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Abstract 
 
The paper uses hedonic regression techniques in order to decompose the price of a house 
into land and structure components using real estate sales data for Tokyo. In order to get 
sensible results, a nonlinear regression model using data that covered multiple time 
periods was used. Collinearity between the amount of land and structure in each 
residential property leads to inaccurate estimates for the land and structure value of a 
property. This collinearity problem was solved by using exogenous information on the 
rate of growth of construction costs in Tokyo in order to get useful constant quality 
subindexes for the price of land and structures separately. 
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1. Introduction 
 
In this paper, we will use hedonic regression techniques in order to construct a quarterly 
constant quality price index for the sales of residential properties in Tokyo for the years 
2000-2010 (44 quarters in all). The usual application of a time dummy hedonic regression 
model to sales of houses does not lead to a decomposition of the sale price into a 
structure component and a land component. But such a decomposition is required for 
many purposes. Our paper will attempt to use hedonic regression techniques in order to 
provide such a decomposition for Tokyo house prices. Instead of entering characteristics 
into our regressions in a linear fashion, we enter them as piece-wise linear functions or 
spline functions to achieve greater flexibility.  
 
The Tokyo house price data that we use will be described in section 2. 
 
In section 3, we will outline our basic (nonlinear) regression model which requires 
information on the selling price of the property V along with the following basic 
characteristics of the property: 
 

 The land area of the property (L);  
 The livable floor space area of the structure (S); 
 The age of the structure (A) and 
 The location of the property.  

 
Using only information on these 4 characteristics plus the use of an exogenous residential 
house construction price index for Tokyo, we are able to explain 0.8168 percent of the 
variation in the sales data. Our basic nonlinear regression model is a variant of the 
builder’s hedonic regression model introduced by Diewert, de Haan and Hendriks 
(2011a)(2011b). 
 
In section 4, we introduced some additional parameters into the model without requiring 
additional information on characteristics. Instead of assuming a single straight line 
depreciation rate for the structure, we allowed the depreciation rate to follow a piecewise 
linear structure. We also allowed the price of land per square meter for a property to 
follow a piecewise linear structure. For the addition of 4 parameters over the model in 
section 3, the R2 of our model increased from 0.8168 to 0.8206 and the log likelihood 
increased by 68.9. 
 
In sections 5 and 6, we used information on some additional characteristics of the 
properties sold in each quarter. In section 5, we utilized information on the number of 
bedrooms NB and the width of the lot W, adding an additional 6 parameters to our 
nonlinear regression model. The R2 of our new model increased from 0.8206 to 0.8256 
and the log likelihood increased by 78.7. In section 6, we utilized information on the time 
it takes to walk to the nearest subway TW and the time it takes to go from the nearest 
subway station to downtown Tokyo TT, adding an additional 6 parameters to our 
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regression model. The R2 of our new model increased from 0.8256 for the section 5 
model to 0.8417 and the log likelihood increased by a very large 269.4. 
 
In section 7, we divided the 22 wards in Tokyo that appear in our regression models into 
expensive wards and inexpensive wards and we allow the movements in the price of land 
to be different in these two classes of wards. This generalization of our earlier models 
added 45 parameters to be estimated. The R2 of our new model increased from 0.8417 for 
the section 6 model to 0.8476 and the log likelihood increased by 106.0. At this point, we 
stopped adding additional characteristics to our model and judged the section 7 model to 
be satisfactory. 
 
In section 8, we switch our attention from compiling land, structure and overall house 
price indexes for sales of residential properties to the problems associated with 
constructing the corresponding indexes for the stock of residential housing in Tokyo. We 
did not have access to information on the total stock of residential houses in Tokyo over 
time but we used the total number of houses transacted over our sample period as an 
approximation to the total stock. The resulting approximate stock prices for selected 
models are listed in this section. 
 
In section 9, we take the model explained in section 7 but estimate the parameters over a 
5 year rolling window period. We use the estimated indexes for the last two periods in 
each rolling window regression to update our previous index. The resulting index is 
meant to approximate a realistic house price index that could be implemented by a 
statistical agency. We find little differences between the resulting Rolling Window 
estimates and the estimates obtained in section 7.2    
 
In section 10, we compare our section 7 overall house price indexes that were constructed 
using our nonlinear hedonic regression with two typical time dummy hedonic regression 
that uses the log of selling prices as the dependent variable. This typical hedonic 
regression approach cannot be used to generate realistic prices of land and structures but 
the overall house price index generated by this typical approach can be compared with 
our overall house price index. We find that the general pattern between the three overall 
indexes is much the same but our section 7 time dummy index generates higher prices 
than the corresponding indexes generated by the time dummy approach.  
 
Section 11 concludes. 
      
2. The Tokyo Housing Data 
 
Our basic data set on V, L, S, A, the location of the property and some additional 
characteristics to be explained below was obtained from a weekly magazine, Shukan 
Jutaku Joho (Residential Information Weekly) published by Recruit Co., Ltd., one of the 
largest vendors of residential listings information in Japan. The Recruit dataset covers the 

                                                 
2 Rolling Window time dummy hedonic regressions were used by Shimizu, Nishimura and Watanabe 
(2010) and Shimizu, Takatsuji, Ono and Nishimura (2010). A special case of the Rolling Window 
methodology is the adjacent year time dummy hedonic regression introduced by Court (1939; 109-111).   
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23 special wards of Tokyo for the period 2000 to 2010, including the mini-bubble period 
in the middle of 2000s and its later collapse caused by the Great Recession. Shukan 
Jutaku Joho provides time series of housing prices from the week when it is first posted 
until the week it is removed due to its sale.3 We only use the price in the final week 
because this can be safely regarded as sufficiently close to the contract price.4 
 
There were a total of 5578 observations (after range deletions) in our sample of sales of 
single family houses in the Tokyo area over the 44 quarters covering 2000-2010.5 The 
definitions for the above variables and their units are as follows: 
 
V = The value of the sale of the house in 10,000,000 Yen; 
S = Structure area (floor space area) in units of 100 meters squared; 
L = Lot area in units of 100 meters squared; 
A = Approximate age of the structure in years; 
NB = Number of bedrooms; 
WI = Width of the lot in meters; 
TW = Walking time in minutes to the nearest subway station; 
TT = Subway running time in minutes to the Tokyo station from the nearest station 
         during the day (not early morning or night).   
 
The basic descriptive statistics for the above variables are listed in Table 1 below. 
 
Table 1: Descriptive Statistics for the Variables 
 
Name No. of Obs. Mean Std. Dev Minimum Maximum
V 5578 6.2310 2.95420 2.0500  20
S 5578 1.0961 0.36255 0.5012 2.4789
L 5578 1.0283 0.42538 0.5001 2.4977
A 5578 14.689 8.91460 2.0140 49.7230
NB 5578 3.9518 1.04090 2 8
WI 5578 4.6987 1.26090 2.5 9
TW 5578 9.9295 4.48510 2 29
TT 5578 31.677 7.55220 4 48

 
Thus over the sample period, the sample average sale price was approximately 62.3 
million Yen, the average structure space was 110 m2, the average lot size was 103 m2, the 
average age of the structure was 14.7 years, the average number of bedrooms in the 
houses that were sold was 3.95, the average lot width was 4.7 meters, the average 

                                                 
3 There are two reasons for the listing of a unit being removed from the magazine: a successful deal or a 
withdrawal (i.e. the seller gives up looking for a buyer and thus withdraws the listing). We were allowed 
access to information regarding which the two reasons applied for individual cases and we discarded those 
transactions where the seller withdrew the listing. 
4 Recruit Co., Ltd. provided us with information on contract prices for about 24 percent of all listings. 
Using this information, we were able to confirm that prices in the final week were almost always identical 
with the contract prices; see Shimizu, Nishimura and Watanabe (2012). 
5 We deleted 9.2 per cent of the observations because they fell outside our range limits for the variables V, 
L, S, A, NB and W. It is risky to estimate hedonic regression models over wide ranges when observations 
are sparse at the beginning and end of the range of each variable. The a priori range limits for these 
variables were as follows: 2  V  20; 0.5  S  2.5; 0.5  V  2.5; 1  A  50; ; 2  NB  8; 2.5  W  9.        
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walking time to the nearest subway station was 9.9 minutes and the average subway 
travelling time from the nearest station to the Tokyo Central station was 31.7 minutes.  
 
There were fairly high correlations between the V, S and L variables. The correlations of 
the selling price V with structure and lot area S and L were 0.689 and 0.660 respectively 
and the correlation between S and L was 0.668. Given the large amount of variability in 
the data and the relatively high correlations between V, S and L, we can expect 
multicollinearity problems in a simple linear regression of V on S and L.6  
 
In order to eliminate the multicollinearity problem between the lot size L and floor space 
area S for an individual house, we will assume that the value of a new structure in any 
quarter is proportional to a Construction Cost Price Index for Tokyo.7 
 
In addition to having the information listed in Table 1 on residential houses sold in Tokyo 
over 2000-2010, we also had the address for each transaction. We used this information 
in order to allocate each sale into one of 21 Wards for the Tokyo area. We constructed 
Ward dummy variables and made use of these variables in most of our regressions as 
locational explanatory variables.  
  
3. The Basic Builder’s Model with Locational Dummy Variables 
 
The builder’s model for valuing a residential property postulates that the value of a 
residential property is the sum of two components: the value of the land which the 
structure sits on plus the value of the residential structure. 
 
In order to justify the model, consider a property developer who builds a structure on a 
particular property. The total cost of the property after the structure is completed will be 
equal to the floor space area of the structure, say S square meters, times the building cost 
per square meter,  say, plus the cost of the land, which will be equal to the cost per 
square meter,  say, times the area of the land site, L. Now think of a sample of 
properties of the same general type, which have prices or values Vtn in period t8 and 
structure areas Stn and land areas Ltn for n = 1,...,N(t) where N(t) is the number of 
observations in period t. Assume that these prices are equal to the sum of the land and 
structure costs plus error terms tn which we assume are independently normally 
distributed with zero means and constant variances. This leads to the following hedonic 

                                                 
6 See Diewert, de Haan and Hendriks (2011a) (2011b) for evidence on this multicollinearity problem using 
Dutch data. 
7 This index was constructed by the Construction Price Research Association which is now an independent 
agency but prior to 2012 was part of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), a 
ministry of the Government of Japan. The quarterly values for this index are listed in Table A2 in the 
Appendix; see the listing for the variable PS1. The quarterly values were constructed from the Monthly 
Residential Construction Cost index for Tokyo.  
8 The period index t runs from 1 to 44 where period 1 corresponds to Q1 of 2000 and period 44 corresponds 
to Q4 of 2010. 
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regression model for period t where the t and t are the parameters to be estimated in the 
regression:9 
 
(1) Vtn = tLtn + tStn + tn ;                                                            t = 1,...,44; n = 1,...,N(t). 
 
Note that the two characteristics in our simple model are the quantities of land Ltn and the 
quantities of structure floor space Stn associated with property n in period t and the two 
constant quality prices in period t are the price of a square meter of land t and the price 
of a square meter of structure floor space t. Finally, note that separate linear regressions 
can be run of the form (1) for each period t in our sample. 
 
The hedonic regression model defined by (1) applies to new structures. But it is likely 
that a model that is similar to (1) applies to older structures as well. Older structures will 
be worth less than newer structures due to the depreciation of the structure. Assuming 
that we have information on the age of the structure n at time t, say Atn, and assuming  a 
straight line depreciation model, a more realistic hedonic regression model than that 
defined by (1) above is the following basic builder’s model:10 
 
(2) Vtn = t

 Ltn + t(1  tAtn)Stn + tn ;                                            t = 1,...,44; n = 1,...,N(t) 
  
where the parameter t reflects the net depreciation rate as the structure ages one 
additional period. Thus if the age of the structure is measured in years, we would expect 
an annual net depreciation rate to be between 0.25 and 2.5%.11 Note that (2) is now a 
nonlinear regression model whereas (1) was a simple linear regression model. Both 
models (1) and (2) can be run period by period; it is not necessary to run one big 
regression covering all time periods in the data sample. The period t price of land will the 
estimated coefficient for the parameter t and the price of a unit of a newly built structure 
for period t will be the estimate for t. The period t quantity of land for property n is Ltn 
and the period t quantity of structure for property n, expressed in equivalent units of a 
new structure, is (1  tAtn)Stn where Stn is the floor space area of property n in period t. 
 
Note that the above model is a supply side model as opposed to the demand side model of 
Muth (1971) and McMillen (2003). Basically, we are assuming competitive suppliers of 

                                                 
9 Other papers that have suggested hedonic regression models that lead to additive decompositions of 
property values into land and structure components include Clapp (1980), Francke and Vos (2004), 
Gyourko and Saiz (2004), Bostic, Longhofer and Redfearn (2007), Davis and Heathcote (2007), Francke 
(2008), Koev and Santos Silva (2008), Statistics Portugal (2009), Diewert (2010) (2011), Rambaldi, 
McAllister, Collins and Fletcher (2010) and Diewert, Haan and Hendriks (2011a) (2011b). 
10 This formulation follows that of Diewert (2010) (2011) and Diewert, Haan and Hendriks (2011a) (2011b). 
It is a special case of Clapp’s (1980; 258) hedonic regression model. 
11 This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” gross 
structure depreciation rate less an average renovations appreciation rate. Since we do not have information 
on renovations and additions to a structure, our age variable will only pick up average gross depreciation 
less average real renovation expenditures. Note that we excluded sales of houses from our sample if the age 
of the structure exceeded 50 years when sold. Very old houses tend to have larger than normal renovation 
expenditures and thus their inclusion can bias the estimates of the net depreciation rate for younger 
structures.   
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housing so that we are in Rosen’s (1974; 44) Case (a), where the hedonic surface 
identifies the structure of supply. This assumption is justified for the case of newly built 
houses but it is less well justified for sales of existing homes.12  
 
As was mentioned in the previous section, we have 5578 observations on sales of houses 
in Tokyo over the 44 quarters in years 2000-2010. Thus equations (2) above could be 
combined into one big regression and a single depreciation rate  = t could be estimated 
along with 44 land prices t and 44 new structure prices t so that 89 parameters would 
have to be estimated. However, experience has shown that it is usually not possible to 
estimate sensible land and structure prices in a hedonic regression like that defined by (2) 
due to the multicollinearity between lot size and structure size.13 Thus in order to deal 
with the multicollinearity problem, we draw on exogenous information on new house 
building costs from the Japanese Ministry of Land, Infrastructure, Transport and Tourism 
(MLIT) and we assume that the price of new structures is proportional to this index of 
residential building costs. Thus our new builder’s model that uses exogenous information 
on structure prices is the following one: 
 
(3) Vtn = tLtn + pCt(1  Atn)Stn + tn ;                                         t = 1,...,44; n = 1,...,N(t) 
 
where all variables have been defined above except that pCt is the MLIT house 
construction cost index for Tokyo for quarter t. Thus we have 5578 degrees of freedom to 
estimate 44 land price parameters t, one structure price parameter  that determines the 
level of prices over our sample period and one annual straight line depreciation rate 
parameter , a total of 46 parameters.  
 
The R2 for the resulting nonlinear regression model was only 0.5704,14 which is not very 
satisfactory. Thus the simple Builder’s Model defined by (3) was not as satisfactory as 
was the corresponding Builder’s Model for the small town of “A” in the Netherlands 
where the R2 was 0.8703 using the same information on characteristics of the house and 
lot. However, in the case of the town of “A”, the structures were all much the same and 
all houses in the town had access to basically the same amenities. The situation in the 
huge city of Tokyo is very different: different neighborhoods have access to very 
different amenities and Tokyo is not situated on a flat, featureless plain and so we would 
expect substantial variations in the price of land across the various neighborhoods.  
 

                                                 
12 Thorsnes (1997; 101) assumed that a related supply side model held instead of equation (2). He assumed 
that housing was produced by a CES production function H(L,K)  [L+K]1/ where K is structure 
quantity and   0 ;  > 0 ;  > 0 and + = 1. He assumed that property value Vn

t is equal to  ptH(Ln
t,Kn

t) 

where pt, ,  and  are parameters to be estimated. However, our builder’s model assumes that the 
production functions that produce structure space and that produce land are independent of each other. 
13 See Schwann (1998) and Diewert, de Haan and Hendriks (2011a) and (2011b) on the multicollinearity 
problem. 
14 All of the R2 reported in this paper are equal to the square of the correlation coefficient between the 
dependent variable in the regression and the corresponding predicted variable. The estimated net annual 
straight line depreciation rate was  = 1.25%, with a T statistic of 17.3. Due to the poor fit of the model, we 
will not report the other estimated parameters. 
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In order to take into account possible neighbourhood effects on the price of land, we 
introduced ward dummy variables, DW,tn,j, into the hedonic regression (3). These 21 
dummy variables are defined as follows: for t = 1,...,44; n = 1,...,N(t); j = 1,...,21:15 
 
(4) DW,tn,j  1 if observation n in period t is in Ward j of Tokyo; 
                  0 if observation n in period t is not in Ward j of Tokyo.  
    
