the value of the structure for property n in period t. If the structure is a
new one, its value should be approximately equal to its cost of construction. Recall that
an approximation to the cost of a square meter of new commercial property construction in
quarter n is 300, 000 times PStStn where PSt is the construction price index per m2 for Tokyo
for quarter t (normalized to equal one in quarter 1) and Stn = Sn is the floor area for property
n in period t. Upon noting that Vtn has been rescaled to units of million yen from a single
yen, if the structure for REIT n is new in period t, then its value in millions of yen, VStn,
should be approximately equal to .3PStStn. We now assume that the quarterly geometric (or
declining balance) depreciation rate for the structure is δS ≡ 0.005 or 0.5% per quarter.*15

Thus the structure value for REIT n in quarter t (where the age of the structure in quarters
at time t is Atn) should be approximately equal to:

VStn = .3PStStn(1 − δS)A(t,n); n = 1, ..., 50; t = 1, ..., 22 (4)

where A(t, n) ≡ Atn. Thus we obtain the following decomposition of VStn into price and
quantity components:

VStn = PStnQStn; PStn ≡ PSt; QStn ≡ .3Stn(1 − δS)A(t,n); n = 1, ..., 50; t = 1, ..., 22 (5)

where PSt is the known official construction price index for quarter t (lagged one quarter),
Stn is the known floor space for REIT n in quarter t (this is almost always constant across
quarters), A(t, n) is the known age of REIT n in quarter t and δS = 0.005 is the assumed
known quarterly geometric structure depreciation rate. Thus VStn can be calculated.
Finally, we need to determine the contribution of capital expenditures to REIT asset values.
This is a more difficult task.*16 Define the capital expenditures of REIT n in quarter t as
CEtn. We need a deflator to convert these nominal expenditures into real expenditures. It
is difficult to know precisely what the appropriate deflator should be. We will simply assume
that the official structure price index, PSt, is a suitable deflator. Thus define real capital
expenditures for REIT n in quarter t, qCEtn, as follows:

qCEtn ≡ CEtn

PSt
; n = 1, ..., 50; t = 1, ..., 22. (6)

We know both series on the right hand side of (6) so the qCEtn can also be determined. Now
we require starting capital stocks for these capital expenditures and a geometric depreciation

*15 Hulten and Wykoff (1981)[22] obtain annual geometric depreciation rates for office buildings in the U.S.
around 1% for continuing structures and around 2.5% when premature retirement is taken into account.
Other studies often obtain higher rates. Our later analysis in section 6 below justifies our assumption of
a 1/2 percent quarterly depreciation rate.

*16 Crosby, Devaney and Law acknowledge the importance of capital expenditures in explaining property
value but they also point out the scarcity of research on this topic: “Other important issues are the roles
of maintenance expenditure and replacement investment. ... Thus, expenditure is central to interpreting
depreciation rates but it has received little attention in much of the commercial real estate literature.”
Neil Crosby, Steven Devaney and Vicki Law (2012; 230)[6].

6



rate that determine how these capital expenditures are written off over time. It is difficult
to determine an appropriate depreciation rate for capital expenditures since this problem has
not been studied very extensively (if at all) in the literature. In section 7 below, we will bring
some limited econometric evidence to bear on this issue and using this evidence, we assume
that the quarterly geometric depreciation rate for capital expenditures is δCE = 0.10 or 10%
per quarter.*17 The next problem is the problem of determining the starting stock of capital
expenditures for each REIT, given that we do not know what capital expenditures were before
the sample period. We provide a solution to this problem in two stages. First, we generate
sample average real capital expenditures for each REIT n, qCEn, as follows:

qCEn ≡ 1
22

22∑
t=1

qCEtn; n = 1, ..., 50. (7)

Our next assumption is that each REIT n has a starting stock of capital expenditures equal
to depreciated investments for 20 quarters (or 5 years) equal to the REIT n sample average
investment, qCEn, defined above by (7).*18 Thus the starting stock of CE capital for REIT n
is QCE1n defined as follows:

QCE1n ≡ qCEn · 1 − (1 − δCE)21

δCE
; n = 1, ..., 50. (8)

The REIT capital stocks for capital expenditures can be generated for quarters subsequent
to quarter 1 using the usual geometric model of depreciation recommended by Hulten and
Wykoff (1981)[22], Jorgenson (1989)[24] and Schreyer (2001)[29] (2009)[30] as follows:

QCEtn ≡ (1 − δCE)QCE,t−1,n + qCE,t−1,n; t = 2, 3, ..., 22; n = 1, ..., 50. (9)

Note that QCEtn is now completely determined for t = 1, ..., 22 and n = 1, ..., 50 and the
corresponding price PSt is also determined. Thus an estimated value for the stock of capital
expenditures of REIT n for the beginning of period t, VCEtn, can be determined by multiplying
PSt by QCEtn; i.e., we have:

VCEtn ≡ PCEtnQCEtn; PCEtn ≡ PSt; t = 1, ..., 22; n = 1, ..., 50 (10)

where the QCEtn are defined by (8) and (9).
Now that the asset values Vtn, VStn and VCEtn have all been determined, the price of land for
REIT n in quarter t, PLtn, can be determined residually using equations (2) and (3):

PLtn ≡ Vtn − VStn − VCEtn

Ln
; n = 1, ..., 50; t = 1, ..., 22. (11)

The above material shows how to construct estimates for the price of land, structures and
capital expenditures for each REIT n for each quarter t (PLtn, PStn and PCEtn) and the cor-
responding quantities (QLtn, QStn and QCEtn). Now use this price and quantity information
in order to construct quarterly value aggregates (over all 50 REITs in our sample) for the

*17 After 20 quarters or 5 years, only 12% of a initial real investment in capital expenditures contributes to
asset value; after 40 quarters or 10 years, only 1.5% of a initial real investment in capital expenditures
contributes to asset value.

*18 The smallest age of structure in our sample is 4 years and so virtually all structures in our sample are
at least 5 years old.
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properties and for the land, structure and capital expenditure components; i.e., make the
following definitions:*19

V t ≡
50∑

n=1

Vtn; V t
L ≡

50∑
n=1

VLtn; V t
S ≡

50∑
n=1

VStn; V t
CE ≡

50∑
n=1

VCEtn; t = 1, ..., 22. (12)

We form aggregate overall and component price and quantity indexes using chained Fisher
(1922)[16] ideal indexes.*20 In order to define these indexes, it is necessary to define Laspeyres
and Paasche indexes and their chain link components. We will indicate how this is done when
constructing aggregate land price indexes for the group of 50 REITs for each quarter. Define
the Laspeyres chain link land index going from quarter t − 1 to quarter t, P t−1,t

L,Land, as follows:

P t−1,t
L,Land ≡

∑50
n=1 PLtnQL,t−1,n∑50

n=1 PL,t−1,nQL,t−1,n

; t = 2, 3, ..., 22. (13)

The above chain links are used in order to define the overall Laspeyres land price indexes,
P t

L,Land, as follows:

P 1
L,Land ≡ 1; P t

L,Land ≡ P t−1
L,LandP t−1,t

L,Land; t = 2, 3, ..., 22. (14)

Thus the Laspeyres price index starts out at 1 in period 1 and then we form the index for the
next period by updating the index for the previous period by the chain link indexes defined by
(13). A similar procedure is used in order to define the sequence of Paasche chained indexes
for land, P t

P,Land. First Define the Paasche chain link land index going from quarter t − 1 to
quarter t, P t−1,t

P,Land, as follows:

P t−1,t
P,Land ≡

∑50
n=1 PLtnQLtn∑50

n=1 PL,t−1,nQLtn

; t = 2, 3, ..., 22. (15)

The above chain links are used in order to define the overall Paasche land price indexes,
P t

P,Land, as follows:

P 1
P,Land ≡ 1; P t

P,Land ≡ P t−1
P,LandP t−1,t

P,Land; t = 2, 3, ..., 22. (16)

Once the sequences of Laspeyres and Paasche land price indexes, P t
L,Land and P t

P,Land, have
been constructed, the Fisher ideal land price index for quarter t, P t

F,Land, is defined as the
geometric mean of the corresponding Laspeyres and Paasche indexes; i.e., define

P t
F,Land ≡ [

P t
L,LandP t

P,Land

]1/2 ; t = 1, ..., 22. (17)

The Fisher chained price indexes for structures and capital expenditures, P t
F,S and P t

F,CE , are
constructed in an entirely analogous way, except that the REIT micro price and quantity data
on land, PLtn and QLtn, are replaced by the corresponding REIT micro price and quantity
data on structures, PStn and QStn, or on capital expenditures, PCEtn and QCEtn, in equations
(13)-(17).

