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Abstract

This paper analyzes the existence and the effects of bubbles in an endoge-

nous growth model with financial frictions and heterogeneous investments.

Bubbles are likely to emerge when the degree of pledgeability is in the mid-

dle range, implying that improving the financial market might increase the

potential for asset bubbles. Moreover, when the degree of pledgeability is rel-

atively low, bubbles boost long-run growth; when it is relatively high, bubbles

lower growth. Furthermore, we examine the effects of a bubble burst, and

show that the effects depend on the degree of pledgeability, i.e., the quality

of the financial system. Finally, we conduct a full welfare analysis of asset

bubbles.
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1 Introduction

Many countries have experienced large movements in asset prices, called asset bub-

bles, which are associated with significant fluctuations in real economic activity. A

notable example is the recent global economic upturn and downturn before and after

the financial crisis of 2007. Many economists and policy makers want to understand

why bubbles emerge and how they affect real economies.1 However, it is still not

clear how financial market conditions affect the existence condition of bubbles. In

this study, we first examine the relationship between the emergence of asset bubbles

and financial conditions, in other words, whether bubbles are more likely to occur

in financially developed or less-developed economies.

Empirically, there is a complicated relationship between financial market condi-

tions and asset bubbles. Emerging market economies, such as those in South East

Asia, often experience bubble-like dynamics. Caballero (2006) and Caballero and

Krishnamurthy (2006) found that financial imperfection is a key element in bubbles

in emerging market economies. However, not all countries with less developed finan-

cial markets experience bubble-like dynamics. For example, the financial systems

in some African countries are less developed than in Asia (UNECA, 2006), yet they

have not experienced bubble-like macro dynamics. This may suggest that financial

quality below a certain threshold cannot sustain asset bubbles. In fact, countries in

the South East Asia began to develop their financial markets in the 1980s, and this

was one of the reasons for their high growth rates (World Bank, 1993). On the other

hand, improving financial conditions might promote asset bubbles. For example,

Allen (2001) pointed out that the financial liberalization resulting from financial

system development in these countries was a factor in the emergence of bubbles in

the 1990s.2 Additionally, advanced economies like the U.S. experienced information

frictions problems in financial markets such as subprime problems, suggesting that

advanced economies may also face financial imperfections (see Campello et al, 2010;

Brunnermeier and Sannikov, 2014).

From these observations, it seems that financial market conditions and the emer-

gence of bubbles may have a non-linear relationship. In other words, bubbles may

1See, for example, Akerlof and Shiller (2009).
2The Japanese economy experienced asset bubbles in the 1980s, but the structural reforms of

the Japanese financial system and subsequent financial liberalization materialized before the rise
in asset prices. See Shigemi (1995) for a more detailed discussion.
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not occur in financially underdeveloped or in well-developed economies. They tend

to occur in countries with an intermediate level of financial development. The first

purpose of this study is to formulate this non-linear relationship theoretically. For

this purpose, we use an endogenous growth model with heterogeneous investments

and financial market imperfections. In our model, entrepreneurs switch between

productive and unproductive states. In the productive state, entrepreneurs’ invest-

ments yield high returns, while they yield low returns in the unproductive state. In

addition, entrepreneurs can pledge only a fraction of the returns from their invest-

ments.

The endogenous growth model with heterogeneous investments is crucial to for-

mulating an intuitive understanding of the non-linear relationship. For example,

Farhi and Tirole (2012) recently examined the existence of bubbles and found that

they can exist when the pledgeability level is low, although their main focus was

on the effects of outside liquidity. However, they assumed homogeneous investment

opportunities. Hence, if pledgeability is very low, the interest rate becomes very low

and the growth rate, which equals zero in the steady-state in their study, becomes

relatively high compared to the interest rate. Thus, based on these assumptions,

bubbles can exist despite very poor financial market conditions.3 On the other hand,

if there are heterogeneous investments, the market interest rate may not decrease

much, even if the financial market is very poor. Because the return from low-yield

investments becomes the lower bound for the interest rate. Thus, the growth rate

becomes very low compared to the interest rate, and bubbles cannot exist in very

poor financial market conditions. This result suggests that improving financial mar-

ket conditions might increase the emergence of bubbles if the financial market starts

from a state of underdevelopment.4

Based on the existence condition of bubbles, we can also examine the relation-

ship between technological progress and the conditions leading to asset bubbles.

Scheinkman (2014) recently pointed out the importance of this relationship. Since

technological progress is a factor for promoting economic growth rates, it seems to

increase the existence of bubbles. However, if it also increases the interest rate,

3Caballero (2006) and Caballero and Krishnamurthy (2006) both assume a high exogenously
given growth rate in emerging countries. Thus, even their model cannot capture the non-linear
relationship.

4In this sense, our model is related to Matsuyama’s (2007, 2008) model showing that a better
credit market may be more prone to financing what he calls bad investments that do not have
positive spillover effects on future generations.

3



technological progress may not lead to bubbles. Moreover, bubbles may in turn

affect investment financing with technological progress, suggesting that there is a

two-way feedback relationship between technological progress and bubbles. We will

show that the type of technological progress affects this relationship, and will derive

results consistent with Scheinkman’s (2014) stylied facts.

Moreover, it is not yet obvious how bubbles affect economic growth. The second

purpose of this study is to investigate the macroeconomic effects of bubbles. Here

we examine whether bubbles enhance or impair growth, as well as the relationship

between these macroeconomic effects and financial conditions. In the process, we

analyze how financial conditions determine the effects of bubbles’ collapse on the

economic growth rate.

We will show that the effect of bubbles on economic growth depends on financial

market conditions. Bubbles have both crowd-out and crowd-in effects on investment

and growth rates. Since bubbles crowd savings away from investments, bubbles

decrease the economic growth rate. On the other hand, bubbles increase the rate of

return on savings and improve borrowers’ networth, which in turn crowds in their

future investments. That is, bubbles endogenously generate “the balance sheet

effect” emphasized by Bernanke and Gertler (1989). Our main finding is that the

relative impact of these effects depends on the degree of pledgeability. When the

pledgeability level is relatively low, the crowd-in effect dominates the crowd-out

effect and bubbles enhance the economic growth rate. On the other hand, if the

pledgeability level is relatively high, the crowd-out effect dominates, and bubbles

decrease the economic growth rate.

This examination also has important implications for the effects of bubbles after

they burst, which our results suggest is not uniform. A country’s financial condi-

tion has a significant effect on the growth path after the collapse of bubbles. If

the imperfection of the financial market is relatively high (i.e., if pledgeability is

relatively low), the bubble burst decreases the growth rate permanently. This im-

plies that in economies with low pledgeability, bubbles can temporarily mask low

economic growth rates due to the poor financial market conditions. On the other

hand, economies with high pledgeability will experience a decline in the economic

growth rate immediately after the bubble bursts, but will recover and achieve a

high growth rate. That is, the burst may enhance the long-run growth rate if the

financial markets are in relatively good condition.
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Moreover, this result implies that if the temporary negative productivity shock is

sufficiently large, the level of total output becomes permanently lower than the pre-

bubble trend level, despite recovery in the economic growth. This result is consistent

with empirical evidence on the effects on growth of various types of financial crises.

For example, Cerra and Saxena (2008) show that most financial crises are associated

with a decline in growth that leaves output permanently below its pre-crisis trend.

Finally, we conduct a rigorous full welfare analysis of asset bubbles in an infinitely-

lived agent model with heterogeneous investments and financial market imperfec-

tions. In our framework, we assume that bubbles will collapse with positive prob-

ability and that entrepreneurs are risk-averse. Entrepreneurs care about increased

volatility in consumption arising from the collapse of a bubble. We consider the

welfare effects of this increased volatility from the bubble’s burst. We find analyti-

cally that bubbles increase welfare, regardless of whether they increase or decrease

the long-run economic growth rate and even if these are expected to collapse. The

economic intuition for this result lies in the consumption-smoothing effects of bub-

bles. In this economy, entrepreneurs face borrowing constraints and cannot con-

sume smoothly against idiosyncratic shocks to the productivity of investment. In

this situation, the circulation of bubble assets serves as an insurance device against

idiosyncratic productivity shocks, thereby increasing welfare.

The rest of this paper is organized as follows. Subsection 1.1 provides a literature

review. In section 2, we present our basic model, both with and without bubbles.

In section 3, we present the dynamics of bubbles. In section 4, we examine the

existence condition of bubbles, and in section 5, we examine the effects of bubbles

on economic growth rates. In section 6, we show how the effects of the bubbles’

burst are related to financial market conditions. In section 7, we conduct a full

welfare analysis of bubbles, and section 8 concludes the paper.

1.1 Related Work in the Literature

Our study considers the existence of bubbles in an infinitely lived agents model.

With regard to the existence of bubbles in infinite horizon economies, it is commonly

thought that bubbles cannot arise in deterministic sequential market economies with

a finite number of infinitely lived agents (Tirole, 1982). The Tirole model assumes

a perfect financial market, that is, agents can borrow and lend freely. Tirole showed

that in such an environment, no equilibrium with bubbles exists. Our result is con-
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sistent with the Tirole result. That is, when the financial market is perfect in the

point that pledgeability is equal to one, bubbles cannot arise even in our setting.

We show that bubbles can arise even in an infinitely lived agents model if the fi-

nancial market is imperfect. Of course, the possibility of bubbles in infinite horizon

economies with borrowing constraints has been recongnized in seminal papers on

deterministic fiat money (deterministic bubbles) (Bewley, 1980; Townsend, 1980;

and Scheinkman and Weiss, 1986). These seminal papers proved the existence of a

monetary equilibrium in an endowment economy where no borrowing and lending

are allowed.5 Given these studies, important studies by Kocherlakota (1992) and

Santos and Woodford (1997) more explicity examined the (necessary) conditions for

the existence of deterministic bubbles. Additionally, the recent important paper by

Hellwig and Lorenzoni (2009) proved that the resulting set of equilibrium allocations

with self-enforcing private debt is equivalent to the allocations sustained with ra-

tional bubbles. All of these studies are, however, based on an endowment economy.

Our paper is in line with research examining bubbles in an infinitely lived agents

model. Our paper’s contribution is that we develop a full-blown macroeconomic

model with heterogeneous investments and financial frictions, and provide a full

characterization on the relationship between the existence of bubbles and financial

frictions in a production economy.

There are many papers examining the relationship between bubbles and invest-

ment. However, in the literature, the crowd-out and crowd-in effects are examined

separately. The conventional wisdom (Samuelson, 1958; Tirole, 1985) suggests that

bubbles crowd investment out and lower output. According to the traditional view,

the financial market is perfect and all savings in the economy flow to investment.

In this situation, bubbles crowd savings away from investment once they appear in

the economy. Saint-Paul (1992), Grossman and Yanagawa (1993), and King and

Ferguson (1993) extend the Samuelson-Tirole model to economies with endogenous

growth, and show that bubbles reduce investment and lower long run economic

growth.67 Recently, however, some studies such as Woodford (1990), Caballero and

5As Kocherlakota (1992) points out, although Scheinkman and Weiss (1986) implicitly provide
examples of bubbles in an infinitely lived agents model, they do not explicitly give the necessary
conditions for the existence of bubbles. Kocherlakota provided the conditions.

6This crowd-out effect of bubbles has been criticized because it seems inconsistent with the
historical evidence that investment and economic growth rates tend to surge when bubbles arise,
and then stagnate when they burst.

7Olivier (2000) shows that the conclusions reached by Saint-Paul (1992), Grossman and Yana-
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Krishnamurthy (2006), Kiyotaki and Moore (2008), Kocherlakota (2009) developed

a model with financial frictions, and showed that bubbles crowd investment in and

increase output.8 These studies demonstrate that financial market imperfections

prevent the transfer of enough resources to those with investments from those with-

out investments, resulting in underinvestment. Bubbles help to transfer resources

between them.

One novel point of our study is that we have combined these two effects and

shown the degree of financial imperfection, i.e., the degree of pledgeability, is cru-

cial for understanding which of these effects is dominant. Martin and Ventura (2012)

also investigated whether bubbles are expansionary. There are some significant dif-

ferences. First, Martin and Ventura (2012) assume that no agent can borrow or

lend through financial markets because none of the returns from investment can be

pledgeable. That is, they consider a situation where financial markets are completely

shut down.9 On the other hand, in our model, entrepreneurs are allowed to borrow

as long as they offer pledgeable assets (collateral) to secure debts. Our main focus

is to investigate the relationship between the degree of pledgeability and bubbles.

We show that both the emergence and the effects of bubbles are significanlty de-

pendent on the degree of pledgeability, that is, the degree of financial imperfection.

Second, Martin and Ventura (2012) use a two-period overlapping generations model

assuming that young agents with investment opportunities cannot borrow at all be-

cause financial markets are completely shut down, but they can create new bubble

assets in every period. This assumption of a new bubble creation in every period

directly produces wealth effects for the young and is crucial for crowd-in effects of

bubbles. That is, there are no crowd-in effects and only Tirole’s (1985) crowd-out

effects without this assumption. They investigated the conditions of new bubble

creations for the existence of bubbles. On the other hand, our model abstracts from

such new bubble creation, and instead assumes that agents live infinitely, and their

type changes stochastically in each period. Entrepreneurs buy bubbles for specula-

gawa (1993), and King and Ferguson (1993) crucially depend on the type of asset being speculated
on. Bubbles in equity markets can be growth-enhancing while bubbles in unproductive assets are
growth-impairing.

8Hirano and Yanagawa (2010), Martin and Ventura (2011), Miao and Wang (2011), Wang and
Wen (2012), and Aoki and Nikolov (2013) also show the crowd-in effect of bubbles.

9In Woodford (1990), no returns from investment can be pledgeable. In Kocherlakota (2009),
agents can borrow against bubbles in land prices. However, without such bubbles, there is no
borrowing or lending.
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tive purposes when they have low productivity, and sell them when they are high

productivity. Since bubbles increase the rate of return on savings, this speculative

activity endogenously improves borrowers’ net worth and generates crowd-in effects.

Third, financial frictions are crucial for the existence of bubbles in our model with

infinitely-lived agents, while in OLG models, as Tirole (1985) shows, bubbles can

arise even in a perfect finanical market if an economy is dynamically inefficient.

Additionally, our paper uses an infinitely lived agents model, while Farhi and Ti-

role (2012) and Martin and Ventura (2012) are based on overlapping generations

models. As Farhi and Tirole (2012) point out, the potential benefit of using an in-

finitely lived agents model would be that it is in principle more suitable for realistic

quantitative explorations which the recent macroeconomic literature emphasizes.

Caballero and Krishnamurthy (2006) developed a theory of stochastic bubbles in

emerging markets using an overlapping generations model, though with exogenously

given growth rates and international interest rates. They implicitly assume a low

pledgeability level, and that without bubbles, the domestic interest rate was lower

than the international interest rate. Hence, our argument is a generalization of their

argument. Kiyotaki and Moore (2008) is also releted to our study. In their theory,

since deterministic fiat money facilitates exchange for its high liquidity, people hold

money despite its low rate of return, emphasizing the role of money as a medium

of exchange. In our model, however, we emphasize the role of bubbles as a store of

value. Entrepreneurs buy and sell bubble assets for speculative purposes because

they have a high return.

Our paper is also related to the growth literature. As Levine (1997) and Beck

et al. (2000) show empirically, it is widely accepted that improving financial mar-

ket conditions enhances long-run economic growth. However, the effect on growth

volatility is not yet clear. In our study, stochastic bubbles tend to occur when fi-

nancial markets have an intermediate level of financial development. This suggests

that growth volatility tends to be high in the middle range of financial development,

which can offer an explanation for empirical findings from Easterly et al. (2000)

and Kunieda (2008) that growth volatility is high when financial development is an

intermediated level.

In terms of welfare effects of bubbles, our result that bubbles enhance the

consumption-smoothing effect shares similarity with Bewley (1980) who examined

deterministic fiat money as a means of self-insurance against idiosyncratic income
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risk. There are some significant differences. First, our model is based on a produc-

tion economy with investment opportunities and focuses on idiosyncratic shocks to

productivity of investment, while the Bewley’s model is based on an endowment

economy and focuses on income shocks. Second, we consider an economy where

borrowing and lending are allowed (i.e., we consider the whole range of pledgeabil-

ity of collateral), while Bewley considered an economy where financial markets are

completely shut down. Third, in our model, entrepreneurs can employ other means

to save besides bubble assets, i.e., through lending or by investing in their own in-

vestment projects, while in Bewley’s model, fiat money is the only means of saving.

Fourth, we examine the welfare effects of stochastic bubbles, while Bewley’s model

deals with determinisitic fiat money.

2 The Model

Consider a discrete-time economy with one homogeneous good and a continuum of

entrepreneurs. A typical entrepreneur has the following expected discounted utility:

E0

[
∞∑
t=0

βt log cit

]
, (1)

where i is the index for each entrepreneur, and cit is the entrepreneur’s consumption

at date t. β ∈ (0, 1) is the subjective discount factor and E0 is the expectation

operator conditional on date 0 information.