We now modify the model defined by (3) to allow the level of land prices to differ across 
the 21 Wards of Tokyo. The new nonlinear regression model is the following one: 
 
(5) Vtn = t(j=1

21 jDW,tn,j)Ltn + pCt(1  Atn)Stn + tn ;              t = 1,...,44; n = 1,...,N(t).                               
                                                                           
Comparing the models defined by equations (3) and (5), it can be seen that we have 
added an additional 21 ward relative land value parameters, 1,...,21, to the model 
defined by (3). However, looking at (5), it can be seen that the 44 land time parameters 
(the t) and the 21 ward parameters (the j) cannot all be identified. Thus we need to 
impose at least one identifying normalization on these parameters. We chose the 
following normalization: 
 
(6) 10  1. 
 
We will call the hedonic regression model defined by (5) and (6) Model 1. The tenth 
ward, Setagay, has the most transactions in our sample (1158 transactions over the 
sample period) and thus the level of land prices in this Ward should be fairly accurately 
determined. Hence the remaining j represent the level of land prices in Ward j relative 
to the level in Ward 10 so if say 1 > 1, this means that on average, the price of land in 
Ward 1 is higher than the average price of land in Ward 10. Taking into account the 
normalization (6), it can be seen that Model 1 has 44 unknown land price parameters t, 
20 ward relative land price parameters j, one structure price level parameter  and one 
annual net depreciation parameter  that need to be estimated. We estimated these 
parameters using the nonlinear regression option in Shazam; see White (2004). The 
detailed parameter estimates are listed in the Appendix in Table A1.16 The R2 for this 
model turned out to be 0.8168 and the log likelihood (LL) was 9233.0, a huge increase 
of 2270.6 over the LL of the model defined by (3). Thus the Ward variables are very 
significant determinants of Tokyo house prices. 
 

                                                 
15 The 21 Wards of Tokyo that had at least one transaction during our sample period (with the total number 
of transactions for that Ward in brackets) are as follows: 1: Minato (69); 2: Shinjuku (136); 3: Bunkyo (82); 
4: Taito (15); 5: Sumida (32); 6: Koto (38); 7:  Shinagawa (144); 8: Meguro (349); 9: Ota (409); 10: 
Setagay (1158); 11: Shibuya (107); 12: Nakano (305); 13: Suginami (773); 14: Toshima (124); 15: Kita 
(53); 16: Arakawa (34); 17: Itabashi (214); 18: Nerima (925); 19: Adachi (271); 20: Katsushika (143); 21: 
Edogawa (197). Note that for each observation tn, we have j=1

21 DWtn,j = 1; i.e., for each observation tn, 
the 21 ward dummy variables sum to one. Recall that there are 5578 observations in our sample.   
16 We note that the annual net depreciation rate for Model 1 was estimated as  = 1.39% with a T statistic of 
26.8.  
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We regard Model 1 as a minimally satisfactory model. Note that we used only four 
characteristics for each house sale: the land area L, the structure area S, the age of the 
structure A and its Ward location. 
 
We now address the problem of how exactly should the land, structure and overall house 
price index be constructed? Our nonlinear regression model defined by (5) decomposes 
into two terms: one which involves the land area Ltn of the house, t(j=1

21 jDW,tn,j)Ltn, 
and another which involves the structure area Stn of the house, pCt(1  Atn)Stn. The first 
term can be regarded as an estimate of the land value of house n that was sold in quarter t 
while the second term is an estimate of the structure value of the house. Our problem now 
is how exactly should these two value terms be decomposed into constant quality price 
and quantity components? Our view is that a suitable constant quality land price index for 
all houses sold in period t should be t and for house n sold in period t, the corresponding 
constant quality quantity should be (j=1

21 jDW,tn,j)Ltn which in turn is equal to jLtn if 
house n sold in period t is in Ward j.17 The basic idea here is that we regard the term 
t(j=1

21 jDW,tn,j)Ltn as a time dummy hedonic model for the land component of the 
house with t acting as the time dummy coefficient. Thus if we priced out house n that 
sold in period t in period s, our hedonic imputation18 for the land component of this 
“model” would be s(j=1

21 jDW,tn,j)Ltn. Thus the quarterly time coefficients t act as 
proportional time shifters of the hedonic surface for the land component of the value of 
each house in our sample and the relative period t to period s land price for each house is 
t/s.  
 
Similarly, a suitable constant quality structure price index for all houses sold in period t is 
pCt and for house n sold in period t, the corresponding constant quality quantity should 
be approximately equal to the depreciated structure quantity (1Atn)Stn. Thus we regard 
the term pCt(1Atn)Stn as a time dummy hedonic model for the structure component of 
the house with pCt acting as the time dummy coefficient. The quarterly time coefficients 
pCt (or just the pCt) act as proportional time shifters of the hedonic surface for the 
structure component of each house in our sample and the period t to period s land price 
for each house in our sample turns out to be pCt/pCs.

19   
 

                                                 
17 An alternative way of viewing our land model is that land in each Ward can be regarded as a distinct 
commodity with its own price and quantity. But since all Ward land prices move proportionally over time, 
virtually all index number formulae will generate an overall land price series that is proportional to the t.   
18 Hedonic imputation models and time dummy hedonic models are discussed in more detail in Diewert 
(2003b), de Haan (2003), (2008) (2009), Diewert, Heravi and Silver (2009) and de Haan and Diewert 
(2011). 
19 Our method for aggregating over different house “models” that have varying amounts of constant quality 
land and structures can be viewed as a hedonic imputation method but it can also be viewed as an 
application of Hicks’ Aggregation Theorem; i.e., if the prices in a group of commodities vary in strict 
proportion over time, then the factor of proportionality can be taken as the price of the group and the 
deflated group expenditures will obey the usual properties of a microeconomic commodity. “Thus we have 
demonstrated mathematically the very important principle, used extensively in the text, that if the prices of 
a group of goods change in the same proportion, that group of goods behaves just as if it were a single 
commodity.”  J.R. Hicks (1946; 312-313). 
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Thus the constant quality residential land price index for Tokyo for quarter t is defined to 
be PL1t  t/1 and the corresponding constant quality residential structures price index 
for Tokyo for quarter t is defined to be PS1t  pCt/pC1.

20 These price indexes can be 
regarded as quarter t price levels for land and structures respectively and the 
corresponding Model 1 quarter t constant quality quantity levels, QL1t and QS1t, are 
defined as the total quarter t values of land and structures divided by the corresponding 
price levels for t = 1,...,44: 
 
(7) QL1t  n=1

N(t) (j=1
21 jDW,tn,j)tLtn/PL1t = 1n= 1

N(t) (j=1
21 jDW,tn,j)Ltn ;  

(8) QS1t  n=1
N(t) pCt(1  Atn)Stn/PS1t        = n= 1

N(t) (1  Atn)Stn . 
 
The price and quantity series for land and structures need to be aggregated into an overall 
Tokyo house price index. We use the Fisher (1922) ideal index to perform this 
aggregation. Thus define the overall house price level for quarter t for Model 1, P1t, as 
the chained Fisher price index of the land and structure series {PL1t,PS1t,QL1t,QS1t}.21  
 
The overall Model 1 house price index P1t as well as the land and structure price indexes 
PL1t and PS1t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart 
1 below. We have also computed the quarterly mean and median house prices transacted 
in each quarter and then normalized these averages to start at 1 in Quarter 1 of 2000. 
These overall average price index series, PMean and PMedian are also graphed in Chart 1.22   
 

Chart 1: Mean, Median and Overall Price, Land Price and Structure 
Price Indexes for Model 1
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20 We have normalized the price indexes PL1t and PS1t to equal 1 in quarter 1, which is quarter 1 of the year 
2000. 
21 The Fisher chained index P1t is defined as follows. For t = 1, define P1t  1.  For t > 1, define P1t in terms 
of P1t1 and PFt as P1t  P1t1PFt where PFt is the quarter t Fisher chain link index. The chain link index for t  
2 is defined as PFt  [PLtPPt]

1/2 where the Laspeyres and Paasche chain link indexes are defined as PLt  
[PL1tQL1t1+PL1tQL1t1]/[PL1t1QL1t1+PL1t1QL1t1] and PPt  [PL1tQL1t+PL1tQL1t]/[PL1t1QL1t+PL1t1QL1t]. 
Diewert (1976) (1992) showed that the Fisher formula had good justifications from both the perspectives of 
the economic and axiomatic approaches to index number theory.   
22 The series PMean, PMedian, P1, PL1 and PS1 are also listed in Table A2 of the Appendix. 
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The land price series PL1 is the top line in Chart 1, followed by the overall Model 1 house 
price index P1, followed by the structure price index PS1 (at the end of the sample period). 
The mean and median price series track each other and our overall price series P1 
reasonably well until 2004 but in the following years, the mean and median series fall 
well below our overall quality adjusted house price series P1.

23 Thus quality adjusting the 
sales of residential housing in Tokyo makes a big difference to the resulting index. 
 
In the following section, we will use our information on lot size and the age of the house 
in a more flexible regression model and construct the resulting quality adjusted price 
indexes and compare them with the Model 1 indexes. 
 
4. The Use of Splines on Lot Size and on the Age of the Structure 
 
In most countries, the price of a residential lot as a function of lot size does not grow in a 
linear fashion as is predicted by our Model 1; i.e., typically, a larger lot sells for a lower 
price per square meter than for a smaller lot. In this section, we will attempt to determine 
whether this is true for land plots in Tokyo by allowing the cost of land to be a piecewise 
linear function of the area of the land that the structure sits on.24  Another possible 
limitation of our model is that the assumption of a straight line (net) depreciation rate for 
all ages of a residential dwelling may not be true. Thus in this section, we will attempt to 
increase the descriptive power of Model 1 by allowing the net depreciation of the 
structure to be a piecewise linear function of the age of the structure.25 
 
We first consider how to model possible nonlinearities in the price of residential land. We 
divide up our 5578 observations into 3 roughly equal groups of observations based on 
their lot sizes. Recall that we have restricted the range of the land variable to 0.5  Ltn  
2.5.26 We chose the land areas where there is a change in the marginal price of land to be 
L1  0.77 and L2  1.10. Using these land break points, we found that 1861 observations 
fell into the interval 0.5  Ltn < 0.77, 1833 observations fell into the interval 0.77  Ltn < 
1.10 and 1884 observations fell into the interval 1.1  Ltn  2.5.27 We label the three sets 

                                                 
23 The mean and median series cannot adjust properly for changes in the relative prices of land and 
structures or for changes in the average age of the houses sold. Also our mean and median series are for all 
sales of houses in Tokyo and thus these series were not adjusted for changes in the number of properties 
sold in expensive wards and less expensive wards. We cannot expect the mean and median series to be very 
accurate constant quality indexes of house prices; see de Haan and Diewert (2011).   
24 For the town of “A” in the Netherlands, Diewert, de Haan and Hendriks (2011a) (2011b) found that the 
marginal price of land rose for medium size lots and then fell for very large lots. These papers used the 
linear spline model for lot size that we will use in this section.  
25 In the statistics literature, models that make the dependent variable in a regression model a piecewise 
linear function of an exogenous variable are called linear spline models. Diewert (2003a; 328-329) 
proposed the type of nonlinear hedonic regression model defined by (9) and discussed its flexibility 
properties.   
26 Recall that our units of measurement for land are in 100 meters squared so that Ltn = 1 means that 
observation n in period t had a land area equal to 100 m2. 
27 Thus the sample probabilities for an observation to fall into the 3 land intervals are 0.33363, 0.32861 and 
0.33776. 
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of observations that fall into the above three groups as groups 1-3. For each observation n 
in period t, we define the three land dummy variables, DL,tn,k, for k = 1,2,3 as follows:28 
 
(9) DL,tn,k  1 if observation tn has land area that belongs to group k; 
                  0 if observation tn has land area that does not belong to group k. 
 
These dummy variables are used in the definition of the following piecewise linear 
function of Ltn, fL(Ltn), defined as follows: 
 
(10) fL(Ltn)  DL,tn,11Ltn + DL,tn,2[1L1+2(LtnL1)] + DL,tn,3[1L1+2(L2L1)+3(LtnL2)]  
 
where the k are unknown parameters and L1  0.77 and L2  1.10. The function fL(Ltn) 
defines a relative valuation function for the land area of a house as a function of the plot 
area. Thus if 0.5  Ltn < 0.77, then the relative land value of observation n in period t is 
fL(Ltn) = 1Ltn; if 0.77  Ltn < 1.10, then the relative land value of observation n in period 
t is fL(Ltn) = 1L1 + 2(LtnL1) and if 1.1  Ltn  2.5, then the relative land value of 
observation n in period t is fL(Ltn) = 1L1 + 2(L2L1) + 3(LtnL2). If observation n in 
period t is in Ward 10, then we will set the land value of this house equal to tfL(Ltn).        
 
We turn our attention to modeling possible nonlinearities in the net depreciation rate. We 
again attempt to divide up our 5578 observations into 3 roughly equal groups based on 
the age of the structure. Recall that we have restricted the range of the age variable to 0  
Atn  50. We chose the house ages where there is a change in the marginal depreciation 
rate to be A1  10 and A2  20. Using these age break points, we found that 2085 
observations fell into the interval 0  Atn < 10, 1996 observations fell into the interval 10 
 Atn < 20 and 1497 observations fell into the interval 20  Atn  50.29 We label the three 
sets of observations that fall into the above three groups as groups 1-3. For each 
observation n in period t, we define the three Age dummy variables, DA,tn,m, for m = 1,2,3 
as follows:30 
 
(11) DA,tn,m  1 if observation tn has a structure whose age belongs to group m; 
                    0 if observation tn has a structure whose age is not in group m. 
 
These dummy variables are used in the definition of the following piecewise linear 
function of age Atn, gA(Atn), defined as follows: 
 
(12) gA(Atn)  1  {DA,tn,11Atn + DA,tn,2[1A1 + 2(AtnA1)] 
                      + DA,tn,2[1A1 + 2(A2A1) + 3(AtnA2)]}  
 

                                                 
28 Note that for each observation, the land dummy variables sum to one; i.e., for each tn, DL,tn,1 + DL,tn,2 + 
DL,tn,3 = 1. 
29 Thus the sample probabilities for an observation to fall into the 3 age intervals are 0.37379, 0.35783 and 
0.26838. 
30 Note that for each observation, the Age dummy variables sum to one; i.e., for each tn, DA,tn,1 + DA,tn,2 + 
DA,tn,3 = 1. 
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where the k are unknown parameters and A1  10 and A2  20. The function ga(Atn) 
defines a (relative) depreciation schedule for a house structure as a function of the 
structure age. Consider house n that sold in period t. If the age of the structure is 0 years 
so that it is a new structure, then its relative value is set equal to 1. If 0 < Atn < 10, then its 
structure value relative to a brand new structure is set equal to gA(Atn)  1  1Atn. If 10  
Atn < 20, then its relative structure value is set equal to gA(Atn)  1  1A1  2(Atn  A1). 
Finally, if 20  Atn  50, then its relative structure value is set equal to gA(Atn)  1  1A1 
 2(A2  A1)  3(Atn  A2). Thus the depreciation schedule for a house is now a 
piecewise linear schedule as opposed to the linear or straight line schedule that was used 
in the previous section.31            
 
Now we are ready to define our new nonlinear regression model that generalizes the 
model defined by (5) and (6). For t = 1,...,44 and n = 1,...,N(t): 
 
(13) Vtn = t{j=1

21 jDW,tn,j}fL(Ltn) + pCt gA(Atn)Stn + tn  
 
where the functions fL and gA are defined above by (10) and (12) and tn is an error term. 
There are 44 unknown land price parameters t, 1 structure price level parameter , 21 
ward relative land price level parameters j, 3 lot size parameters k and three 
depreciation parameters m to estimate. However, as was the case with Model 1, not all 
parameters in (11) can be identified. Hence we impose the following identifying 
restrictions on the parameters: 
 
(14) 10 = 1; 1 = 1. 
 
Thus there are 44+1+20+2+3 = 70 unknown parameters to be estimated. The nonlinear 
regression model defined by (11) and (12) is our Model 2. 
 
As was the case with Model 1, we estimated the parameters for Model 2 using the 
nonlinear regression option in Shazam.32 The detailed parameter estimates are listed in 
the Appendix in Table A3.33 The R2 for this model turned out to be 0.8206 and the log 
likelihood was 9164.1, an increase of 68.9 over the Model 1 log likelihood.34 Thus 

                                                 
31 Note that if 1 = 2 = 3, then the present depreciation model reduces to straight line depreciation. If in 
addition, 1 = 2 = 3, then the nonlinear regression model in this section reduces to the model in the 
previous section. 
32 Each of the four models that we propose in this paper subsequent to the first model is a generalization of 
the previous model so we were able to use the final estimates of the previous model as starting values for 
the parameters of each new model to facilitate convergence of the nonlinear estimation. No convergence 
difficulties were encountered. 
33 We note that the annual net depreciation rate for Model 1 was estimated as  = 1.39% with a T statistic of 
26.8.  
34 The sum of the residuals in this model was only 0.5, a negligible amount. Thus adding a constant term 
to the regression would not add significantly to the fit of Model 2. We did not include a constant term in the 
regression because we want to allocate the value of the sale to separate land and structure components that 
add up to the total sale value. We note that the residual sum in Model 1 was 165.5 so Model 2 is much 
better in this respect. 
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adding the 2 extra lot size parameters and the 2 extra depreciation parameters is well 
justified. 
 
