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Abstract

The SNA (System of National Accounts) requires separate estimates for the land and
structure components of a commercial property. Using transactions data for the sales
of office buildings in Tokyo, a hedonic regression model (the Builder’s Model) was esti-
mated and this model generated an overall property price index as well as subindexes
for the land and structure components of the office buildings. The Builder’s Model was
also estimated using appraisal data on office building REITs for Tokyo. These hedonic
regression models also generate estimates for net depreciation rates which can be com-
pared. Finally, the Japanese Ministry of Land, Infrastructure, Transport and Tourism
constructs annual official land prices for commercial properties based on appraised val-
ues. The paper compares these official land prices with the land prices generated by the
hedonic regression models based on transactions data and on REIT data. The results
show that the Builder’s Model using transactions data can be used to estimate Tokyo
office market indexes with a reasonable level of precision. The results also revealed that
commercial property indexes based on appraisal and assessment prices lag behind the
indexes based on transaction prices.
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1 Introduction
When estimating commercial property price indexes, we are confronted with the following two
problems: how to incorporate quality adjustments in the estimation method, and which data
source to use in the estimation procedure.

Research studies on commercial property price indexes have emphasized the problem of data
selection when formulating indexes. Traditionally, transaction prices (also called market prices
in the literature) have usually been used to estimate price indexes. However, the number of
commercial property market transactions is extremely small. Furthermore, even if a sizable
number of transaction prices can be obtained, the heterogeneity of the properties is so pro-
nounced that it is difficult to compare like with like and thus the construction of reliable
constant quality price indexes becomes very difficult.

Under such circumstances, many commercial property price indexes have been constructed
using either appraisal prices from the real estate investment market, or using assessment
prices for property tax purposes. The rationale for these price indexes is that, since appraisal
prices and assessment prices for property tax purposes are regularly surveyed for the same
commercial property, indexes based on these surveys hold most characteristics of the property
constant*1, thus greatly reducing the heterogeneity problem as well as generating a wealth of
data.

However, while appraisal prices look attractive for the construction of price indexes, they
are somewhat subjective; i.e., exactly how are these appraisal prices constructed? Thus these
prices lack the objectivity of market selling prices. Such considerations have led to the develop-
ment of various arguments concerning the precision and accuracy of appraisal and assessment
prices when used in measuring price indexes; see Shimizu and Nishimura (2006) [38] on these
issues. In particular, the literature on this issue has pointed out that an appraisal based index
will typically lag actual turning points in the real estate market.*2 Geltner, Graff and Young
(1994) [24] clarified the structure of bias in the NCREIF Property Index, a representative U.S.
index based on appraisal prices. In a later study, Geltner and Goetzmann (2000) [23] estimated
an index using commercial property transaction prices and demonstrated the magnitude of
errors and the degree of smoothing in the NCREIF Property Index. These problems plague
not only the NCREIF Property Index, but all indexes based on appraisal prices, including the
MSCI-IPD Index.

With specific reference to Japan’s real estate bubble period, Nishimura and Shimizu
(2003) [31], Shimizu and Nishimura (2006) [38], and Shimizu, Nishimura and Watanabe
(2012) [40] estimated hedonic price indexes based on commercial property and residential
housing transaction price based indexes and contrasted them with appraisal price based
indexes and statistically laid out their differences. An examination of the estimated results
revealed that during the bubble period, when prices climbed dramatically, indexes based

*1 Two important characteristics which are not held constant are the age of the structure and the amount
of capital expenditures on the property between the survey dates. Changes in these characteristics are
an important determinant of the property price.

*2 Another problem with appraisal based indexes is that they tend to be smoother than indexes that are
based on market transactions. This can be a problem for real estate investors since the smoothing effect
will mask the short term riskiness of real estate investments. However, for statistical agencies, smoothing
short term fluctuations will probably not be problematic.
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on appraisal prices did not catch up with transaction price increases. Similarly, during the
period of falling prices, appraisal based indexes did not keep pace with the decline in prices.

Furthermore, in the case of appraisal prices for investment properties, a systemic factor of
appraiser incentives emerges as an additional problem. This problem differs intrinsically from
the lagging and smoothing problems that arise in appraisal based methods. Specifically,
the incentive problem involves inducing higher valuations from appraisers in order to bolster
investment performance; see Crosby, Lizieri and McAllister (2010) [5] on this point.

In this connection, Bokhari and Geltner (2012) [1] and Geltner and Bokhari (2017) [22] es-
timated quality adjusted price indexes by running a time dummy hedonic regression using
transaction price data. Geltner (1997) [21] also used real estate prices determined by the stock
market in order to examine the smoothing effects of the use of appraisal prices. Finally, Gelt-
ner, Pollakowski, Horrigan and Case (2010) [26], Shimizu, Diewert, Nishimura and Watanabe
(2015) [37], Shimizu (2016) [36] and Diewert and Shimizu (2017) [18] proposed various estima-
tion methods for commercial property price indexes using REIT data.

In this paper, we will examine the three alternative data sources suggested in the literature
that enable one to construct land price indexes for commercial properties: (i) sales transactions
data; (ii) appraisal data for Real Estate Investment Trusts (REITs) and (iii) assessed values of
land for property taxation purposes. We will utilize these three sources of data for commercial
properties in Tokyo over 44 quarters covering the period Q1:2005 to Q4:2015 and compare the
resulting land prices.

Section 2 below explains our data sources. Sections 3 and 4 use sales transactions data and
a hedonic regression model that allows us to decompose sale prices into land and structure
components. The model of structure depreciation used in Section 3 is a single geometric rate
and Section 4 generalizes this model to allow for multiple geometric rates. Section 5 imple-
ments the same hedonic regression model using the same transactions data set but we switch
to a piece-wise linear depreciation model. Section 6 compares the alternative depreciation
schedules.

It will turn out that the land price series that are generated using quarterly transactions data
are very volatile and thus they may not be suitable for statistical agency use. Thus in Section
7, we look at some alternative methods for smoothing the raw land price indexes.

Section 8 estimates a hedonic regression model using quarterly appraisal values for 41 Tokyo
office buildings over the sample period. Since we have panel data for this application, our
hedonic regression model is somewhat different from our earlier models.

Section 9 estimates quality adjusted land prices for commercial properties using tax assessment
data. Section 10 compares our land price indexes from the three sources of data. Section 11
constructs overall property price indexes for Tokyo commercial properties using the models
estimated in the previous sections; i.e., we combine the land price indexes with a structure price
index to obtain overall property price indexes. We also estimate a traditional log price time
dummy hedonic regression model and compare the resulting index with our overall indexes.
Section 12 concludes.

2 Data Description
This study compiled the following three types of micro-data relating to commercial properties
in the Tokyo office market: (i) the transaction price data compiled by the Japanese Ministry of
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Land, Infrastructure, Transport and Tourism; (ii) the appraisal prices periodically determined
in the Tokyo office REIT market; and (iii) the “official land prices” surveyed by the Japanese
Ministry of Land, Infrastructure, Transport and Tourism since 1970. Official land prices are
based on appraisals that are released on January 1st of each year. In Japan, asset taxes
relating to land, such as inheritance taxes and fixed assets taxes, are assessed on the basis of
these official land prices. Thus official land prices are considered as assessment data for tax
purposes. As official land prices are exclusively based on surveys of land prices, they do not
include structure prices.

Using the first two data sources, land price indexes were estimated using the Builder’s Model.
These land price indexes will be compared with those estimated using official land prices in
Section 5 of the paper.

Our analysis covers the period from 2005 to 2015. The data variables compiled are listed in
Table 1.