*19 These aggregate value series are listed in the Appendix in Table 2.
*20 Laspeyres, Paasche and Fisher indexes are explained in much more detail in Fisher (1922)[16] and in the

2004 Consumer Price Index Manual [23]. The Fisher indexes have very good axiomatic and economic
properties.
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Finally, an overall chained Fisher property price index, P t
F, can be constructed in the same

way except that the summations in the numerators and denominators of (13) and (15) above
sum over 150 separate price components (all of the PLtn, PStn and PCEtn) instead of just 50
price components. The Fisher price indexes P t

F, P t
F,Land, P t

F,S and P t
F,CE are listed in Table 2

in the Appendix, except that we dropped the subscript F; i.e., in what follows, denote these
series by P t, P t

L, P t
S and P t

CE respectively.
The price series P t, P t

L, P t
S and P t

CE can be used to deflate the corresponding aggregate value
series defined above by (12), V t, V t

L, V t
S and V t

CE , in order to form implicit quantity or volume
indexes; i.e., define the following aggregate quantity indexes:

Qt ≡ V t

P t
; Qt

L ≡ V t
L

P t
L

; Qt
S ≡ V t

S

P t
S

; Qt
CE ≡ V t

CE

P t
CE

; t = 1, ..., 22. (18)

Qt can be interpreted as an estimate of the real stock of assets across all 50 REITs at the
beginning of quarter t, Qt

L is an estimate of the aggregate real land stock used by the REITs*21

and Qt
CE is an estimate of the real stock of capital improvements made by the REITs since

they were constructed.*22

Because the price of structures for each REIT is proportional to the exogenous official con-
struction price index for Tokyo, the aggregate structure price index, P t

S , defined above as
a Fisher index turns out to equal the official price index, PSt defined earlier.*23 Similarly,
the Fisher price index of capital expenditures, P t

CE , defined above also turns out to equal
the official index, PSt. Thus the fairly complicated construction of the Fisher implicit quan-
tity indexes that was explained above can be replaced by the following very simple shortcut
equations:

Qt
S =

V t
S

PSt
; Qt

CE ≡ V t
CE

PSt
; t = 1, ..., 22. (19)

The asset value (or repeat sales) overall price index, P t
A, is graphed in Figure 1 below along

with the overall commercial property price index P t, where the method used to construct P t

might be termed a “national accounts” method for constructing a capital stock price index. We
also show the “national accounts” land price index P t

L and the official structures construction
cost price index P t

S which we have used as a price deflator for both capital expenditures and
the estimated value of the structure.*24

It can be seen that the asset value price index P t
A defined in the previous section is consistently

below the more accurate economic accounting index P t and the gap widens over time.*25 In our
Japanese sample of commercial properties, our estimated average land value divided by total
property value turned out to be 74.7%; i.e., approximately 75% of the property value is due to
land value. In the U.S., the land ratio is very much less so that the bias in the asset value price
index would be correspondingly much larger since it is the neglect of structure depreciation

*21 This remains constant over time since the quantity of land used by each REIT remained constant over
time.

*22 The four implicit quantity series defined by (18) are also listed in Table 2 of the Appendix.
*23 The chained Laspeyres and Paasche price indexes for structures are also equal to the official index (and

so are the corresponding fixed base indexes). And since the quantity of land is fixed for each REIT, the
chained (and fixed base) Laspeyres and Paasche land price indexes are also equal to the chained Fisher
land price indexes.

*24 P t
A, P t, P t

S and P t
L are listed as PA, P, PS and PL in Figure 1.

*25 From Table 2 in the Appendix, we see that P 22
A = 0.8798 and P 22 = 0.9027. This translates into an

approximate (geometric) downward bias in the asset value price index of about .5 percentage points per
year, which is fairly significant.
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Figure 1 Asset Value Price Index PA and Accounting Price Index P , Price of Structures
PS and Price Index for Land PL

that causes the differences in P t and P t
A.*26 The movements in the price of structures, P t

S ,
versus the price of land, P t

L, are also of some interest. It appears that land prices peaked in
period 6 (Q2-2008) while construction prices peaked somewhat later in period 8 (Q4-2008).
Land prices continued to fall steadily after Q2-2008, ending up at 0.8752. Structure prices
fell from Q8-2008 until Q2-2010 and remained more or less steady until the end of the sample
period to end up at 0.9887.
In the following sections, we will construct alternative price indexes using hedonic regression
techniques rather than using assumptions about depreciation rates (and the form of depreci-
ation) along with assessed value information.

5 Traditional Hedonic Regression Approaches to Index Construction
Most hedonic commercial property regression models are based on the time dummy approach
where the log of the selling price of the property is regressed on either a linear function of the
characteristics or on the logs of the characteristics of the property along with time dummy
variables.*27 In this section, instead of using selling prices for commercial properties, we
will use the quarterly assessed values for the properties. The time dummy method does not
generate decompositions of the asset value into land and structure components and so it is
not suitable when such decompositions are required but the time dummy method can be used
to generate overall property price indexes, which can then be compared with the overall price

*26 Since the asset value price index is a variant of the repeat sales index that is frequently used to construct
property price indexes, we expect that these repeat sales indexes also have a substantial downward biases
compared to indexes that take structure depreciation into account.

*27 This methodology was developed by Court (1939; 109-111)[5] as his Hedonic Suggestion Number Two.
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indexes P t
A and P t that were described in the previous 2 sections.

Recall that Vtn is the assessed value for REIT n in quarter t, Ltn = Ln is the area of the
plot, Stn = Sn is the floor space area of the structure and Atn is the age of the structure
for REIT n in period t. In the time dummy linear regression defined below by (20), we
have replaced Vtn, Ltn and Stn by their logarithms, lnVtn, lnLtn and lnStn.*28 Our first time
dummy hedonic regression model is defined for t = 1, ..., 22 and n = 1, ..., 50 by the following
equations:*29

lnVtn = α + αt + β ln Ltn + γ lnStn + δAtn + εtn (20)

where α1, . . . , α22, α, β, γ and δ are 25 unknown parameters to be estimated and the εtn are
independently distributed normal error terms with mean 0 and constant variance. The αt

are the quarter t time coefficients which shift the hedonic surface during each quarter, α is a
constant term, γ and β are parameters which adjust the asset value for the size of the lot and
the floor space area respectively and δ is a parameter which adjusts the asset value for the age
of the structure (essentially a depreciation parameter). We expect β and γ to be positive and
δ to be negative. The time dummy variables associated with the αt and the constant term α
are linearly dependent and so we need to impose a normalization on the parameters in order
to identify the remaining parameters. We choose the following normalization:

α1 = 0. (21)

This normalization makes the overall commercial property price index equal to 1 in the first
period.
The ordinary least squares estimates for the 25 remaining parameters in Model 1 are listed
in Table 3 of the Appendix. For later reference, we note that the log likelihood for Model 1
was −583.955 and the R2 between the dependent variable and the corresponding predicted
variable was 0.6339. The estimated coefficients are listed in Table 3 of the Appendix. The
estimated coefficient associated with the log of land area was β = −0.1713 (which is the wrong
sign for this parameter) and with the log of the structure area was γ = 1.1264 and was highly
significant (t statistic equal to 25.9). The estimated age coefficient was δ = 0.0020, which is
also the wrong sign for this parameter (t statistic equal to 3.9). The results for Model 1 were
not very encouraging.
The overall commercial property price indexes for Model 1, P t