At each date, each entrepreneur meets high-productivity investment projects

(hereinafter H-projects) with probability p, and low-productivity ones (L-projects)

with probability 1− p.10 The investment technologies are as follows:

yit+1 = αi
tz

i
t, (2)

where zit(≥ 0) is the investment level at date t, and yit+1 is the output at date

t + 1. αi
t is the marginal productivity of the investment at date t. αi

t = αH if the

entrepreneur has H-projects, and αi
t = αL if he/she has L-projects. We assume

10Gertler and Kiyotaki (2010), Kiyotaki and Moore (2008), and Kocherlakota (2009) use a sim-
ilar setting. In Woodford (1990), the entrepreneurs have investment opportunities in alternating
periods.
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αH > αL.11 The probability p is exogenous, and independent across entrepreneurs

and over time. At the beginning of each date t, entrepreneurs know whether they

have H-projects or L-projects. We call entrepreneurs with H-projects (L-projects)

”H-types” (”L-types”).

In this economy, we assume that because of frictions in a financial market, the

entrepreneur can pledge at most a fraction θ of the future return from investment to

creditors (See Hart and Moore (1994) and Tirole (2006) for the foundations of this

setting.). Thus, in order for debt contracts to be credible, debt repayment cannot

exceed the pledgeable value. That is, the borrowing constraint becomes:

rtb
i
t ≤ θαi

tz
i
t, (3)

where rt and bit are the gross interest rate, and the amount of borrowing at date t,

respectively. The parameter θ ∈ [0, 1], which is assumed to be exogenous, can be

naturally taken to be the degree of imperfection of the financial market.

In this paper, we consider an economy with asset bubbles, called a ”bubble

economy”. We define bubble assets as those producing no real return, that is, the

asset’s fundamental value is zero. Aggregate supply of bubble assets is assumed to be

constant over time X. Here, following Weil (1987), we consider stochastic bubbles,

in the sense that they may collapse. In each period, bubble prices become zero

(i.e., bubbles burst) at a probability of 1−π conditional on survival in the previous

period. A lower π means riskier bubbles because they have a higher probability of

collapsing. In line with the literature, once bubbles collapse, they do not arise again

(their reappearance is not expected ex-ante.). This implies that bubbles persist with

a probability π(< 1) and that their prices are positive until they revert to zero. Let

P x
t be the per unit price of bubble assets at date t. P x

t = Pt > 0 if bubbles survive at

date t with probability π, and P x
t = 0 if they collapse at date t with probability 1−π.

As we will show, Pt is endogenously determined in equilibrium. Let xi
t be the level

of bubble assets purchased by type i entrepreneur at date t. Each entrepreneur has

the following three constraints: flow of funds constraint, the borrowing constraint,

11We can also consider a model where capital goods are produced through the investment tech-

nology. For example, let kit+1 = αi
tz

i
t be the investment technology, where k is capital goods.

Capital fully depreciates in one period. Consumption goods are produced by the following aggre-

gate production function: Yt = Kσ
t N

1−σ
t k̄1−σ

t , where K and N are the aggregate capital and labor

input, and k̄ is the economy’s per-labor capital, capturing the externality to generate endogenous
growth. In this type of model, we can obtain the same results as this study.
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(3), and the short-sale constraint:

c∗it + z∗it + P x
t x

i
t = y∗it − r∗t−1b

∗i
t−1 + b∗it + P x

t x
i
t−1, (4)

xi
t ≥ 0, (5)

where ∗ represents the bubble economy. Both sides of (4) include bubbles. P x
t x

i
t−1

on the right hand side is the sales of bubble assets, and P x
t x

i
t on the left hand

side is the new purchase of them. We define the net worth of the entrepreneur

in the bubble economy as e∗it ≡ y∗it − r∗t−1b
∗i
t−1 + P x

t x
i
t−1. We assume that (3) is

the borrowing constraint, that is, bubbles do not contribute to pledgeable value or

collateral. Even so, bubbles can lead to increased investments by improving the

borrowers’ net worth, as we will explain in detail in section 2.4.12

We should add a few remarks about the short-sale constraint (5). As Kocher-

lakota (1992) showed, the short-sale constraint is important for the existence of

bubbles in deterministic economies with a finite number of infinitely lived agents.

Without the constraint, bubbles always represent an arbitrage opportunity for an

infinitely lived agent, who can gain by permanently reducing holdings of the asset.

However, it is well known that in such economies, equilibria can only exist if agents

are constrained not to engage in Ponzi schemes. Kocherlakota (1992) demonstrated

that the short-sale constraint is one of no-Ponzi-game conditions and hence, it can

support bubbles by eliminating the agent’s ability to permanently reduce his hold-

ings of the asset (see Kocherlakota (1992) for details.). In our model, without the

short sale constraint, entrepreneurs can obtain funds infinitely by short-selling bub-

ble assets. As a result, the interest rate rises sufficiently in the credit market and

bubbles grow faster than the growth rate of the economy. Therefore, bubbles can-

not be sustained. In other words, without the short-sale constraint, bubbles cannot

12We can relax the assumption concerning the borrowing constraint. For example, we can
consider a case where the entrepreneur can use both a fraction θ of the return from investment
and a fraction θx of the expected return from bubble assets as collateral. In this case, the borrowing
constraint can be written as:

r∗t b
∗i
t ≤ θαi

tz
i
t + θxπPt+1x

i
t.

It is shown that if θx is sufficiently small, H-types do not purchase bubble assets in equilibrium.
For determinisitc bubbles, i.e., π = 1, unless θx = 1, H-types do not purchase bubble assets in
equilibrium. Kocherlakota (2009) analyzes this special case with θx = 1 under contingent debt
contracts where even H-types buy bubble assets. In our model, we focus on the case where θx is
sufficiently small so that H-types do not purchase bubble assets in equilibrium. We explore this
point in greater detail in the Technical Appendix.
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arise in equilibrium.

2.1 Optimal Behavior of Entrepreneurs

We now characterize the equilibrium behavior of entrepreneurs in the bubble econ-

omy. We consider the equilibrium where αL ≤ r∗t < αH . In equilibrium, the interest

rate must be at least as high as αL, since no agent lends to projects if r∗t < αL.

For H-types at date t, the borrowing constraint (3) binds since r∗t < αH and

the investment in bubbles is not attractive, that is, (5) also binds. We will verify

this result in the Technical Appendix. Since the utility function is log-linear, each

entrepreneur consumes a fraction 1 − β of the net worth in every period, that is,

c∗it = (1 − β)(y∗it − r∗t−1b
∗i
t−1 + P x

t x
i
t−1).

13 Then, by using (3), (4), and (5), the

investment function of H-types at date t can be written as:

z∗it =
β(y∗it − r∗t−1b

∗i
t−1 + P x

t x
i
t−1)

1− θαH

r∗t

. (6)

This is a popular investment function in financial constraint problems.14 We see

that the investment equals the leverage, 1/
[
1− (θαH/rt)

]
, times savings, β(y∗it −

r∗t−1b
∗i
t−1+P x

t x
i
t−1). Leverage increases with θ and is greater than one in equilibrium,

implying that when θ is larger, H-types can finance more investment, z∗it . We also

learn that the presence of bubble assets increases entrepreneurs’ net worth. In our

model, entrepreneurs buy bubble assets for speculative purposes when they have L-

projects, and sell those assets when they have opportunities to invest in H-projects.

For L-types at date t, since c∗it = (1− β)e∗it , the budget constraint (4) becomes

z∗it + P x
t x

i
t − b∗it = βe∗it .

Each L-type allocates savings, βe∗it , to three assets, i.e., z∗it , x
i
t, and (−b∗it ). Each

L-type chooses optimal amounts for b∗it , x
i
t, and z∗it such that the expected marginal

utility from investing in these three assets is equalized. By solving the utility max-

imization problem explained in the Technical Appendix, we can derive the L-type’s

13See, for example, chapter 1.7 of Sargent (1988).
14See, for example, Bernanke and Gertler (1989), Bernanke et al. (1999), Holmstrom and Tirole

(1998), Kiyotaki and Moore (1997), and Matsuyama (2007, 2008).
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demand function for bubble assets:

Ptx
i
t =

π Pt+1

Pt
− r∗t

Pt+1

Pt
− r∗t

βe∗it , (7)

From (7), we learn that an entrepreneur’s portfolio decision depends on the survival

probability of bubbles, π. When π is high, the bursting probability is low, and the

demand for bubble assets increases.

The remaining fraction of savings is split across z∗it and (−b∗it ):

z∗it + (−b∗it ) =
(1− π)Pt+1

Pt

Pt+1

Pt
− r∗t

βe∗it .

Since investing in L-projects (z∗it ) and secured lending to other entrepreneurs (−b∗it )

are both safe assets, z∗it ≥ 0 if r∗t = αL, and z∗it = 0 if r∗t > αL. That is, the following

conditions must be satisfied: (r∗t − αL)z∗it = 0, z∗it ≥ 0, and r∗t − αL ≥ 0. Moreover,

when r∗t = αL, investing in L-projects and secured lending to other entrepreneurs

are indifferent for L-types.

2.2 Equilibrium

We denote the aggregate consumption of H-and L-types at date t as C∗H
t and C∗L

t ,

respectively. Similarly, let Z∗H
t , Z∗L

t , B∗H
t , and B∗L

t be the aggregate investment

and the aggregate borrowing of each type, respectively, and Xt be the aggregate

investment in bubbles. Then, the market clearing conditions for goods, credit, and

bubbles are:

C∗H
t + C∗L

t + Z∗H
t + Z∗L

t = Y ∗
t , (8)

B∗H
t +B∗L

t = 0, (9)

Xt = X, (10)

where Y ∗
t is the aggregate output at date t.

The competitive equilibrium is defined as a set of prices {r∗t , P x
t }

∞
t=0 and quan-

tities
{
c∗it , b

∗i
t , z

∗i
t , y

∗i
t+1, C

∗H
t , C∗L

t , B∗H
t , B∗L

t , Z∗H
t , Z∗L

t , Xt, Y
∗
t+1

}∞
t=0

, such that (i) the

market clearing conditions, (8), (9), and (10) are satisfied, and (ii) each entrepreneur

chooses consumption, borrowing, bubble assets, and investments to maximize the

13



expected discounted utility (1) under the constraints (2), (3), (4), and (5).

2.3 Bubbleless Economy:

To examine the effects of bubbles, we first examine an economy without bubbles as

a benchmark case. Our model without bubbles is based on Kiyotaki (1998). Let the

economy without ∗ represent the bubbleless economy, in which P x
t = 0 for any t. The

entrepreneur’s net worth in the bubbleless economy is defined as eit ≡ yit − rt−1b
i
t−1.

Obviously, if θ is sufficiently high, all total savings are used only for H-projects and

rt = αH . Hence, we focus on the case where the interest rate is strictly lower than

αH and the borrowing constraint binds for H-types, αL ≤ rt < αH .

Since there are no bubbles, the investment function for H-types at date t can be

written as:

zit =
β(yit − rt−1b

i
t−1)

1− θαH

rt

. (11)

By aggregating (11), we have:

ZH
t =

βEH
t

1− θαH

rt

=
βpYt

1− θαH

rt

, (12)

where EH
t is the aggregate net worth of H-types at date t. Since every entrepreneur

has the same opportunity to invest in H-projects with probability p in each period,

the aggregate net worth of H-types at date t is a fraction p of the aggregate output

at date t, i.e., EH
t = pYt.

For L-types, if rt = αL, lending and borrowing to invest are indifferent. Thus,

how much they invest in their own projects is indeterminate at an individual level.

However, their aggregate investment level is determined by the goods market clear-

ing condition, (8):

ZH
t + ZL

t = βYt. (13)

βYt is the total savings. If rt > αL, ZL
t must be zero. Thus, the following conditions

must be satisfied: ZL
t (rt − αL) = 0, ZL

t ≥ 0, rt − αL ≥ 0.

The aggregate output is

Yt+1 = αHZH
t + αLZL

t .

14



In the bubbleless economy, Yt equals the aggregate wealth of entrepreneurs, At, i.e.,

Yt = At. The growth rate of Yt = At becomes:

gt ≡
Yt+1

Yt

= βαH − β(αH − αL)lt, (14)

where lt ≡ ZL
t /βYt is the ratio of low-productivity investments to total investments.

As long as the amount of L-projects, lt, is zero, total savings are allocated only to

H-projects, and the economic growth rate becomes βαH , which is the same as the

growth rate under θ = 1. If lt > 0, however, the difference in productivity between

H-projects and L-projects, αH − αL, decreases the growth rate and gt becomes

βαH − β(αH − αL)lt.

Next, we examine the equilibrium level of lt and rt. The key point is the size of

ZH
t relative to total savings βYt. Since Z

H
t is an increasing function of θ, ZH

t > βYt

at rt = αL if θ is sufficiently high. That is, if the possible borrowing level of H-

projects is sufficiently high, rt becomes greater than αL in equilibrium due to the

tightness of the credit market. Thus, L-types have no incentives to invest in their L-

projects, and lt becomes zero in equilibrium. gt becomes βαH and rt should satisfy

ZH
t = βYt. On the other hand, if θ is low and ZH

t < βYt at rt = αL, then rt equals

αL and lt becomes 1− p/(1− θαH

αL ) > 0 in equilibrium. In summary, we can derive

the following Proposition.

Proposition 1 When bubbles do not exist, the equilibrium interest rate, rt, and the

equilibrium growth rate, gt, are the following increasing functions of θ:

rt = r(θ) =



αL, if 0 ≤ θ < (1− p)
αL

αH
,

θαH

1− p
, if (1− p)

αL

αH
≤ θ < 1− p,

αH , if 1− p ≤ θ ≤ 1.

gt = g(θ) = βαH − β(αH − αL)L(θ), (15)

where L(θ) = Max[1− p

1− θαH

αL

, 0].

In the bubbleless economy, once the initial output, Y0, is given, then the economy

achieves the balanced growth path immediately, i.e., there are no transitionary
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dynamics. Figure 1 depicts Proposition 1. We take θ on the horizontal axis, and

g and r on the vertical axis. As we will show later, the necessary condition for

the existence of stochastic bubbles is g > r under the bubbleless economy. Hence,

the relationship between g and r is important for our results. Figure 1 shows that

both the relation between g and θ and the relation between r and θ are non-linear.

Hence, it is shown that under some parameter conditions, only in the middle range

of θ is g greater than r. The intuitive reason for this result is as follows.

The growth rate generated by L-projects, βαL, is lower than the rate of return of

L-projects αL. When θ is sufficiently low, H-types cannot gather sufficient funds and

most are invested in L-projects. Consequently, the growth rate becomes sufficiently

low and close to (but higher than) βαL, and the growth rate is lower than the interest

rate, αL, i.e., g(θ = 0) < r(θ = 0). In the middle range of θ, the interest rate is

still αL since H-projects are not enough to absorb all total savings, but the growth

rate can be higher than αL since most of the savings are invested in H-projects,

leading to high economic growth, i.e., g(θ) > r(θ) for the middle range of θ. If θ

becomes sufficiently high, however, all total savings are invested in H-projects and

the growth rate becomes βαH , but the interest rate becomes high and equal to αH

if θ is close to 1, i.e., g(θ) < r(θ) for sufficiently high θ. Hence, only in the middle

range of θ, g(θ) > r(θ).

From this intuitive explanation, we can understand that heterogeneous invest-

ment opportunities are crucial for this result. In the middle range of θ, most re-

sources are allocated to H-projects, which leads to high economic growth but the

interest rate remains low at αL. In the Appendix, we provide more discussion about

the theoretical characteristics wherein g tends to be greater than r only when θ is

in the middle range in the bubbleless economy.

Moreover, we can see that to derive this result, two types of technologies are

not crucial and we can extend this argument to a more general environment with a

continuum of productivity. Let us suppose, for example, that there are continuously

distributed investment opportunities with different productivities from α to α and

the population share of entrepreneurs who have lower technology is sufficiently high.

In this case, when θ is almost 0, most resources are allocated to the lowest technology

and the growth rate becomes close to βα, which is lower than α, i.e., g(θ) < r(θ)

around θ = 0. When θ goes up to the middle range, the interest rate becomes

higher than α because there are a continuum of technologies. However, the interest
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rate is determined by the rate of return of the marginal type of technology. On the

other hand, resources can be allocated to the technologies with higher productivity

than the marginal technology. Hence, the growth rate can be higher than the rate

of return of the marginal type, that is, g(θ) > r(θ) in the middle range of θ. On

the other hand, if θ becomes close to 1, almost all resources are allocated to the

project with α, and the interest rate becomes close to α, which is higher than the

economy’s growth rate βα under θ = 1, i.e., g(θ) < r(θ) for sufficiently high θ. In

both the Appendix and the Technical Appendix, we explain this continuum case

more rigorously, and show that under some conditions, g is greater than r only in

the middle range of θ even in the continuum case.

2.4 Economy with Bubbles

We are now in a position to derive the dynamics of the bubble economy. Since we

assume that rational bubbles are stochastic, that is, bubbles persist with probability

π < 1, we focus on the dynamics until bubbles collapse, i.e., P x
t = Pt > 0.

(8) can be rewritten as

Z∗H
t + Z∗L

t + PtX = βA∗
t , (16)

or

Z∗H
t + Z∗L

t = βY ∗
t − (1− β)PtX,

where A∗
t ≡ Y ∗

t +PtX is the entrepreneur’s aggregate wealth in the bubble economy

at date t. Compared to (13), we can see that the resources allocated to the real

investments Z∗H
t + Z∗L

t becomes from βY ∗
t to βY ∗

t − (1 − β)PtX by the existence

of bubbles, PtX > 0. This reduction in resources is the crowd-out effect of bubbles,

which is similar to the effect in the traditional literature such as Tirole (1985). Since

a part of the total savings is invested in the bubble assets, the resources allocated

to real investments should be crowded out.