Table 1 Variables from the Three Data Sources

Symbols Variables Contents Unit

V Price Transaction Price and Appraisal price million yen
in Total

L Total Land area Land area of building m2

S Total Floor space Floor space of building m2

A Age of building Age of building at the time of years
at the time of transaction/appraisal
transaction

H Number of stories Number of stories in the building stories

DS Distance to the Distance to the nearest station meters
nearest station

TT Travel time to Minimum railway riding time in minutes
central business daytime to Tokyo Station

district

WDk Location(Ward) k th ward= 1, (0, 1)
dummy other district= 0 (k = 0, . . . , K)

Dt Time dummy t th quarter= 1, (0, 1)
(quarterly) other quarter= 0 (t = 0, . . . , T )

Table 2 shows a summary of the statistical parameters for the 3 data sources, i.e. transaction
prices, REIT appraisal prices, and official land prices. The compiled data consisted of 1,907
MLIT transaction prices, 1,804 REIT prices, and 6,242 MLIT official land prices which we
label as Official Land Prices (OLP).

3 The Builder’s Model: Preliminary Results Using Transactions

Data
We will use the MLIT commercial office building transactions data in this section and in
sections 4-7 below.
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Table 2 Summary Statistics

MLIT REIT OLP

V : Selling Price of Office Building 394.18 6686.60 1264.3
(million yen) (337.76) (4055.60) (1304.1)

S: Structure Floor Area (m2) 834.00 8509.70 −
(535.19) (5463.90)

L: Land Area (m2) 239.27 1802.10 229.94
(135.08) (1580.20) (217.18)

H: Total Number of Stories 5.75 10.12 −
(2.14) (3.30)

A: Age (years) 24.23 19.14 −
(10.61) (6.80)

DS: Distance to Nearest Station 387.65 308.29 347.24
(meters) (238.45) (170.04) (254.79)

TT : Time to Tokyo Station 19.63 15.88 21.74
(minutes) (8.23) (5.10) (8.54)

PS: Structure Construction Price 0.2347 0.2359 −
per m2 (million yen) (0.0103) (0.0102)

Number of Observations 1, 907 1, 804 6, 242

(): Standard deviation

The builder’s model for valuing a commercial property postulates that the value of a commer-
cial property is the sum of two components: the value of the land which the structure sits on
plus the value of the commercial structure.

In order to justify the model, consider a property developer who builds a structure on a
particular property. The total cost of the property after the structure is completed will be
equal to the floor space area of the structure, say S square meters, times the building cost per
square meter, βt during quarter or year t, plus the cost of the land, which will be equal to the
cost per square meter, αt during quarter or year t, times the area of the land site, L. Now think
of a sample of properties of the same general type, which have prices or values Vtn in period
t*3 and structure areas Stn and land areas Ltn for n = 1, . . . , N(t) where N(t) is the number
of observations in period t. Assume that these prices are equal to the sum of the land and
structure costs plus error terms εtn which we assume are independently normally distributed
with zero means and constant variances. This leads to the following hedonic regression model
for period t where the αt and βt are the parameters to be estimated in the regression:*4

Vtn = αtLtn + βtStn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (1)

Note that the two characteristics in our simple model are the quantities of land Ltn and the

*3 The period index t runs from 1 to 44 where period 1 corresponds to Q1 of 2005 and period 44 corresponds
to Q4 of 2015.

*4 Other papers that have suggested hedonic regression models that lead to additive decompositions of
property values into land and structure components include Clapp (1980; 257-258) [4], Bostic, Longhofer
and Redfearn (2007; 184) [2], de Haan and Diewert (2011) [6], Diewert (2008) [9] (2010) [10], Francke
(2008; 167) [20], Koev and Santos Silva (2008) [28], Rambaldi, McAllister, Collins and Fletcher (2010) [33],
Diewert, Haan and Hendriks (2011) [11] (2015) [12] and Diewert and Shimizu (2015b) [16] (2016) [17]
(2017) [18].
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quantities of structure floor space Stn associated with property n in period t and the two
constant quality prices in period t are the price of a square meter of land αt and the price of
a square meter of structure floor space βt.

The hedonic regression model defined by (1) applies to new structures. But it is likely that a
model that is similar to (1) applies to older structures as well. Older structures will be worth
less than newer structures due to the depreciation of the structure. Assuming that we have
information on the age of the structure n at time t, say A(t, n), and assuming a geometric
(or declining balance) depreciation model, a more realistic hedonic regression model than that
defined by (1) above is the following basic builder’s model :*5

Vtn = αtLtn + βt(1 − δ)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t) (2)

where the parameter δ reflects the net geometric depreciation rate as the structure ages one
additional period. Thus if the age of the structure is measured in years, we would expect
an annual net depreciation rate to be between 2 to 3%.*6 Note that (2) is now a nonlinear
regression model whereas (1) was a simple linear regression model.*7 The period t constant
quality price of land will be the estimated coefficient for the parameter αt and the price of a
unit of a newly built structure for period t will be the estimate for βt. The period t quantity
of land for commercial property n is Ltn and the period t quantity of structure for commercial
property n, expressed in equivalent units of a new structure, is (1 − δ)A(t,n)Stn where Stn is
the space area of commercial property n in period t.

Note that the above model is a supply side model as opposed to the demand side model of
Muth (1971) [30] and McMillen (2003) [29]. Basically, we are assuming competitive suppliers
of commercial properties so that we are in Rosen’s (1974; 44) [34] Case (a), where the hedonic
surface identifies the structure of supply. This assumption is justified for the case of newly
built offices but it is less well justified for sales of existing commercial properties.

There is a major problem with the hedonic regression model defined by (2): The multicollinear-
ity problem. Experience has shown that it is usually not possible to estimate sensible land and
structure prices in a hedonic regression like that defined by (2) due to the multicollinearity
between lot size and structure size.*8 Thus in order to deal with the multicollinearity problem,
we draw on exogenous information on the cost of building new commercial properties from the
Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and we assume
that the price of new structures is equal to an official measure of commercial building costs

*5 This formulation follows that of Diewert (2008) [9] (2010) [10], de Haan and Diewert (2011) [6], Diewert,
de Haan and Hendriks (2015) [12] and Diewert and Shimizu (2015b) [16] (2016) [17] (2017) [18] in assuming
property value is the sum of land and structure components but movements in the price of structures
are proportional to an exogenous structure price index. This formulation is designed to be useful for
national income accountants who require a decomposition of property value into structure and land
components. They also need the structure index which in the hedonic regression model to be consistent
with the structure price index they use to construct structure capital stocks. Thus the builder’s model
is particularly suited to national accounts purposes; see Diewert and Shimizu (2015b) [16] and Diewert,
Fox and Shimizu (2016) [13].

*6 This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true”
gross structure depreciation rate less an average renovations appreciation rate. Since we do not have
information on renovations and major repairs to a structure, our age variable will only pick up average
gross depreciation less average real renovation expenditures.

*7 We used Shazam to perform the nonlinear estimations; see White (2004) [41].
*8 See Schwann (1998) [35] and Diewert, de Haan and Hendriks (2011) [11] and (2015) [12] on the multi-

collinearity problem.
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(per square meter of building structure), pSt. Thus we replace βt in (2) by pSt for t = 1, . . . , 44.
This reduces the number of free parameters in the model by 44.

Experience has also shown that it is difficult to estimate the depreciation rate before obtain-
ing quality adjusted land prices. Thus in order to get preliminary land price estimates, we
temporarily assumed that the annual geometric depreciation rate δ in equation 2 was equal
to 0.025. The resulting regression model becomes the model defined by (3) below:

Vtn = αtLtn + pSt(1 − 0.025)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (3)

The final log likelihood for this Model 1 was −13328.15 and the R2 was 0.4003.*9

In order to take into account possible neighbourhood effects on the price of land, we intro-
duce ward dummy variables, DW,tnj , into the hedonic regression (3). There are 23 wards in
Tokyo special district. We made 23 ward or locational dummy variables.*10 These 23 dummy
variables are defined as follows: for t = 1, . . . , 44;n = 1, . . . , N(t); j = 1, . . . , 23:

DW,tnj ≡ 1 if observation n in period t is in ward j of Tokyo;
0 if observation n in period t is not in ward j of Tokyo.