1 , are defined as the exponentials
of the estimated time coefficients αt:

P t
1 ≡ exp[αt]; t = 1, ..., 22. (22)

The resulting overall commercial property price indexes generated by Hedonic Model 1, the
P t

1 , are graphed in Figure 2 below and are listed in Table 5 of the Appendix. We will discuss
these estimated price indexes after we have presented the results for our second “traditional”
hedonic regression model.
Our second time dummy hedonic regression model is defined for t = 1, ..., 22 and n = 1, ..., 50
by the following equations which introduce a dummy variable ωn for each property n:

lnVtn = α + αt + β ln Ltn + γ lnStn + δAtn + ωn + εtn (23)

*28 This led to a better fitting regression model.
*29 The hedonic regression models defined by (20) and (23) can be set up as linear regression models by

defining suitable dummy variables for the αt and ωn parameters that appear in these equations.
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where α1, . . . , α22, ω1, . . . , ω50, α, β, γ and δ are 76 unknown parameters to be estimated and
the εtn are independently distributed normal error terms with mean 0 and constant variance.
The linear regression model defined by equations (23) is the same as the model defined by equa-
tions (20) except that we have now added 50 additional property dummy variables where ωn is
the parameter which shifts the hedonic surface when the dependent variable is the logarithm of
property value for property n. As before, the αt are the quarter t time coefficients which shift
the hedonic surface during each quarter, α is a constant term, γ and β are parameters which
adjust the asset value for the size of the lot and the floor space area respectively and δ is a
parameter which adjusts the asset value for the age of the structure (essentially a depreciation
parameter). However, not all parameters can be identified in this model. Since Ltn = Ln and
Stn = Sn (so that the floor area and land areas of each REIT in our sample are constant over
our sample period), it can be seen that the effects of the β lnLtn and γ lnStn terms in (23)
can be absorbed into the REIT specific parameters ωn. Thus we set β = γ = 0. As was the
case with (20), the dummy variables associated with the αt and the constant term α are also
linearly dependent, so as before, we set α1 = 0. However, the dummy variables associated
with α, α2, . . . , α22 when combined with the dummy variables associated with ω1, . . . , ω50 are
also linearly dependent so to eliminate this linear dependence, we set α = 0. Finally, it turns
out that the age variable Atn is also linearly dependent on the dummy variables associated
with α2, . . . , α22 and ω1, . . . , ω50. In order to eliminate this linear dependence in the regression
model, we could set δ = 0. However, if we replace Atn by the logarithm of Atn, this leads to a
regression model where all of the parameters are identified. Thus our second linear regression
model is the following one which has 72 independent parameters:*30

ln Vtn = αt + ωn + δ lnAtn + εtn; t = 1, ..., 22; n = 1, ..., 50. (24)

Equations (24) and (21) define Hedonic Model 2. The αt parameters explain how, on average,
the property values of the REIT sample shift over time and the REIT specific parameters, the
ωn, reflect the effect on REIT value of the size of the structure and the size of the land plot as
well as any locational characteristics that can be attributed to each REIT. The δ parameter
reflects the effects of aging of the structure on property value (we would expect this parameter
to be negative: the value of the structure should decline as it ages).*31

The ordinary least squares estimates for the 72 parameters in Model 2 are listed in Table 4 of
the Appendix. The log likelihood for Model 2 was 1687.33, a massive increase from the Model
1 log likelihood which was −583.955. The Model 2 R2 between the dependent variable and
the corresponding predicted variable was 0.9941, a big increase over the Model 1 R2 which
was 0.6339. The estimated coefficients for Model 2 have relatively small standard errors and
high T statistics. However the estimated age coefficient for this model was a huge δ = 0.2896
(with a standard error of 0.0476 and t statistic equal to 6.1), which is the wrong sign for this
parameter.
The overall commercial property price indexes for Model 2, P t

2 , were defined as the exponentials
of the estimated time coefficients αt:

P t
2 ≡ exp[αt]; t = 1, ..., 22. (25)

The P t
2 , are graphed in Figure 2 below and are listed in Table 5 of the Appendix.

*30 We still impose the normalization (21) on the parameters in (24); i.e., we set α1 = 1.
*31 The problem is that the parameter δ will be an imperfect indicator of the effects of structure aging, due

to the fact that the age variable (before transformation) will be subject to a multicollinearity problem in
our original specification. We attempt to solve this problem by taking a nonlinear transform of the age
variable in order to negate the exact multicollinearity but this solution does not really solve the problem.
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Figure 2 Accounting Price Index P , Asset Value Price Index PA and Hedonic Price
Indexes P1, P2 and P3

From viewing Figure 2, it can be seen that our accounting based overall commercial property
price index, P t, shows the least amount of deflation over the sample period, ending up at an
index value of 0.9027. The simple asset value price index, P t

A, lies below P t, ending up at
0.8798. Our first traditional log value hedonic regression model generated the index P t

1 which
ended up at 0.8382 while the second model P t

2 ended up even lower at 0.8066. These large
downward biases for Models 1 and 2 are due to the fact that the estimated coefficient δ for the
age variable was positive in both regressions rather than the expected negative coefficients;
i.e., as the structure ages, other factors held constant, we would expect asset value to fall.
Thus Models 1 and 2 fail for our particular application.
It is of interest to rerun Model 2 after setting the age parameter δ equal to 0, which results in
Model 3. It turns out that Model 3 is identical to the Country Product Dummy regression model
that was originally introduced by Summers (1973)[34] in the context of making international
comparisons between countries.*32 The R2 for Model 3 turned out to be 0.9939 and the
log likelihood was 1667.89, a drop of about 20 from the previous Model 2. We constructed
the resulting Commercial Property Price index P t

3 in the usual way (use the counterparts
to equations (23) above).*33 The index values for P t

3 are listed in Table 5 and the series is
graphed on Figure 2 above. It can be seen that P t

3 is virtually identical to the asset value
series P t

A. This is perhaps not too surprising since the two indexes simply aggregate up the
individual REIT asset prices into an overall price index; the form of aggregation is somewhat
different but the basic ingredients are the same. Of course, the problem with both P t

A and
P t

3 is that they make no allowance for structure depreciation (or for capital expenditures) and

*32 In the original Country Product Dummy (CPD) model, the two categories were countries and commodi-
ties. In our present context, the two categories are REITs and time. In the time series context, the CPD
model also has an application as the Time Product Dummy (TPD) model.

*33 We did not list the coefficient estimates in the Appendix for Model 3.
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thus both of these indexes will generally have a downward bias relative to an index that takes
structure depreciation into account.
There are two major problems with traditional log value hedonic regression models applied to
property prices:

• These models often do not generate reasonable estimates for structure depreciation and
• These models essentially allow for only one factor that shifts the hedonic regression

surface over time (the αt) when in fact, there are generally two major shift factors:
the price of structures and the price of land. Unless these two price factors move in a
proportional manner over time, the usual hedonic approach will not generate accurate
overall price indexes.

In the following section, we will estimate two alternative hedonic regression models that will
address the above two difficulties.