On the other hand, bubbles have another effect because the investment level of

H-projects is determined as:

Z∗H
t =

βpA∗
t

1− θαH

r∗t

=
βpY ∗

t

1− θαH

r∗t

+
βpPtX

1− θαH

r∗t

, (17)
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where pA∗
t is the aggregate wealth of H-types at date t. (More details about the

aggregation of each variable will be explained in the Technical Appendix). This

second term is the crowd-in effect of bubbles on investment. Intuitively, since the

possible borrowing level is an increasing function of A∗
t , H-types can gather more

funds by the existence of bubbles and thus increase their investments. Moreover,

the investments expand more than the direct increase in the net worth because of

the leverage effect. Bubbles endogenously generate “balance sheet effects”. In other

words, bubbles work to reallocate the resource toward productive investments.

It is worth noting why A∗
t can be higher than Y ∗

t and the positive ”balance sheet

effects” work though we exclude the possibility of bubble creations in every period.

As we will describe in more detail below, the equilibrium rate of the return on bubble

assets becomes higher than the rate of return on low-productivity investments, αL.

Hence, the existence of bubbles can improve net worth, A∗
t , by increasing the rate

of return on savings at t − 1. This is why the crowd-in effect works even without

bubble creations in every period, and the “balance sheet effects” are generated

endogenously.15

In summary, although the bubbles crowd out the resource allocated to real in-

vestments, they reallocate resources toward high-productivity investments through

the crowd-in effect. Moreover, when θ is low, a high share of resources are allocated

to low-productivity investments if there are no bubbles. Hence, the crowd-in effect

may dominate the crowd-out effect when θ is low. We will rigorously prove this

intuition in the later section.

Next, we examine the equilibrium interest rate. When

PtX > Max

βA∗
t −

βpA∗
t

1− θαH

αL

, 0

⇔ ϕt > L(θ),

only H-types invest and the equilibrium interest rate r∗t (> αL) is determined to

satisfy

ϕt = 1− p

1− θαH

r∗t

⇔ r∗t =
θαH(1− ϕt)

1− p− ϕt

,

where ϕt ≡ PtX/βA∗
t is the size of the bubbles (the share of the value of the bubble

15We provide an analysis about the effects of bubble creations within our framework in the
Technical Appendix.
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assets). It follows then that r∗t is an increasing function of ϕt because of the tightness

of the credit market. On the other hand, if ϕt ≤ L(θ), the interest rate becomes

r∗t = αL and both L-types and H-types invest in equilibrium. Thus, in the bubble

economy, the equilibrium interest rate is:

r∗t = Max

[
αL,

θαH(1− ϕt)

1− p− ϕt

]
. (18)

This means that as long as the size of the bubbles is small, the interest rate stays

low at αL, but when the bubbles become large enough, then the interest rate starts

to rise.

In this paper, we will examine the relationship between the economic growth rate

and asset bubbles with three types of examination: (i) the relationship between the

economic growth rate and ϕt in the bubble economy, (ii) the relationship between the

economic growth rate and θ in the bubble economy, and (iii) a comparison between

the economic growth rate in the bubble economy and that in the bubbleless economy

for each θ. We will first examine (i).

Together with (17), we have the evolution of aggregate output:

Y ∗
t+1 =


αH βpA∗

t

1− θαH

αL

+ αL

(
βYt − (1− β)PtX − βpA∗

t

1− θαH

αL

)
if ϕt ≤ L(θ),

αH βpA∗
t

1− θαH

r∗t

= αH(βYt − (1− β)PtX) if ϕt ≥ L(θ).

(19)

When the bubbles are small, both L-types and H-types invest in equilibrium. The

first and second terms in the first line represent aggregate output at date t + 1

produced by H-and L-types, respectively. When the bubbles are large, then only

H-types invest.

By rearranging (19), we can derive the economic growth rate:

Y ∗
t+1

Y ∗
t

=


βαH − β(αH − αL)L(θ) +

(
(αH − αL)β(1− L(θ))− (1− β)αL

) PtX

Y ∗
t

if ϕt ≤ L(θ),

βαH − (1− β)αH PtX
Y ∗
t

if ϕt ≥ L(θ),

(20)

where PtX
Y ∗
t

= βϕt

1−βϕt
and βϕt

1−βϕt
is an increasing function of ϕt. The dynamic system
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of this economy is mainly characterized by (20), although we have not yet derived

the equilibrium ϕt. By the existence of bubbles PtX, the amount of p

1− θαH

αL

βPtX =

β(1−L(θ))PtX shifts from L-projects to H-projects by the crowd-in effect and the

net contribution to Y ∗
t+1 of this effect is (α

H −αL)β(1−L(θ))PtX. Conversely, PtX

prevents (1−β)PtX resources from allocation to real investments by the crowd-out

effect of bubbles, and the negative impact on Y ∗
t+1 is (1− β)αLPtX. Hence, (αH −

αL)β(1−L(θ))−(1−β)αL PtX
Y ∗
t

shows the crowd-in and crowd-out effects of bubbles,

and we will derive in a later section that
(
(αH − αL)β(1− L(θ))− (1− β)αL

)
is

positive as long as bubbles satisfy the existence condition. In other words, the

crowd-in effect dominates the crowd-out effect, and the growth rate
Y ∗
t+1

Y ∗
t

in the

bubble economy is an increasing function of the size of the bubbles ϕt as long as

ϕt ≤ L(θ). On the other hand, if ϕt ≥ L(θ), only H-types are producing, and the

growth rate
Y ∗
t+1

Y ∗
t

in the bubble economy is a decreasing function of the size of the

bubbles ϕt. In other words, the relationship between the economic growth rate and

bubble size is inverted U-shaped and L(θ) = Max[1 − p

1− θαH

αL

, 0] is the size of the

bubbles that maximizes the economic growth rate.

3 Dynamics of Rational Bubbles

Next, we examine the dynamics of rational bubbles and derive the equilibrium ϕt.

From the definition of ϕt ≡ PtX/βA∗
t , ϕt evolves over time as

ϕt+1 =

Pt+1

Pt

A∗
t+1

A∗
t

ϕt. (21)

The evolution of the size of the bubbles depends on the relationship between the

growth rate of aggregate wealth and that of the bubbles.

When we aggregate (7), and solve for Pt+1/Pt, we obtain the required rate of

return on bubble assets:

Pt+1

Pt

=
r∗t (1− p− ϕt)

π(1− p)− ϕt

> r∗t ≥ αL, if π < 1. (22)

(1 − p − ϕt)/[π(1 − p) − ϕt] captures the risk premium on bubble assets, which is

greater than one as long as π < 1; the required rate of return is strictly greater than
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the interest rate. From this and the relationship r∗t ≥ rt, we learn that bubbles

increase the rate of return on savings compared to the bubbleless economy as long

as bubbles persist. This high rate of return on bubble assets increases entrepreneurs’

net worth.16

Using (19) and A∗
t+1 = Y ∗

t+1 + Pt+1X = Y ∗
t+1 + (Pt+1/Pt) βϕtA

∗
t , the growth rate

of the aggregate wealth in the bubble economy can be written as:

A∗
t+1

A∗
t

=


β{αH(1− L(θ)) + αL(L(θ)− ϕt) +

Pt+1

Pt

ϕt} if ϕt ≤ L(θ),

β{αH(1− ϕt) +
Pt+1

Pt

ϕt} if ϕt ≥ L(θ).

(23)

From (18), (22), and the definition of entrepreneurs’ aggregate wealth, (21) can be

rewritten as:

ϕt+1 =



(1− p− ϕt)

π(1− p)− ϕt(
1 +

αH − αL

αL − θαH
p

)
β +

(1− π)(1− p)

π(1− p)− ϕt

βϕt

ϕt if ϕt ≤ L(θ),

θ

β

1

π(1− p)− (1− θ)ϕt

ϕt if ϕt ≥ L(θ).

(24)

Using (24), we examine the sustainable dynamics of ϕt. For stochastic bubbles to

be sustainable, the following condition must be satisfied for any t: 0 < ϕt < 1. If

this condition is violated, the bubbles explode, i.e., bubbles do not exist.

As examined in the previous studies (Tirole 1985; Farhi and Tirole 2012), there

is a continuum of starting values for the share of bubbles in total savings that are

consistent with equilibrium. The dynamics of bubbles take three patterns. The

first is that bubbles become too large and explode to ϕt ≥ 1. The economy cannot

sustain this dynamic path, and thus, bubbles cannot exist in this pattern. The

second pattern is that ϕt becomes smaller over time and converges to zero as long

as bubbles persist. This path is referred to as asymptotically bubbleless, where as

16For deterministic bubbles, i.e., π = 1, we have Pt+1/Pt = r∗t ≥ αL in equilibrium. Even in
this case, bubbles affect the long-run economic growth rate on the balanced growth path if and

only if Pt+1/Pt = r∗t > αL. See our working paper version (the first submitted version to REStud,
Hirano and Yanagawa. 2010 July, CARF Working Paper) for details.
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long as bubbles persist, their effects decrease, eventually becoming small. The third

pattern is that ϕt converges to a positive value for as long as bubbles survive.

From (24), we can derive that ϕt must be constant over time, unless ϕt is asymp-

totically bubbleless. Following Weil (1987), we refer to this equilibrium with con-

stant ϕ∗ as the ”stochastic steady-state”, where entrepreneurs’ wealth, the bubbles,

and the output grow at the same constant rate as long as the bubbles persist,

A∗
t+1/A

∗
t = Pt+1/Pt = Y ∗

t+1/Y
∗
t .

4 Existence Condition of Stochastic Bubbles

In this section, we examine the existence condition of stochastic bubbles. In other

words, we investigate whether a dynamic path with bubbles does not explode.

Mathematically, we will check whether the dynamic system (24) has a non-negative

steady-state, ϕt = ϕ∗. As we show below, the financial market condition, θ, is cru-

cial to the existence of bubbles. (Hereafter, proofs of all Propositions are given in

Appendix).

Proposition 2 Stochastic bubbles with survival probability π can exist if and only

if θ satisfies the following condition,

θ ≡ Max

[
αL[1− πβ(1− p)]− pβπαH

αH(1− πβ)
, 0

]
< θ < θ ≡ πβ(1− p).

Moreover, we can use the structure of the bubbleless economy to characterize

the existence condition. The existence condition for bubbles (both stochastic and

deterministic bubbles) is that the growth rate is not lower than the interest rate

under the bubbleless economy. This condition is consistent with the existence con-

dition stated in Tirole’s (1985) study, although the Tirole model is based on an

exogenous growth model with overlapping generations, while ours is based on an

endogenous growth model with infinitely-lived agents.

Proposition 3 The necessary condition for the existence of a bubble is that the

equilibrium growth rate is not lower than the equilibrium interest rate under the

bubbleless economy.

From Proposition 2, we can see that bubbles tend to exist when the degree

of financial imperfection, θ, is in the middle range. In other words, improving
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conditions in the financial markets might increase the existence of bubbles when

the initial condition of θ is low.17 This result is in sharp contrast to the results from

previous studies, such as Farhi and Tirole (2012), in which bubbles are more likely

to emerge when the financial market is more imperfect (i.e., when pledgeability is

more limited).18

The intuition for this result is as follows. If θ is low, H-types cannot borrow

sufficiently, and the economic growth rate must be low, even with bubbles. On the

other hand, the interest rate cannot be lower than αL, since there is an opportunity

to invest in L-projects, even if θ is low. Hence, under a very low level of θ, bubbles

grow at a higher rate than the economy, and hence cannot exist. Since we assume

heterogeneous investment opportunities, the interest rate has the lower bound, and

we thus obtain a different result from that of Farhi and Tirole (2012).

Figure 1 is a typical case representing the relationship between θ and bubble re-

gions.19 The Figure shows that with sufficiently high or low financial friction, bub-

bles cannot exist, suggesting that in financially underdeveloped or well-developed

economies, bubbles are not likely to arise. They are likely to emerge in countries

in an intermediate stage of financial development.20 As we explained in the Intro-

duction, based on the experiences in advanced economies like the U.S., θ in the real

world may be away from θ = 1, i.e., perfect pledgeability.

17Researchers such as Kaminsky and Reinhart (1999) and Allen and Gale (1999) point out that
financial liberalization causes bubbles. Based on our model, an interpretation of this effect is as
follows. For instance, before financial liberalization, the economy is in non-bubble regions. After
liberalization, θ increases, and the borrowing constraint is relaxed, causing the economy to enter
bubble regions.

18Note that if αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)
< 0, then stochastic bubbles can arise even at θ = 0.

19Though the growth rate is strictly greater than the interest rate, bubbles cannot arise in the
economy unless agents expect to be able to pass bubbles on to other agents. This expectation is
a sufficient condition for bubbles to exist. Here, we assume that the condition is satisfied when
bubbles appear.

20Readers may wonder why phenomena that look like bubbles occur repeatedly in the real world
where the financial system is continually developing over time, though our model suggests that
bubbles do not appear in high θ regions. We propose one interpretation from our model. In our
study, we assume a common θ for both high and low investments. However, we can use different

values of θ for those projects. In such a case, the important factor for the existence of bubbles is θH ,
which is placed only on high-profit investments. Taking this into account, consider the situation

in which existing projects with αL disappear. Then, new investment opportunities appear in the

economy that are more profitable than the existing αH . In such a situation, the θ for these new
projects is important for the existence of a bubble. If the θ is low, the economy will again enter
bubble regions, even if it was previously in non-bubble regions with a high θ. In the real world,
this process might repeat itself.
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As we also explained in the introduction, this theoretical result is consistent

with empirical observations, and implies that growth volatility tends to be high

when θ is in the middle range because stochastic bubbles tend to occur. Hence, this

result can be an explanation about the recent empirical results by Easterly et al.

(2000) or Kunieda (2008), who show that growth volatility is high when financial

development is at an intermediate level.21

4.1 Discussion:

4.1.1 Technological Progress and Asset Bubbles

Based on the existence condition of bubbles and the impacts of asset bubbles on the

long-run economic growth rate, we can clarify the relationship between technological

progress and asset bubbles. Scheinkman (2014) highlighted the importance of this

relationship.22. Given θ < πβ(1 − p), when we solve the existence condition θ for

αH/αL, we get:
αH

αL
>

[1− π(1− p)β]

(1− πβ)θ + pβπ
.

That is, bubbles are more likely to arise as inequality in productivity, αH/αL, rises.

This result suggests that we need to clarify the types of technological progress

to understand the relationship between the existence condition and technological

progress.

Proposition 4 Effects of Technological Innovation on Asset Bubbles: (i) Suppose

a technological innovation that increases αH , termed “high-tech specific progress”.

This “high-tech specific progress” increases the existence of bubbles. (ii) Suppose

technological innovation that increases both αH and αL by ∆ simultaneously, termed

“general progress”. This technological progress is neutral in terms of the existence

of bubbles.

From these results, we can draw at least two points. First, it is possible that

technological progress, such as high-tech specific progress, increases the existence of

21Aghion et al. (1999) and Matsuyama (2007, 2008) show that macroeconomic volatility is high
when financial market development is at an intermediate level, though we have a rather different
source of high volatility. In our study, volatility occurs because bubbles appear. In these other
studies, volatility comes from the interest rate or the quality of investments.

22We thank an anonymous referee who pointed out this implication. We also thank Jose
Scheinkman for thoughtful comments on this point.
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bubbles. Second, general technological progress does not contribute to the existence

of bubbles. High-tech specific innovation increases the economy’s growth rate, and

thus the economy enters a bubble region. Moreover, the appearance of bubbles

makes it easier to finance investments with technological progress (i.e., crowd-in

high-tech investments) and enhance long-run economic growth (we will show the

effects of bubbles on long-run economic growth on the balanced growth path in

Proposition 6.). This implies that there is a two-way feedback relationship between

high-tech innovation and asset bubbles, consistent with the stylized fact explored

by Scheinkman (2014), who showed that asset bubbles tend to appear in periods

when a new technology arrives, and bubbles make it easier to finance innovative

investments. Scheinkman also pointed out that bubbles may play a positive role in

economic growth. The arrival of new technologies roughly corresponds to high-tech

specific progress in our setting.

4.1.2 Maximum Bursting Probability of Bubbles and Financial Condi-

tions

We can also see the relationship between the maximum bursting probability and

financial conditions from the existence condition.23 We define 1−π(θ) as the maxi-

mum bursting probability consistent with a given level of θ. As shown in Proposition

3, the necessary condition for bubbles to exist is g > r under the bubbleless econ-

omy. Since g − r is hump-shaped with θ, this means that 1− π(θ) is hump-shaped

with θ. The following Proposition summarizes this result.

Proposition 5 Let 1 − π(θ) be the maximum bursting probability consistent with

a given level of θ. Then, 1 − π(θ) is hump-shaped with θ. That is, 1 − π(θ) is an

increasing function of θ in θ(π = 1) < θ < αL(1 − p)/αH , and is a decreasing

function of θ in αL(1− p)/αH ≤ θ < θ̄(π = 1).