Recall that we set 1 equal to 1 and the estimated 2 and 3 turned out to be 0.7533 and 
0.9486 respectively. The interpretation of these parameters runs as follows. If observation 
n in period t had a land area Ltn which was less than L1 = .77 (which is 77 m2 since we are 
measuring land area in units of 100 m2) and it was located in Ward 10, then its estimated 
land value is t1Ltn = tLtn However, if the land area was between L1 and L2 = 1.1 (110 
m2), then its estimated land value is  t[L1+2(LtnL1)]. Thus the relative (to t) marginal 
price of land shifts from 1 =1 until Ltn reaches the land level L1, and then for amounts of 
land beyond this level (but less than the level defined by L2), the relative marginal price 
of land is 2 = 0.7533 according to our estimated coefficient. If the land area of 
observation tn was greater than or equal to L2, then its estimated land value is  
t[L1+2(L2L1)+3(LntL2)]. Thus the relative marginal price of land shifts from 2 to 3 
for plot areas greater than or equal to L3 = 1.1 (110 m2). Our estimate for the relative 
marginal price of land for large lots is 3 = 0.9486. Note that these same relative marginal 
valuations for land apply to all periods t; i.e., the period t land price parameter t shifts 
the entire schedule of land values as a function of land size in a proportional manner for 
each period t. Thus normalizing on the price of land for small lots, we find that for lots of 
medium size, the  relative marginal price of land falls from 1 to 0.7533 for land areas 
between L1 and L2 and for larger lots greater than L2, the relative marginal price of land 
increases to 0.9486. Thus in any given period, the estimated value of the land component 
of the housing sale is a continuous piecewise linear function of the lot size. 
 
The estimated value of (net) depreciation also follows a piecewise linear schedule instead 
of just being a linear function of age as in Model 1. Our estimated net depreciation rate 
parameters for Model 2 were 1 = 0.0247, 2 = 0.0159 and 3 = 0.0032. To explain the 
meaning of these parameters, consider an observation n in period t that has house age 
equal to Atn years. If 0  Ant < A1  10 years, then our estimated net depreciation of the 
house in terms of the period t price of a unit of new house construction, pCt, is pCt1Atn. 
Thus for relatively new houses, we have a simple straight line depreciation model (in 
terms of current structure prices) and the annual net depreciation rate for these relatively 
new houses is 2.47% per year. However, if A1  10  Atn < 20  A2 so that the age of the 
house is between 10 and 20 years old, then our estimate for the net depreciation of the 
house in current period prices is pCt[1A1+2(AtnA1)]. Thus for this age group of 
houses sold, the marginal rate of net depreciation falls to 1.59% per year for ages Atn 
greater than 10 years. Finally, if the age of the house is between A2  20 and 50 years old, 
then our estimate for the net depreciation of the house in current period prices is 
pCt[1A1+2(A2A1)+3(AtnA2)]. Thus for this age group of houses sold, the marginal 
rate of net depreciation falls to 0.32% per year for Atn greater than 20 years.35  
      

                                                 
35 We conjecture that the reason why the marginal net depreciation rate for houses older than 20 years is so 
low is that houses that survive beyond 20 years of age have been extensively renovated or are heritage 
houses. We are estimating net depreciation rates here because we have no information on the magnitude of 
renovation expenditures.  
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Model 2 defined by (13) and (14) decomposes into two terms: one which involves the 
land area Ltn of the house and another which involves the structure area Stn of the house. 
As was the case with Model 1, the first term can be regarded as an estimate of the land 
value of house n that was sold in quarter t while the second term is an estimate of the 
structure value of the house. We follow the same strategy in decomposing the land and 
structure values into price and quantity components as in Model 1. The quarterly time 
coefficients t act as proportional time shifters of the hedonic surface for the land 
component of each house in our sample and the relative period t to period s land price for 
each house is t/s. As was the case with Model 1, the quarterly time coefficients pCt  
act as proportional time shifters of the hedonic surface for the structure component of 
each house in our sample and the period t to period s land price for each house in our 
sample again turns out to be pCt/pCs.   
 
Thus the Model 2 constant quality residential land price index for Tokyo for quarter t is 
defined to be PL2t  t/1 and the corresponding constant quality residential structures 
price index for Tokyo for quarter t is defined to be PS2t  pCt/pC1.

36 The corresponding 
Model 2 quarter t constant quality quantity levels, QL2t and QS2t, are defined as the total 
quarter t values of land and structures divided by the corresponding price levels for t = 
1,...,44: 
 
(15) QL2t  n=1

N(t) 1{j=1
21 jDW,tn,j}fL(Ltn);  

(16) QS2t  n=1
N(t) pCt gA(Atn)Stn.  

 
We again use the Fisher ideal index to aggregate the price and quantity components for 
land and structures into a house price index. Thus define the overall house price level for 
quarter t for Model 2, P2t, as the chained Fisher price index of the land and structure 
series {PL2t,PS2t,QL2t,QS2t}.  
 
The overall Model 2 house price index P2t as well as the land and structure price indexes 
PL2t and PS2t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart 
2 below.37  
  

Chart 2: Overall House Price Index, Land Price Index and Structure 
Price Index for Model 2
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36 Note that PS1t = PS2t. 
37 The series P2, PL2 and PS2 are also listed in Table A4 of the Appendix. 
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From Chart 2, it can be seen that there was a mini land price bubble during the years 
2006-2008 for residential properties in Tokyo. Comparing Charts 1 and 2, it can be seen 
that the structure price index is the same in both Models (by construction) and the land 
and overall indexes are much the same in both Models.38 
 
In the following section, we will generalize Model 2 by adding some additional 
explanatory variables that are thought to be important in explaining house price 
movements in Tokyo. 
 
5. Quality Adjustment for the Number of Bedrooms and Lot Width 
 
Many hedonic regression models that attempt to explain movements in house prices use 
the number of rooms or bedrooms in the structure as an explanatory variable. We will use 
the number of bedrooms, NBtn, for house n sold in period t as a quality adjusting variable 
for the structure. In Japan, the width of the lot, WItn, is also thought to be an important 
characteristic that explains the value of a residential property (a bigger width is thought to 
more desirable). 
 
We will treat the number of bedrooms variable in a manner that is similar to our 
treatment of depreciation. We first need to break up our sample into three groups of 
observations: houses with a low number of bedrooms, houses with a medium number and 
houses with a high number of bedrooms. We find that there are 247 houses with 2 
bedrooms, 1628 with 3 bedrooms, 2439 with 4 bedrooms and 1264 houses with 5-8 
bedrooms. We will allocate the 2 and 3 bedroom houses to the low group, the 4 bedroom 
houses to the medium group and the 5-8 bedroom houses to the high group. We transform 
the number of bedrooms variable, NB, into the number of bedrooms less 2 variable B; i.e., 
for observation n in period t, define the translated number of bedrooms variable Btn as 
follows: 
 
(17) Btn  NBtn  2 ;                                                                       t = 1,...,44 ; n = 1,...,N(t). 
 
Thus the B variable takes on integer values between 0 and 6. If Btn equals 0 or 1, then 
observation tn falls into the low number of bedrooms group. If Btn = 2, then observation 
tn falls into the medium number of bedrooms group. If Btn = 3-6, then observation tn falls 
into the high number of bedrooms group. The break points for the B variable where there 
is a change in the marginal value of extra bedrooms are chosen to be B1  1 and B2  2. 
The bedroom dummy variables, DB,tn,k, are defined as follows: 
 
(18) DB,tn,1  1 if Btn = 0 or 1; DB,tn,1  0 if Btn > 1; 
        DB,tn,2  1 if Btn = 2;        DB,tn,1  0 if Btn  2; 
        DB,tn,1  1 if Btn > 2;        DB,tn,1  0 if Btn  1. 
 
Now consider the following piecewise linear function of Btn, gB(Btn), defined as follows: 

                                                 
38 The correlation coefficients between P1 and P2 and PL1 and PL2 were 0.99941 and 0.99946 respectively. 
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(19) gB(Btn)  1 + DB,tn,12Btn + DB,tn,2[2B1+3(BtnB1)]  
                       + DB,tn,3[2B1+3(B2B1)+4(BtnB2)] 
 
where the k are unknown parameters and B1  1 and B2  2. Thus if Btn = 0 (so that 
house n sold in period t has 2 bedrooms), then gB(Btn) = gB(0) = 1. If Btn = 1 (so that 
house n sold in period t has 3 bedrooms), then gB(Btn) = gB(1) = 1 + 2. If Btn = 2 (so that 
house n sold in period t has 4 bedrooms), then gB(Btn) = gB(2) = 1 + 2 + 3. Finally, if 
Btn = 3-6 (so that house n sold in period t has 5-8 bedrooms), then gB(Btn) = 1 + 2 + 3 + 
4(Btn2). We will use the function gB to determine the relative value of a house as a 
function of the number of bedrooms that it has, holding other characteristics constant. It 
can be seen that this function is a linear spline function and is relatively flexible in that it 
can describe a large number of structure valuations with different choices of the 4 k 
parameters.39 
 
We turn now to our parameterization of the relative value of the land area of a house as a 
function of the lot width WI (or frontage). Recall that the width variable ranged between 
2.5 and 9 meters. We transform the width variable to the width variable less 2.5; ; i.e., for 
observation n in period t, define the translated frontage variable Ftn as follows: 
 
(20) Ftn  WItn  2.5 ;                                                                   t = 1,...,44 ; n = 1,...,N(t). 
 
Thus the range of Ftn is 0  Ftn  6.5. We will use a relative valuation model for lots of 
different widths similar to the above relative valuation model for the number of bedrooms. 
We chose the frontage widths where there is a change in the marginal valuation of 
translated width  to be F1  1.5 and F2  2.5. Using these width break points, we found 
that 1109 observations fell into the interval 0  Ftn < 1.5, 2352 observations fell into the 
interval 1.5  Ftn < 2.5 and 2117 observations fell into the interval 2.5  Ftn  6.5.40 We 
label the three sets of observations that fall into the above three groups as groups 1-3. For 
each observation n in period t, we define the three frontage dummy variables, DF,tn,k, for k 
= 1,2,3 as follows:41 
 
(21) DF,tn,k  1 if observation tn has translated frontage width that belongs to group k; 
                    0 if observation tn has translated frontage width that does not belong to  
                      group k. 
 
Now consider the following piecewise linear function of Ftn, fF(Ftn), defined as follows: 
 
(22) fF(Ftn)  1 + DF,tn,12Ftn + DF,tn,2[2F1+3(FtnF1)] 
                    + DF,tn,3[2F1+3(F2F1)+4(FtnF2)] 

                                                 
39 We expect these parameters to be positive numbers. 
40 Thus the sample probabilities for an observation to fall into the 3 lot width intervals are 0.19882, 0.42166 
and 0.37953. 
41 Note that for each observation, the frontage width dummy variables sum to one; i.e., for each tn, DF,tn,1 + 
DF,tn,2 + DF,tn,3 = 1. 
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where the k are unknown parameters and F1 = 1.5 and F2 = 2.5. If Ftn < 1.5, then fF(Ftn) = 
1+2Ftn. If 1.5  Ftn < 2.5, then fF(Ftn) = 1+2F1+3(FtnF1). If 2.5  Ftn, then fF(Ftn) = 
1+2F1+3(F2F1)+4(FtnF2). We will use the piecewise linear function fF to determine 
the relative value of the land area as a function of the width of the lot, holding other 
characteristics constant.      
 
Noting that the number of bedrooms is a characteristic that may affect the value of the 
structure and the lot width is a characteristic that may affect the value of the land area 
that the structure sits on, we multiply the land value term for observation n in period t in 
Model 2 by fW(Wtn) and the corresponding structure value by gB(Btn). This leads to the 
following nonlinear regression model for t = 1,...,44 and n = 1,...,N(t): 
 
(23) Vtn = t{j=1

21 jDW,tn,j}fL(Ltn)fF(Ftn) + pCt gA(Atn)gB(Btn)Stn + tn  
 
where the functions fL, gA, gB and fF are defined above by (10), (12), (19) and (22) 
respectively. There are 44 unknown land price parameters t, 1 structure price level 
parameter , 21 ward relative land price level parameters j, 3 lot size parameters k, 
three depreciation parameters m, 4 number of bedroom parameters k and 4 frontage 
width parameters k to estimate. However, as was the case with Models 1 and 2, not all 
parameters in (23) can be identified. Hence we impose the following identifying 
restrictions on the parameters: 
 
(24) 10 = 1; 1 = 1; 1 = 1 and 1 = 1.  
 
Thus there are 44+1+20+2+3+3+3 = 76 unknown parameters to be estimated. The 
nonlinear regression model defined by (23) and (24) is our Model 3. 
 
We estimated the unknown parameters for Model 3 using the nonlinear regression option 
in Shazam.42 The detailed parameter estimates are listed in the Appendix in Table A5. 
The R2 for this model turned out to be 0.8256 and the log likelihood was 9085.3, an 
increase of 78.7 over the Model 2 log likelihood.43 Thus adding the 3 extra lot width 
parameters and the 3 extra bedroom parameters is well justified. 
 
The estimated lot width parameters were 2 = 0.1038, 3 = 0.0433 and 4 = 0.0124. The 
interpretation of these parameters runs as follows: for properties in the small lot frontage 
width group, an extra meter of lot width adds 10.38% to the land value; for properties in 
the medium lot with group, an extra meter of lot width adds 4.33% to the land value and 
properties in the large lot width group, an extra meter of lot width adds 1.24% to the land 
value of the property. Thus there are diminishing returns to lot width but extra lot width 
(holding other characteristics constant) always adds to the land value of the property.  
                                                 
42 Each of the four models that we propose in this paper subsequent to the first model is a generalization of 
the previous model so we were able to use the final estimates of the previous model as starting values for 
the parameters of each new model to facilitate convergence of the nonlinear estimation. No convergence 
difficulties were encountered. 
43 The sum of the residuals in this model was  20.8. 
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The estimated number of bedroom parameters were 2 = 0.0277, 3 = 0.0326 and 4 = 
0.0437.44 The economic interpretation of these parameters is as follows: holding all 
other characteristics constant (including the size of the structure in meters squared), going 
from 2 bedrooms to 3 bedrooms adds 2.77% to the value of the structure; going from 3 
bedrooms to 4 bedrooms subtracts 3.26% from the value of the structure and for each 
bedroom beyond 4 bedrooms, subtract 4.37% from the value of the structure. These 
results are a bit hard to interpret because they are conditional on the area of the structure. 
Now for small structures, we would expect that the “optimal” number of bedrooms is 
small and for large structures, we would expect that the “optimal” number of bedrooms is 
large. However, our very simple model makes a bedroom value adjustment over all 
structure sizes and so our interpretation of the above numerical results is that for a 
structure of average size in terms of its floor space area, it is preferable to have 3 
bedrooms over 2 but beyond 3 bedrooms, for an average sized house, adding more 
bedrooms subtracts from the value of the property.45  
 
Model 3 defined by (23) and (24) decomposes into two terms: one which involves the 
land area Ltn of the house and another which involves the structure area Stn of the house. 
As was the case with Models 1 and 2, the first term can be regarded as an estimate of the 
land value of house n that was sold in quarter t while the second term is an estimate of the 
structure value of the house. We follow the same strategy in decomposing the land and 
structure values into price and quantity components as in the previous Models. The 
quarterly time coefficients t act as proportional time shifters of the hedonic surface for 
the land component of each house in our sample and the relative period t to period s land 
price for each house is t/s. As was the case with Model 1, the quarterly time 
coefficients pCt  act as proportional time shifters of the hedonic surface for the structure 
component of each house in our sample and the period t to period s land price for each 
house in our sample again turns out to be pCt/pCs.   
 
Thus the Model 3 constant quality residential land price index for Tokyo for quarter t is 
defined to be PL3t  t/1 and the corresponding constant quality residential structures 
price index for Tokyo for quarter t is defined to be PS3t  pCt/pC1. The corresponding 
Model 3 quarter t constant quality quantity levels, QL3t and QS3t, are defined as the total 
quarter t values of land and structures divided by the corresponding price levels for t = 
1,...,44: 

                                                 
44 The T statistics for these 3 parameters were 0.744, 2.227 and 6.051. 
45 Looking at the model defined by (23), it can be seen that we have assumed that the structure value of the 
property n in period t, pCtgA(Atn)gB(Btn)Stn, is basically the structure area Stn times a period t structure 
price parameter pCt, times some quality adjustment factors that depend on the age of the structure, gA(Atn), 
and the number of bedrooms in the structure, gB(Btn). Thus we are assuming that these quality adjustment 
factors act more or less independently of each other in a multiplicative fashion; i.e., we have a kind of 
multiplicative separability (or statistical independence) assumption. This type of model can provide a first 
order approximation to a more general hedonic surface in time, age, the number of bedrooms and the floor 
space area. However, in order to capture adequately the interaction effects of Btn and Stn, we would require 
a functional form that could provide a second order approximation. In this paper, we did not venture 
beyond hedonic surface functional forms that can provide a first order approximation. First and second 
order approximation properties of hedonic functional forms was discussed by Diewert (2003a; 329-334).      