(4)

We now modify the model defined by (3) to allow the level of land prices to differ across the
Wards. The new nonlinear regression model is the following one:*11

Vtn = αt

(∑23
j=1ωjDW,tnj

)
Ltn + pSt(1 − 0.025)A(t,n)Stn + εtn;

t = 1, . . . , 44;n = 1, . . . , N(t). (5)

Not all of the land time dummy variable coefficients (the αt) and the ward dummy variable
coefficients (the ωj) can be identified. Thus we impose the following normalization on our
coefficients:

α1 = 1. (6)

The final log likelihood for the model defined by (5) and (6) was −12956.60 and the R2 was
0.5925. Thus there was a large increase in the R2 and a huge increase in the log likelihood
of 371.55 over the previous model. However, many of the wards had only a small number
of observations and thus it is unlikely that our estimated ωj for these wards would be very
accurate.

In order to deal with the problem of too few observations in many wards, we used the results
of the above model to group the 23 wards into 4 Combined Wards based on their estimated ωj

coefficients. The Group 1 high priced wards were 1,2,3 and 13 (their estimated ωj coefficients
were greater than 1), the Group 2 medium high priced wards were 4,5,6,9 and 14 (0.6 < ωj ≤ 1),

*9 Our R2 concept is the square of the correlation coefficient between the dependent variable and the
predicted dependent variable.

*10 The 23 wards (with the number of observations in brackets) are as follows: 1: Chiyoda (191), 2: Chuo
(231), 3: Minato (205), 4: Shinjuku (203), 5: Bunkyo (97), 6: Taito (122), 7: Sumida (74), 8: Koto (49),
9: Shinagawa (69), 10: Meguro (28), 11: Ota (64), 12: Setagaya (67), 13: Shibuya (140), 14: Nakano
(39), 15: Suginami (39), 16: Toshima (80), 17: Kita (30), 18: Arakawa (42), 19: Itabashi (35), 20:
Nerima (40), 21: Adachi (19), 22: Katsushika (18), 23: Edogawa (25).

*11 From this point on, our nonlinear regression models are nested; i.e., we use the coefficient estimates from
the previous model as starting values for the subsequent model. Using this nesting procedure is essential
to obtaining sensible results from our nonlinear regressions. The nonlinear regressions were estimated
using Shazam; see White (2004) [41].
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the Group 3 medium low priced wards were 7,8,10,12,15 and 16 (0.4 < ωj ≤ 0.6), and the Group
4 low priced wards were 11,17,18,19 20,21,22 and 23 (ωj ≤ 0.4).*12 We reran the nonlinear
regression model defined by (5) and (6) using just the 4 Combined Wards (call this Model 2)
and the resulting log likelihood was −12974.31 and the R2 was 0.5850. Thus combining the
original wards into grouped wards resulted in a small loss of fit and a decrease in log likelihood
of 17.71 when we decreased the number of ward parameters by 19. We regarded this loss of
fit as an acceptable tradeoff.

In our next model, we introduce some nonlinearities into the pricing of the land area for each
property. The land plot areas in our sample of properties run from 100 to 790 meters squared.
Up to this point, we have assumed that land plots in the same grouped ward sell at a constant
price per m2 of lot area. However, it is likely that there is some nonlinearity in this pricing
schedule; for example, it is likely that very large lots sell at an average price that is below the
average price of medium sized lots. In order to capture this nonlinearity, we initially divided
up our 1907 observations into 7 groups of observations based on their lot size. The Group 1
properties had lots less than 150 m2, the Group 2 properties had lots greater than or equal to
150 m2 and less than 200 m2, the Group 3 properties had lots greater than or equal to 200
m2 and less than 300 m2, ... and the Group 7 properties had lots greater than or equal to 600
m2. However, there were very few observations in Groups 4 to 7 so we added these groups to
Group 4.*13 For each observation n in period t, we define the 4 land dummy variables, DL,tnk,
for k = 1, . . . , 4 as follows:

DL,tnk ≡ 1 if observation tn has land area that belongs to group k;
0 if observation tn has land area that does not belong to group k.

(7)

These dummy variables are used in the definition of the following piecewise linear function of
Ltn, fL(Ltn), defined as follows:

fL(Ltn) ≡ DL,tn1λ1Ltn + DL,tn2[λ1L1 + λ2(Ltn − L1)]

+ DL,tn3[λ1L1 + λ2(L2 − L1) + λ3(Ltn − L2)]

+ DL,tn4[λ1L1 + λ2(L2 − L1) + λ3(L3 − L2) + λ4(Ltn − L3)] (8)

where the λk are unknown parameters and L1 ≡ 150, L2 ≡ 200 and L3 ≡ 300. The function
fL(Ltn) defines a relative valuation function for the land area of a commercial property as a
function of the plot area.

The new nonlinear regression model is the following one:

Vtn = αt

(∑4
j=1ωjDW,tnj

)
fL(Ltn) + pSt(1 − δ)A(t,n)Stn + εtn;

t = 1, . . . , 44;n = 1, . . . , N(t). (9)

Comparing the models defined by equations (5)*14 and (9), it can be seen that we have added
an additional 4 land plot size parameters, λ1, . . . , λ4, to the model defined by (5) (with only

*12 The estimated combined ward relative land price parameters turned out to be: ω1 = 1.3003; ω2 =
0.75089; ω3 = 0.49573 and ω4 = 0.25551. The sample probabilities of an observation falling in the
combined wards were 0.402, 0.278, 0.177 and 0.143 respectively.

*13 The sample probabilities of an observation falling in the 7 initial land size groups were:
0.291, 0.234, 0.229, 0.130, 0.050, 0.034 and 0.033.

*14 We compare (9) to the modified equation (5) where we have only 4 combined ward dummy variables in
the modified (5) rather than the original 23 ward dummy variables.
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4 ward dummy variables). However, looking at (9), it can be seen that the 44 land time
parameters (the αt), the 4 ward parameters (the ωj) and the 4 land plot size parameters (the
λk) cannot all be identified. Thus we impose the following identification normalizations on
the parameters for Model 3 defined by (9) and (10):

α1 ≡ 1;λ1 ≡ 1. (10)

Note that if we set all of the λk equal to unity, Model 3 collapses down to Model 2. The final
log likelihood for Model 3 was an improvement of 59.65 over the final LL for Model 2 (for
adding 3 new marginal price of land parameters) which is a highly significant increase. The R2

increased to 0.6116 from the previous model R2 of 0.5850. The parameter estimates turned
out to be λ2 = 1.4297, λ3 = 1.2772 and λ4 = 0.2973. For small land plot areas less than 150
m2, we set the (relative) marginal price of land equal to 1 per m2. As lot sizes increased from
150 m2 to 200 m2, the (relative) marginal price of land increased to λ2 = 1.4297 per m2. For
the next 100 m2 of lot size, the (relative) marginal price of land decreased to λ2 = 1.2772 per
m2. For lot sizes greater than 200 m2, the (relative) marginal price of land decreased to 0.2973
per m2. Thus the average cost of land per m2 initially increases and then tends to decrease
as lot size becomes large.