Proposition 5 suggests that in the early stage of financial development, as the

economy develops financially, riskier bubbles with high bursting probability can

arise. Once the level of financial development passes a certain level, then riskier

bubbles are less likely to arise, and once the level of finanicial development reaches

a sufficiently high state, bubbles cannot arise from Proposition 2. The intuion is

that if the bursting probability of bubbles is high, to compensate entrepreneurs for

23We thank an anonymous referee who pointed out this implication.
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their risk, bubbles would need to grow so fast that they would become too large to

be feasible in equilibrium. Financial development increases the economy’s growth

rate and therefore makes it possible for riskier bubbles to arise in equilibrium.

However, after a certain level of financial development, the interest rate rises with

financial development, which in turn makes it difficult for riskier bubbles to occur

in equilibrium.

5 Asset Bubbles and Economic Growth

In this section, we examine the relationship between the growth rate and θ in the

stochastic steady-state (i.e., the balanced growth path) under the bubble eonomy.

We will show here that the effect of bubbles on the economic growth rate depends

on the financial market condition, θ, even if the existence condition for bubbles is

satisfied.

First, we formally derive ϕ∗(θ), which is the relative bubble size under the

stochastic steady-state, ϕt = ϕ∗ for any t, as long as bubbles persist. From (24),

this ϕ∗ becomes a function of θ, and can be written as:

ϕ∗(θ) =



π − 1− πβ(1− p)[
1 + ( αH−αL

αL−θαH )p
]
β − β(1− p)

1− 1− πβ(1− p)[
1 + ( αH−αL

αL−θαH )p
]
β − β(1− p)

(1− p) if θ < θ ≤ θm,

πβ(1− p)− θ

β(1− θ)
if θm ≤ θ < θ.

(25)

where θm (provided in the Appendix) is the degree of the financial market condition

that achieves the bubble size, ϕ∗(θm) = L(θm). Hence, we have ϕ∗(θ) < L(θm)

for any θ in θ < θ < θm, and ϕ∗(θ) > L(θm) for any θ in θm < θ < θ. In

this section, we do not consider the asymptotically bubbleless path, since it does

not affect the long-run economic growth rate. We examine the dynamics on the

asymptotically bubbleless path in the Appendix. From t = 0, the bubble size

follows (25). Moreover, from (25), we can easily see that ϕ∗(θ) is an increasing

function of θ in θ < θ ≤ θm, and a decreasing function of θ in θm ≤ θ < θ. That is,

ϕ∗(θ) is at the maximum value at θm.
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Combining (20) and (25), we can rewrite the growth rate of Y ∗
t as:

g∗t =
Y ∗
t+1

Y ∗
t

=


βαH − β(αH − αL)L(θ)

+
(
β(αH − αL)(1− L(θ))− (1− β)αL

)
βϕ∗(θ)

1−βϕ∗(θ)

if θ < θ ≤ θm,

αH(β − (1− β) βϕ∗(θ)
1−βϕ∗(θ)

) if θm ≤ θ < θ.

(26)

The condition of β(αH − αL)(1 − L(θ)) − (1 − β)αL > 0 is equivalent to θ >

αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)
, which is the existence condition of stochastic bubbles in Propo-

sition 2. Hence, in the region of θ < θ ≤ θm, g∗t is an increasing function of θ because
βϕ∗(θ)

1−βϕ∗(θ)
is an increasing function of θ in this region. Conversely, g∗t is a decreasing

function of ϕ∗(θ) in the region of θm ≤ θ < θ. However, ϕ∗(θ) is a decreasing func-

tion of θ in this region, meaning that g∗t is an increasing function of θ, even in the

region of θm ≤ θ < θ.

Moreover, the interest rate, r∗(θ), and bubbles’ growth rate, Pt+1

Pt
(θ), under the

balanced growth path become, respectively:

r∗(θ) =


αL if θ < θ ≤ θm,

θαH [1− ϕ∗(θ)]

1− p− ϕ∗(θ)
if θm ≤ θ < θ.

and

Pt+1

Pt

(θ) =


αL(1− p− ϕ∗(θ))

π(1− p)− ϕ∗(θ)
> αL if θ < θ ≤ θm,

θαH [1− ϕ∗(θ)]

π(1− p)− ϕ∗(θ)
> r∗(θ) if θm ≤ θ < θ.

We should mention that on the balanced growth path, Pt+1

Pt
(θ) > r∗(θ) ≥ r(θ) ≥ αL.

That is, bubbles increase the rate of return on savings compared to that under the

bubbleless economy.

Next, we compare the growth rate in the bubble economy to that in the bubble-

less economy for each θ. We know from (15) that βαH−β(αH−αL)L(θ) corresponds

to the economic growth rate under the bubbleless economy. Hence, we can easily

see that in the region of θ < θ ≤ θm, g∗t − gt > 0 for any θ; that is, bubbles enhance
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the long-run economic growth rate. Though the existence of bubbles generates the

crowd-out effect on investments, the effect that reallocates resources from L-projects

toward H-projects is dominant. Hence, bubbles increase the economic growth rate.

On the other hand, in the region of θm ≤ θ < θ:

g∗t − gt = β(αH − αL)L(θ)− αH(1− β)
βϕ∗(θ)

1− βϕ∗(θ)
.

The first term captures the crowd-in effect. If there are no bubbles, L(θ) is invested

in L-projects. However, bubbles reallocate resources to H-projects that generate a

high rate of return, αH . Conversely, we have the crowd-out effect: bubbles reduce

the resources allocated to real investments. The second term represents this crowd-

out effect. Since L(θ) is large when θ is low, the crowd-in effect dominates the

crowd-out effect. Therefore, g∗t > gt only when θ is low. In summary, we can derive

the following proposition24

Proposition 6 There is a threshold level of θ, θ∗(> θm). If θ < θ ≤ θ∗, the eco-

nomic growth rate in the bubble economy is higher than that in the bubbleless econ-

omy in each period, as long as the bubbles persist. If θ∗ < θ < θ, then the economic

growth rate in the bubble economy is lower than that in the bubbleless economy in

each period. If bubbles are deterministic, that is π = 1, then θ∗ = β(1− p)αL/αH .

Proposition 6 implies that bubbles enhance economic growth in economies within

bubble regions and with relatively low values of θ, but hinder economic growth in

economies with relatively high values of θ. Figure 2 illustrates this relationship, and

the Appendix describes θ∗ in more detail.25

We can reinterpret Proposition 6 by using of the dynamics of the wealth. Given

the relationship of A∗
t+1/A

∗
t = Y ∗

t+1/Y
∗
t on the balanced growth path, from (23), we

24Our definition of the “crowd in” and “crowd out” effects of bubbles is closely related to the
“liquidity” and “leverage” effects described in Farhi and Tirole (2012). Although these two models
are different, the crowd-in effect and the liquidity effect capture the situation in which savers can
use bubbles to increase the rate of return they earn on their savings. In addition, the crowd-out
effect and the leverage effect capture the situation in which higher interest rates reduce the leverage
of investors and constrains their investment choices. We appreciate an anonymous referee who
pointed out this relation.

25The recent macroeconomic literature emphasizes the role of aggregate total factor productivity
(TFP) to account for long-run economic growth rate and business fluctuations. In our model, the
appearance of a bubble and its collapse endogenously affects TFP. We define TFP in the bubble
economy as:
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have:

g∗t−gt =
A∗

t+1

A∗
t

−At+1

At

=



[
Pt+1

Pt

(θ)− αL

]
βϕ∗(θ) > 0 if θ < θ ≤ θm,

[
Pt+1

Pt

(θ)− αL

]
βL(θ) +

[
Pt+1

Pt

(θ)− αH

]
β [ϕ∗(θ)− L(θ)] if θm ≤ θ < θ.

(27)

Consider the region of θ < θ ≤ θm. When bubbles appear in the economy,

L-types purchase bubble assets by reducing their own L-projects. As long as the

bubbles survive at t+ 1, the realized rate of return from bubbles, Pt+1/Pt is higher

than αL. Hence, bubbles increase the growth rate of wealth, unless the bubbles

burst. Next, we consider the region of θm ≤ θ < θ. Since Pt+1

Pt
(θ) > αL, the

first term is positive, and shows that a high rate of return from bubbles increases

entrepreneurs’ wealth. When there are no bubbles, L(θ) is allocated to L-projects

and earns αLL(θ). On the other hand, if there are bubbles, this amount is allocated

to the bubbles and they earn Pt+1

Pt
(θ)L(θ) > αLL(θ) unless they burst at t+1. This

is the effect of the first term. However, not only L(θ), but ϕ∗(θ) > L(θ) too is

allocated to the bubbles, which is captured by the second term. ϕ∗(θ)−L(θ) earns

only Pt+1

Pt
(θ)(ϕ∗(θ)−L(θ)) when bubbles exist, but can earn αH(ϕ∗(θ)−L(θ)) when

there are no bubbles. Since Pt+1

Pt
(θ) < αH , this second term is negative. Whether

the bubbles increase the growth rate is deteremined by the relative size of the first

and second terms. Since L(θ) is a decreasing function of θ, the first term is larger

than the second term when θ is low. Thus, in economies with a relatively low θ,

TFP ∗
t ≡ Y ∗

t+1/(Z
∗H
t + Z∗L

t )

=


(
1+ αH−αL

αL−θαH p
)
αL−αLϕ∗(θ)

1−βϕ∗(θ) in θ < θ < θm,

αH in θm ≤ θ < θ̄.
.

In the bubbleless economy,

TFPt ≡ Yt+1/(Z
H
t + ZL

t )

=

{ (
1 + αH−αL

αL−θαH p
)
αL in 0 ≤ θ < αL

αH (1− p),

αH in αL

αH (1− p) ≤ θ ≤ 1.
.

It is shown that in θ < θ < θ∗ where bubbles increase the long-run economic growth rate,
TFP ∗

t > TFPt. Thus, aggregate TFP and the economic growth rates move pro-cyclically, implying
that the collapse of bubbles results in production inefficiency and lowers TFP.
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bubbles increase the economy’s growth rate.

Moreover, Proposition 6 has an implication for regulations related to leverage.26

If θ is sufficiently high and greater than πβ(1−p), bubbles cannot occur because the

economy cannot support growing bubbles in these regions. However, regulations on

leverage that force tighter borrowing constraints than θ lowers the interest rate and

decreases the bubble’s growth rate. Consequently, the economy may enter bubble

regions. Moreover, once bubbles occur, they impair long-run economic growth,

suggesting that tight leverage regulation might lead to bubbles that retard long-run

economic growth. We summarize this point in the following Proposition.

Proposition 7 Consider an economy with θ > πβ(1− p), in which bubbles cannot

arise. In this economy, consider a leverage regulation κ on the borrowing constraint,

rtb
i
t ≤ καi

tz
i
t, where θ

∗ < κ < θ. This tight leverage regulation increases the existence

of bubbles that lower the long-run economic growth rate.

6 The Effects of the Collapse of Bubbles

In this section, we examine the effects of the bubble burst. In the main text,

we present one experiment and show that the growth path after the bubbles’ burst

crucially depends on the financial market conditions θ. In the Appendix, we examine

the effects of the bubble burst in other experiments.

In our model, an unexpected shock to productivity may cause bubbles to burst

as well as bubbles collapse stochastically. Suppose at date t = s − 1, the economy

is in the stochastic steady-state. There is then an unexpected shock at t = s

that decreases productivity from αH to αS < αH . We assume that this shock is

temporary. Thus, after t = s + 1, αH is expected to recover to its original level.

Even if the productivity shock is temporary, bubbles may burst if agents revise their

expectations as a result of the shock and expect the value of the bubble asset to be

zero. We examine how the collapse of bubbles affects the economic growth rate in

this situation. Since the bubble bursts at t = s, the growth rate follows (15) from

t = s+1. This implies that the difference between the growth rates of the bubble and

the bubbleless economies can characterize the long-run impact of the bubble burst.

Countries whose θ is θ < θ ≤ θ∗ experience high economic growth rates during

26We thank Hitoshi Matsushima for posing this question.
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the bubble period, but a decreased economic growth rate after the bubble’s burst.

There are two reasons for this decreased growth rate: the decrease in productivity

and the collapse of the bubble itself. Immediately after the bubble’s collapse, the

economy’s growth rate decreases significantly. Moreover, in low θ countries, even

after productivity recovers to its original level, the growth rate becomes permanently

low and stagnates.27 This implies that in low θ countries, bubbles can temporarily

mask low economic growth rates due to low θ. On the other hand, countries whose

θ is θ∗ < θ < πβ(1 − p) also suffer a decreased growth rate due to the decrease

in productivity immediately after the burst, but experience recovery and a high

economic growth rate after productivity returns to its original level. The burst

enhances the long-run growth rate in high θ countries. This result suggests that the

effects of the bubble burst are not uniform, but significantly depend on the country’s

financial conditions. Figure 3 illustrates this point.28 In other words, the collapse

of bubbles exposes the “true” economic condition of each country. In summary, the

growth path after the bubbles’ collapse significantly depends on θ : The low (high)

θ countries experience relatively lower (higher) growth rates; thus the variance in

countries’ growth rates increases after the bubble bursts, even though the average

growth rate is lower than it was before the collapse.

Moreover, even if αH recovers to its original level after t = s+1, if a temporary

negative productivity shock is sufficiently large, the level of Yt after t = s+1 becomes

permanently lower than the pre-bubble trend level, even when the economic growth

rate recovers to gt after t = s + 1. This result is consistent with other empirical

studies on the effects of various types of financial crises on growth. For example,

Cerra and Saxena (2008) show that most financial crises are associated with a decline

in growth that leaves output permanently below its pre-crisis trend.29

27In standard real business cycle models, a temporary productivity shock has only temporal
effects on output. However, in our model, even a small temporary shock on the productivity
of entrepreneurs’ investments has permanent effects on aggregate productivity and the long-run
growth rate.

28In Figure 3, although the economic growth rate decreases temporarily for one period after
the bubble bursts, the economic growth rate immediately adjusts to its new steady-state without
bubbles because, in our model, since an idiosyncratic shock to each entrepreneur’s productivity is
i.i.d, i.e., productivity is not persistent over time for individual agents.

29We thank an anonymous referee who pointed out this implication. The same logic applies to
a decline in θ. Tighter leverage regulations may cause bubbles to collapse. For example, during
what we call “bubble periods” in Japan from the late 1980s to the beginning of the 1990s, the
Ministry of Finance in Japan tightened leverage. This policy may have caused bubbles to collapse
and thus the long-run stagnation after the crash.
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7 Welfare Analysis

In this section, we conduct a full welfare analysis of asset bubbles, and compare the

ex-ante welfare of entrepreneurs in the bubbleless economy to the ex-ante welfare

in the bubble economy, depending on the financial market condition θ.

7.1 Welfare in the Bubbleless Economy

Let V BL
t (et) be the value function of an entrepreneur in the bubbleless economy

with a net worth, et, at the beginning of period t. Note that because we have

already derived decision rules, we compute the entrepreneur’s expected indirect

utility function evaluated at the time before the entrepreneur knows her type of

period t. When we compute the value function, we need to consider the probability

that the entrepreneur becomes an H- or L-type.

Solving the value function yields:

V BL
t (et) = W (θ) +

1

1− β
log(et), (28)

W (θ) and the full derivations are given in the Technical Appendix. By setting t = 0,

we can see how improved financial system quality affects an entrepreneur’s welfare

in the initial period of the bubbleless economy. We obtain the following Proposition.

Proposition 8 V BL
0 (e0) is an increasing function of θ in 0 ≤ θ < 1 − p, and is

independent of θ in 1−p ≤ θ ≤ 1. In other words, as long as the borrowing constraint

binds, the entrepreneur’s welfare in the bubbleless economy monotonically increases

as the quality of the financial markets improves.

Intuitively, in the region of 0 ≤ θ < αL(1−p)/αH , together with an increase in θ,

the aggregate output increases. At an individual level, the rate of return on saving in

a high-productivity state, that is, the leveraged rate of return on H-projects, αH(1−θ)
1−θαH/r

,

rises. Conversely, the rate of return on saving in a low-productivity state, i.e., the

interest rate, remains unchanged at αL. This implies that the increase in aggregate

output is consumed by those entrepreneurs who invested with maximum leverage.

Therefore, the leveraged rate of return for H-types increases, which improves welfare.

In the region of αL(1 − p)/αH ≤ θ < 1 − p, even if θ increases, the aggregate

variables (i.e., output level, consumption level, and investment level) remain un-

chagend because the economic growth rate remains the same, but welfare increases.
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The economic intuitions are that in this region, the interest rate rises together with

the rise in θ, which generates two competing effects. One is that the leveraged

rate of return on H-projects decreases; the other is that the rate of return on sav-

ings for L-types increases. This means that the difference in the returns between

a high-productivity state and a low-productivity state decreases, which enhances

consumption smoothing. In other words, improved financial market conditions en-

hances consumption smoothing for entrepreneurs. Hence, welfare improves with a

rise in θ, even though aggregate output remains unchanged. In summary, in the

bubbleless economy, welfare is Pareto-ranked; that is, welfare is at its lowest when

θ = 0, but improves as θ increases, and reaches its highest level when 1−p ≤ θ ≤ 1.

7.2 Welfare in the Bubble Economy

Next, we compute the ex-ante welfare in the bubble economy. Here, we focus on an

entrepreneur’s welfare in the stochastic steady-state, i.e., the balanced growth path.