 20

 
(25) QL3t  n=1

N(t) 1{j=1
21 jDW,tn,j}fL(Ltn)fF(Ftn) ;  

(26) QS3t  n=1
N(t) pCt gA(Atn)gB(Btn)Stn.  

 
We again use the Fisher ideal index to aggregate the price and quantity components for 
land and structures into a house price index. Thus define the overall house price level for 
quarter t for Model 3, P3t, as the chained Fisher price index of the land and structure 
series {PL3t,PS3t,QL3t,QS3t}.  
 
The overall Model 3 house price index P3t as well as the land and structure price indexes 
PL3t and PS3t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart 
3 below.46   
      

Chart 3: Overall House Price Index, Land Price Index and 
Structure Price Index for Model 3
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Comparing Charts 1, 2 and 3, it can be seen that the structure price index is the same in 
both Models (by construction) and the land and overall indexes are much the same in all 
three Models.47 
 
In the following section, we will generalize Model 3 by adding some additional 
explanatory variables that are important in explaining house price movements in Tokyo. 
 
6. Quality Adjustment for the Nearness to Subway Lines and Subway Travel Time 
 
Recall that in section 2, we noted that we constructed information on the variables TW 
and TT for each house in our sample. TWtn is the time in minutes it takes to walk from 
house n sold in period t to the nearest subway station while TTtn is the time in minutes the 
train takes from the nearest subway station to the main Tokyo station. Recall that the 
sample range of TW was 2 to 29 minutes while the sample range of TT was 4 to 48 
minutes.  
 
                                                 
46 The series P3, PL3 and PS3 are also listed in Table A6 of the Appendix. 
47 The correlation coefficients between P3 and P1 and P2 were 0.99678 and 0.99811 respectively and PL3 and 
PL1 and PL2 were 0.99689 and 0.99806  respectively. 
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We transform the TW variable to the TW variable less 2; ; i.e., for observation n in period 
t, define the transformed walking time variable Mtn as follows: 
 
(27) Mtn  TWtn  2 ;                                                                     t = 1,...,44 ; n = 1,...,N(t). 
 
Thus the range of Mtn is 0  Mtn  27. As usual, we want to group the properties in our 
sample into 3 groups of roughly equal size. We chose our break points for M to be M1  6 
and M2  11. Using these break points, we found that 1811 observations fell into the 
interval 0  Mtn < 6, 2261 observations fell into the interval 6  Mtn < 11 and 1506 
observations fell into the interval 11  Mtn  27.48 We label the three sets of observations 
that fall into the above three groups as groups 1-3. For each observation n in period t, we 
define the three time to nearest subway station dummy variables, DM,tn,k, for k = 1,2,3 as 
follows:49 
 
(28) DM,tn,k  1 if observation tn has translated subway walking time that belongs to 
                       group k; 
                    0 if observation tn has translated subway walking time that does not belong 
                       to group k. 
 
Now consider the following piecewise linear function of Mtn, fM(Mtn), defined as follows: 
 
(29) fM(Mtn)  1 + DM,tn,1 2Mtn + DM,tn,2[2M1+3(MtnM1)] 
                    + DM,tn,3[2M1+3(M2M1)+ 4(MtnM2)] 
 
where the k are unknown parameters and M1 = 6 and M2 = 11. If Mtn < 6, then fM(Mtn) = 
1+2Mtn. If 6  Wtn < 11, then fM(Mtn) = 1+2M1+3(MtnM1). If 11  Mtn, then fM(Mtn) 
= 1+2M1+3(M2M1)+4(MtnM2). We will use the piecewise linear function fM to 
determine the relative value of the land area as a function of the travel time to the nearest 
subway station, holding other characteristics constant. 
 
The subway travel time variable TT has the range 4 to 48 minutes. We translate this 
variable to start at zero. Thus define the translated subway travel time variable Ttn as 
follows: 
 
(30) Ttn  TTtn  4 ;                                                                        t = 1,...,44 ; n = 1,...,N(t).  
 
The range of Ttn is 0  Ttn  44. As usual, we want to group the properties in our sample 
into 3 groups of roughly equal size. We chose our break points for T to be T1  24 and T2 
 32. Using these break points, we found that 1678 observations fell into the interval 0  
Ttn < 24, 2049 observations fell into the interval 24  Ttn < 32 and 1851 observations fell 

                                                 
48 Thus the sample probabilities for an observation to fall into the 3 (translated) time to nearest subway 
station groups are 0.32467, 0.40534 and 0.26999. 
49 Note that for each observation, the subway time dummy variables sum to one; i.e., for each tn, DM,tn,1 + 
DM,tn,2 + DM,tn,3 = 1. 
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into the interval 32  Ttn  44.50 We label the three sets of observations that fall into the 
above three groups as groups 1-3. For each observation n in period t, we define the three 
travel time to Tokyo station dummy variables, DT,tn,k, for k = 1,2,3 as follows: 
 
(31) DT,tn,k  1 if observation tn has translated time to Tokyo station that belongs to  
                       group k; 
                    0 if observation tn has translated time to Tokyo station that does not belong 
                       to group k. 
 
Now consider the following piecewise linear function of Ttn, fT(Ttn), defined as follows: 
 
(32) fT(Ttn)  1 + DT,tn,1 2Ttn + DT,tn,2[2T1+3(TtnT1)] 
                    + DT,tn,3[2T1+3(T2T1)+ 4(TtnT2)] 
 
where the k are unknown parameters and T1 = 24 and T2 = 32. If Ttn < 24, then fT(Ttn) = 
1+2Ttn. If 24  Ttn < 32, then fT(Ttn) = 1+2T1+3(TtnT1). If 32  Ttn, then fT(Ttn) = 
1+2T1+3(T2T1)+4(TtnT2). We will use the piecewise linear function fT to determine 
the relative value of the land area as a function of the travel time from the nearest 
subway station to the Tokyo Central station, holding other characteristics constant. 
 
The travel time characteristics are ones that may affect the value of the land that a house 
sits on. Thus we multiply the land value term in Model 3 for observation n in period t by 
fM(Mtn)fT(Ttn). This leads to the following nonlinear regression model for t = 1,...,44 and 
n = 1,...,N(t): 
 
(33) Vtn = t{j=1

21 jDW,tn,j}fL(Ltn)fF(Ftn)fM(Mtn)fT(Ttn)  + pCt gA(Atn)gB(Btn)Stn + tn  
 
where the functions fL, gA, gB, fF, fM and fT are defined above by (10), (12), (19), (22), 
(29) and (32) respectively. Compared to the previous Model, we have added 8 new 
subway time parameters, the 4 walking time parameters k and the 4 subway travel time 
to the Tokyo station parameters k, for a total of 88 parameters. However, as was the case 
with our previous models, not all parameters in (33) can be identified. Hence we impose 
the following identifying restrictions on the parameters: 
 
(34) 10 = 1; 1 = 1; 1 = 1; 1 = 1; 1 = 1 and 1 = 1.  
 
Thus there are 82 unknown parameters to be estimated. The nonlinear regression model 
defined by (33) and (34) is our Model 4. 
 
As usual, we estimated the unknown parameters for Model 4 using the nonlinear 
regression option in Shazam. The detailed parameter estimates are listed in the Appendix 
in Table A7. The R2 for this model turned out to be 0.8417 and the log likelihood was 

                                                 
50 Thus the sample probabilities for an observation to fall into the 3 (translated) travel time to the Tokyo 
station time groups are 0.30082, 0.36734 and 0.33184. 
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8815.9, a very large increase of 269.4 over the Model 3 log likelihood.51 Thus adding 
the 3 extra walking time parameters and the 3 extra travel time to Tokyo station 
parameters provides a significant addition to the explanatory power of our hedonic 
regression model. 
 
The estimated walking time to the nearest subway station parameters were 2 = 0.0035, 
3 = 0.0201 and 4 = 0.0171. The interpretation of these parameters runs as follows: for 
properties where the walk to the nearest subway station is 2-8 minutes, an increase in 
walking time of 1 minute decreases the land value of the property by 0.35%; for 
properties where the walk to the nearest subway station is 8-13 minutes, an increase in 
walking time of 1 minute decreases the land value of the property by 2.01% and for 
properties where the walk to the nearest subway station is over 13 minutes, an increase in 
walking time of 1 minute decreases the land value of the property by 1.71%.  Thus for 
properties that are quite close to a subway station, the drop in land value as walking time 
increases is not too substantial but as the walking time increases markedly, the drop in 
land value is quite substantial. 
 
The estimated time from the nearest subway station to the Tokyo station parameters were 
2 = 0.0008, 3 = 0.0128 and 4 = 0.0188. The interpretation of these parameters runs 
as follows: for properties where the subway running time from the nearest subway station 
to the Tokyo station is 4-28 minutes, an increase in running time of 1 minute decreases 
the land value of the property by 0.08%, a negligible decease; for properties where the 
subway running time from the nearest subway station to the Tokyo station is 28-36 
minutes, an increase in running time of 1 minute decreases the land value of the property 
by 1.28% and for properties where the subway running time from the nearest subway 
station to the Tokyo station is over 36 minutes, an increase in running time of 1 minute 
decreases the land value of the property by 1.88%, which is a substantial drop in value. 
 
The Model 4 constant quality residential land price index for Tokyo for quarter t is 
defined to be PL4t  t/1 and the corresponding constant quality residential structures 
price index for Tokyo for quarter t is defined to be PS4t  pCt/pC1. The corresponding 
Model 4 quarter t constant quality quantity levels, QL4t and QS4t, are defined as the total 
quarter t values of land and structures divided by the corresponding price levels for t = 
1,...,44: 
 
(35) QL4t  n=1

N(t) 1{j=1
21 jDW,tn,j}fL(Ltn)fF(Ftn)fM(Mtn)fT(Ttn) ;  

(36) QS4t  n=1
N(t) pCt gA(Atn)gB(Btn)Stn.  

 
We again use the Fisher ideal index to aggregate the price and quantity components for 
land and structures into a house price index. Thus define the overall house price level for 
quarter t for Model 4, P4t, as the chained Fisher price index of the land and structure 
series {PL4t,PS4t,QL4t,QS4t}.  
 

                                                 
51 The sum of the residuals in this model was  11.4. 
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The overall Model 4 house price index P4t as well as the land and structure price indexes 
PL4t and PS4t for Tokyo over the 44 quarters in the years 2000-2010 are graphed in Chart 
4 below.52 
  

Chart 4: Overall House Price Index, Land Price Index and Structure 
Price Index for Model 4
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Comparing Chart4 with the previous Charts, it can be seen that the structure price index 
is the same in all Models (by construction) and the land and overall indexes are much the 
same in all four Models.53 
 
We have allowed for a different level of land prices across the 21 Wards in Tokyo that 
span our data set. However, we have forced all land prices to change proportionally 
across time with the estimated t being the proportional factors. It is unlikely that land 
prices in the different Wards move in an exactly fixed proportion. Thus in the following 
section, we divide up the Wards into two groups: those that have relatively high price 
levels (i.e., large estimated j parameters) and those that have relatively low price levels 
(i.e., small j parameters) and we allow land prices to move independently in these high 
and low end wards. We also allow the level of structure prices to differ in high and low 
end wards.  
 
7. Allowing for Land and Structure Price Differences Across Wards 
 
In many countries, property price movements differ substantially across expensive and 
less expensive neighborhoods. Usually, land price movements in high end properties are 
more volatile than in lower end properties. In this section, we will attempt to determine 
whether this pattern also holds for Tokyo residential land prices. 
 
Ideally, it would be preferable to have separate land price parameters (the t) for each 
Ward. However, we do not have enough degrees of freedom to accurately measure land 

                                                 
52 The series P4, PL4 and PS4 are also listed in Table A8 of the Appendix. 
53  The correlation coefficients between P4 and P1, P2 and P3 were 0.99408, 0.99543 and 0.99643 
respectively and the correlation coefficients between PL4 and PL1, PL2 and PL3 were 0.99416, 0.99536 and 
0.99650  respectively.  
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price movements ward by ward.54 We do have a sufficient number of observations so that 
we can divide Wards into two groups based on the estimated j parameters from Model 
4: Group 1 Wards are those whose estimated relative land price levels j exceeded 0.75 
and Group 2 Wards are those whose estimated land price levels j were less than 0.75. 
The following Wards were in Group 1 (the expensive or high end Wards): 1-4, 7-11, 13-
14. The following Wards were in Group 2 (the cheaper or lower end Wards): 5, 12, 15-
21. We will allow land prices to evolve over time in a completely independent manner for 
high and lower end Wards. Thus instead of estimating a single set of 44 land price 
parameters t, we will now estimate two sets of land price parameters: 1,t for high end 
Wards and 2,t for lower end Wards for t = 1,...,44.  
   
Recall definition (10) which defined the quality adjustment for lot size function, fL(Ltn). 
We will now allow for separate lot size quality adjustments in the high and lower end 
wards. The high and low end lot size quality adjustment functions for property n sold in 
period t, f1L(Ltn) and f2L(Ltn) respectively, are defined as follows for i = 1,2: 
 
(37) fiL(Ltn)  
             DL,tn,1i,1Ltn + DL,tn,2[i,1L1+i,2(LtnL1)] + DL,tn,3[i,1L1+i,2(L2L1)+i,3(LtnL2)]  
 
where the i,k are 6 unknown parameters, L1  0.77 and L2  1.10, and the lot size dummy 
variables DL,tn,k are defined above by (9). The parameters 1,1, 1,2 and 1,3 are the relative 
marginal prices of land for plots in high end wards and the parameters 2,1, 2,2 and 2,3 
are the relative marginal prices of land for plots in lower end wards. 
 
A final generalization over Model 4 is that we will now allow the level of structure prices 
to differ in high and lower end wards so that the previous structure price level parameter 
 is now replaced by 1 (the level of structure prices in high end wards) and 2 (the level 
of structure prices in lower end wards). Our expectation is that 2 will be less than 1 
since we would expect the quality of construction to be higher in the high end wards. Our 
final nonlinear regression model is defined for t = 1,...,44 and n = 1,...,N(t) by the 
following equations: 
 
(38) Vtn = 1,t{1DW,tn,1+2DW,tn,2+3DW,tn,3+4DW,tn,4+7DW,tn,7+8DW,tn,8+9DW,tn,9 
                    +10DW,tn,10+11DW,tn,11+13DW,tn,13+14DW,tn,14}f1L(Ltn)fF(Ftn)fM(Mtn)fT(Ttn) 
                +2,t{5DW,tn,5+6DW,tn,6+12DW,tn,12+15DW,tn,15+16DW,tn,16+17DW,tn,17 
                    +18DW,tn,18+19DW,tn,19+20DW,tn,11+21DW,tn,21}f2L(Ltn)fF(Ftn)fM(Mtn)fT(Ttn) 
                + 1{DW,tn,1+DW,tn,2+DW,tn,3+DW,tn,4+DW,tn,7+DW,tn,8+DW,tn,9+DW,tn,10+DW,tn,11 
                    +DW,tn,13+DW,tn,14}pCtgA(Atn)gB(Btn)Stn   
                +2{DW,tn,5+DW,tn,6+DW,tn,12+DW,tn,15+DW,tn,16+DW,tn,17+DW,tn,18+DW,tn,19 
                    +DW,tn,20+DW,tn,21}pCtgA(Atn)gB(Btn)Stn + tn  
 

                                                 
54 The total number of observations in Wards 1-21 were as follows: 69, 136, 82, 15, 32, 38, 144, 349, 409, 
1158, 107, 305, 773, 124, 53, 34, 214, 925, 271, 143 and 197. Thus Wards 4, 5, 6 and 16 have only 15, 32, 
33 and 34 observations. Thus the Wards with the most observations were Wards 10, 13 and 18 with 1158, 
773 and 925 observations.  
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The explanatory variables on the right hand side of equations (38) decompose into 4 sets 
of terms:55 
 

 The terms associated with 1,t represent the estimated land value of a property in a 
high end ward; 

 The terms associated with 2,t represent the estimated land value of a property in a 
lower end ward; 

 The terms associated with 1 represent the estimated structure value of a property 
in a high end ward and  

 The terms associated with 2 represent the estimated structure value of a property 
in a lower end ward. 

 
Compared to the previous Model, we have added 44 new land price parameters, 2,t, 3 
new lot size quality adjustment parameters, 2,1, 2,2 and 2,3 and one new structure price 
level parameter, 2. However, as was the case with our previous models, not all 
parameters in (38) can be identified. Hence we impose the following identifying 
restrictions on the parameters:56 
 
(39) 10 = 1; 18 = 1; 1,1 = 1; 2,1 = 1;  1 = 1; 1 = 1; 1 = 1 and 1 = 1.  
 
There are 128 unknown parameters to be estimated. The nonlinear regression model 
defined by (38) and (39) is our Model 5. 
 