6 The Builder’s Model Applied to Commercial Property Assessed

Values
The builder’s model for valuing a residential property postulates that the value of a residential
property is the sum of two components: the value of the land which the structure sits on plus
the value of the residential structure.*34

In order to justify the model, consider a property developer n who builds a structure on a
particular property that is ready for commercial use at the beginning of quarter t. The total
cost of the property after the structure is completed will be equal to the floor space area of
the structure, say Stn square meters, times the building cost per square meter, βt say, plus
the cost of the land, which will be equal to the land cost per square meter, γtn say, times the
area of the land site, Ltn. Thus if REIT n has a new structure on it at the start of quarter
t, the value of the property, Vtn, should be equal to the sum of the structure and land value,
βtStn + γtnLtn.*35 Note that as in section 3 above, we assume that the building cost price
βt depends on time only and not on the location of the building. On the other hand, the
property prices γtn will generally depend on both the time period t and the location of the
property which is indexed by n.
The above model applies to new structures. But it is likely that a similar model applies to
older structures as well. Older structures will be worth less than newer structures due to the
depreciation of the structure. Assuming that we have information on the age of the structure
n at time t, say Atn ≡ A(t, n) and assuming a geometric depreciation model, a more realistic

*34 This model has been applied to residential property sales by de Haan and Diewert (2011)[8], Diewert,
de Haan and Hendriks (2011a)[13] (2011b)[14] and Diewert and Shimizu (2013)[15] except that straight
line or piece-wise linear depreciation was used as the depreciation model for the structure whereas in
the present paper, we will use geometric depreciation models. In the following section, we will estimate
a more complex geometric depreciation model where the depreciation rates change as the building ages.
Geometric depreciation models have the advantage that the implied structure asset values that the models
generate always remain positive whereas piece-wise linear depreciation models can generate negative asset
values.

*35 Other papers that have suggested hedonic regression models that lead to additive decompositions of
property values into land and structure components include Clapp (1980)[3], Francke and Vos (2004)[18],
Gyourko and Saiz (2004)[20], Bostic, Longhofer and Redfearn (2007)[2], Davis and Heathcote (2007)[7],
Francke (2008)[17], Koev and Santos Silva (2008)[25], Statistics Portugal (2009)[33], Diewert (2010)[10]
(2011)[11] and Rambaldi, McAllister, Collins and Fletcher (2010)[28].
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hedonic regression model is the following basic builder’s model :

Vtn = βtStn[eφ]A(t,n) + γtnLtn + εtn; t = 1, ..., 22; n = 1, ..., 50 (26)

where the parameter eφ is defined to be 1 − δ and δ in turn is defined as the quarterly
depreciation rate for the structure.*36 Note that (26) is now a nonlinear regression model
(whereas all of the regression models in the previous section were linear in the unknown
parameters).*37 There are two problems with the model defined by (26):

• We have only 22 times 50 observations (1100 observations in all) on V but there are
1100 land price parameters γtn to be estimated;

• The above model does not take into account the capital expenditures that were made
in order to improve the structure after its initial construction.

We deal with the second problem by subtracting our section 3 estimated period t capitalized
value of capital expenditures estimate VCEtn from total asset value Vtn in order to obtain a
new dependent variable. Then we will use a hedonic regression to decompose Vtn − VCEtn

into structure and land components. We deal with the first problem by applying the Country
Product Dummy methodology to the land component on the right hand side of equations (26)
above; i.e., we set

γtn = αtωn; t = 1, ..., 22; n = 1, ..., 50. (27)

We also set the new structure prices for each quarter t, βt, equal to a single price of structure
in quarter 1, say β, times our official construction cost index P t

S described in earlier sections.
Thus we have:

βt = βP t
S ; t = 1, ..., 22. (28)

Replacing Vtn by Vtn − VCEtn and substituting (27) and (28) into equations leads to the
following nonlinear regression model:

Vtn − VCEtn = βP t
SStn[eφ]A(t,n) + αtωnLtn + εtn; t = 1, ..., 22; n = 1, ..., 50. (29)

This nonlinear regression has one unknown structure price β, one unknown φ (where δ = 1−eφ

and δ is the quarterly geometric depreciation rate), 22 unknown αt (the overall land price series
for our sample) and 50 unknown ωn (which reflect the relative discount or premium in the
land price for REIT n relative to other REITs). This is a total of 74 parameters but not all
of the αt and ωn can be identified so we impose the normalization (21), α1 = 1. Thus there
are 73 independent parameters to be estimated with 1100 degrees of freedom.
Shazam had no trouble estimating the unknown parameters.*38 At first glance, the results
appeared to be satisfactory. The R2 between the observed variable and the predicted variable
turned out to be 0.9943 and the log likelihood was −7658.84. The estimated φ parameter
turned out to be −0.00454 and the corresponding quarterly depreciation rate was 0.00453,
which is very close to our assumed rate of 0.005 that was used in section 3. The land price
series (the estimated αt ended up at α22 = 0.8754) turned out to be very similar to our
accounting generated land price series P t

L listed in Table 2 (which ended up at P 22
L = 0.8752).

*36 Note that δ = 1 − eφ.
*37 We used the nonlinear option in Shazam to estimate the nonlinear regressions in this section and the

OLS option to estimate the linear regressions in the previous section; see White (2004)[36].
*38 It was necessary to define two sets of dummy variables (one set of dummy variables for the time periods

and one set for the REITs) and then interact these dummy variables in order to set up the nonlinear
regression. This was a straightforward exercise.
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However, the estimated β coefficient turned out to be 0.1524, which is far below our estimated
cost of construction for the first period in our sample which is around 0.3.
Thus we decided to set β equal to 0.3 and rerun the nonlinear regression model defined by
equations (29) (and α1 = 1). Call the resulting hedonic regression model, Model 4. The R2

between the observed variable and the predicted variable for this model turned out to be 0.9943
and the log likelihood was −7659.58, a very small drop in log likelihood of about 1.2 points
due to the fact that we now set β = 0.3 rather than estimate it as in the previous regression.
Thus the cost in terms of fit and log likelihood of imposing this parameter constraint appears
to be small. The estimated φ parameter turned out to be −0.00515 and the corresponding
quarterly depreciation rate was 0.00514, which is very close to our assumed rate of 0.005 that
was used in section 3. The land price series for Model 4 is denoted by P t

L4 ≡ α∗
t and it is

graphed in Figure 4 below and listed in Table 5 in the Appendix. The Model 4 land prices
turned out to be very similar to our accounting generated land price series P t

L listed in Table
2.
We need to explain how our new land price series P t

L4 can be combined with our structures
(and capital expenditures) price series P t

S . Denote the estimated Model 4 parameters as
β∗, α∗

1 ≡ 1, α∗
2, . . . , α

∗
22, φ

∗ and ω∗
1 , . . . , ω∗

50. We can break up the fitted value on the right
hand side of equation (29) for observation tn into a fitted structures component, V ∗

S4tn, and a
fitted land component, V ∗

L4tn, for n = 1, ..., 50 and t = 1, ..., 22 as follows:

V ∗
S4tn ≡ β∗P t

SStn[eφ∗
]A(t,n); (30)

V ∗
L4tn ≡ α∗

t ω
∗
nLtn. (31)

Now form structures and capital expenditures aggregate (over all REITS), V ∗
S4t, by adding up

the fitted structure values V ∗
S4tn defined by (30) and the capital expenditures capital stocks

VCEtn that were defined by equations (10) in section 4 for each quarter:

V ∗
S4t ≡

50∑
n=1

[V ∗
S4tn + VCEtn] ; t = 1, ..., 22. (32)

In a similar fashion, form a land value aggregate (over all REITS), V ∗
L4t, by adding up the

fitted land values V ∗
L4tn defined by (31) for each quarter t:

V ∗
L4t ≡

50∑
n=1

V ∗
L4tn; t = 1, ..., 22. (33)

Now define the period t aggregate structure (including capital expenditures) quantity or vol-
ume, Q∗

S4t, by (34) and the period t aggregate land quantity or volume, Q∗
L4t, by (35):

Q∗
S4t ≡

V ∗
S4t

P t
S

; t = 1, ..., 22; (34)

Q∗
L4t ≡

V ∗
L4t

P t
L4

; t = 1, ..., 22. (35)

Thus for each period t, we have 2 prices, P t
S and P t

L4, and the corresponding 2 quantities,
Q∗

S4t and Q∗
L4t. We form an overall commercial property price index, P t

4 , by calculating the
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chained Fisher price index of these two price components.*39 This overall index P t
4 is graphed

in Figure 3 below along with our accounting method overall index P t and the asset value price
index, P t

A.