Since bubbles are expected to collapse with positive probability and entrepreneurs

are risk-averse agents, entrepreneurs care about increased volatility in consumption

due to the collapse of a bubble. We consider the welfare effects of this increased

volatility from the bubbles’ collapse. Let V BB
t (e∗t ) be the value function of the

entrepreneur in the bubble economy with a net worth of e∗t at the beginning of period

t. We compute the entrepreneur’s expected indirect utility function evaluated at

the time before the entrepreneur knows her type in period t. We thus need to

consider the probability that the bubbles will burst as well as the probability that

the entrepreneur becomes an H- or L-type.

Solving the value function yields:

V BB
t (e∗t ) = q(ϕ∗(θ), θ) +

1

1− β
log(e∗t ), (29)

where q(ϕ∗(θ), θ) and the full derivation are given in the Technical Appendix. By

setting t = 0, we can see how an improvement in the quality of the financial system

affects an entrepreneur’s welfare in the initial period of the bubble economy. If the

entrepreneur holds bubble assets in period 0, the period 0 net worth, e∗0, increases

as the bubbles emerge, which increases consumption in the initial period. More-

over, this increase in initial net worth has a persistent increase on the future net

worth after period 1. Therefore, this increases future consumption throughout the
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entrepreneur’s lifetime, and thus welfare. The second term of (29) captures the

accumulated effects, which we call the initial wealth effects of bubbles.

7.3 Comparison of Welfare

To compare welfare, we make the following assumptions: i) without a loss of gener-

ality, the population measure of entrepreneurs is set to one; ii) in the initial period,

each entrepreneur is equally endowed with output, i.e., yi0 = y0 = Y0; iii) the ag-

gregate supply of bubble assets is one, i.e., X = 1; and iv) each entrepreneur is

equally endowed with one unit of bubble assets in the initial period. Under these

assumptions, the entrepreneur’s net worth in the initial period can be written as

e0 = Y0 in the bubbleless economy, and e∗0 = Y0+P0 = Y0/[1−βϕ(θ)] in the bubble

economy. Using this relationship, the value function in the bubbleless economy,

(28), can be rewritten as:

V BL
0 (Y0) = W (θ) +

1

1− β
log(Y0). (30)

The value function in the bubble economy, (29), can be rewritten as:

V BB
0 (Y0) = q(ϕ∗(θ), θ) +

1

1− β
log

[
1

1− βϕ(θ)

]
+

1

1− β
log(Y0). (31)

The second term in (31) captures the bubbles’ initial wealth effects. By comparing

(30) to (31), we can find whether bubbles improve or harm welfare. Obviously,

e∗0 > e0 because of the bubbles’ initial wealth effects. Moreover, we can show

q(ϕ∗(θ), θ) > W (θ) for any θ in the bubble regions (See the proof of Proposition 9

in the Appendix.). These lead to the following Proposition.

Proposition 9 V BB
0 > V BL

0 for any θ in the bubble regions, i.e., in θ < θ < θ.

That is, stochastic bubbles increase an entrepreneur’s welfare, regardless of whether

bubbles increase or decrease the long-run economic growth rate and even if bubbles

are expected to collapse with positive probability.

Proposition 9 states that stochastic bubbles improve an entrepreneur’s welfare,

even if they are expected to collapse and even if they reduce long-run economic

growth. This result is in sharp contrast with Grossman and Yanagawa’s (1993)
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finding that bubbles reduce welfare by retarding the long-run economic growth

rate.30 Figure 4 shows numerical examples of Proposition 9. The parameter values

are set as follows: β = 0.99, αH = 1.1, αL = 1.0, p = 0.1, Y0 = 1. The only

difference between the four cases lies in the probability of the bubble’s collapse.

Lower π indicates a greater risk that the bubbles will burst. We can see that in all

four cases, welfare in the bubble economy is greater than welfare in the bubbleless

economy.

Intuitively the key lies in the consumption-smoothing effects of bubbles. In

this economy, becasue of the borrowing constraint, entrepreneurs cannot consume

smoothly against idiosyncratic shocks to the productivity of investment. In this

situation, the circulation of bubble assets serves as an insurance device against those

idiosyncratic productivity shocks, thereby increasing welfare. This mechanism has

similarity with that of Bewley (1980), as described in section 1.1.

More specifically, in the region of θ < θ ≤ θm, bubbles increase aggregate out-

put. At an individual level, bubbles increase the rate of return on savings in a

low-productivity state, because they are high return savings vehicles. In contrast,

the rate of return on savings in a high-productivity state, i.e., the leveraged rate

of return on H-projects, αH(1−θ)
1−θαH/r∗

, remains unchanged, because the interest rate

remains the same.31 This means that bubbles decrease the difference in rates of

return between the high- and low-productivity states, which enhances consumption-

smoothing for entrepreneurs, and thus welfare. Moreover, entrepreneurs holding one

unit of bubble assets in the initial period can increase net worth by selling the asset

and can consume more. This also increases welfare. On the other hand, there is a

negative effect of bubbles on welfare arising from their collapse. When bubbles col-

lapse, all wealth invested in bubble assets is lost, which lowers the entrepreneur’s net

worth and welfare. Proposition 9 shows that the bubble’s consumption-smoothing

effect dominates the negative effect. Therefore, bubbles increase entrepreneurs’

welfare.

In the region of θm < θ < πβ(1 − p), in addition to the bubbles’ initial wealth

effects and the adverse effect of the bubble’s collapse, the interest rate rises when

the bubbles appear. This increases the rate of return on savings for L-types, while

30Grossman and Yanagawa (1993) analyze the welfare effects of deterministic bubbles in an
overlapping generations framework with endogenous growth.

31Entrepreneurs who invested in the bubbles can consume the increase in aggregate output from
bubbles and use it for H-and L-projects.

35



that for H-types decreases because the leveraged rate of return is lower. That

is, the difference in rates of return between the high- and low-productivity states

decreases compared to that in the bubbleless economies. This enhances consumption

smoothing for entrepreneurs, improving welfare.32 In summary, bubbles enhance

the consumption-smoothing effect for entrepreneurs. In this regard, the circulation

of bubble assets functions as a substitute for financial development. This is why

bubbles improve welfare, even if they are expected to collapse and even if they

reduce economic growth.3334

8 Conclusion

In this paper, we developed an infinitely-lived agents model with heterogeneous

investments and financial frictions. We examined the effects of bubbles and explored

how the existence condition of stochastic bubbles is related to the condition of

the financial market. We find that the middle range of pledgeability allows for

the existence of stochastic bubbles, which suggests that improving financial market

conditions might increase the possibility of bubbles if the financial market is initially

underdeveloped.

From the existence condition of bubbles, we explored the relationship between

32Together with the rise in the interest rate, both interest income and the return on bubble
assets increase when the entrepreneur is in a low–productivity state, which increases consumption
and welfare. Conversely, the entrepreneur in a high-productivity state loses, because the leveraged
rate of return per unit of saving decreases, which lowers consumption and welfare. This means that
in the region of θm < θ ≤ θ∗ where bubbles increase economic growth, the increase in aggregate
output can be consumed by entrepreneurs who lent to H-types and who invested in bubbles, and
can also be used for H-projects. In other words, bubbles provide benefits in a low-productivity
state.

33In θ < θ ≤ θ∗, the aggregate consumption level in the bubble economy is always higher than

in the bubbleless economy. In θ∗ < θ < θ, though bubbles decrease the economic growth rate,
the aggregate consumption level is increased in the bubble economy for some time because of
the wealth effects of consumption. If the bubbles persist for long periods, then the aggregate
consumption level in the bubbleless economy will be higher at some point in time in the future.

34Regarding the welfare effects of asset bubbles, as in footnote 11, suppose that we introduce
workers into our model with the same time preference rate as entrepreneurs, but without invest-
ment projects. In this setting, workers do not save and consume all wage income in each period in
equilibrium. If bubbles reduce long-run economic growth, workers’ welfare shows a greater decrease
in a bubble economy than in a bubbleless economy because bubbles lower the wage rate. This
suggests that as long as bubbles increase the economic growth rate, both entrepreneurs (bubble-
holders) and workers (non-bubble holders) gain, but when bubbles reduce the economic growth
rate, non-bubble holders lose, while bubble holders still gain. Hence, the welfare impact of bubbles
differs for entrepreneurs and workers.
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technological progress and asset bubbles. We showed that there is a two-way feed-

back relationship between high-tech innovation and asset bubbles. Technological

progress such as high-tech specific innovation increases the existence of bubbles, and

the existence of bubbles in turn makes it easier to finance high-tech investments.

We also examined the relationship between the maximum bursting probability and

financial conditions from the existence condition. We find that the relationship is

hump-shaped. That is, in the early stage of financial development, as the economy

develops financially, riskier bubbles with high bursting probability can arise. Once

the level of financial development passes a certain level, then riskier bubbles are less

likely to arise.

Moreover, we examined the effects of bubbles on the long-run economic growth

rate. We find that the effects are also related to the financial market’s condition. If

pledgeability is relatively low, bubbles increase the growth rate, but bubbles decrease

the economic growth rate when pledgeability is relatively high. This result has an

important implication for the effects of a collapsed bubble. A collapsed bubble

decreases the economic growth rate when financial market is not so developed, but

may enhance the growth rate when the financial market’s condition is relatively

developed. The finding that the growth path after the bubbles’ collapse depends

significantly on the financial market conditions implies that the collapse exposes the

country’s ”true” economic conditions.

Finally, we conducted a full welfare analysis of stochastic bubbles in all bubble

regions where bubbles enhance and impair growth. We find that bubbles are welfare-

improving, even if they are expected to collapse and even if they reduce the economic

growth rate, because bubbles enhance consumption-smoothing.

Our model could be extended in several directions. One direction could analyze

policy-related issues such as government intervention before and after the collapse

of bubbles.35 Another direction could extend our model into a two-countries model

with different pledgeability levels, and investigate how globalization factors, such

as capital account liberalization, affects the emergence of bubbles in each country.

These would be promising areas for future research.

35Lorenzoni (2008) presents an interesting framework to study policies in the presence of pecu-
niary externalities from amplified asset prices. Analyzing bubbles within Lorenzoni’s framework
could clarify how regulations might prevent bubbles or the effect of government intervention after
a collapse.
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9 Appendices

9.1 Proof of Proposition 2

By defining Ω(ϕt, θ) ≡
(1−p−ϕt)
π(1−p)−ϕt(

1+ αH−αL

αL−θαH p
)
β+

(1−π)(1−p)
π(1−p)−ϕt

βϕt

ϕt, Γ(ϕt, θ) ≡ θ
β

1
π(1−p)−(1−θ)ϕt

ϕt,

(24) can be rewritten as

ϕt+1 =


Ω(ϕt, θ) if ϕt ≤ L(θ),

Γ(ϕt, θ) if ϕt > L(θ).

Since L(θ) = αL(1−p)−θαH

αL−θαH , L(θ) > 0 if and only if θ < αL

αH (1 − p). Moreover,

Ω(L(θ), θ) = Γ(L(θ), θ). Bubbles can exist as long as the above dynamics converge

to a positive value or 0. If they converge to 0, the dynamics are asymptotically

bubbleless. We can easily derive that ∂Γ/∂ϕt > 0 and ∂2Γ/∂ϕ2
t > 0. Hence, if and

only if ∂Γ(0, θ)/∂ϕt < 1 ⇔ θ < πβ(1− p), Γ(ϕ, θ) = ϕ has a unique strictly positive

solution, ϕΓ(θ) = πβ(1−p)−θ
β(1−θ)

> 0. Ω(ϕt, θ) function is rather complicated, but, by

solving Ω(ϕ, θ) = ϕ explicitly, we can find that this equation has only two solutions,

0 and ϕΩ(θ) =

π− 1−πβ(1−p)[
1+( αH−αL

αL−θαH
)p

]
β−β(1−p)

1− 1−πβ(1−p)[
1+( αH−αL

αL−θαH
)p

]
β−β(1−p)

(1 − p). Furthermore ϕΩ(θ) > 0 if and only if

∂Ω(0, θ)/∂ϕt < 1 ⇔ θ > αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)
.

(i-1) Obviously, if ϕΩ(θ) ≤ 0 and ϕΓ(θ) ≤ 0, any bubble path cannot converge

to a positive value. Moreover bubbles cannot converge to even 0 since ϕΩ ≤ 0 ⇔
∂Ω(0, θ)/∂ϕt ≥ 1. Hence, bubbles cannot exist in this case.

(i-2) Next, we examine the case where ϕΩ(θ) ≤ 0 and ϕΓ(θ) > 0. In this case,

ϕΓ(θ) is a candidate to achieve a steady state, ϕ∗(θ). However, ϕΩ(θ) ≤ 0 means

Ω(ϕ, θ) > ϕ for any positive ϕ and thus Ω(L(θ), θ) = Γ(L(θ), θ) > L(θ). This implies

that ϕΓ(θ) < L(θ) but this is a contradiction and ϕΓ(θ) cannot be ϕ∗(θ). Another

candidate for ϕ∗ is 0. However, Ω′(0) ≥ 1 since ϕΩ ≤ 0 and thus bubbles cannot

converge even to 0. Hence, bubbles cannot exist in this case.

(i-3) When ϕΩ(θ) > 0 and ϕΓ(θ) ≤ 0, ϕΩ(θ) is a candidate of ϕ∗(θ). ϕΓ(θ) ≤ 0

and L(θ) > 0 imply that πβ(1− p) < θ < αL

αH (1− p). This means πβ < αL

αH must be

satisfied but it follows θ < αL

αH (1−p) < αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)
. Hence, ∂Ω(0, θ)/∂ϕt > 1

and ϕΩ(θ) cannot be strictly positive. Moreover bubbles cannot converge even to 0.
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Hence, bubbles cannot exist even in this case.

(i-4) Lastly, we examine the case where ϕΩ(θ) > 0 and ϕΓ(θ) > 0. In this case,

ϕΩ(θ) or ϕΓ(θ) can realize ϕ∗(θ). Hence, bubbles can exist when θ > αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)

and θ < πβ(1− p).

9.2 Derivation of (25) and θm

By defining θm as the value of θ which satisfies ϕΩ(θm) = L(θm), we can derive

that L(θm) = ϕΩ(θm) = Ω(ϕΩ(θm), θm) = Ω(L(θm), θm) = Γ(L(θm), θm). Since

ϕΩ is an increasing function of θ and L is a decreasing function of θ, this θm is

uniquely determined. From this relation, L(θm) = Γ(L(θm), θm) and this means

ϕΩ(θm) = ϕΓ(θm) = L(θm). Hence, ϕΩ(θ) < L(θ) if θ < θm and ϕΩ(θ) > L(θ) if

θ > θm. Since ϕΓ is a decreasing function of θ, comparison of ϕΓ(θ) and L(θ) is

rather complicated. However, by directly solving ϕΓ(θ) − L(θ), we can show that

ϕΓ(θ) < L(θ) if θ < θm and ϕΓ(θ) > L(θ) if θ > θm. Hence, we can derive

ϕ∗(θ) =


ϕΩ(θ) if θ < θ ≤ θm,

ϕΓ(θ) if θm ≤ θ < θ.

Next, we derive θm explicitly. θm is the positive value of θ that makes the

following quadratic function zero.

ϕΓ(θ)−L(θ) = αH(1−β)θ2−
{
αL(1− β + pβ)− αHβ [1− π(1− p)]

}
θ−αLβ(1−p)(1−π).

By direct calculation, we have:

θm =

{
αL(1− β + pβ)− αHβ [1− π(1− p)]

}
2αH(1− β)

+

√
{αL(1− β + pβ)− αHβ [1− π(1− p)]}2 + 4αLαHβ(1− β)(1− p)(1− π)

2αH(1− β)
.

9.3 Proof of Proposition 3

Since θ (θ̄) is a decreasing (increasing) function of π, the existence condition for

deterministic bubbles is the least severe. Hence, we only check the condition. From
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the Proof of Proposition 2 and (15), if αHβ < αL, bubbles cannot exist and the

growth rate under the bubbleless economy is strictly lower than the interest rate

under the bubbleless economy for any θ. Next, we check the case where αHβ ≥ αL.

By deriving θ which achieves g(θ) = r(θ) under the bubbleless economy, we have

two solutions, θ = αL[1−β(1−p)]−pβαH

αH(1−β)
, β(1 − p). Moreover, g(θ) > r(θ) under the

bubbleless economy when Max
[
αL[1−β(1−p)]−pβαH

αH(1−β)
, 0
]
< θ < β(1 − p) and g(θ) <

r(θ) under the bubbleless economy when θ < αL[1−β(1−p)]−pβαH

αH(1−β)
or β(1 − p) < θ.

Since Max
[
αL[1−β(1−p)]−pβαH

αH(1−β)
, 0
]
= θ and β(1 − p) = θ for deterministic bubbles,

g(θ) ≥ r(θ) if and only if θ ≤ θ ≤ θ.

9.4 Proof of Proposition 4

When we solve the existence condition θ for π, we obtain:

π =
r

g
=

αL(
1 + αH−αL

αH−θαLp
)
βαL

in θ(π = 1) < θ < αL(1− p)/αH .

From this relationship, we learn that π is a decreasing function of θ in θ(π = 1) <

θ < αL(1− p)/αH . Hence, 1− π is an increasing function of θ in this region. That

is, a rise in θ increases the economy’s growth rate, which makes it possible for even

riskier bubbles to arise in equilibrium.