As usual, we estimated the unknown parameters for Model 5 using the nonlinear 
regression option in Shazam. The detailed parameter estimates are listed in the Appendix 
in Table A9.57 The R2 for this model turned out to be 0.8476 and the log likelihood was 
8709.9, an increase of 106.0 over the Model 4 log likelihood.58 Thus adding the 46 extra 
parameters added significantly to the explanatory power of our hedonic regression model. 
 
When we calculate the price indexes for land in the high and low end wards later in this 
section, it will be seen that the price movements are quite different, even though the 

                                                 
55 The model defined by equations (38) looks complicated but it is an almost straightforward generalization 
of Model 4 where we have broken up our observations into two separate groups according to whether the 
observed sale is in Group 1 or 2 wards. The resulting two Ward models are not completely separate because 
we force the parameters characterizing the quality adjustment functions gA(Atn), gB(Btn), fF(Ftn), fM(Mtn) and 
fT(Ttn) to be the same across the two groups of wards.  
56 The restrictions 1,1 = 1and 2,1 = 1 replace our old restriction 1 = 1. The other new restriction is 18 =1. 
Thus the level of land prices in the less expensive wards (the j for j = 5, 12, 15-17 and 19-21) is relative to 
the level of land prices in Ward 18 where we set 18 = 1. Of course, the movements in land prices in the 
Group 2 wards is given by the movements in the 2,t and the movements in land prices over time in the 
Group 1 wards is given by the movements in the 1,t. The level of land prices in the Group 1 wards is 
relative to the level of land prices in Ward 10 where we set 10 = 1.    
57 The standard errors on the estimated high end ward parameters are generally lower (and the T statistics 
higher) than the estimated lower end ward parameters. There were 3326 observations in the high end wards 
and only 2252 observations in the lower end wards. 
58 The sum of the residuals in this model was  10.8. 
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overall land price index has not changed substantially from the land price indexes that 
resulted from our previous 4 models. 
 
In Model 5, we allow for different schedules of land prices as functions of the plot size in 
the two types of ward. For high end wards, the relative marginal price of land for small 
plots is 1,1 and this price was set equal to unity. For medium sized plots in high end 
wards, the marginal price falls to 1,2 = 0.8949 but for large sized plots, the marginal 
price increases to 1,3 = 1.0336. For small plots in lower end wards, the relative marginal 
price of land is 2,1 and this price was also set equal to unity. For medium sized plots in 
lower end wards, the marginal price falls more dramatically to 2,2 = 0.6087 but for large 
sized plots, the marginal price again increases to 2,3 = 0.9214. Thus both high and low 
end wards exhibit the same general pattern of marginal valuations for land as a function 
of the lot size but the drop in the marginal price is more pronounced for medium sized 
plots in lower end wards. 
 
Model 5 also allows for different structure price levels in high and low end wards. The 
estimated structure price level parameter for high end wards is 1 = 3.9734 and for lower 
end wards, it is 2 = 2.4777. Thus it appears that the average quality of construction in 
lower end wards is only about 62% of the construction quality in high end wards. 
 
We turn now to the problems associated with the construction of land, structure and 
overall price indexes for Tokyo. The construction of the land and overall price indexes is 
more complex in the present model that in previous models, because the quarter to 
quarter movements in land prices are different in the Group 1 and 2 wards. For the high 
end wards, the Model 5 constant quality residential land price index for quarter t is 
defined to be PL1,5t  1,t/1,1. For the lower end wards, the Model 5 constant quality 
residential land price index for quarter t is defined to be PL2,5t  2,t/2,1. For all wards, 
the constant quality residential structures price index for quarter t is defined to be the 
usual MLIT structures price index, PS5t  pCt/pC1 = pCt since pC1 = 1. The land and 
structure price indexes PL1,5t, PL2,5t and PS5t for Tokyo over the 44 quarters in the years 
2000-2010 are graphed in Chart 5 below. 
 
The Model 5 quarter t constant quality quantity levels of land in high and lower end 
wards, QL1,5t, and QS2,5t respectively, are defined as the estimated total quarter t values of 
land in high and lower end wards divided by the corresponding price levels, PL1,5t and 
PL2,5t, for t = 1,...,44: 
 
(40) QL1,5t  n=1

N(t) 1,1{1DW,tn,1+2DW,tn,2+3DW,tn,3+4DW,tn,4+7DW,tn,7+8DW,tn,8 

    +9DW,tn,9+10DW,tn,10+11DW,tn,11+13DW,tn,13+14DW,tn,14}f1L(Ltn)fF(Ftn)fM(Mtn)fT(Ttn); 
(41) QL2,5t  n=1

N(t) +2,1{5DW,tn,5+6DW,tn,6+12DW,tn,12+15DW,tn,15+16DW,tn,16 
 +17DW,tn,17+18DW,tn,18+19DW,tn,19+20DW,tn,11+21DW,tn,21}f2L(Ltn)fF(Ftn)fM(Mtn)fT(Ttn). 
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The Model 5 quarter t constant quality quantity structure level, QS5t, is defined as the 
total quarter t estimated value of structures divided by the corresponding price level PS5t = 
pCt for t = 1,...,44:59 
 
(42) QS5t  n=1

N(t) 1{DW,tn,1+DW,tn,2+DW,tn,3+DW,tn,4+DW,tn,7+DW,tn,8+DW,tn,9+DW,tn,10 
                  + DW,tn,11+DW,tn,13+DW,tn,14}gA(Atn)gB(Btn)Stn   
                  + n=1

N(t) 2{DW,tn,5+DW,tn,6+DW,tn,12+DW,tn,15+DW,tn,16+DW,tn,17+DW,tn,18 

                  + DW,tn,19+DW,tn,20+DW,tn,21}gA(Atn)gB(Btn)Stn.  
 
We use the Fisher ideal index to aggregate the price and quantity components for high 
and lower end land. Thus define the overall land  price level for quarter t for Model 5, 
PL5t, as the chained Fisher price index of the two land price and quantity series 
{PL1,5t,PL2,5t,QL1,5t,QL2,5t}. The overall house price index for Tokyo for quarter t for Model 
5, P5t, is defined as the chained Fisher price index of the two land price and quantity 
series and the structure price and quantity series, {PL1,5t,PL2,5t,PS5t,QL1,5t,QL2,5t,QS5t}. The 
overall Model 5 house price index P5t as well as the overall land price index PL5t for 
Tokyo over the 44 quarters in the years 2000-2010 are also graphed in Chart 5 below.60 
 

Chart 5: Price Indexes for Tokyo Houses, Land, Structures, High 
End Land and Lower End Land
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As expected, the pattern of land price movements is very different in the high and low 
end wards. Price movements have generally been higher and more volatile in the more 
expensive wards; i.e., PL1,5t generally lies above PL2,5t and PL1,5t has a higher variance than 
PL2,5t.

61 However, it can also be seen from viewing Chart 5 that the overall land price 
index for Model 5, PL5t, is not that different from the land price indexes from previous 
Models.62 We compare the Model 1 to Model 5 overall land price indexes in Chart 6. 
 
                                                 
59 Note that pCt does not appear on the right hand side of (42). 
60 The series P5t, PL5t, PL1,5t and PL2,5t are listed in Table A10 of the Appendix. PS5t is equal to PS4t and is 
listed in Table A8 and is equal to the MLIT construction index pCt. 
61 The sample variance for PL1,5t was 0.0358 and for PL2,5t was 0.0077. 
62 The correlation coefficients between PL5 and PL1, PL2, PL3 and PL4 were 0.98997, 0.99123, 0.99324 and 
0.99684 respectively.        
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Chart 6: Land Price Indexes for Tokyo, Models 1-5
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It can be seen that the overall land price series for Models 1-4, PL1t-PL4t, are generally 
quite close with small drops in the series as we move from Model 1 to Model 4. The 
overall land price series for Model 5 drops a more substantial amount: about 3% on 
average.63 However, the overall pattern of land price movements is much the same in all 
5 Models. 
 
It is also useful to compare the overall house price indexes for Models 1-5 and this is 
done in Chart 7. 
 

Chart 7: House Price Indexes For Tokyo, Models 1-5
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Again, there are only small differences in the overall house price indexes P1t-P4t for 
Models 1-4.64 However, the Model 5 overall house price index P5t is about 2% lower on 
average compared to the levels in the other Models.  

                                                 
63  We regard the Model 5 estimates as the most accurate estimates since this model has reasonable 
parameter values and gives us the best fit. 
64 The correlation coefficients between P5 and P1, P2, P3 and P4 were 0.98637, 0.98822, 0.99132 and 
0.99492.     
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In summary, the overall house price index P5t is probably the most accurate one but the 
overall pattern of price movements is much the same in all 5 Models. Two important 
implications of our results for statistical agencies are as follows: 
 

 Our generalized builder’s model can provide a sensible decomposition of house 
prices in a major city into land and structure components and 

 Model 1, our simplest model that uses only information on lot size, floor space 
size, the age of the structure and the ward in which the lot is located, can provide 
an adequate approximation to a more data intensive model that uses information 
on other characteristics of the lot location and the structure.  

 
All of the price indexes that we have constructed thus far have been for the quarterly 
sales of houses in Tokyo. In order to construct estimates of real household wealth, it is 
useful to be able to construct price indexes for the stock of residential houses in Tokyo. In 
the following section, we show how approximate stock indexes can be constructed using 
the Models that have already been estimated.    
 
8. Approximate Stock House Price and Land Price Indexes 
 
In order to construct a completely accurate price index for the stock of houses in a city or 
location, it is necessary to have an updated census of dwelling units in the area under 
consideration. However, if census information is not available, it is possible to construct 
an approximation to a housing stock price index for the location using cumulated 
information on the sales of houses in the location.65  
 
The basic idea is straightforward: we form an approximation to the quantity of quality 
adjusted high end land, lower end land and structures over our sample period by 
cumulating the corresponding quarterly sales quantities QL1,5t, QL2,5t and QS5t defined by 
equations (40)-(42) in the previous section. Define the cumulated quantities as follows:66 
 
(43) QL1  t=1

44 QL1,5t; QL2  t=1
44 QL2,5t; QS  t=1

44 QS5t. 
 
The corresponding land prices are the Model 5 land prices defined in the previous 
section: for the higher and lower end wards, the constant quality residential approximate 
stock land price indexes for quarter t are defined to be PL1,t  1,t/1,1 and PL2,t  2,t/2,1. 
The constant quality residential structures stock price index for quarter t is defined to be 
the usual MLIT structures price index, PSt  pCt. 
 
Our approximate land price for the stock of houses in Tokyo for quarter t, PKL5t, based on 
the Model 5 regression parameters is defined as the following Lowe (1823) index:67 

                                                 
65 This approximate stock of housing price index methodology was explained in Chapter 8 of  the Eurostat 
Residential Property Price Index Handbook; see de Haan and Diewert (2011; sections 8.49-8.57). 
66 These cumulated quantities divided by the sample number of observations 5578 turned out to equal QL1= 
2.22644, QL2 = 1.19465 and QS = 2.73970. 
67 For additional material on Lowe indexes, see Hill (2004; Ch. 15). 
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(44) PKL5t  [PL1,tQL1+PL2,tQL2]/[PL1,1QL1+PL2,1QL2] ;                                          t = 1,...,44. 
 
It can be seen that the land price index defined by (44) is a fixed basket type index where 
the quantity basket consists of the quality adjusted total amounts of the two types of 
residential land in Tokyo.68   
 
Our approximate overall house price for the stock of houses in Tokyo for quarter t, PK5t, 
based on the Model 5 regression parameters is defined as the following Lowe index: 
 
(45) PK5t  [PL1,tQL1+PL2,tQL2+PStQSt]/[PL1,1QL1+PL2,1QL2+PStQS1] ;                   t = 1,...,44. 
 
The land and overall stock price indexes PK5t and PKL5t defined by (44) and (45) are 
compared with their sales counterparts from Model 5, P5t and PL5t, in Chart 8.69 
 

Chart 8: Approximate Stock and Sales House and Land Price 
Indexes Based on Model 5 Estimates
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It can be seen that the overall approximate housing stock index PK5t is very close to its 
sales counterpart P5t and the approximate stock of land price index PKL5t is almost 
identical to its sales counterpart PL5t.

70 These close correspondences are very encouraging 
since it indicates that the sales based indexes are likely to provide adequate 

                                                 
68 When quantities are constant across periods as they are in the case of a Lowe index, it will turn out that 
fixed base and chained Laspeyres, Paasche and Fisher indexes will all be equal. 
69 The corresponding series are listed in Table A10 in the Appendix. 
70 The differences in the stock type indexes and their sales counterparts are entirely due to the effects of 
different quantity weights since the price components are identical in these counterpart indexes. The close 
correspondence of PK5t to P5t shows that the quarter to quarter fluctuations in QL1,5t, QL2,5t and QS5t 
(compared to the fixed weights QL1, QL2 and QS) were not large enough to cause the stock and sales type 
indexes to diverge substantially.   
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approximations to the corresponding true stock indexes, which use updated census 
weights for the housing stock. 
 
The sales price hedonic regression models that we have presented in previous sections are 
not completely suitable for use by statistical agencies producing house price indexes. The 
reason for this lack of suitability is due to the fact that as data on sales for the most recent 
quarter becomes available, the new hedonic regression will give rise to new estimates of 
house price inflation for past periods and this would lead to a need to revise past series. 
For many purposes, it is useful to have price indexes that are not revised. In the following 
section, we will address how to deal with this revisions problem. 
 
9. Rolling Window Hedonic Housing Regressions 
  
We dealt with the no revisions problem in the following way. We started off by using 
Model 5 but applied it to only the first 24 quarters of our sample (instead of the full 44 
quarters). We then computed our land, structures and overall house price indexes as in 
section 7 above for quarters 1-24. At Stage 2 of our procedure, we dropped the data for 
quarter 1 and added the data for quarter 25 to form our Stage 2 data set and then ran the 
nonlinear regression model defined by equations (38) and (39) for quarters t = 2,3,...,25. 
Using these new coefficient estimates, we computed the structure price index and land 
price indexes for high and low end wards as in section 7 for quarters 2-25. However, we 
used only the ratios of the Stage 2 quarter 25 to quarter 24 land price indexes in order to 
update our previous Stage 1 land price indexes so that the new set of indexes covered 
quarters 1-25.71 At Stage 3 of our procedure, we dropped the data for quarter 2 and added 
the data for quarter 26 from our Stage 2 data to form our Stage 3 data set and then ran the 
nonlinear regression model defined by equations (38) and (39) for quarters t = 3,4,...,26. 
Using these new coefficient estimates, we computed the structure price index and land 
price indexes for high and low end wards as in section 7 for quarters 3-26. We used only 
the ratios of the Stage 3 quarter 26 to quarter 25 land price indexes in order to update our 
previous Stage 2 land price indexes so that the new set of indexes covered quarters 1-26. 
We continued this process of adding the data of the next quarter and dropping the data of 
the oldest quarter in the rolling window of 24 quarters until we reached quarter 44. Thus 
we ran a total of 21 Rolling Window Hedonic Regressions. 72  The resulting Rolling 
Window overall house price indexes PRWt, overall land price indexes PLRWt, high and low 
end ward land price indexes, PL1RWt and PL2RWt, are plotted in Chart 973 along with their 
Model 5 counterpart indexes, P5t, PL5t, PL1,5t and PL2,5t.  
 

                                                 
71 The structure price indexes turn out to equal the MLIT indexes pCt that we have listed previously. 
72 Each of the 21 regressions had 88 parameters to estimate with a varying number of degrees of freedom. 
This rolling window updating procedure was introduced by Shimizu, Nishimura and Watanabe (2010) and 
Shimizu, Takatsuji, Ono and Nishimura (2010) in their hedonic regression models for Tokyo house prices. 
The method we are using here deals with the extra complications due to the need for separate land and 
structures estimates. Our present method was explained and implemented for the Dutch town of “A” with a 
window length of 9 quarters; see Chapter 8 of de Haan and Diewert (2011). The rolling window updating 
methodology has also been used previously in an index number context; see Ivancic, Diewert and Fox 
(2011), de Haan and van der Grient (2011) and de Haan and Krsinich (2012).  
73 These indexes are also listed in Table A12 in the Appendix. 
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Chart 9: Model 5 Price Indexes P5, PL5, PL1-5, PL2-5 and Rolling 
Window Price Indexes PRW, PLRW, PL1-RW and PL2-RW
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Viewing Chart 9, it can be seen that the Model 5 overall house price index, P5, can hardly 
be distinguished from its Rolling Window counterpart, PRW. However, for the land price 
indexes, it can be seen that while the Model 5 indexes PL5 (the overall land price index), 
PL1,5 (the high end ward land price index) and PL2,5 (the lower end ward land price index) 
are very close to their Rolling Window counterparts PLRW, PL1RW and PL2RW for the first 5 
years in our sample, the Rolling Window land price indexes tend to be lower than their 
single regression Model 5 counterparts for the last 5 years in our sample.   
 