The footprint of a building is the area of the land that directly supports the structure. An
approximation to the footprint land for property n in period t is the total structure area Stn

divided by the total number of stories in the structure Htn. If we subtract footprint land from
the total land area, TLtn, we get excess land,*15 ELtn defined as follows:

ELtn ≡ Ltn − (Stn/Htn); t = 1, . . . , 44;n = 1, . . . , N(t). (11)

In our sample, excess land ranged from 1.083 m2 to 562.58 m2. We grouped our observations
into 5 categories, depending on the amount of excess land that pertained to each observation.
Group 1 consists of observations tn where 1: ELtn < 50; 2: observations such that 50 ≤
ELtn < 100; 3: 100 ≤ ELtn < 150; 4: 150 ≤ ELtn < 300; 5: ELtn ≥ 300.*16 Now define
the excess land dummy variables, DEL,tnm, as follows: for t = 1, . . . , 44;n = 1, . . . , N(t);m =
1, . . . , 5:

DEL,tnm ≡ 1 if observation n in period t is in excess land group m;
0 if observation n in period t is not in excess land group m.

(12)

We will use the above dummy variables as adjustment factors to the price of land. As will
be seen, in general, the more excess land a property possessed, the lower was the average per
meter squared value of land for that property.*17

The new Model 4 excess land nonlinear regression model is the following one:

Vtn = αt

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)
fL(Ltn) + pSt(1 − δ)A(t,n)Stn + εtn;

t = 1, . . . , 44;n = 1, . . . , N(t). (13)

*15 This is land that is usable for purposes other than the direct support of the structure on the land plot.
Excess land was first introduced as an explanatory variable in a property hedonic regression model for
Tokyo condominium sales by Diewert and Shimizu (2016; 305) [17].

*16 The sample probabilities of an observation falling in the 4 excess land size groups were:
0.352, 0.343, 0.149, 0.114 and 0.041.

*17 The excess land characteristic was also used by Diewert and Shimizu (2016) [17] and Burnett-Isaacs,
Huang and Diewert (2016) [3] in their studies of condominium prices. The same phenomenon was ob-
served in these studies: the more excess land that a high rise property had, the lower was the per meter
land price.
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However, looking at (13) and (8), it can be seen that the 44 land price parameters (the αt),
the 4 combined ward parameters (the ωj), the 4 land plot size parameters (the λk) and the
5 excess land parameters (the χm) cannot all be identified. Thus we imposed the following
identifying normalizations on these parameters:

α1 ≡ 1;λ1 ≡ 1;χ1 ≡ 1. (14)

Note that if we set all of the χm equal to unity, Model 4 collapses down to Model 3. The
final log likelihood for Model 4 was an improvement of 23.99 over the final LL for Model 3
(for adding 4 new excess land parameters) which is a significant increase. The R2 increased
to 0.6207 from the previous model R2 of 0.6116. The χm parameter estimates turned out to
be χ2 = 0.9173, χ3 = 0.7540, χ4 = 0.7234 and χ5 = 0.8611. Thus excess land does reduce the
average per meter price of land.

It is likely that the height of the building increases the value of the land plot supporting
the building, all else equal. In our sample of commercial property prices, the height of the
building (the H variable) ranged from 3 stories to 14 stories. Thus there are 12 building
height categories. Thus we define the building height dummy variables, DH,tnh, as follows:
for t = 1, . . . , 44;n = 1, . . . , N(t);h = 3, . . . , 14:

DH,tnh ≡ 1 if observation n in period t is in a building which has height h;
0 if observation n in period t is not in a building which has height h.

(15)

The new nonlinear regression model is the following one:

Vtn = αt

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)(∑14
h=3µhDH,tnh

)
fL(Ltn)

+ pSt(1 − δ)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (16)

In addition to the normalizations (14), we also imposed the normalization µ3 ≡ 1. Note that
if we set all of the µh equal to unity, the new model collapses down to Model 4.

The final log likelihood for the new model was −12, 667.58, a big improvement of 247.08 over
the final log likelihood for Model 4 (for adding 11 new height parameters). The R2 increased
to 0.6980 from the previous model R2 of 0.6207. The µ4 to µ14 parameter estimates turned out
to be 1.106, 1.342, 1.448, 1.559, 2.012, 2.303, 2.672, 2.554, 2, 773, 3.690 and 2.237 respectively. It
can be seen that the land price of a property tended to increase linearly (approximately) as
the height of the building increases. Thus in order to conserve degrees of freedom, we decided
to replace the 12 categorical height parameters (the µh) by a single parameter µ associated
with a continuous variable, the height H. Thus Model 5 is the following nonlinear regression
model (where Htn is the number of stories of the structure for property n sold during period
t):

Vtn = αt

(∑4
j=1ωjDW,tnj

) (∑5
m=1χmDEL,tnm

)
(1 + µ(Htn − 3)) fL(Ltn)

+ pSt(1 − δ)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (17)

Not all of the parameters in (17) can be identified so we again impose the normalizations (14).
The final log likelihood for Model 5 was −12685.19, a big improvement of 205.47 over the final
log likelihood for Model 4 (for adding 1 new height parameters). The R2 increased to 0.6923
from the Model 4 R2 of 0.6207. The height parameter µ turned out to be 0.2358. Thus the
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land value of the property increased 23.58% for each extra story of structure. This is a very
substantial height premium.

Model 6 is the same as Model 5 except that we estimated the annual geometric depreciation
rate δ instead of assuming that it was equal to 2.5%. The final log likelihood for Model 6 was
−12680.66, an improvement of 4.53 over the final log likelihood for Model 4 (for adding 1 new
parameter). The R2 increased marginally to 0.6938 from the previous model R2 of 0.6923.
The estimated depreciation rate was 4.76% with a standard error of 0.009.

Recall that we used building height as a quality adjustment factor for the land area of the
property. In our next model, we will use building height as a quality adjustment factor
for the structure component of the property. Recall that the 12 building height dummy
variables DH,tnh were defined by (15) above for h = 3, 4, . . . , 14. Due to the small number of
observations in the last 5 height categories, we combined these dummy variables into a single
height category that included all buildings of height 10 to 14 stories; i.e., the new DH,tn10 was
defined as

∑14
h=10 DH,tnh. Model 7 is defined as the following nonlinear regression model:

Vtn = αt

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)
(1 + µ(Htn − 3)) fL(Ltn)

+ pSt(1 − δ)A(t,n)
(∑10

h=3φhDH,tnh

)
Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (18)

In addition to the normalizations in (14), we also imposed the normalization φ3 = 1 in order
to insure a reasonable split between structure and land values. Thus the number of unknown
parameters in Model 7 increased by 7 over the number of parameters in Model 6.

The final log likelihood for Model 7 was −12640.40, an improvement of 40.26 over the final log
likelihood for Model 6 (for adding 7 new parameters). The R2 increased to 0.7063 from the
previous model R2 of 0.6938. The estimated depreciation rate δ was 3.41% with a standard
error of 0.0077. The estimated φ4, . . . , φ10 were equal to 1.11, 1.31, 1.32, 1.11, 1.83, 2.01 and
2.12 (recall that φ3 was set equal to 1). Thus as the height of the structure increased, the
quality adjusted quantity of the structure increased (except for buildings with 7 stories; i.e.,
φ7 was less than φ6).

This completes our description of our preliminary hedonic regression models for Tokyo office
buildings. In the following section, we will extend these preliminary models by estimating
more complex depreciation schedules.

4 The Builder’s Model with Multiple Geometric Depreciation Rates
In the following model, we allowed the geometric depreciation rates to differ after each 10 year
interval (except for the last interval).*18 We divided up our 1907 observations into 5 groups of
observations based on the age of the structure at the time of the sale. The Group 1 properties
had structures with structure age less than 10 years, the Group 2 properties had structure
ages greater than or equal to 10 years but less than 20 years, the Group 3 properties had
structure ages greater than or equal to 20 years but less than 30 years, the Group 4 properties

*18 The analysis in this section and the subsequent section follows the approach taken by Diewert, Huang
and Burnett-Isaacs (2017) [14]. Geltner and Bokhari (2017) [22] estimate a much more flexible model of
commercial property depreciation using US transaction data by allowing an age dummy variable for each
age of building. This methodological approach generates a combined land and structure depreciation
rate whereas our approach will generate depreciation rates that apply only to the structure portion of
property value.
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had structure ages greater than or equal to 30 years but less than 40 years and the Group 5
properties had structure ages greater than or equal to 40 years.*19 For each observation n in
period t, we define the 5 age dummy variables, DA,tni, for i = 1, . . . , 5 as follows:

DA,tni ≡
1 if observation tn has structure age that belongs to age group i;
0 if observation tn has structure age that does not belong to age group i.