Likewise, when we solve the existence condition θ̄ for π, we obtain:

π =
r

g
=

θαH

1−p

αHβ
=

θ

β(1− p)
in αL(1− p)/αH ≤ θ < θ̄(π = 1).

From this relationship, we learn that π is an increasing function of θ in αL(1 −
p)/αH ≤ θ < θ̄(π = 1). Hence, 1 − π is an decreasing function of θ in this region.

That is, a rise in θ increases the interest rate, which makes it difficult for riskier

bubbles to arise in equilibrium.
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9.5 Explicit derivation of θ∗

At θ = θ∗, economic growth rate in the bubble economy equals that in the bubbleless

economy, i.e.,

g∗ =
αH {β [1− π(1− p)] + (1− β)θ}

1− πβ(1− p)
=

(
1 +

αH − αL

αL − θαH
p

)
βαL.

θ∗ is the greater value of θ which satisfies this quadratic equation. Hence, we have:

θ∗ =
αLαH [1− πβ2(1− p)]− (αH)2β [1− π(1− p)]

2(αH)2(1− β)

+

√
{αLαH [1− πβ2(1− p)]− (αH)2β [1− π(1− p)]}2 + ρ

2(αH)2(1− β)
,

where

ρ = 4αL(αH)2β(1− β)
{
αH [1− π(1− p)]− [αL + (αH − αL)p] [1− πβ(1− p)]

}
.

9.6 Proof of Proposition 6

By inserting (25) into (26), we can derive the economic growth rate in the stochastic

steady-state:

g∗t =



[
1 + (

αH − αL

αL − θαH
)p

]
βαL − β(1− p)αL

1− πβ(1− p)
if θ < θ ≤ θm,

αH β [1− π(1− p)] + (1− β)θ

1− πβ(1− p)
if θm ≤ θ < πβ(1− p).

(32)

First, we prove g∗t > gt in θ < θ ≤ θm. Comparing (32) to (15) yields g∗t − gt =

αLβ(1−p)
{
π
[
1+( αH−αL

αL−θαH )p
]
−1

}
1−πβ(1−p)

. Thus, if π[1 + αH−αL

αL−θαH p] > 1, we can say g∗t > gt. Since

π[1 + αH−αL

αL−θαH p] > 1 is equivalent to the existence condition of stochastic bubbles,

therefore g∗t > gt.

Next, we prove g∗t (θ) ≥ gt(θ) in θm < θ ≤ θ∗, and g∗t (θ) < gt(θ) in θ∗ <

θ < πβ(1 − p). Since g∗t is a linear function of θ in θm ≤ θ < πβ(1 − p), and

gt is a convex function of θ in θm ≤ θ < αL(1 − p)/αH and a linear function of
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θ in αL(1 − p)/αH ≤ θ ≤ 1. Moreover, at θ = θm,

[
1+( αH−αL

αL−θαH )p
]
βαL−β(1−p)αL

1−πβ(1−p)
=

αH β[1−π(1−p)]+(1−β)θ
1−πβ(1−p)

and g∗t > gt, and at θ = αL(1−p)/αH , g∗t < gt. Therefore, there

exists θ∗ at which g∗t (θ) = gt(θ) and g∗t (θ) > gt(θ) in θm < θ < θ∗ and g∗t (θ) < gt(θ)

in θ∗ < θ < πβ(1−p). θ∗ is given in the “Explicit derivation of θ∗” in the Appendix.

9.7 Proof of Proposition 8

By differentiating V BL
0 (e0) with respect to θ, we have:

dV BL
0 (e0)

dθ
=


p(αH−αL)

(1−θ)(αL−θαH)
> 0 in 0 ≤ θ < αL

αH (1− p),

1−p−θ
(1−θ)θ

> 0 in αL

αH (1− p) ≤ θ < 1− p.

9.8 Dynamics on asymptotically bubbleless path

In the main text, we focused on the stochastic steady-state. In this appendix, we

will analyze dynamics on asymptotically bubbleless path.

Rewriting (19) by using ϕt, output growth rate in the bubble economy can be

written as:

Y ∗
t+1

Y ∗
t

≡ g∗t =



[
(1+ αH−αL

αL−θαH p)βα
L − αLβϕt

]
1− βϕt

if ϕt ≤ L(θ),

αHβ [1− ϕt]

1− βϕt

if ϕt > L(θ).

(33)

As we learn from (33), as long as bubbles can exist, g∗t is an increasing function of

ϕt in 0 < ϕt < L(θ), and a decreasing function of ϕt in L(θ) < ϕt, and ϕ∗ is the

maximum value of the bubble size that can be sustained.

There are four different patterns depending on θ. The first pattern is the dy-

namics in the region of θ < θ ≤ θm. In this case, we have 0 < ϕ∗ ≤ L(θ). If

the initial ϕ0 starts from ϕ0 < ϕ∗, together with the decline in the size of bubbles,

high-productivity investments are crowded out, while low-productivity investments

are crowded in. As a result, both aggregate productivity and economic growth rate

decrease monotonically as long as bubbles survive. When bubbles collapse, then

the economic growth rate decreases to gt from g∗t discontinuously. Moreover, the
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adverse impacts of the collapse of bubbles on the economic growth rate becomes

larger, the larger the size of bubbles.

The second pattern is the dynamics in the region of θm < θ ≤ θ∗. In this case,

we have 0 < L(θ) < ϕ∗. In this pattern, although g∗t > gt in the stochastic steady-

state, overinvestment in bubbles occur if ϕt is sufficiently large, i.e., L(θ) < ϕt < ϕ∗.

Thus, if the initial ϕ0 starts from L(θ) < ϕ0 < ϕ∗, the economic growth rate initially

increases because overinvestment in bubbles is reduced. Once ϕt becomes smaller

than L(θ), then the economic growth rate starts to decrease because even L-types

start to invest, while H-types have to cut back on their investments. Moreover, the

bursting of bubbles leads to a discontinuous drop in the economic growth, and the

effects of the bubbles’ collapse become the largest if ϕt takes an intermediate value,

i.e., ϕt = L(θ).

The third one is the dynamics in the region of θ∗ < θ < αL(1 − p)/αH . In this

case, we have 0 < L(θ) < ϕ∗. Since g∗t < gt in the stochastic steady-state, if the

initial ϕ0 is close to ϕ∗, the economic growth rate initially increases as the size of

bubbles becomes smaller, and then decreases.

The fourth pattern is the dynamics in the region of αL(1−p)/αH ≤ θ < πβ(1−p).

In this case, we have L(θ) = 0 < ϕ∗. In this region, bubbles result in crowding H-

projects out and lowering the economic growth. Thus, if the initial ϕ0 starts from

ϕ0 < ϕ∗, together with the decline in the size of bubbles, the crowd-out effect is

reduced and the economic growth rate increases monotonically.

9.9 Proof of Proposition 9

The value function of the bubble economy and the bubbleless economy can be

written as:

V BL
0 (e0) = W (θ) +

1

1− β
log(e0),

and

V BB
0 (e∗0) = q(ϕ∗(θ), θ) +

1

1− β
log(e∗0).

In this Appendix, we prove V BB
0 (e∗0) > V BL

0 (e0) for any θ in the bubble regions.
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To do so, let us define H0(κ, θ) and Q0(κ, θ) as the followings:

H0(κ, θ) ≡
1

1− β
log(1− β) +

β

(1− β)2
log(β) +

β2(1− π)

1− βπ

1

(1− β)2
J0

+
1

1− βπ

β

1− β
[πH1(κ, θ) + (1− π)H2(κ, θ)] ,

and

Q0(κ, θ) ≡
1

1− β
log(1− β) +

β

(1− β)2
log(β) +

β2(1− π)

1− βπ

1

(1− β)2
J0

+
1

1− βπ

β

1− β
[πQ1(κ, θ) + (1− π)Q2(κ, θ)] ,

where

H1(κ, θ) = p log

[
αH(1− θ)

1− θαH

αL

]
+ (1− p) log

[
παL[1− p− κ]

π(1− p)− κ

]
,

and

H2(κ, θ) = p log

[
αH(1− θ)

1− θαH

αL

]
+ (1− p) log

[
αL[1− p− κ]

1− p

]
,

and

Q1(κ, θ) = p log

[
αH(1− θ)[1− κ]

p

]
+ (1− p) log

[
πθαH [1− κ]

π(1− p)− κ

]
,

and

Q2(κ, θ) = p log

[
αH(1− θ)[1− κ]

p

]
+ (1− p) log

[
θαH [1− κ]

1− p

]
.

and J0 is given in the welfare derivation in the Technical Appendix.

First, let us prove V BB
0 (e∗0) > V BL

0 (e0) in the case of θ < θ < θm. In this case,

H0(κ = 0, θ) = W (θ) holds. We also learn that:

∂H0(κ, θ)

∂κ
=

1

1− βπ

β

1− β

1− π(1− p)

1− p− κ

κ

π(1− p)− κ
> 0 for any κ in 0 < κ < π(1−p).

I.e., H0(κ, θ) is an increasing function of κ for any κ in 0 < κ < π(1− p). Moreover,

in θ < θ < θm, we know 0 < ϕ∗(θ) < π(1 − p). This means that H0(κ, θ) is an

increasing function of κ for any κ in 0 < κ ≤ ϕ∗(θ) < π(1− p). Therefore, we have:

W (θ) = H0(κ = 0, θ) < H0(κ = ϕ∗(θ), θ) = q(ϕ∗(θ), θ).
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Together with e∗0 > e∗0, we can obtain V BB
0 (e∗0) > V BL

0 (e0). We should mention

that as we note in the footnote 19, stochastic bubbles can arise even at θ = 0 if
αL[1−πβ(1−p)]−pβπαH

αH(1−πβ)
< 0. In this case, we know 0 < ϕ∗(θ = 0) < π(1 − p). Hence,

in exactly the same proof above mentioned, we can prove V BB
0 (e∗0) > V BL

0 (e0) by

putting θ = 0.

Next, we prove V BB
0 (e∗0) > V BL

0 (e0) in the case of θm ≤ θ < αL(1 − p)/αH .

In this case, H0(κ = 0, θ) = W (θ) and H0(κ = L(θ), θ) = Q0(κ = L(θ), θ) hold.

Moreover, we have:

∂Q0(κ, θ)

∂κ
=

1

1− βπ

β

1− β

1− π(1− p)

1− κ

κ

π(1− p)− κ
> 0 for any κ in 0 < κ < π(1−p).

I.e., Q0(κ, θ) is an increasing function of κ for any κ in 0 < κ < π(1 − p). Also, in

θm ≤ θ < αL(1 − p)/αH , we know 0 < L(θ) ≤ ϕ∗(θ) < π(1 − p). This means that

Q0(κ, θ) is an increasing function of κ for any κ in L(θ) ≤ κ ≤ ϕ∗(θ) < π(1 − p).

Therefoer, together with H0(κ = 0, θ) = W (θ) and H0(κ = L(θ), θ) = Q0(κ =

L(θ), θ), we obtain:

W (θ) = H0(κ = 0, θ) < H0(κ = L(θ), θ) = Q0(κ = L(θ), θ) ≤ Q0(κ = ϕ∗(θ), θ) = q(ϕ∗(θ), θ).

Since e∗0 > e∗0, we can obtain V BB
0 (e∗0) > V BL

0 (e0).

Finally, we prove V BB
0 (e∗0) > V BL

0 (e0) in the case of αL(1 − p)/αH ≤ θ < θ̄.

In this case, Q0(κ = 0, θ) = W (θ) holds. Moreover, ∂Q0(κ,θ)
∂κ

> 0 for any κ in

0 < κ < π(1 − p) and 0 < ϕ∗(θ) < π(1 − p). This means that Q0(κ, θ) is an

increasing function of κ for any κ in 0 < κ ≤ ϕ∗(θ) < π(1− p). Therefore, we have:

W (θ) = Q0(κ = 0, θ) < Q0(κ = ϕ∗(θ), θ) = q(ϕ∗(θ), θ).

Together with e∗0 > e∗0, we can obtain V BB
0 (e∗0) > V BL

0 (e0).

9.10 Other implications of the effects of the bubbles’ col-

lapse

In this Appendix, we examine the effects of a permanent shock to productivity (or

at least, this shock is expected to be permanent at t = s.). We will show that even

a small unexpected-negative shock to productivity can cause bubbles to burst in
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economies with relatively low θ, while in economies with relatively high θ, bubbles

can be sustained.

Suppose at date t = s−1, the economy is in the stochastic steady-state. There is

then an unexpected shock at t = s that decreases productivity from αH to αS < αH .

Here we assume that this shock is permanent . Since θ is a decreasing function of

αH , bubbles must collapse in countries where pledgeability is lower than θ(αS).

This result shows that, even if the shock is common, the effect of the shock differs

from country to country. In relatively low θ countries, even a small unexpected-

negative shock to productivity can cause bubbles to burst, while in relatively high

θ countries, bubbles can be sustained through an adjustment (a decline) in bubble

prices (i.e., the decrease in asset prices does not directly mean that the bubbles will

burst. It might just be an adjustment process of the bubbles).

Moreover, the above mentioned results suggest that in high θ countries, the

effect of the shock can be non-linear. As long as the shock is small, bubbles can be

sustained and thus they may not collapse. However, if the shock is sufficiently large,

they collapse, which causes a discontinuous drop in the economic growth rate. This

non-linear effect of the shock on the economic growth rate shares similarity with

the systemic crises discussed in Brunnermeier and Sannikov (2014) and Gertler and

Kiyotaki (2015).

9.11 Discussions on under what conditions g tends to be

greater than r only in the middle range of θ in the

bubbleless economy

We can derive theoretical characteristics regarding under what conditions g tends to

be greater than r only when θ is in the middle range in the bubbleless economy. The

following characteristics are important. First, p must be small, that is, a fraction of

low-productivity entrepreneurs must be relatively large. Second, the productivity

difference, αH/αL, or time preference rate, β, must not be too large. The intuitions

are that when p is low, even if θ rises, the interest rate does not readily rise because

a population share of low-productivity entrepreneurs is large, while the growth rate

of the economy increases. Moreover, when p is low, the growth rate of the economy

becomes low, and it can be lower than the interest rate when θ is sufficiently small.

That is, we obtain g(θ = 0) < r(θ = 0). In this situation, when θ increases, g(θ)
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increases while r(θ) does not readily rise. As a consequence, g(θ) becomes greater

than r(θ) when θ reaches the middle range, θ > 0.

Likewise, when the productivity difference, αH/αL, is relatively small (but must

not be too small because bubbles cannot occur), the value of collateral of high-

productivity investments is low and so is leverage. As a consequence, economic

growth rate is lowered. Also, when time preference rate, β, is relatively small,

saving rate is small. This also lowers economic growth rate. In both cases, the

economy’s growth rate is sufficiently low compared to the interest rate when θ is

sufficiently small, and thus we obtain g(θ = 0) < r(θ = 0). In this situation, when

θ rises, g(θ) increases while r(θ) does not readily rise, and as a result, g(θ) becomes

greater than r(θ) when θ reaches θ > 0.

These properties hold, even when we consider the case with continuous produc-

tivities. We explore the case with continuous productivities in more detail in the

next Appendix and in the Technical Appendix.

9.12 Case with a continuum of productivity

In this Appendix, we present numerical results showing that even in the continuum

case, there exist sets of parameter values for which g is greater than r only in the

middle range of θ under the bubbleless economy.36 In the Technical Appendix,

we explore the continuum case with analytical examination in greater details, and

derive the conditions under which g is greater than r only in the middle range of θ

under the bubbleless economy.

Let us suppose that there are continuously distributed investment opportunities

with different productivities from α to α, and the density function of productivity

is given by f(α).

The savings/investment market clears if and only if∫ ᾱ

r

1

1− θα
r

f(α)dα = 1. (34)

and the growth rate of the economy is given by

g =

∫ ᾱ

r

βα

1− θα
r

f(α)dα. (35)

36We thank an anonymous referee who pointed out this implication.
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Both g and r are increasing functions of θ, as shown in the Technical Appendix.

Note that since the model is an endogenous growth model, g as well as r is affected

by a change in θ. Given this property, we solve the model numerically by specifying

the density function. We examine whether there exist sets of parameter values

under which g is greater than r only in the middle range of θ under the bubbleless

economy.

We examine the following five different density functions, i.e., power law distribu-

tion, exponential distribution, double power law distribution, bimodal distribution,

and u-shape bimodal distribution. Functional forms in each case are shown in the

Technical Appendix. An important common property in the five distributions is

that the distributions can capture the population share of entrepreneurs with low

productivity by exogenous parameter values, which is important for our result. In

the Technical Appendix, we explain which exogenous parameter values capture the

share. Also note that in international trade literature with firm heterogeneity, it

is widely used that productivity of firm follows power law distribution (see, for

example, Helpman et al. 2004; Chaney 2008, etc.).

We summarize numerical results in Figure 5. Our numerical solutions show that

in all five density functions, there exist sets of parameter values for which g is greater

than r only in the middle range of θ under the bubbleless economy. These numerical

results verify that our result in the discrete case holds even in the continuum case.