The question now arises: which model should be a preferred model: Model 5 based on a 
single regression or the Rolling Window Model based on 21 separate hedonic 
regressions? We prefer the Rolling Window Model since it allows for gradual change in 
the hedonic coefficients over time and moreover, the RW Model fits the data better while 
still generating sensible parameter estimates.74 
 
Our conclusion here is that the Rolling Window hedonic house price regression model is 
a suitable one for a statistical agency that is mandated to produce a house price index in a 
timely manner without having to make revisions to previous estimates. An open question 
which we did not explore in the present paper is the question of choosing the “optimal” 
window length.  
 
10. Comparison with Traditional Time Dummy Hedonic Regression Models 
 
There is no doubt that our Model 5 defined in section 7 is rather complicated. Thus most 
hedonic housing regression models are based on the far simpler time dummy approach 

                                                 
74 The R2 for the 21 regressions were as follows: 0.8518, 0.8470, 0.8494, 0.8481, 0.8496, 0.8489, 0.8526, 
0.8511, 0.8515, 0.8483, 0.8505, 0.8533, 0.8551, 0.8544, 0.8540, 0.8551, 0.8551, 0.8525, 0.8516, 0.8555 
and 0.8573. Recall that the R2 for the Model 5 regression was 0.8476. The structural parameters that were 
common to all of the regressions did not change much over time but there were some small changes which 
of course led to the differences between the Model 5 and Rolling Window land price indexes.                
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where the log of the selling price of the house is regressed on either a linear function of 
the characteristics or on the logs of the characteristics of the house along with time 
dummy variables.75 This method does not generate decompositions of the selling price 
into land and structure components and so it is not suitable when such decompositions are 
required but the time dummy method can be used to generate overall house price indexes. 
In this section, we will use the time dummy method to generate overall house price 
indexes and compare them with our Model 5 overall estimates.  
 
Recall that Vtn is the sales price of property n that was sold in quarter t, Ltn is the area of 
the plot, Stn is the floor space area of the structure and Atn is the age of the structure. In 
the time dummy linear regression defined below by (46), we have replaced Vtn, Ltn, Stn 
and Atn by their logarithms, lnVtn, lnLtn, lnStn and lnAtn.

76 Our first time dummy hedonic 
regression model is defined for t = 1,...,44 and n = 1,...,N(t) by the following equations: 
 
(46) lnVtn = t + lnLtn + lnStn + lnAtn+j=1

21 jDW,tn,j + tn 
 
where 1,...,44, , ,  and 1,...,21 are 68 unknown parameters to be estimated and 
DW,tn,j is the Ward j dummy variable for observation tn defined earlier by (4). The t are 
the quarter t time coefficients which shift the hedonic surface during each quarter,  and  
are parameters which adjusts the sales price for the size of the lot and the floor space area 
respectively,  is a parameter which adjusts the sales price for the age of the structure 
(essentially a depreciation parameter) and the j are parameters which adjust the selling 
price Vtn up or down depending on the ward that property n in quarter t is located. We 
expect  and  to be positive and  to be negative. The time dummy variables associated 
with the t and the dummy variables DW,tn,j associated with the wards are linearly 
dependent and so we need to impose a normalization on the parameters in order to 
identify the remaining parameters. We choose the following normalization: 
 
(47) 1 = 0. 
 
Model 6 is the hedonic regression model defined by (46) and (47). Using our Tokyo 
housing data, we estimated Model 6 using the Ordinary Least Squares option in Shazam 
and the parameter estimates are listed in Table A13 in the Appendix.77 The R2 for this 
model turned out to be 0.8432 with a log likelihood of 1985.9.  
 
                                                 
75 This methodology was developed by Court (1939; 109-111) as his Hedonic Suggestion Number Two. 
For an application of the time dummy approach to the construction of house price indexes for Tokyo, see 
Shimizu and Nishimura (2007). 
76 The log-linear regression model that replaced lnLtn, lnStn and lnAtn by their levels, Ltn, Stn and Atn, led to 
an R2 of 0.8374 and a log likelihood of 1883.5 which is lower than the R2 and log likelihood generated by 
the model defined by (46). Thus we report only the results for the log-log model. 
77 The estimated structure and land area coefficients turned out to be  = 0.44108 and  = 0.49708 with T 
statistics of 40.32 and 56.01. The estimated age of structure parameter turned out to be  = 0.09662 with a 
T statistic of 27.70. The coefficients j associated with the Ward dummy variables were highly significant 
with T statistics ranging between 43.6 and 131.8. For Model 5, the expensive Wards were 1-4, 7-11 and 13-
14. For the present Model 6, the Wards with the highest j’s were 1-4 and 7-14. The sum of residuals was 0 
in Models 6 and 7.   
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The overall house price indexes for Model 6, P6t, are defined as the exponentials of the 
time coefficients t: 
 
(48) P6t  exp[t] ;                                                                                              t = 1,....,44. 
 
The Model 6 time dummy hedonic regression uses the same characteristics information 
that we used in our nonlinear regression for Model 1. Thus we compare our Model 6 
overall price indexes P6t with the Model 1 indexes P1t and our best Model 5 indexes P5t in 
Chart 10 below78 along with the Mean and Median indexes.   
 

Chart 10: Mean, Median, Nonlinear Hedonic Models P1 and P5 and 
Time Dummy Hedonic Models P6 and P7 House Price Indexes for 
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It can be seen that during the last half of the sample period, the Mean and Median house 
price series are about 10-20% below the other indexes P1t, P5t and P6t that rely on hedonic 
regressions to control for the quality of the houses sold in each quarter. Over the entire 
sample period, the time dummy index P6t is on average about 2% below our best 
nonlinear regression based index P5t and about 4% below our initial nonlinear regression 
based index P1t that used the same characteristics information that was used in Model 6. 
Thus the time dummy based indexes P6t do differ somewhat from our overall house price 
indexes P1t-P5t that were based on variants of our basic builder’s model. 
 
We run one additional time dummy model that uses all of the characteristics information 
that we used in Model 5. Perhaps the use of this extra information will lead to an index 
which is close to P5t.  
 
We will add the following 4 variables as explanatory variables to the regression model 
defined earlier by (46): NB = Number of bedrooms; WI = Width of the lot in meters; TW 
= Walking time in minutes to the nearest subway station and TT = Subway running time 

                                                 
78 The P6t are also listed in Table A14 in the Appendix.  
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in minutes to the Tokyo station from the nearest station.79 Thus our Model 7 regression is 
defined as follows, for t = 1,...,44 and n = 1,...,N(t): 
 
(49) lnVtn = t+lnLtn+lnStn+lnAtn+NBtn+lnWItn+TWtn+TTtn+j=1

21 jDW,tn,j+tn 
 
where 1,...,44, , , , , , ,  and 1,...,21 are 72 unknown parameters to be 
estimated and DW,tn,j is the Ward j dummy variable for observation tn defined earlier by 
(4). As was the case with Model 6, not all parameters are identified. Thus we again 
impose the normalization (47), which was 1 = 0. The 4 new parameters , ,  and  are 
associated with the variables NBtn, WItn, TWtn and TTtn. We tried entering each of these 
variables into the regression defined by (49) in levels form or by transforming the 
variable by the natural logarithm function. We found that entering the lot width variable 
in log form led to a higher log likelihood (so notice that we have the term lnWItn in (49) 
rather than the term WItn) but for the other 3 new variables, the levels form led to higher 
log likelihoods. Using our Tokyo housing data, we estimated Model 7 using the Ordinary 
Least Squares option in Shazam and the parameter estimates are listed in Table A15 in 
the Appendix.80 The R2 for this model turned out to be 0.8621 with a log likelihood of 
2344.1, a very large increase of 358.3 over the Model 6 log likelihood.  
 
The overall house price indexes for Model 7, P7t, are defined as the exponentials of the 
new time parameters t: 
 
(50) P7t  exp[t] ;                                                                                               t = 1,....,44. 
 
The Model 7 time dummy hedonic regression uses the same characteristics information 
that we used in our nonlinear regression for Model 5. Thus we compared our Model 7 
overall price indexes P7t with the Model 5 indexes P5t in Chart 10 above81 along with the 
Mean and Median indexes. It can be seen that the P7t are not all that different from the P6t 
and both indexes are still generally below our best index P5t.

82   
  
Viewing Chart 10, it can be seen that the time dummy regression models give rise to 
house price indexes P6t and P7t that are fairly close to our preferred index P5t but there are 
two significant differences: 
 

                                                 
79 These variables were defined in section 2 above. 
80 The estimated structure and land area coefficients turned out to be  = 0.42882 and  = 0.52920 with T 
statistics of 38.7 and 62.7. The estimated age of structure parameter turned out to be  = 0.08885 with a T 
statistic of 26.5. The estimated width, bedrooms, walking time and subway time parameters were  = 
0.10277,  = 0.00190,  = 0.00106 and  = 0.00007 with T statistics of 11.4, 7.4, 20.6 and 16.9.   
The coefficients j associated with the Ward dummy variables were highly significant with T statistics 
ranging between 45.2 and 92.4. For Model 5, the expensive Wards were 1-4, 7-11 and 13-14. For the 
present Model 7, the expensive Wards with the highest j’s were 1-4 and 7-14. The signs of the estimated 
parameters are all reasonable.   
81 The P7t are also listed in Table A14 in the Appendix.  
82 The sample means (over the 44 quarters) for the P1t, P5t, P6t and P7t were 1.0404, 1.0199, 1.0010 and 
0.9935 respectively. Thus on average, the P7t were 0.75% below the corresponding P6t and 2.64% below the 
P5t. The correlation coefficients between P5 and P1, P6, P7 were 0.98637, 0.96770, 0.96507 respectively.    
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 The P6t and P7t are significantly below the corresponding P5t and 
 The P6t and P7t are significantly smoother than the corresponding P5t.

83  
 
Thus the time dummy based house price indexes do differ significantly from the indexes 
generated by our best builder’s model. However, can we determine which type of model 
is “best”? In order to answer this question, we return to the basic builder’s model defined 
by equations (1) above, which set the value of a property, Vtn, equal to the sum of its land 
value, tLtn, plus its structure value, tStn. Thus there are four main determinants of 
property value in this simplified model: the land area Ltn, the structure area Stn, the period 
t price of land t and the period t price of the structure per meter squared t. The 
corresponding simplified time dummy hedonic regression model sets the logarithm of 
property value, lnVtn, equal to a time dummy parameter, say t, plus a weighted sum of 
the logarithms of land and structure areas, lnLtn + lnStn. Thus the exponential of t, say 
t  exp[t], can be interpreted as the period t price of the fixed weight “average”84 of 
land and structure composite commodity, Ltn

Stn
. The weakness of the time dummy 

model now becomes apparent: the time dummy model has only a single price t for a 
fixed weight aggregate of land and structures that can vary over time whereas the 
builder’s model has two prices that can vary independently over time, the prices of land 
and structures, t and t. Thus at this stage of the argument, it is clear that the builder’s 
model is a far more flexible model than the time dummy model.85 However, in our 
empirical work, we did not estimate the movements of structure prices over time; i.e., we 
assumed that an official house construction price index could accurately capture how the 
price of structures changed over time.86 If this assumption is far from being satisfied, then 
it is possible that the time dummy model could give more accurate results. Our subjective 
assessment is that the MLIT construction price index does reflect movements in house 
construction costs in Tokyo and thus we feel that the Model 5 results are more accurate 
than the Model 6 and 7 results. However, all three models provide similar overall price 
indexes for house sales in Tokyo.       
 
11. Conclusion  
 
We summarize some of the main points that have emerged in the previous sections: 
 

 The paper shows that the builder’s model that was previously applied to a small 
Dutch town87 can be applied to a large urban city (Tokyo) provided that we have 
information on the sales price of houses, the land and structure areas of the house, 
the age of the house, some information on the location of the properties and an 
exogenous price index for house construction costs. The builder’s model can 

                                                 
83 The sample variances for the P1t, P5t, P6t and P7t are 0.00692, 0.00624, 0.00378 and 0.00396. 
84 We have a true average only if  and  sum to one. 
85 The two models can give the same answer empirically if either t = t for all periods t so that the prices 
of land and structures move proportionally over time or if Ltn = Stn for all t and n so that the land-structure 
ratio is constant for all properties. Neither possibility is empirically likely. 
86 Recall that we made this assumption to eliminate the multicollinearity problem between Ltn and Stn. 
87 See de Haan and Diewert (2011) and Diewert, de Haan and Hendriks (2011a) (2011b).  
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successfully provide a decomposition of property value into land and structures 
components. 

 We showed how additional information on the characteristics of the properties 
can be incorporated into the builder’s model, leading to models that fit the data 
better and thus presumably providing more accurate land, structure and overall 
price indexes. 

 Hedonic regression models typically model the effects of increasing amounts of a 
characteristic on the selling price in a linear fashion. In the present paper, we 
generalized this approach to allow the response to be a piece-wise linear function 
(or spline function) in place of a linear response function. This generalization was 
particularly important in modeling the effects of structure age and of walking time 
to the nearest subway station; see sections 4 and 6. 

 In section 8, we showed how our regression results could be used to calculate 
approximate price indexes for the stock of houses in Tokyo (as opposed to the 
sales of houses in each quarter). 

 In section 9, we computed 21 Rolling Window regressions and showed how these 
regression results could be used to construct house price indexes that were timely 
and did not need to be revised each period as new information on house sales 
became available. 

 Finally, in section 10, we compared our builder’s model indexes to traditional 
time dummy hedonic regression models. The comparisons could only be made for 
the overall house price indexes since the time dummy method does not lead to 
accurate separate indexes for land and for structures. We found that while the time 
dummy and builder’s models captured the same trends, there were some small but 
significant differences between the indexes generated by the two approaches.   

 
 
Appendix: Model Estimated Coefficients and Index Number Tables 
 
Table A1: Estimated Coefficients for Model 1 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
1 2.1348 41.112 3 3.7863 28.383 25 4.4053 35.093
2 1.0020 30.511 4 3.9980 32.103 26 4.3998 35.979
3 1.1553 30.269 5 3.7944 32.603 27 4.7558 31.124
4 1.0552 11.541 6 3.7475 27.506 28 5.1506 40.423
5 0.38569 5.621 7 3.3218 26.688 29 5.1939 37.356
6 0.62467 9.992 8 3.4285 30.338 30 5.4013 37.140
7 1.0214 27.35 9 3.7525 27.488 31 5.2080 33.905
8 1.2304 58.353 10 3.3802 28.813 32 5.6581 39.967
9 0.88449 46.691 11 3.0205 23.868 33 5.1146 31.804
11 1.6639 41.882 12 3.3602 31.929 34 5.0592 31.877
12 0.67269 34.870 13 3.8478 29.689 35 5.3721 32.813
13 0.79505 64.468 14 3.7603 32.321 36 4.0782 23.219
14 0.89487 26.294 15 3.5570 28.634 37 4.0863 22.016
15 0.54123 8.8738 16 3.7025 22.845 38 3.9651 24.827
16 0.44453 6.0919 17 3.8440 34.010 39 3.9528 24.771
17 0.45904 16.009 18 3.8632 29.935 40 3.8021 23.690
18 0.49218 39.188 19 3.4764 28.183 41 4.2077 27.508
19 0.21120 8.9117 20 4.0631 30.474 42 4.4752 28.542
20 0.28298 7.9508 21 4.1170 31.375 43 3.9829 25.538
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21 0.33419 12.273 22 4.1321 31.351 44 4.1515 29.487
1 3.7342 32.491 23 4.1994 28.264  3.4071 59.780
2 3.9089 33.202 24 4.2315 35.553  0.01394 26.830

 
Table A2: Mean and Median House Price Indexes for Tokyo, Model 1 Overall Price 
Index P1, Land Price Index PL1 and Structure Price Index PS1 
 