Figure 3 Accounting Method Price Index P , Asset Value Index PA, Builder’s Model
Price Indexes P4 and P5

From Figure 3, it can be seen that our accounting method overall commercial property price
index series, P t, is extremely close to the builder’s model hedonic regression approach index
P t

4 that was just explained in this section. The geometric depreciation rate for capital expen-
ditures is exactly the same (10% per quarter by assumption) in both models and the geometric
depreciation rates for the main structure are almost identical in both models but the method
of land price aggregation is different in the two approaches so the close correspondence be-
tween the two methods is a bit surprising. The asset value price index, P t

A, lies well below P t

and P t
4 and the price index P t

5 lies a bit above P t and P t
4 . The index P t

5 will be explained in
the following section.

*39 Our method for aggregating over REITs can be viewed as an application of Hicks’ Aggregation Theorem;
i.e., if the prices in a group of commodities vary in strict proportion over time, then the factor of
proportionality can be taken as the price of the group and the deflated group expenditures will obey the
usual properties of a microeconomic commodity. “Thus we have demonstrated mathematically the very
important principle, used extensively in the text, that if the prices of a group of goods change in the
same proportion, that group of goods behaves just as if it were a single commodity.” J.R. Hicks (1946;
312-313)[21]. Our REIT structure (and capital expenditure) prices move in a proportional manner over
time for all REITs, where each REITs’ structure prices are proportional to the exogenous construction
price index. Our REIT land prices also move in a manner that is proportional to the movements in the
αt because we have forced this movement by our choice of functional form in the regression model.
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7 The Builder’s Model with Geometric Depreciation Rates that

Depend on the Age of the Structure
The age of the structures in our sample of Tokyo commercial office buildings ranges from about
4 years to 40 years. One might question whether the quarterly geometric depreciation rate does
not change as the structure on the property ages. Thus in this section, we experimented with
a model that allowed for different rates of geometric depreciation every 10 years. However, we
found that there were not enough observations of “young” buildings to accurately determine
separate depreciation rates for the first and second age groups so we divided observations up
into three groups where the change in the depreciation rates occurred at ages (in quarters)
80 and 120, observations where the building was 0 to 80 quarters old, 80 to 120 quarters
old and over 120 quarters old. Thus we found that 550 observations fell into the interval
0 ≤ Atn < 80, 424 observations fell into the interval 80 ≤ Atn < 120 and 126 observations fell
into the interval 120 ≤ Atn ≤ 160. We label the three sets of observations that fall into the
above three groups as groups 1-3. For each observation n in period t, we define the three age
dummy variables, Dtnm, for m = 1, 2, 3 as follows:*40

Dtnm ≡ 1 if observation tn has a building whose age belongs to group m;

≡ 0 if observation tn has a building whose age is not in group m. (36)

These dummy variables are used in the definition of the following function of age Atn, g(Atn),
defined as follows where the break points, A1 and A2, are defined as A1 ≡ 80 and A2 ≡ 120:

g(Atn) ≡ exp {Dtn1φ1Atn + Dtn2 [φ1A1 + φ2(Atn − A1)]

+Dtn3 [φ1A1 + φ2(A2 − A1) + φ3(Atn − A2)]} (37)

where φ1, φ2 and φ3 are parameters to be estimated. As in the previous section, each φi can
be converted into a depreciation rate δi where the δi are defined as follows:

δi ≡ 1 − exp[φi]; i = 1, 2, 3. (38)

Note that the logarithm of g(A) is a piecewise linear function of the variable A. The economic
meaning of all of this is as follows: first the first 80 quarters of a building’s life, the constant
price quantity of the structure declines at the quarterly geometric rate (1− δ1). Then for the
next 40 quarters, the quarterly geometric rate of depreciation switches to (1 − δ2). Finally
after 120 quarters, the quarterly geometric rate of depreciation switches to (1 − δ3).
Now we are ready to define our new nonlinear regression model that generalizes the model
defined by (29) and (21) in the previous section. Model 5 is the following nonlinear regression
model:

Vtn − VCEtn = βP t
SStng(Atn) + αtωnLtn + εtn; t = 1, ..., 22; n = 1, ..., 50 (39)

where g(Atn) is defined by (37). This nonlinear regression has one unknown structure price
β, 3 unknown φi (where δi = 1− exp[φi] and δi is a quarterly geometric depreciation rate), 22
unknown αt (the overall land price series for our sample) and 50 unknown ωn (which reflect

*40 Note that for each observation, the Age dummy variables sum to one; i.e., for each tn, Dtn1 + Dtn2 +
Dtn3 = 1.
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the relative discount or premium in the land price for REIT n relative to other REITs). This
is a total of 76 parameters but not all of the αt and ωn can be identified so, as usual, we impose
the normalization (21), α1 = 1. Thus there are 75 independent parameters to be estimated
with 1100 degrees of freedom.
Again, Shazam had no trouble estimating the unknown parameters using the Nonlinear Re-
gression option. The R2 between the observed variable and the predicted variable turned
out to be 0.9946 and the log likelihood was −7633.63, which is a large increase in log likeli-
hood of 26 over Model 4 for the addition of two depreciation parameters and one structure
price parameter β that sets the level of structure prices in quarter 1. The estimated param-
eters are listed in Table 6 in the Appendix. The estimated φi parameters turned out to be
−0.00328,−0.00705 and −0.03623 and the corresponding quarterly depreciation rates turned
out to be δ1 = 0.00327, δ2 = 0.00702 and δ3 = 0.03558. Compare these rates to the single
quarterly geometric depreciation rate from Model 4, which was 0.00514. Thus the new results
indicate that the quarterly depreciation rate is around 0.33% for the first 20 years of building
life, increasing to 0.70% for the next 10 years and then finishing its useful life with a 3.6%
per quarter depreciation rate. The estimated β turned out to be 0.2963 which is very close
to the assumed rate of 0.3 that we have used in earlier sections of this paper. The land price
series for Model 5 is denoted by P t

L5 ≡ α∗
t and it is graphed in Figure 4 below and listed in

Table 5 in the Appendix. It can be seen that the new land price series P t
L5 lies a bit above the

accounting land price index P t
L and the previous builder’s model land price index P t

L4 that
was described in the previous section.

Figure 4 Accounting Method Price of Land PL, Hedonic Regression Price Indexes for
Land PL4 and PL5

Finally, we can carry out the same procedure that was used in the previous section to generate
an overall commercial property price index series, P t

5 , using the fitted values that are generated
by Model 5. The series P t

5 are listed in Table 5 of the Appendix and are graphed in Figure
3 in the previous section. It can be seen that P t

5 lies slightly above P t
4 and our accounting
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method index P t.