We should mention that from our numerical solutions and analytical examination

provided in the Technical Appendix, we can draw important common properties to

get the result. (ii-1) The pupolation share of entrepreneurs with low productivity

is relatively large, but not too large. (ii-2) α is positive (see the condition (i-1)

in the Technical Appendix.). (ii-3) ᾱ is relatively high (see the condition (i-2) in

the Technical Appendix.). (ii-4) The population share of entrepreneurs with high

productivity is not too small.

The economic intuitions for (ii-1)-(ii-4) are as follows. When θ increases under

g < r at θ = 0, the interest rate also rises. However, the interest rate is determined

by the marginal type of technology. When the population share of entrepreneurs

with low productivity is relatively large, the interest rate does not rise sharply.

On the other hand, the resource can be allocated to the technologies with higher

productivity than the marginal type of technology. When ᾱ is relatively high, or

the population share of entrepreneurs with high productivity is not too small, this
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makes the increase in the economy’s growth rate higher. As a consequence, the

increase in the growth rate is higher than the increase in the interest rate. Hence,

g(θ) > r(θ) in the middle range of θ. Moreover, α must be positive. This is because,

if α > 0, the interest rate has the positive lower bound. On the other hand, as in

the discrete case, if α = 0, r = 0 when θ = 0. If this is the case, entrepreneurs have

incentives to buy bubbles even when θ = 0, that is, bubbles can arise even when

θ = 0.

Technical Appendices

9.13 A continuum of productivity: analytical examination

In this Technical Appendix, we explore the continuum case analytically.

We first derive the necessary and sufficient conditions analytically under which

g > r only in the middle range of θ under the bubbleless economy. Second, we

derive weaker conditions, because the weaker conditions can be solved explicitly.

Then, we solve the model numerically. The numerical solutions are shown in the

Appendix.

For this purpose, we first examine the relation between r and θ, and g and θ.

We define h ≡ θ
r
(r = θ

h
). From (34), we can derive that

dh

dθ

∫ ᾱ

r

α

(1− hα)2
f(α)dα =

f(r)

1− θ

dr

dθ

⇔ dr

dθ
=

1− θ

f(r)

[∫ ᾱ

r

α

(1− hα)2
f(α)dα

]
dh

dθ
. (36)

From dh
dθ

= 1
r
− θ

r2
dr
dθ
, the above equation can be written as:(
1

r
− θ

r2
dr

dθ

)∫ ᾱ

r

α

(1− hα)2
f(α)dα =

f(r)

1− θ

dr

dθ

⇔ dr

dθ
=

1
r

∫ ᾱ

r

α
(1−hα)2

f(α)dα

θ
r2

∫ ᾱ

r

α
(1−hα)2

f(α)dα + f(r)
1−θ

> 0. (37)

That is, the interest rate is a monotonically increasing function of θ. Since dr
dθ

> 0,
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from (36), we learn dh
dθ

> 0.

By using (36), we also have:

dg

dθ
=

dh

dθ

[∫ ᾱ

r

βα2

(1− hα)2
f(α)dα

]
− dr(θ)

dθ

βr

1− θ
f(r(θ))

=
dh

dθ

[∫ ᾱ

r

βα(α− r)

(1− hα)2
f(α)dα

]
> 0. (38)

That is, g is also a monotonically increasing function of θ. Moreover, it is obvious

that when θ = 1, r = ᾱ and g = βᾱ. That is, g > r at θ = 1. Note that since the

model is an endogeous growth model, g is affected by a change in θ.

Given these results, we derive the necessary and sufficient conditions under which

g > r only in the middle range of θ under the bubbleless economy.

First, g must be smaller than r at θ = 0, i.e., g(θ = 0) < r(θ = 0). Since r = α

when θ = 0, the condition of g(θ = 0) < r(θ = 0) can be written as:∫ ᾱ

α

βαf(α)dα < α. (39)

For this condition to hold, α must be positive.

Moreover, by using the condition of

∫ ᾱ

r

1
1− θα

r

f(α)dα = 1, we have:

g − r =

∫ ᾱ

r

βα

1− hα
f(α)dα− r =

∫ ᾱ

r

βα− r

1− hα
f(α)dα.

Hence, by defining that

r(θ∗∗) = βᾱ,

we can say

Under θ∗∗ < θ ≤ 1, g < r. (40)

Therefore, given (40), the necessary and sufficient conditions for g > r only in

the middle range of θ are (39) and

g > r for some 0 < θ < θ∗∗. (41)

Theoretically speaking, since both g and r can be solved by (34) and (35), they

can be written as functions of exogenous parameter values. But, it is hard to solve
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them explicitly under general density functions. Hence, we solve them numerically

by specifying the density functions.

Before solving numerically, we want to proceed analytically as much as possible.

We derive weaker conditions than (41), because the weaker conditions can be derived

explicity. We derive the conditions for d(g−r)
dθ

> 0 at θ = 0 because if this condition

is satisfied together with (39), then g becomes likely to be greater than r only in

the middle range of θ.

For this purpose, we examine the dynamics of g−r =

∫ ᾱ

r

βα

1− θα
r

f(α)dα−r, under

the constraint of

∫ ᾱ

r

1
1− θα

r

f(α)dα = 1.

From (36) and (38), we have:

d(g − r)

dθ
=

dh

dθ

[∫ ᾱ

r

βα2

(1− hα)2
f(α)dα

]
− dr(θ)

dθ

[
βr

1− θ
f(r(θ)) + 1

]
=

dh

dθ

[∫ ᾱ

r

α

(1− hα)2

(
β(α− r(θ))− 1− θ

f(r(θ))

)
f(α)dα

]
.

Since dh
dθ

> 0, if∫ ᾱ

r

α

(1− hα)2

(
β(α− r(θ))− 1− θ

f(r(θ))

)
f(α)dα > 0 for some 0 ≤ θ < θ∗∗, (42)

then we have d(g−r)
dθ

> 0 for some 0 ≤ θ < θ∗∗. Given (40), together with (39),

(42) is a necessary condition for g > r only in the middle of θ. Here we derive the

condition for d(g−r)
dθ

> 0 at θ = 0 in (42).

When θ = 0, r = α. Then, the condition (42) at θ = 0 can be written as:∫ ᾱ

α

αf(α)

[
β(α− α)− 1

f(α)

]
dα > 0

⇔

∫ ᾱ

α

α2f(α)dα∫ ᾱ

α

αf(α)dα

> α +
1

βf(α)
.

Therefore, if the following conditions are satisfied, g < r at θ = 0 and d(g−r)
dθ

> 0 at
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θ = 0. ∫ ᾱ

α

α2f(α)dα∫ ᾱ

α

αf(α)dα

> α +
1

βf(α)
> α >

∫ ᾱ

α

βαf(α)dα.

In summary, we have derived the following conditions. (i-1) If α >

∫ ᾱ

α

βαf(α)dα,

g < r at θ = 0. For this condition to be satisfied, α must be positive. (i-2) If∫ ᾱ

α

α2f(α)dα∫ ᾱ

α

αf(α)dα

> α + 1
βf(α)

, d(g−r)
dθ

> 0 at θ = 0. This condition is likely to hold if ᾱ is

high. (i-3) There exists θ∗∗ such that g < r under θ∗∗ < θ ≤ 1. Therefore, under

(i-1) and (i-2), g can be greater than r only in the middle range of θ under the

bubbleless economy.

Given these analytical results, we solve the model numerically by specifying the

density function. The functional forms are provided below. Figure 5 summarizes

our numerical solutions, showing that there exist sets of parameter conditions for

which the conditions (i-1) and (i-2) are both satisfied, or (39) and (41) are both

satisfied.

Moreover, as the numerical results in Figure 5 show, in the cases of the ex-

ponential distribution, and the double power law distribution, and in some cases

in the bimodal distribution, there exist sets of parameter values for which even if
d(g−r)

dθ
< 0 at θ = 0, g is greater than r only in the middle range of θ. These results

suggest that even if d(g−r)
dθ

< 0 at θ = 0, there exist sets of parameter values for

which (39) and (41) are both satisfied.

In the following sections, we explain functional forms of each distribution func-

tion.

9.13.1 Power law distribution

Consider

f(α) = χα−η−1.

χ must satisfy ∫ ᾱ

α

χα−η−1dα = 1.
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Thus,

χ =
η

1
αη − 1

ᾱη

.

Therefore, the general form of the density function is

f(α) =
η

1
αη − 1

ᾱη

α−η−1,

where η is the shape parameter of the power law distribution. When η is higher,

the population share of low productivity is larger.

9.13.2 Exponential distribution

We define a truncated exponential distribution as the following:

f(α) = ξ exp(−λα).

ξ must satisfy ∫ ᾱ

α

ξ exp(−λα)dα = 1.

Thus,

ξ =
λ

exp(−λα)− exp(−λᾱ)
.

Therefore, the general form of the density function is

f(α) =
λ

exp(−λα)− exp(−λᾱ)
exp(−λα),

where λ is the shape parameter of the truncated exponential distribution. When

λ is higher, the population share of entrepreneurs with low productivity is larger.

Also, compared to the power law distribution, the share of entrepreneurs with high

productivity is lower in the exponential distribution under the assumption that f(α)

has the same value.

9.13.3 Double power law

Consider a type of double power law distributions. For α > α∗, α follows a power

law distribution, the density over α∗ < α ≤ ᾱ integrates weightR. Similarly, for
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α < α∗, α follows a power law distribution, and the density over α ≤ α < α∗

integrates 1− weightR. Namely,

f(α) =

{
χRα

−η−1 for α > α∗,

χLα
η−1 for α < α∗.

χR and χL satisfy ∫ ᾱ

α∗
χRα

−η−1dα = weightR,∫ α∗

α

χLα
η−1dα = 1− weightR.

Thus,

χR =
ηweightR

1
α∗η − 1

ᾱη

.

χL =
η(1− weightR)

α∗η − αη
.

Therefore,

f(α) =

{
ηweightR

1
α∗η − 1

ᾱη
α−η−1 for α > α∗,

η(1−weightR)
α∗η−αη αη−1 for α < α∗.

Moreover, we impose a condition that at α = α∗, f(·) is continuous. That is,

ηweightR
1

α∗η − 1
ᾱη

(α∗)−η−1 =
η(1− weightR)

α∗η − αη
(α∗)η−1

⇐⇒ weightR =
1− (α

∗

ᾱ
)η

2− ( α
α∗ )η − (α

∗

ᾱ
)η

I.e., weightR is written as functions of the exogenous parameter values. Note that

when α∗ = ᾱ, weightR = 0 and when α∗ = α, weightR = 1. Also, note that when

α∗ is lower, the population share of entrepreneurs with low productivity is larger.

9.13.4 Bimodal distribution

First, the density function of a truncated normal distribution defined over α ≤ α ≤
ᾱ is given by

f(α) =
f1(

α−µ
σ

)

σ
(
F1(

ᾱ−µ
σ

)− F1(
α−µ
σ

)
) ,
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where f1 and F1 are the density function and the cumulative distribution function

of the standard normal distribution. The parameter µ and σ are the mean and the

standard deviation of the corresponding normal distribution.

Next, let us create a bimodal distribution by combining two truncated normal

distributions. Let µR and σR be the parameters of the right distribution, which

is defined over α ≤ α ≤ ᾱ. Similarly, let µL and σL be the parameters of the left

distribution, which is also defined over α ≤ α ≤ ᾱ.

We examine a combination of the two truncated normal distributions, whose

standard deviations are both unity, i.e., σR = 1 and σL = 1. Truncation is not

necessarily symmetric. Consequently, we can determine two mean parameters, µR

and µL, arbitrarily, but µL < µR must hold. Also, we choose the weight on the

left distribution, weightL. When weightL is higher, the population share of en-

trepreneurs with low productivity is larger. Then the bimodal distribution in this

case is given by

f(α) = weightL
f1(α− µL)

F1(ᾱ− µL)− F1(α− µL)
+(1−weightL)

f1(α− µR)

F1(ᾱ− µR)− F1(α− µR)
.

This is indeed a density function because∫ ᾱ

α

weightL
f1(α− µL)

F1(ᾱ− µL)− F1(α− µL)
dα +

∫ ᾱ

α

(1− weightL)
f1(α− µR)

F1(ᾱ− µR)− F1(α− µR)
dα

= weightL+ (1− weightL) = 1.

9.13.5 U-shape bimodal

Consider the following U-shape bimodal distribution funtion:

f(α) = a1(α− a0)
2,

where a0 =
α+ᾱ
2

and a1 =
12

(ᾱ−α)3
.

9.14 Derive the demand function for bubble assets of an

L-entrepreneur

Each L-type chooses optimal amounts of b∗it , xi
t, and z∗it so that the expected

marginal utility from investing in three assets is equalized. The first order con-
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ditions with respect to xi
t and b∗it are

(xi
t) :

Pt

c∗i,πt

= πβ
Pt+1

c∗i,πt+1

, (43)

(bit) :
1

c∗i,πt

= πβ
r∗t
c∗i,πt+1

+ (1− π)β
r∗t

c
∗i,(1−π)
t+1

, (44)

where c∗i,πt+1 = (1− β)(αLz∗it − r∗t b
∗i
t + Pt+1x

i
t) is the date t+ 1 consumption level of

entrepreneur when bubbles survive at date t+1, and c
∗i,(1−π)
t+1 = (1−β)(αLz∗it −r∗t b

∗i
t )

is the date t+1 consumption level when bubbles collapse at date t+1.37 The RHS

of (43) is the gain in expected discounted utility from holding one additional unit

of bubble assets at date t + 1. With probability π bubbles survive, in which case

the entrepreneur can sell the additional unit at Pt+1, but with probability 1 − π

bubbles collapse, in which case he/she receives nothing. The denominators reflect

the respective marginal utilities of consumption. The RHS of (44) is the gain in

expected discounted utility from lending one additional unit. It is similar to the

RHS of (43), except for the fact that lending yields r∗t at date t+ 1, irrespective of

whether or not bubbles collapse.

From (4), (43), and (44), we can derive the demand function for bubble assets

of an L-type, (7).

9.15 Aggregation in the bubble economy

The great merit of the expressions for each entrepreneur’s investment and demand

for bubble assets, z∗it and xi
t, is that they are linear in period-t net worth, e∗it . Hence

aggregation is easy: we do not need to keep track of the distributions.

From (6), we learn the aggregate H-investments in the bubble economy:

Z∗H
t =

βpA∗
t

1− θαH

r∗t

,

where A∗
t ≡ Y ∗

t +PtX is the aggregate wealth of entrepreneurs at date t in the bubble

economy, and pA∗
t is the aggregate wealth of H-types at date t in the bubble economy.

37Since the entrepreneur consumes a fraction 1− β of the current net worth in each period, the
optimal consumption level at date t+1 is independent of the entrepreneur’s type at date t+1. It
only depends on whether bubbles collapse.
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From this investment function, we see that the aggregate H-investments are both

history-dependent and forward-looking, because they depend on asset prices, Pt, as

well as cash flows from the investment projects in the previous period, Y ∗
t . In this

respect, this investment function is similar to the investment function in Kiyotaki

and Moore (1997). There is a significant difference. In the Kiyotaki-Moore model,

the investment function depends on land prices which reflect fundamentals (cash

flows from land), while in our model, it depends on bubble prices.

Aggregate L-investments depend on the level of the interest rate:

Z
∗L
t =


βA∗

t −
βpA∗

t

1− θαH

αL

− PtX if ϕt ≤ L(θ),

0 if ϕt > L(θ).

When the bubble size is small, L-types may invest positive amount. In this case, we

know from (16) that aggregate L-investments are equal to aggregate savings of the

economy minus aggregate H-investments minus aggregate value of bubbles. When

the bubble size becomes large, L-types do not invest.

The aggregate counterpart to (7) is

PtXt =
π Pt+1

Pt
− r∗t

Pt+1

Pt
− r∗t

β(1− p)A∗
t , (45)

where (1 − p)A∗
t is the aggregate net worth of L-types at date t in the bubble

economy. (45) is the aggregate demand function for bubble assets at date t.

9.16 Behavior of H-types

We verify that H-types do not buy bubble assets in equilibrium, not just on the

asymptotically bubbleless path, but also in the stochastic steady-state (i.e., the

balanced growth path). When the short sale constraint binds, H-types do not buy

bubble assets. In order that the short sale constraint binds, the following condition

must hold:
1

c∗i,πt

>
πβ

c∗i,πt+1

Pt+1

Pt

. (46)
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Since the borrowing constraint is binding for H-types in the bubble economy, we

have:
1

c∗i,πt

= βEt

[
r∗t
c∗it+1

αH(1− θ)

r∗t − θαH

]
. (47)

We also know that c∗it+1 = (1− β)
[
r∗t α

H(1−θ)

r∗t−θαH

]
if (46) is true. Inserting (47) into (46)

yields

β

c∗it+1

[
αH(1− θ)

1− θαH

r∗t

− π
Pt+1

Pt

]
> 0. (48)

The first term in the bracket of (48) is the rate of return on H-projects with maxi-

mum leverage, and the second term in (48) is the expected return on bubbles. As

long as the first term is strictly greater than the second term, then H-types do not

buy bubbles. That is, if

αH(1− θ)

1− θαH

r∗t

> π
Pt+1

Pt

= π
ϕt+1

ϕt

1− βϕt

1− βϕt+1

Y ∗
t+1

Y ∗
t

, (49)

then (48) holds.