Quarter PMean PMedian P1 PL1 PS1

2000-1 1.00000 1.00000 1.00000 1.00000 1.00000
2000-2 1.00349 1.03192 1.01926 1.04678 0.98919
2000-3 0.99552 0.98016 1.00253 1.01395 0.98919
2000-4 0.98649 0.99223 1.03399 1.07064 0.99459
2001-1 1.01299 1.03192 1.00091 1.01612 0.98378
2001-2 0.93072 0.97498 0.99714 1.00355 0.98919
2001-3 0.96159 1.03192 0.93555 0.88956 0.98378
2001-4 0.91955 0.89387 0.94532 0.91814 0.97297
2002-1 0.94738 1.00690 0.98594 1.00490 0.96216
2002-2 0.93671 1.01467 0.93521 0.90521 0.96757
2002-3 0.89508 0.93184 0.88051 0.80889 0.96216
2002-4 0.95421 0.94564 0.93233 0.89983 0.96757
2003-1 0.94934 0.94564 0.99763 1.03042 0.95676
2003-2 0.94085 0.96462 0.98258 1.00700 0.95135
2003-3 1.00603 0.99741 0.95549 0.95256 0.95676
2003-4 0.85028 0.89387 0.97334 0.99152 0.95135
2004-1 1.02468 1.03192 0.99288 1.02941 0.95135
2004-2 0.89192 0.88525 0.99299 1.03454 0.94595
2004-3 0.90729 0.94909 0.94139 0.93095 0.95135
2004-4 0.95412 0.91113 1.01828 1.08808 0.94054
2005-1 0.87366 0.84211 1.02551 1.10250 0.94054
2005-2 0.93691 0.88525 1.03026 1.10654 0.94595
2005-3 0.91959 0.95427 1.03932 1.12457 0.94595
2005-4 0.98333 0.91113 1.04097 1.13316 0.94054
2006-1 1.00718 0.99741 1.06178 1.17972 0.93514
2006-2 1.01915 1.01467 1.06910 1.17824 0.95135
2006-3 0.99796 1.00777 1.11739 1.27359 0.95135
2006-4 1.00189 0.94564 1.16990 1.37930 0.95135
2007-1 1.02574 0.99741 1.17282 1.39090 0.94595
2007-2 1.05370 1.00604 1.19774 1.44645 0.94054
2007-3 0.98805 0.94564 1.18005 1.39467 0.95676
2007-4 1.03498 0.96290 1.23907 1.51522 0.95676
2008-1 0.88688 0.85936 1.16089 1.36966 0.94054
2008-2 0.99726 0.93615 1.15999 1.35483 0.95135
2008-3 0.93450 0.85936 1.20819 1.43862 0.96757
2008-4 0.85835 0.85936 1.04315 1.09213 0.96216
2009-1 0.80939 0.83261 1.03838 1.09430 0.95135
2009-2 0.88014 0.89387 1.02507 1.06183 0.95676
2009-3 0.85473 0.89387 1.03207 1.05855 0.97297
2009-4 0.86533 0.85936 1.00357 1.01819 0.95676
2010-1 0.90025 0.94564 1.05875 1.12679 0.95676
2010-2 0.86150 0.85936 1.09112 1.19843 0.95135
2010-3 0.84646 0.85936 1.03284 1.06660 0.96216
2010-4 0.85947 0.85936 1.05487 1.11175 0.96216

 
Table A3: Estimated Coefficients for Model 2 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
1 2.0767 40.384 5 4.1769 28.529 28 5.573 35.504
2 0.9913 37.299 6 4.1243 6.404 29 5.6444 33.495
3 1.1570 33.140 7 3.6852 23.834 30 5.8674 33.101
4 1.0095 11.842 8 3.7734 26.696 31 5.6407 15.302
5 0.3983 7.420 9 4.1041 22.655 32 6.0943 31.948
6 0.6319 12.675 10 3.6993 26.211 33 5.5414 27.803
7 1.0176 37.353 11 3.3335 20.763 34 5.4951 24.115
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8 1.2216 65.502 12 3.7174 27.153 35 5.8102 30.188
9 0.8840 57.053 13 4.2406 26.082 36 4.4582 22.725
11 1.6268 45.867 14 4.1455 29.176 37 4.4086 21.635
12 0.6738 36.448 15 3.8834 25.455 38 4.3685 6.443
13 0.7979 69.871 16 4.0353 20.874 39 4.3619 6.7494
14 0.8973 33.725 17 4.2236 29.782 40 4.1466 18.460
15 0.5419 12.041 18 4.1959 25.305 41 4.6075 21.011
16 0.4540 8.511 19 3.8100 25.719 42 4.8625 18.285
17 0.4594 18.873 20 4.4164 21.115 43 4.3266 24.209
18 0.5036 43.634 21 4.4666 25.637 44 4.5152 21.315
19 0.2299 10.934 22 4.5327 7.764 2 0.7533 15.156
20 0.2986 10.507 23 4.6204 22.415 3 0.9486 36.105
21 0.3489 14.394 24 4.6215 30.532  3.6480 37.870
1 4.0813 28.744 25 4.8048 30.995 1 0.0247 13.049
2 4.2889 29.291 26 4.8227 31.550 2 0.0159 10.197
3 4.1733 11.112 27 5.1552 21.722 3 0.0032 2.429
4 4.3660 28.702  

 
Table A4: Model 2 Overall House Price Index P2, Land Price Index PL2 and 
Structure Price Index PS2 
 
Quarter P2 PL2 PS2 Quarter P2 PL2 PS2

2000-1 1.00000 1.00000 1.00000 2005-3 1.04701 1.13207 0.94595
2000-2 1.02266 1.05085 0.98919 2005-4 1.04458 1.13235 0.94054
2000-3 1.00761 1.02254 0.98919 2006-1 1.06559 1.17726 0.93514
2000-4 1.03515 1.06975 0.99459 2006-2 1.07563 1.18166 0.95135
2001-1 1.00551 1.02342 0.98378 2006-3 1.11861 1.26312 0.95135
2001-2 1.00117 1.01052 0.98919 2006-4 1.17166 1.36549 0.95135
2001-3 0.94074 0.90293 0.98378 2007-1 1.17799 1.38299 0.94595
2001-4 0.94753 0.92455 0.97297 2007-2 1.20375 1.43761 0.94054
2002-1 0.98706 1.00559 0.96216 2007-3 1.18259 1.38208 0.95676
2002-2 0.93446 0.90640 0.96757 2007-4 1.23960 1.49321 0.95676
2002-3 0.88163 0.81676 0.96216 2008-1 1.16346 1.35773 0.94054
2002-4 0.93705 0.91084 0.96757 2008-2 1.16367 1.34639 0.95135
2003-1 1.00409 1.03902 0.95676 2008-3 1.21019 1.42361 0.96757
2003-2 0.98870 1.01572 0.95135 2008-4 1.04434 1.09234 0.96216
2003-3 0.95494 0.95151 0.95676 2009-1 1.03267 1.08019 0.95135
2003-4 0.97272 0.98873 0.95135 2009-2 1.03025 1.07036 0.95676
2004-1 0.99752 1.03485 0.95135 2009-3 1.03762 1.06875 0.97297
2004-2 0.99137 1.02807 0.94595 2009-4 1.00210 1.01598 0.95676
2004-3 0.94255 0.93352 0.95135 2010-1 1.06221 1.12892 0.95676
2004-4 1.01822 1.08209 0.94054 2010-2 1.09170 1.19139 0.95135
2005-1 1.02464 1.09440 0.94054 2010-3 1.03058 1.06010 0.96216
2005-2 1.03569 1.11059 0.94595 2010-4 1.05408 1.10631 0.96216

 
Table A5: Estimated Coefficients for Model 3 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
1 2.1720 46.575 7 3.0524 19.437 33 4.5638 23.738
2 1.0317 39.912 8 3.1454 21.707 34 4.5523 15.929
3 1.2142 38.814 9 3.4139 20.278 35 4.7507 23.788
4 1.0137 11.793 10 3.1019 21.427 36 3.5949 18.991
5 0.4055 7.694 11 2.7167 15.513 37 3.6080 18.489
6 0.6358 13.024 12 3.0574 21.675 38 3.5949 15.800
7 1.0205 41.464 13 3.5041 19.416 39 3.5809 18.844
8 1.2354 65.496 14 3.3939 22.985 40 3.3792 16.225
9 0.8752 56.853 15 3.1761 19.769 41 3.7236 20.300
11 1.6534 47.079 16 3.3300 15.479 42 3.9279 21.504
12 0.6801 39.231 17 3.4754 23.455 43 3.4924 12.726
13 0.7986 73.161 18 3.4478 19.539 44 3.6929 21.283
14 0.9205 33.793 19 3.1505 20.627 2 0.8117 15.869
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15 0.5377 12.288 20 3.6162 10.915 3 1.0015 35.792
16 0.4473 8.247 21 3.6453 16.745 2 0.1038 5.421
17 0.4555 19.932 22 3.7602 4.608 3 0.0433 3.318
18 0.4964 42.854 23 3.8321 21.340 4 0.0124 1.555
19 0.2149 10.411 24 3.7670 23.298  3.6857 23.881
20 0.2895 10.375 25 3.9370 23.924 1 0.0223 11.218
21 0.3409 14.964 26 3.9708 24.483 2 0.0151 9.312
1 3.3850 22.614 27 4.2376 8.073 3 0.0023 1.701
2 3.5200 22.962 28 4.5457 25.580 2 0.0277 0.744
3 3.4650 8.242 29 4.6878 20.300 3 0.0326 -2.227
4 3.5976 22.720 30 4.8662 20.137 4 0.0437 -6.051
5 3.4611 22.606 31 4.6781 6.549  
6 3.4286 14.562 32 5.0071 24.382

 
Table A6: Model 3 Overall House Price Index P3, Land Price Index PL3 and 
Structure Price Index PS3 
 
Quarter P3 PL3 PS3 Quarter P3 PL3 PS3

2000-1 1.00000 1.00000 1.00000 2005-3 1.04539 1.13209 0.94595
2000-2 1.01625 1.03989 0.98919 2005-4 1.03284 1.11286 0.94054
2000-3 1.00774 1.02363 0.98919 2006-1 1.05613 1.16307 0.93514
2000-4 1.03077 1.06283 0.99459 2006-2 1.06919 1.17308 0.95135
2001-1 1.00456 1.02250 0.98378 2006-3 1.10978 1.25188 0.95135
2001-2 1.00211 1.01288 0.98919 2006-4 1.15580 1.34290 0.95135
2001-3 0.94089 0.90176 0.98378 2007-1 1.17416 1.38487 0.94595
2001-4 0.95050 0.92922 0.97297 2007-2 1.19822 1.43759 0.94054
2002-1 0.98824 1.00854 0.96216 2007-3 1.17809 1.38203 0.95676
2002-2 0.94072 0.91636 0.96757 2007-4 1.22654 1.47922 0.95676
2002-3 0.87576 0.80257 0.96216 2008-1 1.15422 1.34824 0.94054
2002-4 0.93387 0.90323 0.96757 2008-2 1.15850 1.34485 0.95135
2003-1 1.00175 1.03518 0.95676 2008-3 1.19538 1.40348 0.96757
2003-2 0.98149 1.00264 0.95135 2008-4 1.02894 1.06202 0.96216
2003-3 0.94831 0.93830 0.95676 2009-1 1.02513 1.06590 0.95135
2003-4 0.97016 0.98375 0.95135 2009-2 1.02596 1.06203 0.95676
2004-1 0.99290 1.02671 0.95135 2009-3 1.03237 1.05789 0.97297
2004-2 0.98601 1.01855 0.94595 2009-4 0.99389 0.99829 0.95676
2004-3 0.94189 0.93074 0.95135 2010-1 1.04671 1.10005 0.95676
2004-4 1.01010 1.06832 0.94054 2010-2 1.07421 1.16040 0.95135
2005-1 1.01450 1.07691 0.94054 2010-3 1.01655 1.03173 0.96216
2005-2 1.03446 1.11086 0.94595 2010-4 1.04580 1.09096 0.96216

 
Table A7: Estimated Coefficients for Model 4 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
1 1.8800 39.649 9 4.2713 16.589 37 4.4331 15.561
2 0.9139 39.739 10 3.8307 16.925 38 4.4175 16.254
3 1.0587 34.569 11 3.3846 15.753 39 4.4676 16.556
4 0.9138 12.722 12 3.9010 16.996 40 4.2349 15.959
5 0.3770 9.195 13 4.3396 16.958 41 4.6103 16.719
6 0.5766 14.056 14 4.1868 17.632 42 4.8746 16.780
7 0.8811 36.306 15 3.9628 16.601 43 4.3306 16.387
8 1.1422 72.156 16 4.0569 16.066 44 4.5275 16.952
9 0.7884 57.600 17 4.2484 17.537 2 0.8135 18.683
11 1.4181 47.227 18 4.3038 16.984 3 0.9633 40.256
12 0.6770 41.726 19 3.9044 17.194 2 0.1249 7.904
13 0.7923 75.729 20 4.5513 17.044 3 0.0509 4.060
14 0.8150 37.629 21 4.5148 17.214 4 0.0236 2.977
15 0.4971 13.280 22 4.6399 17.365 2 0.0035 1.311
16 0.4184 9.476 23 4.7050 17.148 3 0.0201 7.369
17 0.4907 23.255 24 4.6198 17.674 4 0.0171 5.496
18 0.5856 50.055 25 4.8524 17.586 2 0.0008 0.453
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19 0.2434 13.220 26 4.9709 17.656 3 0.0128 6.876
20 0.2996 12.474 27 5.1678 17.245 4 0.0188 9.065
21 0.3641 17.493 28 5.6178 18.326  3.4381 30.267
1 4.2002 17.507 29 5.7830 17.895 1 0.0220 12.322
2 4.3367 17.466 30 6.0430 18.330 2 0.0164 10.763
3 4.2781 16.954 31 5.7929 17.857 3 0.0026 1.971
4 4.4558 17.497 32 6.2191 18.217 2 0.0277 1.019
5 4.3962 17.572 33 5.7130 17.616 3 0.0293 1.919
6 4.1720 16.815 34 5.4707 17.696 4 0.0484 6.863
7 3.7929 16.824 35 5.7189 18.032  
8 3.8968 17.774 36 4.5691 15.873  

 
Table A8: Model 4 Overall House Price Index P4, Land Price Index PL4 and 
Structure Price Index PS4 
 
Quarter P4 PL4 PS4 Quarter P4 PL4 PS4

2000-1 1.00000 1.00000 1.00000 2005-3 1.04490 1.12020 0.94595
2000-2 1.01372 1.03250 0.98919 2005-4 1.03130 1.09991 0.94054
2000-3 1.00595 1.01856 0.98919 2006-1 1.05927 1.15529 0.93514
2000-4 1.03184 1.06087 0.99459 2006-2 1.08212 1.18349 0.95135
2001-1 1.01915 1.04667 0.98378 2006-3 1.10776 1.23037 0.95135
2001-2 0.99191 0.99329 0.98919 2006-4 1.16545 1.33751 0.95135
2001-3 0.93871 0.90303 0.98378 2007-1 1.18394 1.37685 0.94595
2001-4 0.94809 0.92778 0.97297 2007-2 1.21471 1.43875 0.94054
2002-1 0.99432 1.01693 0.96216 2007-3 1.19022 1.37920 0.95676
2002-2 0.93647 0.91203 0.96757 2007-4 1.24420 1.48067 0.95676
2002-3 0.87228 0.80582 0.96216 2008-1 1.17353 1.36019 0.94054
2002-4 0.94643 0.92876 0.96757 2008-2 1.14956 1.30250 0.95135
2003-1 1.00255 1.03319 0.95676 2008-3 1.18824 1.36160 0.96757
2003-2 0.97921 0.99681 0.95135 2008-4 1.04534 1.08783 0.96216
2003-3 0.95028 0.94349 0.95676 2009-1 1.02307 1.05546 0.95135
2003-4 0.96069 0.96590 0.95135 2009-2 1.02363 1.05173 0.95676
2004-1 0.98643 1.01148 0.95135 2009-3 1.03785 1.06368 0.97297
2004-2 0.99157 1.02466 0.94595 2009-4 1.00020 1.00826 0.95676
2004-3 0.94036 0.92959 0.95135 2010-1 1.04948 1.09764 0.95676
2004-4 1.02247 1.08360 0.94054 2010-2 1.08052 1.16057 0.95135
2005-1 1.01777 1.07492 0.94054 2010-3 1.01775 1.03106 0.96216
2005-2 1.03640 1.10469 0.94595 2010-4 1.04256 1.07794 0.96216