8 Estimating Demolition or Obsolescence Depreciation
The models that were described in the previous two sections are useful for national income
accountants because they facilitate the accurate estimation of structure depreciation, which
is required for the national accounts. The depreciation estimates that are generated by our
models are wear and tear depreciation estimates that apply to structures that continue in
existence over the sample period. However, there is another form of structure depreciation
that we have not estimated; namely the loss of residual structure value that results from the
early demolition of the structure. This problem was noticed and addressed by Hulten and
Wykoff (1981)[22]*41 but we will propose a somewhat different solution to the problem.
Our suggested solution to the problem of measuring the effects of the early retirement of a
building will draw on the framework suggested by Komatsu, Kato and Yashiro (1994)[26].
Their method requires the existence of data on the date of construction and the date of
retirement of each building in the class of buildings under consideration and for the region
that is in scope.*42 Komatsu, Kato and Yashiro collected date of construction and date of
retirement data for reinforced concrete office buildings in Japan for the reference year 1987.
Thus for each age of building s (in years), they were able to calculate the number of office
buildings of age s (in years), Ns, as of January 1, 1987 along with the number of office buildings
of age s, ns, that were demolished in 1987 for ages s = 1, 2, ..., 75. Given this information,
they were able to calculate the conditional probability, ρs, that a surviving structure of age s
at the beginning of the year would be demolished during 1987; i.e., they defined ρs as follows:

ρs ≡ ns

Ns
; s = 1, ..., 75. (40)

Under the assumption that the conditional probabilities defined by (40) have persisted through
time, KKY defined the unconditional probability πs that a building of age s is still in existence
at the beginning of the year 1987 as follows:

π0 ≡ 1; πs ≡ πs−1(1 − ρs); s = 1, ..., 75. (41)

It can be seen that the series πs are a building counterpart to life expectancy tables; i.e., the
births and deaths of a population of buildings are used to construct the probability of building
survival as a function of age instead of the probability of individual survival as a function of
age.
Using the Japanese data for the πs for 1987 that is on Figure 7 in Komatsu, Kato and
Yashiro (1994; 8)[26], we were able to construct (slightly smoothed) numerical estimates for
their estimated survival probabilities, πs. Once the probabilities of survival πs have been
determined, then the conditional probabilities of demolition ρs can be determined from the

*41 “Any analysis based only on survivors will therefore tend to overstate both the value and productivity of
estimated capital stocks.” Charles Hulten and Frank Wykoff (1981; 377)[22]. Wear and tear depreciation
is often called deterioration depreciation and demolition or early retirement depreciation is sometimes
called obsolescence depreciation. Crosby, Devaney and Law (2012; 230)[6] distinguish the two types of
depreciation and in addition, they provide a comprehensive survey of the depreciation literature as it
applies to commercial properties.

*42 Usually, land registry offices and/or municipal authorities issue building permits for the construction of
new buildings and demolishment permits for the tearing down of buildings. It may be difficult to classify
buildings into the desired economic categories.
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πs using equations (41) above.*43 The resulting estimates for πs and ρs are listed in Table 7
in the Appendix. See Figure 5 below for plots of these series.

Figure 5 Unconditional Probabilities of Building Survival and Conditional Probabili-
ties of Demolition

Note that as could be expected, the conditional probabilities of demolition are very small for
the first 20 years or so of building life. From 20 to 42 years, these probabilities gradually
increase from 1.4% to about 11% and then the probabilities fluctuate around the 10% level
from age 43 to 67. Finally, after age 67, the conditional probabilities of demolition increase
rapidly to end up close to unity at age 75.
It is likely that the underlying probabilities of demolition are smoother than the ρs exhibited
in Figure 5. Thus a closer approximation to these underlying probabilities could be obtained
by smoothing the above estimates.*44 However, for our purposes in this section, the data
listed in Table 7 in the Appendix and graphed above will suffice.
Recall that the wear and tear structure geometric depreciation rate that we estimated for our
sample of continuing structures in section 6 above was about 0.5% per quarter. We want to
form a rough idea of the possible magnitude of demolition depreciation using the information
in Table 7. This component of depreciation is not included in our estimate of wear and tear
depreciation.
Suppose that the annual wear and tear geometric depreciation rate is 2% so that we define
δ ≡ 0.02. Suppose further that investment in Tokyo office buildings has been constant for 75
years. We will normalize the annual structure investment to equal unity in constant yen units.
Finally, suppose that the survival probabilities πs listed in Table 7 apply to our hypothetical

*43 Define ρ0 ≡ 0.
*44 Recall that Komatsu, Kato and Yashiro carried out their life table estimation exercise for the year 1987.

Ideally, the national statistical agency could carry out a similar exercise every year. Then the panel of life
tables could be smoothed, leading to more accurate estimates for the underlying conditional probabilities.
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investment data. Thus after 75 years of steady investment, the constant yen value of the
Tokyo commercial office building stock can be K defined as follows:

K ≡ π0 + π1(1 − δ) + π2(1 − δ)2 + · · · + π75(1 − δ)75. (42)

The corresponding real value of wear and tear depreciation ∆ is defined as follows:

∆ ≡ δπ0 + δπ1(1 − δ) + δπ2(1 − δ)2 + · · · + δπ75(1 − δ)75 = δK. (43)

The corresponding amount of demolition depreciation D is defined as each component of the
surviving capital stock on the right hand side of equation (42), πs(1 − δ)s, multiplied by the
corresponding conditional probability of demolition, ρs; i.e., define D as follows:

D ≡ ρ0π0 + ρ1π1(1 − δ) + ρ2π2(1 − δ)2 + · · · + ρ75π75(1 − δ)75. (44)

Once the surviving capital stock K, the amounts of wear and tear depreciation ∆ and demoli-
tion depreciation D have been defined, the average wear and tear depreciation and demolition
depreciation rates, δ and d, are defined as the following ratios:

δ ≡ ∆
K

; d =
D

K
. (45)

Of course, our assumed annual wear and tear depreciation rate of 2% turns out to equal the
average wear and tear depreciation rate defined in (45) and the average demolition depreciation
rate d turned out to equal 0.01795. Thus for the depreciation model considered in section 6
above, it is likely that demolition depreciation is almost equal to wear and tear depreciation.
Note that the sum of the two depreciation rates is approximately 3.8% per year.*45

A similar set of calculations can be carried out for the more complex depreciation model
defined in section 7 above. Recall that our three quarterly geometric depreciation rates were
estimated as follows:

δ∗1 ≡ 0.00327; δ∗2 ≡ 0.00702; δ∗3 ≡ 0.03558. (46)

We need to convert these quarterly depreciation rates into annual rates. Define φ∗
i ≡ 1 − δ∗i

for i = 1, 2, 3. Define φi ≡ [φ∗
i ]

4 and δi ≡ 1 − φi for i = 1, 2, 3. The δi turned out to be the
following numbers:

δ1 ≡ 0.01302; δ2 ≡ 0.02779; δ3 ≡ 0.13490. (47)

The geometric depreciation rates δi defined by (47) are the annualized counterparts to the
quarterly rates defined by (46). Thus for the first 20 years of building life, annual wear and
tear geometric depreciation is about 1.3% per year, about 2.8% per year for the next 10 years
and about 13.5% per year for the remaining life of the building.
A hypothetical capital stock component that is s years old (adjusted for wear and tear de-
preciation), Ks, is defined as follows: K0 ≡ 1; Ks ≡ (1 − δ1)Ks−1 for s = 1, 2, ..., 19;
Ks ≡ (1 − δ2)Ks−1 for s = 20, 21, ..., 29 and Ks ≡ (1 − δ3)Ks−1 for s = 30, 31, ..., 75. The

*45 Our method for adjusting wear and tear depreciation rates for the early retirement of assets is similar
to the method suggested by Hulten and Wykoff. The main difference between our suggested method
and their method is that we use a building life table to form estimates of building survivor probabilities
whereas Hulten and Wykoff used somewhat arbitrary assumptions to form their estimates of survivor
probabilities: “Our survivor probabilities are based upon the set of retirement distributions developed
by Winfrey (1935)[37].”