(19)
These age dummy variables are used in the definition of the following aging function, gA(Atn),
defined as follows:*20

gA(Atn) ≡ DA,tn1(1 − δ1)A(t,n) + DA,tn2(1 − δ1)10(1 − δ2)(A(t,n)−10)

+ DA,tn3(1 − δ1)10(1 − δ2)10(1 − δ3)(A(t,n)−20)

+ DA,tn4(1 − δ1)10(1 − δ2)10(1 − δ3)10(1 − δ4)(A(t,n)−30)

+ DA,tn5(1 − δ1)10(1 − δ2)10(1 − δ3)10(1 − δ4)10(1 − δ5)(A(t,n)−40). (20)

Thus the annual geometric depreciation rates are allowed to change at the end of each decade
that the structure survives.

The new Model 8 nonlinear regression model is the following one:

Vtn = αt

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)
(1 + µ(Htn − 3)) fL(Ltn)

+ pStgA(Atn)
(∑10

h=3φhDH,tnh

)
Stn + εtn; t = 1, . . . , 44;n = 1, . . . , N(t). (21)

We imposed the normalizations α1 ≡ 1, λ1 ≡ 1, χ1 ≡ 1 and φ3 ≡ 1. Note that Model 8 collapses
down to Model 7 if δ1 = δ2 = δ3 = δ4 = δ5 = δ. Thus the number of unknown parameters in
Model 8 increased by 4 over the number of parameters in Model 7. The final log likelihood for
Model 8 was −12631.21, an improvement of 9.19 over the final log likelihood for Model 7 (for
adding 4 additional parameters). The R2 increased to 0.7091 from the previous model R2 of
0.7063. The estimated depreciation rates (with standard errors in brackets) were as follows:
δ1 = 0.0487 (0.0111), δ2 = 0.0270 (0.0097), δ3 = 0.0096 (0.0106),*21 δ4 = 0.0403 (0.0154),
δ5 = −0.0319 (0.0185). Thus properties with structures which are over 40 years old tended to
have a negative depreciation rate; i.e., the value of the structure tends to increase by 3.19%
per year.*22

There are two additional explanatory variables in our data set that may affect the price of
land. Recall that DS was defined as the distance to the nearest subway station and TT as

*19 There were only 28 properties which had age greater than 50 years so these properties were combined
with the age 40 to 50 properties.

*20 Atn is the same as A(t, n). The aging function gA(Atn) quality adjusts a building of age Atn into a
comparable number of units of a new building.

*21 Recall that these depreciation rates are net depreciation rates. As surviving structures approach their
middle age, renovations become important and thus a decline in the net depreciation rate is plausible. The
pattern of depreciation rates is similar to the comparable geometric depreciation rates that were observed
for Richmond (a suburb of Vancouver, Canada) detached houses by Diewert, Huang and Burnett-Isaacs
(2017) [14].

*22 This phenomenon has been observed in the housing literature before; i.e., older heritage houses that have
been extensively renovated may increase in value over time rather than depreciate as they age. Diewert,
Huang and Burnett-Isaacs (2017) [14] found that Richmond house structures appreciated by 2.4% per
year after age 50.
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the subway running time in minutes to the Tokyo station from the nearest station. DS ranges
from 0 to 1,500 meters while TT ranges from 1 to 48 minutes. Typically, as DS and TT
increase, land value decreases.*23 Model 9 introduces these new variables into the previous
nonlinear regression model (21) in the following manner:

Vtn = αt

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)
(1 + µ(Htn − 3)) (1 + η(DStn − 0))×

(1 + θ(TTtn − 1)) fL(Ltn) + pStgA(Atn)
(∑10

h=3φhDH,tnh

)
Stn + εtn;

t = 1, . . . , 44;n = 1, . . . , N(t). (22)

Thus two new parameters, η and θ, are introduced. If these new parameters are both equal
to 0, then Model 9 collapses down to Model 8.

The final log likelihood for Model 9 was −12614.70, an improvement of 16.51 over the fi-
nal log likelihood for Model 8 (for adding 2 additional parameters). The R2 increased to
0.7142 from the previous model R2 of 0.7091. The estimated walking distance parameter
was η = −0.00023 (0.000066), which indicates that commercial property land value does tend
to decrease as the walking distance to the nearest subway station increases. However, the
estimated travel time to Tokyo Central Station parameter was θ = 0.0209 (0.0053) which indi-
cates that land value increases on average as the travel time to the central station increases, a
relationship which was not anticipated. All of the estimated parameter coefficients and their
t statistics are listed in Table 3 below.*24

Recall that α1 was set equal to 1. The sequence of coefficients α1, α2, . . . , α44 comprise our
estimated quarterly commercial office building price index for the land component of property
value. It can be seen that this land price index is quite volatile due to the sparseness of
commercial property sales and the heterogeneity of the properties. In a subsequent section,
we will show how this volatile land price index can be smoothed in a fairly simple fashion.

Turning to the other estimated coefficients, it can be seen that the ward relative land price
parameters, ω1 - ω4, decline (substantially) in magnitude as we move from the first more
expensive composite ward to the less expensive composite wards. The marginal value of
land parameters, λ1 (set equal to 1), λ2, λ3 and λ4, exhibit the same inverted U pattern
that emerged in Model 3 (and persisted through all of the subsequent models). The excess
land parameters, χ1 (set equal to 1), χ2, χ3, χ4 and χ5, show that excess land is generally
valued less than footprint land but the decline in land value as excess land increases is not
monotonic. The building height land parameter µ = 0.0602 is no longer as large as it was in
Model 5 but an extra story of building height still adds 6% to the land value of the structure
which is a significant premium for extra building stories. The walking distance to the nearest
subway station parameter η = −0.00023 seems small but it tells us if the property is 1000
meters away from the nearest station, then the land value of the property is expected to
fall by 23% compared to a nearby property. The travel time to Tokyo station parameter
θ = 0.0209 has a counterintuitive sign; it is possible that this variable is correlated with
other land price determining characteristics and hence is not reliably determined. The height
parameters, φ3 = 1 and φ4 - φ10, are very significant determinants of structure value; the value
of the structure increases almost monotonically as the number of stories increases. Finally, the
decade by decade estimated geometric depreciation rates, δ1 - δ5, show much the same pattern

*23 See Diewert and Shimizu (2015b) [16] where these relationships also held for Tokyo detached houses.
*24 Standard errors can be obtained by dividing the estimated coefficient by the corresponding t statistic.
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Table 3 Estimated Coefficients for Model 9

Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat

α2 1.5461 7.183 α25 0.7937 3.739 ω4 0.1229 3.510
α3 1.6315 8.815 α26 0.8785 3.185 λ2 1.4212 4.160
α4 1.5339 8.763 α27 1.2128 4.792 λ3 1.6805 7.867
α5 1.4198 6.250 α28 1.2489 7.593 λ4 0.5771 4.199
α6 1.7653 7.833 α29 1.3320 6.819 χ2 0.9070 24.025
α7 2.1552 7.893 α30 1.0175 4.038 χ3 0.7634 17.948
α8 1.7566 7.338 α31 1.1255 5.402 χ4 0.8278 16.228
α9 2.2697 7.743 α32 1.5853 6.808 χ5 0.9551 10.654
α10 2.6226 7.593 α33 1.2028 5.776 µ 0.0602 2.675
α11 2.4724 7.271 α34 1.4807 5.755 η −0.0002 −3.533
α12 2.4234 7.194 α35 1.4105 7.359 θ 0.0209 3.924
α13 2.4672 7.425 α36 1.5614 6.432 φ4 1.3063 6.503
α14 1.7139 5.754 α37 1.6905 7.738 φ5 1.6760 10.260
α15 1.7080 7.011 α38 1.3886 6.174 φ6 1.7117 10.687
α16 2.0576 7.009 α39 1.7169 7.528 φ7 1.6865 10.216
α17 1.4671 6.664 α40 1.9941 7.675 φ8 2.3615 13.392
α18 0.8818 3.656 α41 1.3744 6.291 φ9 2.5553 14.103
α19 0.6900 3.341 α42 1.6397 6.161 φ10 2.8092 13.714
α20 1.1983 5.128 α43 1.5263 6.219 δ1 0.0484 5.221
α21 0.9835 5.383 α44 2.0459 7.031 δ2 0.0252 2.955
α22 1.1742 4.981 ω1 0.6518 6.535 δ3 0.0060 0.656
α23 1.2670 5.864 ω2 0.3483 5.455 δ4 0.0389 2.925
α24 0.9392 4.903 ω3 0.2493 4.841 δ5 −0.0312 −1.876

as was shown by the results for the previous model. Overall, the results of Model 9 seem to
be reasonable.

In the following section, we will see if changing the model of depreciation from a multiple
geometric depreciation rates model to a piece-wise linear model of depreciation leads to a
significant change in our estimated land price index.

5 The Builder’s Model with Piece-Wise Linear Depreciation Rates
Thus far, we have assumed that geometric depreciation models can best describe our data.
In this section, we check the robustness of our results by assuming alternative depreciation
models.

Recall that the structure aging (or survival) function for Model 9, gA(Atn), was defined by
(20) above. In this section, we switch from a geometric model of depreciation to a straight line
or linear depreciation model. Thus for Model 10, we defined the aging function as follows:

gA(Atn) ≡ (1 − δAtn) (23)

where δ is the straight line depreciation rate. Our new nonlinear regression model is the same
as the previous model defined by equations (22) except that the function gA is defined by
(23). The starting parameter values were taken to be the final parameter values from Model 7
except that the initial δ was set equal to 0.01 and the initial values for the parameters η and
θ were set equal to 0.
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The final log likelihood for Model 10 was −12635.83 and the R2 was 0.7078. The estimated
straight line depreciation rate was δ = 0.01357 (0.00127). This model generated reasonable
parameter estimates and the imputed value of the structure component of property value was
positive for all observation.*25

The straight line model of depreciation is not very flexible. Thus following the approach used
by Diewert and Shimizu (2015b) [16], we implement a piece-wise linear depreciation model.
Recall definitions (19) above which defined the 5 age dummy variables, DA,tni, for i = 1, . . . , 5.
We use these age dummy variables to define the piece-wise linear aging function, gA(Atn), as
follows:

gA(Atn) ≡ DA,tn1(1 − δ1Atn) + DA,tn2(1 − 10δ1 − δ2(Atn − 10))

+ DA,tn3(1 − 10δ1 − 10δ2 − δ3(Atn − 20))

+ DA,tn4(1 − 10δ1 − 10δ2 − 10δ3 − δ4(Atn − 30))

+ DA,tn5(1 − 10δ1 − 10δ2 − 10δ3 − 10δ4 − δ5(Atn − 40)). (24)

The Model 11 nonlinear regression model is the same as the model defined by equations (22)
except that the function gA is defined by (24). The starting parameter values were taken to
be the final parameter values from Model 10 except that the new depreciation parameters
δ1, . . . , δ5 were all set equal to the final straight line depreciation rate δ estimated in Model
10. If all 5 δi are set equal to a common δ, then Model 11 collapses down to Model 10.

The final log likelihood for Model 11 was −12614.35, which was an increase in log likelihood
of 21.48 over the Model 10 log likelihood. The R2 for Model 11 was 0.7143.*26 The estimated
piecewise linear depreciation rates (with standard errors in brackets) were as follows: δ1 =
0.0393 (0.0057), δ2 = 0.0125 (0.0049), δ3 = 0.0302 (0.0041),*27 δ4 = 0.0159 (0.0054), δ5 =
−0.0135 (0.0074). Thus as was the case with the multiple geometric depreciation rate model,
properties with structures which are over 40 years old tended to increase in value by 1.35%
per year. All of the estimated parameter coefficients for Model 11 and their t statistics are
listed in Table 4 below.

Comparing the estimated coefficients in Tables 3 and 4, it can be seen that the parameter
estimates for Models 9 and 11 were very similar except that there were some differences in
the estimated depreciation rates δ1 to δ5. However, in the following section, we will show that
these two multiple depreciation rate models generate aging functions gA that approximate each
other reasonably well. Thus both models describe the underlying data to the same degree of
approximation.

*25 This does not always happen for straight line depreciation models; i.e., for properties with very old
structures, the imputed value of the structure can become negative if the estimated depreciation rate is
large enough. This phenomenon cannot occur with geometric depreciation models, which is an advantage
of assuming this form of depreciation.

*26 Recall that the log likelihood for the comparable geometric model of depreciation, Model 9, was
−12614.70 and the R2 for Model 9 was 0.7142. Thus the descriptive power of both models is virtu-
ally identical.

*27 Recall that these depreciation rates are net depreciation rates. As surviving structures approach their
middle age, renovations become important and thus a decline in the net depreciation rate is plausible. The
pattern of depreciation rates is similar to the comparable geometric depreciation rates that were observed
for Richmond (a suburb of Vancouver, Canada) detached houses by Diewert, Huang and Burnett-Isaacs
(2017) [14].
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Table 4 Estimated Coefficients for Model 11

Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat

α2 1.5529 7.227 α25 0.7911 3.552 ω4 0.1211 3.669
α3 1.6342 8.878 α26 0.8702 3.090 λ2 1.4159 4.134
α4 1.5352 8.846 α27 1.2100 4.945 λ3 1.6789 8.081
α5 1.4210 6.373 α28 1.2474 7.587 λ4 0.5667 4.002
α6 1.7646 7.895 α29 1.3276 6.854 χ2 0.9090 23.966
α7 2.1559 7.705 α30 1.0091 3.855 χ3 0.7654 17.928
α8 1.7560 7.255 α31 1.1229 5.239 χ4 0.8313 15.173
α9 2.2680 7.632 α32 1.5835 6.670 χ5 0.9644 9.593
α10 2.6239 7.483 α33 1.1892 5.837 µ 0.0595 2.671
α11 2.4706 7.299 α34 1.4767 5.744 η −0.0002 −3.973
α12 2.4236 7.196 α35 1.4063 7.278 θ 0.0212 3.972
α13 2.4715 7.362 α36 1.5521 6.370 φ4 1.2947 6.828
α14 1.7192 5.818 α37 1.6954 7.796 φ5 1.6571 10.556
α15 1.7004 7.001 α38 1.3819 6.117 φ6 1.6872 10.906
α16 2.0585 7.234 α39 1.7117 7.498 φ7 1.6708 10.098
α17 1.4660 6.624 α40 1.9944 7.622 φ8 2.3273 13.861
α18 0.8829 3.554 α41 1.3680 6.354 φ9 2.5212 14.271
α19 0.6842 3.258 α42 1.6344 6.043 φ10 2.7717 13.774
α20 1.1944 5.085 α43 1.5117 6.324 δ1 0.0393 6.920
α21 0.9789 5.400 α44 2.0454 6.897 δ2 0.0125 2.524
α22 1.1714 5.079 ω1 0.6493 6.794 δ3 0.0030 0.737
α23 1.2619 5.899 ω2 0.3460 5.720 δ4 0.0159 2.962
α24 0.9390 5.026 ω3 0.2473 5.061 δ5 −0.0135 −1.826

6 Comparing Alternative Models of Depreciation
The determination of depreciation schedules for commercial office buildings is important for
tax purposes, for investors and for the estimation of commercial office structure stocks, which
in turn feed into the computation of the Multifactor Productivity of the Commercial Office
Sector. Thus in this section, we compare the single geometric rate (Model 7), the straight
line (Model 10), the multiple geometric rate (Model 8) and piece-wise linear (Model 11)
depreciation schedules. These depreciation schedules are equal to the ageing functions gA(A)
defined by gG(A) ≡ (1−δ)A, gSL(A) ≡ (1−δA), gMG(A) where gMG is equal to gA defined by
(20) and gPL(A) where gPL is the gA defined by (24) and the age variable A = 0, 1, 2, . . . , 54.
The resulting depreciation schedules are listed in Table 5 and plotted on Chart 1.