 
Table A9: Estimated Coefficients for Model 5 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat 
1 1.9633 39.625 1,23 4.3069 15.778 4 0.0166 8.680 2,23 3.5417 5.009 
2 0.9057 36.783 1,24 4.1806 16.477 5 0.6785 11.178 2,24 3.7971 5.385 
3 1.0575 33.380 1,25 4.3665 16.265 6 1.0016 12.150 2,25 3.8944 12.758 
4 0.9048 12.137 1,26 4.4749 16.321 12 1.1239 34.884 2,26 4.0142 11.458 
7 0.8688 35.194 1,27 4.8225 16.284 15 0.8846 15.548 2,27 3.5020 4.894 
8 1.1505 72.571 1,28 5.2712 17.114 16 0.8193 11.473 2,28 3.9118 13.174 
9 0.7772 56.140 1,29 5.3545 16.647 17 0.9015 23.072 2,29 4.2516 12.835 
11 1.4448 47.088 1,30 5.6706 17.103 19 0.5338 16.161 2,30 4.2537 6.045 
13 0.7762 73.276 1,31 5.3258 16.557 20 0.6165 14.194 2,31 4.3927 5.774 
14 0.7968 34.836 1,32 5.8252 17.086 21 0.6977 18.855 2,32 4.3479 10.708 
1,1 3.6545 15.918 1,33 5.3137 15.935 2,1 3.9412 5.288 2,33 4.1610 4.615 
1,2 3.8100 16.064 1,34 5.0382 16.287 2,2 3.9435 10.724 2,34 4.0692 5.695 
1,3 3.7829 15.295 1,35 5.4233 16.643 2,3 3.5019 11.765 2,35 3.9107 7.149 
1,4 3.9679 16.186 1,36 4.1252 13.967 2,4 3.6617 12.323 2,36 3.5742 10.113 
1,5 3.8260 15.959 1,37 4.0739 4.0430 2,5 3.7945 12.647 2,37 3.2497 3.874 
1,6 3.7102 15.365 1,38 4.0611 14.675 2,6 3.4356 4.636 2,38 3.3287 9.672 
1,7 3.2816 15.089 1,39 4.1395 15.132 2,7 3.3615 5.073 2,39 3.1356 3.393 
1,8 3.3929 16.144 1,40 3.8368 14.508 2,8 3.4579 12.098 2,40 3.3051 9.300 
1,9 3.8221 15.243 1,41 4.2438 15.356 2,9 3.3557 10.168 2,41 3.3104 4.204 
1,10 3.3537 15.457 1,42 4.5134 15.562 2,10 3.5108 10.615 2,42 3.2847 3.482 
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1,11 2.8895 13.831 1,43 3.8608 14.807 2,11 3.3367 7.438 2,43 3.4985 10.503 
1,12 3.4461 15.575 1,44 4.2065 15.509 2,12 3.2431 6.085 2,44 3.2090 9.348 
1,13 3.9140 15.793 1,2 0.8949 16.115 2,13 3.3251 9.985 2,2 0.6087 6.293 
1,14 3.7744 16.386 1,3 1.0336 32.986 2,14 3.3232 11.164 2,3 0.9214 14.972 
1,15 3.5055 15.386 2 0.11591 6.559 2,15 3.7466 9.992 1 3.9734 18.808 
1,16 3.6281 14.454 3 0.05421 4.017 2,16 3.2874 10.196 1 0.02118 10.485 
1,17 3.7883 16.229 4 0.02272 2.667 2,17 3.5232 7.714 2 0.01624 9.106 
1,18 3.8840 15.740 2 0.00373 1.377 2,18 3.2123 4.691 3 0.00256 1.656 
1,19 3.4208 15.792 3 0.02145 8.187 2,19 3.7342 10.622 2 0.02728 0.749 
1,20 4.1079 15.710 4 0.01531 5.495 2,20 3.4207 11.054 3 0.02812 1.880 
1,21 4.0751 15.772 2 0.00096 0.513 2,21 3.5135 11.298 4 0.05368 7.104 
1,22 4.2874 16.255 3 0.01421 7.701 2,22 3.3312 8.016 2 2.4777 12.086 
 
 

Table A10: Model 5 Overall House Price Index P5, Land Price Index PL5 and Land 
Price Indexes in High and Lower End Wards, PL1,5 and PL2,5 
 
Quarter P5 PL5 PL1,5 PL2,5 Quarter P5 PL5 PL1,5 PL2,5 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.02137 1.07904 1.17853 0.89864 
2000-2 1.01201 1.02999 1.04256 1.00057 2005-4 1.01899 1.07909 1.14395 0.96344 
2000-3 0.98713 0.98561 1.03514 0.88854 2006-1 1.03991 1.12072 1.19485 0.98812 
2000-4 1.01596 1.03273 1.08577 0.92909 2006-2 1.06383 1.15071 1.22450 1.01852 
2001-1 1.00376 1.01939 1.04693 0.96278 2006-3 1.07369 1.16875 1.31962 0.88855 
2001-2 0.97668 0.96665 1.01526 0.87170 2006-4 1.13696 1.28512 1.44240 0.99253 
2001-3 0.92653 0.88155 0.89797 0.85291 2007-1 1.16185 1.33521 1.46519 1.07875 
2001-4 0.93793 0.91004 0.92841 0.87738 2007-2 1.18812 1.38731 1.55170 1.07929 
2002-1 0.97445 0.98276 1.04588 0.85145 2007-3 1.17113 1.34302 1.45733 1.11455 
2002-2 0.92871 0.89631 0.91770 0.89080 2007-4 1.21379 1.42143 1.59398 1.10318 
2002-3 0.86656 0.79076 0.79068 0.84661 2008-1 1.15152 1.32034 1.45402 1.05576 
2002-4 0.93102 0.90032 0.94297 0.82288 2008-2 1.12835 1.26750 1.37865 1.03247 
2003-1 0.98389 1.00306 1.07101 0.84369 2008-3 1.15670 1.30596 1.48403 0.99227 
2003-2 0.96560 0.97492 1.03280 0.84319 2008-4 1.02601 1.06749 1.12881 0.90687 
2003-3 0.95058 0.94436 0.95924 0.95061 2009-1 0.99470 1.01921 1.11478 0.82455 
2003-4 0.94499 0.93845 0.99277 0.83411 2009-2 1.00168 1.02736 1.11126 0.84458 
2004-1 0.97187 0.98656 1.03661 0.89393 2009-3 1.00314 1.01656 1.13273 0.79560 
2004-2 0.96727 0.98254 1.06281 0.81506 2009-4 0.97803 0.98446 1.04989 0.83861 
2004-3 0.93814 0.92580 0.93607 0.94748 2010-1 1.01763 1.05578 1.16127 0.83994 
2004-4 0.99390 1.03393 1.12407 0.86795 2010-2 1.03857 1.09915 1.23503 0.83342 
2005-1 0.99595 1.03765 1.11510 0.89147 2010-3 0.99706 1.01227 1.05647 0.88768 
2005-2 1.00909 1.05695 1.17320 0.84524 2010-4 1.00904 1.03416 1.17853 0.89864 
 
 

Table A11: Model 5 Approximate Stock and Sales House Price Indexes, PK5 and P5, 
and Approximate Stock and Sales Land Price Indexes, PKL5 and PL5.  
 
Quarter PK5 P5 PKL5 PL5 Quarter PK5 P5 PKL5 PL5 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.02083 1.02137 1.08079 1.07904 
2000-2 1.01068 1.01201 1.02790 1.02999 2005-4 1.01849 1.01899 1.08092 1.07909 
2000-3 0.98628 0.98713 0.98395 0.98561 2006-1 1.03927 1.03991 1.12266 1.12072 
2000-4 1.01484 1.01596 1.03106 1.03273 2006-2 1.06309 1.06383 1.15257 1.15071 
2001-1 1.00253 1.00376 1.01754 1.01939 2006-3 1.07226 1.07369 1.16909 1.16875 
2001-2 0.97583 0.97668 0.96513 0.96665 2006-4 1.13680 1.13696 1.28531 1.28512 
2001-3 0.92740 0.92653 0.88224 0.88155 2007-1 1.15935 1.16185 1.33025 1.33521 
2001-4 0.93833 0.93793 0.91059 0.91004 2007-2 1.18831 1.18812 1.38673 1.38731 
2002-1 0.97095 0.97445 0.97798 0.98276 2007-3 1.16826 1.17113 1.33763 1.34302 
2002-2 0.93466 0.92871 0.90831 0.89631 2007-4 1.21544 1.21379 1.42260 1.42143 
2002-3 0.87779 0.86656 0.81021 0.79076 2008-1 1.14845 1.15152 1.31495 1.32034 
2002-4 0.93062 0.93102 0.90104 0.90032 2008-2 1.12150 1.12835 1.25776 1.26750 
2003-1 0.97612 0.98389 0.99163 1.00306 2008-3 1.15900 1.15670 1.31230 1.30596 
2003-2 0.95981 0.96560 0.96659 0.97492 2008-4 1.01166 1.02601 1.05131 1.06749 
2003-3 0.95646 0.95058 0.95623 0.94436 2009-1 0.98582 0.99470 1.01343 1.01921 
2003-4 0.94359 0.94499 0.93737 0.93845 2009-2 0.99084 1.00168 1.01814 1.02736 
2004-1 0.97103 0.97187 0.98678 0.98656 2009-3 0.99631 1.00314 1.01500 1.01656 
2004-2 0.96280 0.96727 0.97629 0.98254 2009-4 0.96751 0.97803 0.97611 0.98446 
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2004-3 0.94508 0.93814 0.94005 0.92580 2010-1 1.00801 1.01763 1.04906 1.05578 
2004-4 0.99279 0.99390 1.03463 1.03393 2010-2 1.03100 1.03857 1.09479 1.09915 
2005-1 0.99411 0.99595 1.03701 1.03765 2010-3 0.98180 0.99706 0.99753 1.01227 
2005-2 1.00854 1.00909 1.05867 1.05695 2010-4 1.00174 1.00904 1.03343 1.03416 
 

Table A12: Rolling Window Overall House Price Index PRW, Land Price Index PLRW 
and Land Price Indexes in High and Lower End Wards, PL1,RW and PL2,RW 
 
 
Quarter PRW PLRW PL1,RW PL2,RW Quarter PRW PLRW PL1,RW PL2,RW 

2000-1 1.00000 1.00000 1.00000 1.00000 2005-3 1.01411 1.05945 1.14988 0.89238 
2000-2 1.01228 1.02811 1.03734 1.00583 2005-4 1.02054 1.07401 1.13421 0.96513 
2000-3 0.98593 0.98375 1.03037 0.89096 2006-1 1.03500 1.10267 1.16709 0.98580 
2000-4 1.01432 1.02778 1.08182 0.92161 2006-2 1.05539 1.12605 1.19204 1.00633 
2001-1 1.00730 1.02340 1.05642 0.95697 2006-3 1.06070 1.13554 1.27315 0.86857 
2001-2 0.97594 0.96672 1.01630 0.86941 2006-4 1.12514 1.25442 1.39276 0.98600 
2001-3 0.93666 0.90428 0.93207 0.85243 2007-1 1.15159 1.30827 1.42802 1.06526 
2001-4 0.94056 0.91810 0.94208 0.87492 2007-2 1.18679 1.37925 1.54072 1.07092 
2002-1 0.97623 0.98487 1.04244 0.86578 2007-3 1.16342 1.32029 1.42645 1.10303 
2002-2 0.92730 0.89828 0.92117 0.88636 2007-4 1.21164 1.41317 1.57841 1.10117 
2002-3 0.87064 0.80737 0.81015 0.85516 2008-1 1.15232 1.31305 1.44207 1.05369 
2002-4 0.93344 0.90860 0.95137 0.82852 2008-2 1.12192 1.24189 1.35716 1.00448 
2003-1 0.97572 0.98697 1.05123 0.83457 2008-3 1.15304 1.28652 1.45655 0.97959 
2003-2 0.96415 0.97133 1.02588 0.84675 2008-4 1.02186 1.03323 1.09920 0.87706 
2003-3 0.94577 0.93724 0.95491 0.93340 2009-1 0.99551 0.99304 1.10392 0.78447 
2003-4 0.93704 0.92610 0.97653 0.82754 2009-2 0.99932 0.99525 1.09040 0.80474 
2004-1 0.97739 0.99425 1.04734 0.89105 2009-3 0.99581 0.97454 1.09572 0.75124 
2004-2 0.96862 0.98314 1.06454 0.80906 2009-4 0.96849 0.93868 1.00325 0.80533 
2004-3 0.93445 0.92147 0.93313 0.93794 2010-1 1.00796 1.01008 1.12593 0.78503 
2004-4 0.98957 1.02155 1.11045 0.85348 2010-2 1.03134 1.05965 1.19931 0.79429 
2005-1 1.00220 1.04308 1.12860 0.87982 2010-3 0.98908 0.96868 1.02299 0.83814 
2005-2 1.00732 1.04794 1.16088 0.83817 2010-4 0.99605 0.98170 1.10245 0.76350 
 

Table A13: Estimated Coefficients for Model 6 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
 0.44108 40.32 22 -0.03206 -1.557 1 2.5971 100.4
 0.49710 56.01 23 -0.01547 -0.744 2 2.1231 98.70
 -0.09662 -27.70 24 0.00220 0.110 3 2.2229 89.74
2 0.01980 1.041 25 0.01510 0.782 4 2.0598 43.58
3 -0.00977 -0.476 26 0.03062 1.565 5 1.6997 49.55
4 0.02905 1.476 27 0.05679 2.699 6 1.8396 56.91
5 0.00439 0.233 28 0.07446 4.000 7 2.1286 99.60
6 -0.03044 -1.498 29 0.10867 5.589 8 2.2722 124.6
7 -0.03968 -1.975 30 0.11894 5.744 9 2.0451 114.4
8 -0.06480 -3.368 31 0.11589 5.610 10 2.1472 131.8
9 -0.03407 -1.585 32 0.15764 7.989 11 2.4110 104.6
10 -0.06956 -3.558 33 0.09925 4.974 12 1.9484 103.8
11 -0.08096 -3.821 34 0.09112 4.370 13 2.0261 119.6
12 -0.06539 -3.447 35 0.09137 4.407 14 2.0362 92.80
13 -0.04697 -2.261 36 -0.00664 -0.297 15 1.8462 65.06
14 -0.05446 -2.815 37 -0.03158 -1.400 16 1.7700 52.71
15 -0.05867 -2.686 38 -0.00740 -0.345 17 1.7599 88.92
16 -0.05199 -2.398 39 -0.04020 -1.921 18 1.7685 105.1
17 -0.04769 -2.376 40 -0.03208 -1.448 19 1.4993 79.25
18 -0.04756 -2.406 41 -0.01766 -0.858 20 1.6137 75.76
19 -0.06290 -3.153 42 -0.01507 -0.746 21 1.6584 82.44
20 -0.03342 -1.640 43 -0.01534 -0.730    

21 -0.01566 -0.823 44 -0.02218 -1.110    

 
Table A14: Model 6 and 7 House Price Indexes for Tokyo 
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Quarter P6 P7 Quarter P6 P7 Quarter P6 P7

2000-1 1.00000 1.00000 2003-4 0.94934 0.93746 2007-3 1.12287 1.12422
2000-2 1.02001 1.01284 2004-1 0.95342 0.93431 2007-4 1.17074 1.15983
2000-3 0.99027 0.98416 2004-2 0.95355 0.94588 2008-1 1.10435 1.09802
2000-4 1.02948 1.01977 2004-3 0.93903 0.92946 2008-2 1.09541 1.08060
2001-1 1.00440 1.00459 2004-4 0.96713 0.96107 2008-3 1.09568 1.08083
2001-2 0.97002 0.96648 2005-1 0.98446 0.98389 2008-4 0.99338 0.99594
2001-3 0.96110 0.95013 2005-2 0.96845 0.96045 2009-1 0.96891 0.95382
2001-4 0.93725 0.93426 2005-3 0.98464 0.98378 2009-2 0.99262 0.97806
2002-1 0.96650 0.95806 2005-4 1.00220 0.98825 2009-3 0.96059 0.95341
2002-2 0.93280 0.92990 2006-1 1.01522 1.00744 2009-4 0.96843 0.95632
2002-3 0.92223 0.90646 2006-2 1.03110 1.02775 2010-1 0.98249 0.96829
2002-4 0.93670 0.93545 2006-3 1.05844 1.05257 2010-2 0.98504 0.97775
2003-1 0.95411 0.95196 2006-4 1.07731 1.06879 2010-3 0.98477 0.97289
2003-2 0.94700 0.92611 2007-1 1.11479 1.11544 2010-4 0.97806 0.96799
2003-3 0.94302 0.93955 2007-2 1.12630 1.13143    

 
Table A15: Estimated Coefficients for Model 7 
 
Name Est Coef T Stat Name Est Coef T Stat Name Est Coef T Stat
 0.42882 38.65 19 -0.07315 -3.907 43 -0.02749 -1.392
 0.52920 62.73 20 -0.03970 -2.075 44 -0.03253 -1.732
 -0.08885 -26.50 21 -0.01624 -0.909 1 2.7576 92.38
 0.10277 11.42 22 -0.04035 -2.089 2 2.3117 83.98
 -0.00190 -7.43 23 -0.01635 -0.838 3 2.3799 81.23
 -0.00106 -20.64 24 -0.01182 -0.631 4 2.1596 45.16
 -0.00007 -16.87 25 0.07416 0.409 5 1.8569 49.69
2 0.01276 0.715 26 0.02737 1.490 6 2.0014 56.11
3 -0.01596 -0.828 27 0.05123 2.592 7 2.2714 83.22
4 0.01957 1.060 28 0.06653 3.803 8 2.4986 94.55
5 0.00458 0.259 29 0.10925 5.988 9 2.2402 84.61
6 -0.03409 -1.788 30 0.12348 6.351 10 2.4074 90.85
7 -0.05116 -2.714 31 0.11709 6.038 11 2.5953 90.93
8 -0.06800 -3.766 32 0.01483 8.001 12 2.1895 81.14
9 -0.04284 -2.124 33 0.09351 4.989 13 2.2736 85.88
10 -0.07268 -3.961 34 0.07752 3.960 14 2.2275 79.26
11 -0.09821 -4.936 35 0.07773 3.994 15 2.0107 61.46
12 -0.06673 -3.749 36 -0.00407 -0.194 16 1.9037 52.32
13 -0.04923 -2.526 37 -0.04728 -2.230 17 2.0317 68.52
14 -0.07676 -4.223 38 -0.02219 -1.099 18 2.0899 72.81
15 -0.06236 -3.042 39 -0.04771 -2.427 19 1.7414 62.21
16 -0.06458 -3.172 40 -0.04466 -2.143 20 1.8376 63.23
17 -0.06794 -3.604 41 -0.03222 -1.664 21 1.9016 65.44
18 -0.05564 -2.998 42 -0.02250 -1.184    
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