22



aggregate constant yen capital stock (adjusted for survival and wear and tear depreciation),
K, is defined as follows:

K ≡ π0K0 + π1K1 + π2K2 + · · · + π75K75. (48)

Aggregate wear and tear constant yen depreciation, ∆, is defined as follows:

∆ ≡ δ1

19∑
s=0

πsKs + δ2

29∑
s=20

πsKs + δ3

75∑
s=30

πsKs. (49)

Finally, aggregate demolition depreciation D is defined as follows:

D ≡
75∑

s=0

ρsπsKs. (50)

Once the surviving capital stock K, the amounts of wear and tear depreciation ∆ and demoli-
tion depreciation D have been defined, the average wear and tear depreciation and demolition
depreciation rates, δ and d, can again be defined by equations (45).
The annual wear and tear depreciation rate δ for our new model turned out to equal 0.02563
and the average demolition depreciation rate d turned out to equal 0.01234. Thus for the de-
preciation model considered in section 7 above, the “traditional” wear and tear depreciation
rate is approximately 2.6% per year under our stationary state assumptions on building in-
vestment and the corresponding demolition depreciation rate is approximately 1.2% per year.
Note that the sum of the two depreciation rates is approximately 3.8% per year, which is the
same “total” depreciation rate that was generated by our section 6 model for wear and tear
depreciation.*46

Our estimated demolition depreciation rates are only rough approximations to actual de-
molition depreciation rates. The actual rates of demolition depreciation depend on actual
investments in commercial property office buildings in Tokyo for the past 75 years and this
information is not available to us. However, the above calculations indicate that accounting for
premature retirements of buildings adds significantly to the wear and tear depreciation rates
that are estimated using hedonic regressions on continuing buildings. Thus it is important
that national statistical agencies construct a data base for building births and retirements so
that depreciation rates for buildings that are not retired can be adjusted to reflect the loss of
building asset value that is due to premature retirement.
The analysis presented in this section does not invalidate our earlier analysis of alternative
methods for constructing constant quality price indexes for commercial properties, since price
indexes compare like to like and thus apply only to continuing structures. However, as a by
product of our hedonic regressions in sections 6 and 7, we were able to form estimates of wear
and tear depreciation for buildings that remained in use. The analysis in this section simply
warns the reader that wear and tear depreciation*47 is not the entire story: there is also a loss
of asset value that results from the early retirement of a building that needs to be taken into
account when constructing national income accounting estimates of depreciation.

*46 For comparison purposes, Hulten and Wykoff (1981; 387)[22] found that their best fitting geometric
model of depreciation for office buildings in the U.S. generated an estimated annual rate of 2.47%. This
estimate includes early retirement or demolition depreciation and so is comparable to our rough estimate
of 3.8% for Tokyo office buildings.

*47 What we have labeled as wear and tear depreciation could be better described as anticipated amortization
of the structure rather than wear and tear depreciation. Once a structure is built, it becomes a fixed asset
which cannot be transferred to alternative uses (like a truck or machine). Thus amortization of the cost
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9 Conclusion
Some conclusions that we can draw from the paper are as follows:

• The traditional time dummy approach to hedonic property price regressions does not
always work well. The basic problem is that there are two main drivers of property
prices over time: changes in the price of land and changes in the price of structures.
The hedonic time dummy method allows for only one shifter of the hedonic surface
when in fact there are at least two major shifters. Moreover, the traditional approach
does not lead to sensible decompositions of overall price change into land and structure
component changes.

• The simple asset value price index suggested in section 3 seemed to work better than
indexes based on the traditional time dummy hedonic regression approach.

• The accounting method for constructing land, structure and overall property price in-
dexes that was described in section 4 turned out to generate price indexes that were
pretty close to the hedonic indexes based on the builder’s model that were developed in
sections 6 and 7.

• The methods suggested in sections 4, 6, 7 and 8 are practical and could be used by
statistical agencies to improve their balance sheet estimates for commercial properties
and their estimates of depreciation.

However, there are many additional avenues that could be explored.

• We experimented with capitalizing REIT Net Operating Income into capital stock in-
dexes but the volatility in REIT cash flows presents practical problems in implementing
this method. Even after smoothing cash flows, we could not generate sensible capital
stock estimates with our data set.

• We also tried to use an econometric model to determine what an appropriate quarterly
depreciation rate for capital expenditures should be but we found that the likelihood
function was very flat over a very large range of depreciation rates so we simply settled
on a quarterly rate of 10% without completely convincing evidence to back up this rate.

• The depreciation rates that we estimate in sections 6 and 7 understate the actual amount
of structure depreciation that takes place. Our approach is fine as far as it goes but it
applies only to continuing structures. Unfortunately, structures are not all demolished
at the same age: many structures still generate cash flow but yet they are demolished
before their initial cost of construction is fully amortized. We take this effect into
account in section 8 and generate estimates of demolition (or premature retirement or
obsolescence) depreciation.

Our overall conclusion is that constructing usable commercial property price indexes is a very
challenging task; a much more difficult task than the construction of residential property price
indexes.

of the structure should be proportional to the cash flows that the building generates over its expected
lifetime. The pattern of cash flows generated by a commercial property can be quite volatile but market
based assessed values should be able to forecast these cash flows to some degree. However, technical
progress, obsolescence or unanticipated market developments can cause the building to be demolished
before it is fully amortized. See Diewert and Fox (2014)[12] for a more complete discussion of the fixity
problem.
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Table. 3 Estimated Coefficients for Model 1

Name Est Coef T Stat Name Est Coef T Stat

α −0.2726 −1.2710 α14 −0.09780 −1.171
α2 0.0190 0.2281 α15 −0.1098 −1.314
α3 0.0371 0.4459 α16 −0.1205 −1.441
α4 0.0510 0.6126 α17 −0.1270 −1.519
α5 0.0624 0.7497 α18 −0.1337 −1.597
α6 0.0689 0.8276 α19 −0.1414 −1.689
α7 0.0672 0.8072 α20 −0.1521 −1.814
α8 0.0581 0.6976 α21 −0.1649 −1.966
α9 0.0308 0.3701 α22 −0.1765 −2.103
α10 −0.0085 −0.1018 β −0.1713 −4.338
α11 −0.0427 −0.5120 γ 1.1264 25.930
α12 −0.0664 −0.7953 δ 0.0020 3.941
α13 −0.0836 −1.0020

Table. 4 Estimated Coefficients for Model 2

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

δ 0.2896 6.082 ω3 7.3748 37.90 ω27 8.0236 40.40
α2 0.0165 1.524 ω4 7.7596 37.61 ω28 6.6051 31.46
α3 0.0322 2.956 ω5 7.8609 39.33 ω29 7.8269 36.00
α4 0.0438 3.973 ω6 7.4669 38.65 ω30 6.8843 33.74
α5 0.0529 4.737 ω7 7.4183 38.40 ω31 5.8602 29.60
α6 0.0573 5.035 ω8 8.0808 39.60 ω32 6.0074 27.26
α7 0.0535 4.608 ω9 7.4382 35.60 ω33 6.2018 31.43
α8 0.0424 3.568 ω10 7.0035 31.61 ω34 6.6439 33.34
α9 0.0131 1.079 ω11 7.2203 37.96 ω35 6.2384 31.72
α10 −0.0281 −2.255 ω12 6.0359 29.83 ω36 6.7646 34.52
α11 −0.0642 −5.013 ω13 6.0571 31.02 ω37 6.1642 32.54
α12 −0.0896 −6.816 ω14 6.5959 29.56 ω38 6.4691 31.44
α13 −0.1086 −8.041 ω15 7.0383 36.04 ω39 7.4075 35.54
α14 −0.1241 −8.963 ω16 6.6352 32.99 ω40 6.6638 34.25
α15 −0.13802 −9.676 ω17 6.8393 34.66 ω41 6.7752 32.19
α16 −0.15027 −10.25 ω18 5.9573 28.73 ω42 7.4138 39.14
α17 −0.15833 −10.52 ω19 8.3453 54.31 ω43 6.4641 28.16
α18 −0.16647 −10.77 ω20 8.1428 54.23 ω44 7.0462 35.83
α19 −0.17561 −11.06 ω21 7.7022 38.66 ω45 7.0326 36.54
α20 −0.18764 −11.52 ω22 7.6575 39.08 ω46 6.2644 29.29
α21 −0.20182 −12.08 ω23 7.4996 36.35 ω47 7.0350 31.27
α22 −0.21488 −12.55 ω24 7.0084 34.15 ω48 6.6572 32.18
ω1 7.0285 34.07 ω25 8.2189 39.73 ω49 8.2911 35.91
ω2 7.6391 33.28 ω26 8.0236 40.40 ω50 8.2489 43.37
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Table. 6 Estimated Coefficients for Model 5

Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat

β 0.2963 3.889 ω22 2.680 8.955 ω47 3.179 12.167
φ1 −0.00328 −2.559 ω23 1.222 9.428 ω48 7.608 40.656
φ2 −0.00705 −3.773 ω24 3.499 13.005 ω49 2.205 7.893
φ3 −0.03623 −3.923 ω25 18.17 43.141 ω50 3.910 13.640
ω1 1.708 3.851 ω26 3.520 13.513 α2 1.0273 94.363
ω2 4.791 22.480 ω27 3.571 14.261 α3 1.0473 95.380
ω3 2.387 7.200 ω28 7.422 35.534 α4 1.0711 93.637
ω4 1.934 9.490 ω29 3.424 12.843 α5 1.0937 90.191
ω5 3.029 10.706 ω30 1.395 5.775 α6 1.1045 89.152
ω6 3.511 8.808 ω31 1.682 9.379 α7 1.0908 94.379
ω7 4.245 10.747 ω32 3.514 9.509 α8 1.0775 95.514
ω8 5.710 31.715 ω33 1.914 6.677 α9 1.0484 94.111
ω9 4.261 21.745 ω34 3.873 9.657 α10 1.0103 92.033
ω10 2.173 32.331 ω35 3.830 12.783 α11 0.9792 90.516
ω11 2.825 13.940 ω36 1.628 6.578 α12 0.9545 90.552
ω12 1.650 5.024 ω37 2.736 9.251 α13 0.9415 89.175
ω13 0.3942 1.832 ω38 5.724 17.738 α14 0.9348 86.293
ω14 4.878 19.939 ω39 0.7083 2.836 α15 0.9238 86.733
ω15 3.150 12.429 ω40 3.258 14.320 α16 0.9199 85.759
ω16 1.747 13.458 ω41 6.468 13.977 α17 0.9177 83.972
ω17 0.928 6.371 ω42 3.561 20.078 α18 0.9111 83.358
ω18 1.993 7.877 ω43 0.9705 5.984 α19 0.9076 82.737
ω19 10.316 18.279 ω44 1.594 6.319 α20 0.9066 80.694
ω20 4.281 9.534 ω45 4.539 15.388 α21 0.8968 79.997
ω21 15.410 40.295 ω46 7.338 29.390 α22 0.8841 79.780

31



T
a
b
le

.
7

U
n
co

n
d
it

io
n
a
l
P

ro
b
a
b
il
it

ie
s

o
f
B

u
il
d
in

g
S
u
rv

iv
a
l
π

s
a
n
d

C
o
n
d
it

io
n
a
l
P

ro
b
a
b
il
it

ie
s

o
f
D

em
o
li
ti

o
n

ρ
s

a
s

F
u
n
ct

io
n
s

o
f
A

g
e

s

A
g
e

s
π

s
ρ

s
A

g
e

s
π

s
ρ

s
A

g
e

s
π

s
ρ

s
A

g
e

s
π

s
ρ

s

0
1
.0

0
0
0

0
1
9

0
.9

1
0
.0

1
0
9

3
8

0
.4

4
0
0

0
.0

4
3
5

5
7

0
.1

1
5
8

0
.0

4
1
7

1
0
.9

9
9
0

0
.0

0
1
0

2
0

0
.8

9
7
1

0
.0

1
4
2

3
9

0
.4

1
9
9

0
.0

4
5
5

5
8

0
.1

1
0
7

0
.0

4
3
5

2
0
.9

9
8
0

0
.0

0
1
0

2
1

0
.8

7
9
9

0
.0

1
9
2

4
0

0
.3

9
3
9

0
.0

6
2
0

5
9

0
.1

0
5
7

0
.0

4
5
5

3
0
.9

9
7
0

0
.0

0
1
0

2
2

0
.8

5
9
9

0
.0

2
2
7

4
1

0
.3

5
9
2

0
.0

8
8
2

6
0

0
.0

9
9
2

0
.0

6
2
0

4
0
.9

9
6
0

0
.0

0
1
0

2
3

0
.8

3
9
9

0
.0

2
3
3

4
2

0
.3

1
9
0

0
.1

1
1
9

6
1

0
.0

9
0
4

0
.0

8
8
2

5
0
.9

9
4
7

0
.0

0
1
3

2
4

0
.8

1
9
9

0
.0

2
3
8

4
3

0
.2

7
8
7

0
.1

2
6
1

6
2

0
.0

8
0
3

0
.1

1
1
9

6
0
.9

9
3
0

0
.0

0
1
7

2
5

0
.7

9
9
9

0
.0

2
4
4

4
4

0
.2

3
8
4

0
.1

4
4
6

6
3

0
.0

7
0
2

0
.1

2
6
1

7
0
.9

9
1
0

0
.0

0
2
0

2
6

0
.7

7
9
9

0
.0

2
5
0

4
5

0
.2

1
0
3

0
.1

1
7
9

6
4

0
.0

6
0
0

0
.1

4
4
6

8
0
.9

8
9
0

0
.0

0
2
0

2
7

0
.7

5
9
9

0
.0

2
5
7

4
6

0
.1

9
7
3

0
.0

6
2
1

6
5

0
.0

5
1
6

0
.1

4
0
8

9
0
.9

8
7
0

0
.0

0
2
0

2
8

0
.7

3
9
9

0
.0

2
6
3

4
7

0
.1

9
3
3

0
.0

2
0
4

6
6

0
.0

4
5
3

0
.1

2
2
3

1
0

0
.9

8
3
6

0
.0

0
3
5

2
9

0
.7

1
9
9

0
.0

2
7
0

4
8

0
.1

8
9
2

0
.0

2
0
8

6
7

0
.0

4
0
2

0
.1

1
1
9

1
1

0
.9

7
8
0

0
.0

0
5
7

3
0

0
.6

9
4
0

0
.0

3
6
0

4
9

0
.1

8
5
2

0
.0

2
1
3

6
8

0
.0

3
5
1

0
.1

2
6
1

1
2

0
.9

7
1
0

0
.0

0
7
2

3
1

0
.6

5
9
5

0
.0

4
9
7

5
0

0
.1

7
9
1

0
.0

3
2
9

6
9

0
.0

3
0
1

0
.1

4
4
6

1
3

0
.9

6
4
0

0
.0

0
7
2

3
2

0
.6

1
9
4

0
.0

6
0
7

5
1

0
.1

7
0
0

0
.0

5
1
0

7
0

0
.0

2
5
0

0
.1

6
9
4

1
4

0
.9

5
7
0

0
.0

0
7
3

3
3

0
.5

7
9
4

0
.0

6
4
7

5
2

0
.1

5
8
9

0
.0

6
5
2

7
1

0
.0

1
9
9

0
.2

0
4
8

1
5

0
.9

4
9
1

0
.0

0
8
2

3
4

0
.5

3
9
3

0
.0

6
9
2

5
3

0
.1

4
7
8

0
.0

6
9
8

7
2

0
.0

1
4
7

0
.2

5
9
5

1
6

0
.9

4
0
0

0
.0

0
9
6

3
5

0
.5

0
5
4

0
.0

6
2
9

5
4

0
.1

3
6
7

0
.0

7
5
1

7
3

0
.0

0
9
4

0
.3

5
7
2

1
7

0
.9

3
0
0

0
.0

1
0
6

3
6

0
.4

8
0
0

0
.0

5
0
2

5
5

0
.1

2
7
5

0
.0

6
7
4

7
4

0
.0

0
3
8

0
.5

9
5
4

1
8

0
.9

2
0
0

0
.0

1
0
8

3
7

0
.4

6
0
0

0
.0

4
1
7

5
6

0
.1

2
0
8

0
.0

5
2
2

7
5

0
.0

0
0
2

0
.9

6
0
1

32