In θ < θ ≤ θm, by using (24) and (20), (49) can be written as:

αLαH(1− θ)

αL − θαH
>

παL(1− p− ϕt)

π(1− p)− ϕt

. (50)

Since the right hand side is an increasing function of ϕt and ϕt in the stochastic

steady-state is the maximum value of equilibrium ϕt, (49) holds in all bubble equi-

libria if (50) holds in the stochastic steady-state. In the stochastic steady-state, ϕt

is constant, and thus (50) becomes

αLαH(1− θ)

αL − θαH

1− πβ

1− πβ(1− p)
> 0. (51)

Therefore, H-types do not buy bubbles in all bubble equilibria in θ < θ ≤ θm.

Likewise, in θm ≤ θ < πβ(1− p), by using (24) and (20), (49) can be written as:

αH(1− θ)(1− ϕt)

p
>

πθαH(1− ϕt)

π(1− p)− ϕt

,
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which is equivalent to

αH(1− ϕt)

[
(1− θ)

p
− πθ

π(1− p)− ϕt

]
> 0. (52)

Since the second term in the bracket is an increasing function of ϕt and ϕt in the

stochastic steady-state is the maximum value of equilibrium ϕt, (49) holds in all

bubble equilibria if (52) holds in the stochastic steady-state. In the stochastic

steady-state, ϕt is constant, and thus (52) becomes

αH(1− θ)(1− ϕ)(1− πβ)

p[1− πβ(1− p)]
> 0. (53)

Therefore, H-types do not buy bubbles in all bubble equilibria in θm ≤ θ < πβ(1−p).

9.17 Derivation of Entrepreneur’s Value Function

9.17.1 A Bubbleless Economy

Given the optimal decision rules, the Bellman equation can be written as:

V BL
t (et) = log ct + β

[
pV BL

t+1 (R
H
t βet) + (1− p)V BL

t+1 (R
L
t βet)

]
, (54)

where RH
t βet and RL

t βet are the net worth of the entrepreneur at date t + 1. The

net worth evolves as et+1 = Rj
tβet, where j = H or L. RH

t and RL
t , which are given

below, are the realized rate of return per unit of saving from date t to date t + 1

in the bubbleless economy. RH
t represents the rate of return per unit of saving in

the productive state. RL
t represents the rate of return per unit of saving in the

unproductive state. Note that, irrespective of the entrepreneur’s type at date t, the

entrepreneur’s consumption at date t, ct, is the same, if the entrepreneur has the

same amount of net worth, et. This is because the entrepreneur consumes a fraction

1− β of his/her date t’s net worth, et.

We guess that the value function, V BL(e), is a linear function of log e :

V BL
t (et) = W + ϑ log et. (55)

From the above Bellman equation and (55), applying the method of undetermined
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coefficients yields

W =
1

1− β
log(1−β)+

β

(1− β)2
log(β)+

β

(1− β)2
[
p logRH

t + (1− p) logRL
t

]
≡ W (θ),

ϑ =
1

1− β
,

with

RH
t =


αH(1−θ)

1− θαH

αL

in 0 ≤ θ ≤ αL

αH (1− p),

αH(1−θ)
p

αL

αH (1− p) ≤ θ ≤ 1− p,

αH 1− p ≤ θ ≤ 1.

and

RL
t =


αL in 0 ≤ θ ≤ αL

αH (1− p),
θαH

1−p
αL

αH (1− p) ≤ θ ≤ 1− p,

αH 1− p ≤ θ ≤ 1.

9.17.2 A Bubble Economy

Given the optimal decision rules, the Bellman equation can be written as:

V BB
t (e∗t ) = log c∗t + βπ

[
pV BB

t+1 (R
∗H
t βe∗t ) + (1− p)V BB

t+1 (R
∗L
t βe∗t )

]
+ β(1− π)

[
pV BL

t+1 (R
∗H
t βe∗t ) + (1− p)V BL

t+1 (R
LL
t βe∗t )

]
,

where R∗H
t βe∗t , R

∗L
t βe∗t , and RLL

t βe∗t are the net worth of the entrepreneur at date

t+1 in each state. R∗H
t , R∗L

t , and RLL
t , which are given in the Technical Appendix,

are the realized rate of return per unit of saving in each state from date t to date

t + 1. R∗H
t corresponds to the leveraged rate of return on H-projects per unit of

saving. R∗L
t and RLL

t are the realized rates of return per unit of saving for L-types

in period t when the bubbles survive in period t+ 1 and when the bubbles collapse

in period t + 1, respectively. When the bubbles burst in period t + 1, the realized

rate of return per unit of saving decreases for entrepreneurs who were L-types in

period t, because they lose all wealth they had invested in bubble assets. Thus,

we have RLL
t < R∗L

t . In contrast, H-types in period t would not have purchased

bubble assets in period t, so the realized rate of return per unit of their saving is

not affected, even if the bubble bursts.
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We guess that the value function, V BL(e∗), is a linear function of log e∗ :

V BB
t (e∗t ) = q + u log e∗t , (56)

From the above Bellman equation and (56) together with

R∗H
t =


αH(1−θ)

1− θαH

αL

in θ < θ ≤ θm,

αH(1−θ)[1−ϕ(θ)]
p

in θm ≤ θ < πβ(1− p),

and

R∗L
t =

{
παL[1−p−ϕ(θ)]
π(1−p)−ϕ(θ)

in θ < θ ≤ θm,
πθαH [1−ϕ(θ)]
π(1−p)−ϕ(θ)

in θm ≤ θ < πβ(1− p),

and

RLL
t =

{
αL[1−p−ϕ(θ)]

1−p
in θ < θ ≤ θm,

θαH [1−ϕ(θ)]
1−p

in θm ≤ θ < πβ(1− p).

Applying the method of undetermined coefficients yields

q =
β(1− π)

1− βπ
W (θ) +

1

1− βπ
log(1− β) +

1

1− βπ

β

1− β
log β

+
1

1− βπ

β

1− β
[πJ1 + (1− π)J2] ≡ q(θ),

u =
1

1− β
,

where in θ < θ ≤ θm,

J1 = p log

[
αH(1− θ)

1− θαH

αL

]
+ (1− p) log

[
παL[1− p− ϕ(θ)]

π(1− p)− ϕ(θ)

]
,

J2 = p log

[
αH(1− θ)

1− θαH

αL

]
+ (1− p) log

[
αL[1− p− ϕ(θ)]

1− p

]
,

and in θm ≤ θ < πβ(1− p),

J1 = p log

[
αH(1− θ)[1− ϕ(θ)]

p

]
+ (1− p) log

[
πθαH [1− ϕ(θ)]

π(1− p)− ϕ(θ)

]
,
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J2 = p log

[
αH(1− θ)[1− ϕ(θ)]

p

]
+ (1− p) log

[
θαH [1− ϕ(θ)]

1− p

]
,

and ϕ(θ) is given by (25).

9.18 Effects of bubble creation

We examine the effects of bubble creations in our framework. If H-types can create

new bubble assets in every period, and this creation is expected by H-types, this

new bubble creation would increase their wealth and investments like Martin and

Ventura (2012), but this case is hard to solve analytically in our infinitely lived

agents model. In this Appendix, we consider a case which can be solved analytically

in our infinitely lived agents model. By the following thought experiment, we learn

that in our framework, who can create new bubble assets is important for whether

new bubble creations produce additional real effects. We show that if entrepreneurs

holding bubble assets can create new bubble assets in every period, the rate of return

on bubble assets is affected by the creation, which cancels out the creation’s positive

effect on entrepreneurs’ wealth. Consequently, there are no additional effects of this

bubble creation on the existence conditions of bubbles and the long-run economic

growth rate.

Suppose that entreprenuers who purchased xi
t units of bubble assets at date

t can create new bubble assets by µxi
t at date t + 1. This new bubble creation is

assumed to be proportional of holding bubble assets so that the model can be solved

analytically. This is the only different point from the model analyzed in the main

text. A fraction p of the entrepreneurs who can create new bubble assets at date

t+ 1 becomes productive agents, and they can directly increase their net worth by

the creation of new bubbles.

Let us derive the demand equation of bubble assets in this case. As in the main

text, each L-type chooses optimal amounts of b∗it , x
i
t, and z∗it so that the expected

marginal utility from investing in three assets is equalized. The first order conditions

with respect to xi
t and b∗it are

(xi
t) :

Pt

c∗i,πt

= πβ
(1 + µ)Pt+1

c∗i,πt+1

, (57)

(bit) :
1

c∗i,πt

= πβ
r∗t
c∗i,πt+1

+ (1− π)β
r∗t

c
∗i,(1−π)
t+1

, (58)

67



where c∗i,πt+1 = (1−β)(αLz∗it −r∗t b
∗i
t +(1+µ)Pt+1x

i
t) is the date t+1 consumption level

of the entrepreneur when bubbles survive at date t+1, and c
∗i,(1−π)
t+1 = (1−β)(αLz∗it −

r∗t b
∗i
t ) is the date t+ 1 consumption level when bubbles collapse at date t+ 1. The

RHS of (57) is the gain in expected discounted utility from holding one additional

unit of bubble assets at date t+1. With probability π bubbles survive, in which case

the entrepreneur can sell the additional unit and the new bubble assets at Pt+1, but

with probability 1−π bubbles collapse, in which case he/she receives nothing. The

denominators reflect the respective marginal utilities of consumption. The RHS of

(58) is the gain in expected discounted utility from lending one additional unit. It

is similar to the RHS of (57), except for the fact that lending yields r∗t at date t+1,

irrespective of whether or not bubbles collapse.

From (4), (57), and (58), we can derive the demand function for bubble assets

of an L-type:

Ptx
i
t =

π(1 + µ)Pt+1

Pt
− r∗t

(1 + µ)Pt+1

Pt
− r∗t

βe∗it (59)

When we aggregate (59), and solve for Pt+1/Pt, we obtain the required rate of return

on bubble assets:
Pt+1

Pt

=
r∗t

1 + µ

(1− p− ϕt)

π(1− p)− ϕt

, (60)

where r∗t =
θαH(1−ϕt)
1−p−ϕt

. From (60), we learn that the required rate of return on a unit

of bubble assets, Pt+1

Pt
, is a decreasing function of the new bubble creation, µ. This

means that, the more entrepreneurs can create new bubbles, the more the required

rate of return on bubbles decreases.

Because of the new bubble creation, the aggregate supply of bubble assets grows

at the rate of µ, i.e., Xt+1 = (1 + µ)Xt. By considering this relation, the evolution

of ϕ given by (21) changes into

ϕt+1 =
(1 + µ)Pt+1

Pt

At+1

At

ϕt. (61)

The growth rate of the aggregate wealth in the bubble economy given by (23)
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changes into

A∗
t+1

A∗
t

=


β{αH(1− L(θ)) + αL(L(θ)− ϕt) +

Pt+1

Pt

(1 + µ)ϕt} if ϕt ≤ L(θ),

β{αH(1− ϕt) +
Pt+1

Pt

(1 + µ)ϕt} if ϕt ≥ L(θ).

(62)

From (62), we learn that there are two competing effects of the new bubble creation

on the growth rate of the aggregate wealth. One effect is that the new bubble

creation captured by µ increases the growth rate of the aggregate wealth because,

if other things being equal, the new bubble creation itself directly increases the

entrepreneurs’ wealth. The other effect is that since entrepreneurs anticipate that

they can create new bubble assets, the required rate of return captured by Pt+1

Pt

decreases, which completely cancels out the positive effects of the bubble creation

on the aggregate wealth. Moreover, since the required rate of return on bubbles

decreases, (1 + µ)Pt+1

Pt
in (61) remains the same as the analyses in the main text.

As a consequence, ϕ on the balanced growth path is not affected by this type of the

bubble creation. This means that the aggregate value of bubbles remains unchanged

by this type of the bubble creation. Therefore, there are no additional effects of this

bubble creation on the existence conditions of bubbles and the long-run economic

growth rate.

9.19 Bubbles as Collateral

In this technical appendix, we consider a case where a fraction θx of the expected

return from bubble assets can be used as collateral as well as a fraction θ of the

return from investment. We will show below that even in this case, if θx is sufficiently

small, H-types do not purchase bubble assets in equilibrium.

In this case, the borrowing constraint can be written as:

rtb
i
t ≤ θαi

tz
i
t + θxπPt+1,

As we showed in the “Behavior of H-types” in the Technical Appendix, when

the short sale constraint binds, H-types do not buy bubble assets. In order that the
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short sale constraint binds, the following condition must hold:

1

c∗i,πt

> Et

[
r∗t
c∗it+1

αH − r∗t
r∗t − θαH

]
+

πβ

c∗i,πt+1

Pt+1

Pt

. (63)

Since the borrowing constraint is binding for H-types, we have (47). We also know

that c∗it+1 = (1− β)
[
r∗t α

H(1−θ)

r∗t−θαH

]
if (63) is true. Inserting (47) into (63) yields

β

c∗it+1

αH(1− θ)

1− θαH

r∗t

− π
Pt+1

Pt

−

(
αH

rt
− 1
)

1− θαH

r∗t

θxπ
Pt+1

Pt

 > 0. (64)

The first term in the bracket of (64) is the rate of return on H-projects with maxi-

mum leverage, and the second term in (64) is the expected return on bubbles, and

the third term is the effects of bubbles that relaxes the borrowing constraint. As

long as the first term is strictly greater than the second-and- third terms, the short

sale constraint binds. We will investigate (64) below in the case of deterministic

and stochastic bubbles, respectively.

9.19.1 Deterministic Bubbles (π = 1)

First, let us consider deterministic bubbles (π = 1). In this case, whether (64) holds

depends on

αH(1− θ)

1− θαH

r∗t

− Pt+1

Pt

−

(
αH

rt
− 1
)

1− θαH

r∗t

θx
Pt+1

Pt

> 0. (65)

In the case of deterministic bubbles, r∗t =
Pt+1

Pt
holds in equilibrium, i.e., the rate of

return on bubbles must equal the interest rate. Then, (65) can be written as:

r∗t (α
H − r∗t )(1− θx)

r∗t − θαH
> 0.

Therefore, as long as θx < 1, the short sale constraint binds for H-types, and

therefore H-types do not buy bubbles.
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9.19.2 Stochastic Bubbles (π < 1)

Next, we consider stochastic bubbles (π < 1). In this case, whether (64) holds

depends on

αH(1− θ)

1− θαH

r∗t

− π
Pt+1

Pt

>

(
αH

rt
− 1
)

1− θαH

r∗t

θxπ
Pt+1

Pt

. (66)

By using (51) and (53), on the balanced growth path, (66) can be written as:

αLαH(1− θ)

αL − θαH

1− πβ

1− πβ(1− p)
>

(
αH − αL

)
αL − θαH

θxπg∗t , in θ < θ ≤ θm,

(67)

αH(1− θ)(1− ϕ)(1− πβ)

p[1− πβ(1− p)]
>

(
αH − r∗

)
r∗ − θαH

θxπg∗t , in θm ≤ θ < πβ(1− p),

where g∗t is given by (26). From (67), in both regions of θ < θ ≤ θm and θm ≤
θ < πβ(1− p), we learn that as long as θx is small enough so that (67) is satisfied,

then the short sale constraint binds for H-types, and therefore H-types do not buy

bubbles.
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Figure 4-2
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Figure 4-3
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Figure 4-4
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Parameter values 
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Figure 5-1 
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Parameter values 

  case1 case2 case3 case4 case5 case6 case7 

0.97 0.95 0.93 0.9 0.85 0.82 0.8 

15.25 14 12.8 11.8 10.5 9.2 9.38 

17.7 17.7 17.7 17.5 18 18 20.4 

2.45 1.49 1.005 0.92 0.7 0.55 0.42 

0.926 0.874 0.79 0.818 0.748 0.694 0.614 

0.958 0.93 0.89 0.858 0.794 0.746 0.726 

Exponential distribution 
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Parameter values 

  case1 case2 case3 case4 case5 case6 case7 

0.97 0.95 0.93 0.9 0.85 0.82 0.8 

24.5 20 18 15 10.1 8.5 7.25 

28.5 24.85 24.5 22.5 17.9 16.5 15.2 

36.5 26.9 17 13 8.7 7.8 6.9 

24.62 20.4 18.7 16 11.2 9.75 8.5 

0.93 0.898 0.854 0.822 0.75 0.71 0.666 

0.942 0.93 0.894 0.854 0.782 0.754 0.734 

Double power law distribution 
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Figure 5-3 
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Parameter values 

  case1 case2 case3 case4 case5 case6 case7 

0.96 0.93 0.9 0.9 0.88 0.88 0.8 

51 42 27 34 22 25 12 

58 51 36 44 31 34 21 

51 43 28 34 23 25 12 

56.5 48.5 33.5 41 28.5 31.5 18.5 

0.8 0.75 0.7 0.7 0.7 0.6 0.7 

0.462 0.602 0.422 0.438 0.418 0.194 0.238 

0.77 0.674 0.614 0.626 0.598 0.526 0.558 

Bimodal distribution 
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Figure 5-4 
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Parameter values 

  case1 case2 case3 case4 case5 case6 case7 

0.96 0.95 0.93 0.9 0.85 0.82 0.8 

14.8 14.5 14 13.3 12 11.3 10.8 

16 16 16 16 16 16 16 

0.078 0.05 0.142 0.254 0.158 0.15 0.106 

0.462 0.458 0.434 0.378 0.366 0.342 0.338 

U-shape distribution 
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Figure 5-5 
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