The straight line depreciation schedule is represented by the aging function gSL(A); it is the
straight line in Chart 1. The depreciation schedule for the geometric model of depreciation
is represented by the convex curved line in Chart 1. It can be seen that these single rate
depreciation schedules are rather different. The multiple geometric rate depreciation schedule
is the lower of the two broken lines in Chart 1 while the piece-wise linear depreciation schedule
is the slightly higher broken line. It can be seen that these two multiple depreciation rate
schedules approximate each other fairly well.*28 It can also be seen that the single geometric
rate depreciation schedule provides a rough approximation to the two multiple rate schedules

*28 This is to be expected. As the number of separate depreciation rates in each of these models tends to
43, the two schedules will converge to a common schedule.
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Table 5 Geometric, Straight Line, Multiple Geometric and Piece-Wise Linear Ageing Functions

A gG(A) gSL(A) gMG(A) gPL(A) A gG(A) gSL(A) gMG(A) gPL(A)

0 1.0000 1.0000 1.0000 1.0000 28 0.3782 0.6200 0.4695 0.4942
1 0.9659 0.9864 0.9516 0.9607 29 0.3653 0.6064 0.4667 0.4912
2 0.9329 0.9729 0.9055 0.9214 30 0.3528 0.5928 0.4485 0.4753
3 0.9011 0.9593 0.8617 0.8821 31 0.3408 0.5793 0.4311 0.4594
4 0.8703 0.9457 0.8200 0.8427 32 0.3291 0.5657 0.4143 0.4435
5 0.8406 0.9321 0.7803 0.8034 33 0.3179 0.5521 0.3982 0.4276
6 0.8119 0.9186 0.7425 0.7641 34 0.3071 0.5386 0.3827 0.4117
7 0.7842 0.9050 0.7066 0.7248 35 0.2966 0.5250 0.3678 0.3958
8 0.7574 0.8914 0.6724 0.6855 36 0.2865 0.5114 0.3535 0.3799
9 0.7316 0.8779 0.6398 0.6461 37 0.2767 0.4978 0.3397 0.3640
10 0.7066 0.8643 0.6237 0.6337 38 0.2672 0.4843 0.3265 0.3481
11 0.6825 0.8507 0.6080 0.6212 39 0.2581 0.4707 0.3138 0.3323
12 0.6592 0.8371 0.5927 0.6087 40 0.2493 0.4571 0.3236 0.3457
13 0.6367 0.8236 0.5777 0.5962 41 0.2408 0.4436 0.3336 0.3592
14 0.6150 0.8100 0.5632 0.5838 42 0.2326 0.4300 0.3441 0.3727
15 0.5940 0.7964 0.5490 0.5713 43 0.2246 0.4164 0.3548 0.3862
16 0.5737 0.7829 0.5352 0.5588 44 0.2170 0.4028 0.3659 0.3997
17 0.5541 0.7693 0.5217 0.5463 45 0.2096 0.3893 0.3773 0.4132
18 0.5352 0.7557 0.5085 0.5339 46 0.2024 0.3757 0.3890 0.4266
19 0.5170 0.7421 0.4957 0.5214 47 0.1955 0.3621 0.4012 0.4401
20 0.4993 0.7286 0.4927 0.5184 48 0.1888 0.3485 0.4137 0.4536
21 0.4823 0.7150 0.4898 0.5153 49 0.1824 0.3350 0.4266 0.4671
22 0.4658 0.7014 0.4868 0.5123 50 0.1762 0.3214 0.4399 0.4806
23 0.4499 0.6878 0.4839 0.5093 51 0.1702 0.3078 0.4536 0.4941
24 0.4346 0.6743 0.4810 0.5063 52 0.1643 0.2943 0.4678 0.5076
25 0.4197 0.6607 0.4781 0.5032 53 0.1587 0.2807 0.4824 0.5210
26 0.4054 0.6471 0.4752 0.5002 54 0.1533 0.2671 0.4974 0.5345
27 0.3916 0.6336 0.4723 0.4972

up to age 40 but then the schedules diverge.

The sequence of parameters αt for t = 2, 3, . . . , 44 (along with α1 ≡ 1) listed in Tables 3 and 4
above provide alternative land price indexes generated by the MLIT transaction data. It can
be seen that these alternative indexes are virtually identical (they cannot be distinguished on
a chart) and hence only one of these alternative models of depreciation needs to be considered
in what follows. Since the log likelihood of the piece-wise linear depreciation model (Model
11) was slightly higher than the multiple geometric depreciation rate model (Model 10), we
will use the αt sequence generated by Model 11 as our MLIT land price series in subsequent
sections. We will label this series for quarter t as PLt

MLIT.
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Chart 1 Alternative Aging Functions

7 Smoothing the MLIT Land Price Series
In Chart 2 below, it can be seen that our Model 11 estimated land price series, PLt

MLIT ≡ αt,
is extremely volatile. This is due to the fact that commercial properties are very heterogeneous
and we have relatively few transactions per quarter. Thus the raw series PLMLIT does not
accurately represent the trend in commercial land prices in Tokyo; the raw series requires
some smoothing in order to model the trends in land prices. Patrick (2017) [32] found the
same problem for Irish house price sales and we will follow his example and smooth the raw
series.*29

We used the LOWESS nonparametric smoother in Shazam in order to construct a preliminary
smoothed land price series, PLS, using PLMLIT as the input series.*30 We used the cross-
validation criterion to choose the smoothing parameter which turned out to be f = 0.12. The
series PLMLIT and PLS are listed in Table 6 and plotted in Chart 2 below.

The jagged black line in Chart 2 represents the unsmoothed land price index PLMLIT that we
estimated from Model 11 while the lowest line represents the Lowess nonparametric smoothed
series PLS that was generated using Shazam. It can be seen that while PLS is reasonably
smooth, it is not quite centered; i.e., it is consistently below the raw series. Thus we considered
some alternative methods for smoothing the raw series.

*29 Patrick initially smoothed his series by taking a three month rolling average of the raw index prices for
Ireland. He found that the resulting index was still too volatile to publish and he ended up using a
double exponential smoothing procedure.

*30 The initial smoothed series was divided by the Quarter 1 value so that the resulting normalized series
equalled 1 in Quarter 1. Recall that Quarter 1 is the first quarter in 2005 and Quarter 44 is the last
quarter in 2015.
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Table 6 MLIT Land Prices PLMLIT, Lowess Smoothed Land Prices PLS and Linear
and Quadratic Smoothed Land Prices PLL and PLQ

Quarter PLMLIT PLS PLL PLQ

1 1.00000 1.00000 1.00000 1.00000
2 1.55293 1.22256 1.31711 1.31711
3 1.63422 1.41343 1.42867 1.64505
4 1.53523 1.36721 1.58159 1.50881
5 1.42096 1.38616 1.70218 1.49669
6 1.76462 1.58816 1.72654 1.80134
7 2.15588 1.72313 1.87309 1.93802
8 1.75601 1.80146 2.11368 1.99351
9 2.26798 1.98565 2.25488 2.20673
10 2.62393 2.21322 2.30843 2.54089
11 2.47061 2.23370 2.45153 2.52436
12 2.42362 2.18881 2.34178 2.49936
13 2.47153 2.00272 2.15709 2.26334
14 1.71923 1.72301 2.07466 1.88127
15 1.70045 1.61503 1.88313 1.78365
16 2.05848 1.59538 1.56540 1.86242
17 1.46597 1.31167 1.35840 1.51611
18 0.88287 0.88680 1.25719 0.88721
19 0.68422 0.79234 1.04127 0.83499
20 1.19442 0.88117 0.98237 0.97427
21 0.97889 0.97860 1.05818 1.11980
22 1.17144 1.02013 1.10914 1.15441
23 1.26194 1.02133 1.02848 1.18481
24 0.93901 0.88339 1.00673 0.98500
25 0.79111 0.76458 1.01445 0.79266
26 0.87016 0.84384 1.01155 0.92135
27 1.21003 1.00334 1.08928 1.13215
28 1.24743 1.12503 1.13287 1.31487
29 1.32764 1.08376 1.18341 1.21856
30 1.00910 1.01178 1.25811 1.08766
31 1.12286 1.09153 1.24647 1.21854
32 1.58349 1.19563 1.27629 1.34877
33 1.18925 1.23645 1.35573 1.41007
34 1.47675 1.22737 1.44159 1.33842
35 1.40632 1.31129 1.46396 1.47429
36 1.55214 1.38556 1.50250 1.57230
37 1.69536 1.39737 1.54949 1.56217
38 1.38194 1.39867 1.66709 1.53537
39 1.71167 1.51667 1.63026 1.72640
40 1.99436 1.54872 1.61806 1.76603
41 1.36798 1.45003 1.64401 1.63230
42 1.63437 1.36017 1.71076 1.43488
43 1.51167 1.54133 1.73534 1.59740
44 2.04541 1.73013 1.75991 2.03579
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Chart 2 MLIT Land Prices, Lowess Smoothed Prices and Linear and Quadratic Smoothed Prices

Henderson (1916) [27] was the first to realize that various moving average smoothers could be
related to rolling window least squares regressions that would exactly reproduce a polynomial
curve. Thus we apply his idea to derive the moving average weights that would be equivalent
to fitting a linear function to 5 consecutive quarters of a time series, which we represent by
the vector Y T ≡ [y1, . . . , y5] where Y T denotes the transpose of a vector Y . Define the 5
dimensional column vectors X1 and X2 as X1 ≡ [1, 1, 1, 1, 1]T and X2 ≡ [−2,−1.0, 1, 2]T .
Define the 5×2 dimensional X matrix as X ≡ [X1,X2]. Denote the linear smooth of the vector
Y by Y ∗. Then least squares theory tells us that Y ∗ = X(XT X)−1XT Y . Thus the 5 rows
of the 5× 5 projection matrix X(XT X)−1XT give us the weights that can be used to convert
the raw Y series into the smoothed Y ∗ series. For our particular example, the 5 rows of the
projection matrix are as follows: Row1 = (1/10)[6, 4, 2, 0,−2]; Row2 = (1/10)[4, 3, 2, 1, 0];
Row3 = (1/5)[1, 1, 1, 1, 1]; Row4 = (1/10)[0, 1, 2, 3, 4]; Row5 = (1/10)[−2, 0, 2, 4, 6]. Note
that Row3 tells us that the third component of the smoothed vector Y ∗ is equal to y∗

3 =
(1/5)(y1 + y2 + y3 + y4 + y5). a simple equally weighted moving average of the raw data for 5
periods. Thus the way this smoothing method could be applied in practice to 44 consecutive
quarters of PLMLIT data is as follows. The first 3 components of the smoothed series would
use the inner products of the first 3 rows of the projection matrix X(XT X)−1XT times the
first 5 components of the PLMLIT series. This would generate the first 3 components of the
smoothed series, PLt

L for t = 1, 2, 3. For t = 3, 4, . . . , 42, define PLt
L ≡ (1/5)[PLt−2

MLIT +
PLt−1

MLIT + PLt
MLIT + PLt+1

MLIT + PLt+2
MLIT]. Thus for all observations t except for the first two

and last two observations, the smoothed series PLt would be defined as the simple centered
moving average of 5 consecutive PLMLIT observations with equal weights. The final two
observations would be defined as the inner products of Rows 4 and 5 of X(XT X)−1XT with
the last 5 observations in the PLMLIT series. In practice, as the data of a subsequent period
became available, the last two observations in the existing series would be revised but after
receiving the data of two subsequent periods, there would be no further revisions; i.e., the
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final smoothed value of an observation would be set equal to the centered 5 period moving
average of the raw data.

We implemented the above procedure but the above algorithm does not ensure that the value
of the smoothed series in the first quarter of the sample is equal to 1 and so the generated
series had to be divided by a constant to ensure that the first observation in the smoothed
series is equal to unity. We found that this division caused the smoothed series to lie below
the raw series for the most part.*31 Patrick (2017; 25-26) [32] found that a similar problem
occurred with his initial simple moving average smoothing method. He solved the problem by
setting the smoothed values equal to the actual values for the first two observations when he
applied his second smoothing method. We solved the centering problem in a similar manner:
we set the initial value of the smooth equal to the corresponding raw number (so that PL1

L ≡
PL1

MLIT) and we set the second value of the smooth equal to the average of the first and
third observations in the raw series (so that PL2

L ≡ (1/2)[PL1
MLIT + PL3

MLIT]. For the
Quarter 3 value of the smooth, we used the simple 5 term centered moving average so that
PL3

L ≡ (1/5)[PL1
MLIT + PL2

MLIT + PL3
MLIT + PL4

MLIT + PL5
MLIT] and we carried on using

this moving average until Quarters 43 and 44 where we used Rows 4 and 5 of the matrix
X(XT X)−1XT defined above for our moving average weights. The resulting smoothed series
PLt

L is listed in Table 6 and plotted in Chart 2 above. It can be seen that it does a good job
of smoothing the initial PLt

MLIT series.

We also applied the same least squares methodology to a rolling window 5 term quadratic
regression model. Define the 5 dimensional column vectors X1 and X2 as before and define
X3 ≡ [4, 1, 0, 1, 4]T . Define the 5 × 3 dimensional X matrix as X ≡ [X1,X2.X3]. De-
note the quadratic smooth of the vector Y by Y ∗∗. Again least squares theory tells us that
Y ∗∗ = X(XT X)−1XT Y . The 5 rows of the new 5 × 5 projection matrix X(XT X)−1XT give
us the weights that can be used to convert the raw Y series into the smoothed Y ∗∗ series. The
5 rows of the new projection matrix are as follows: Row1 = (1/35)[31, 9,−3,−5, 3]; Row2
= (1/35)[9, 13, 12, 6,−5]; Row3 = (1/35)[−3, 12, 17, 12,−3]; Row4 = (1/35)[−5, 6, 12, 13, 9];
Row5 = (1/35)[3,−5,−3, 9, 31]. Now repeat the steps that were used to construct the linear
smooth PLt

L to construct a preliminary quadratic smooth PLt
Q, except that the new 5×5 pro-

jection matrix X(XT X)−1XT replaces the previous one. A final PLt
Q series was constructed

by replacing the first 2 values in the smoothed series by the same initial 2 values that we
used to construct the final versions of PL1

L and PL2
L. The resulting smoothed series PLt

Q

is listed in Table 6 and plotted in Chart 2 above. It can be seen that PLt
Q is not nearly as

smooth as the linear smoothed series PLt
L but of course, it is a lot closer to the unadjusted

series PLt
MLIT. For our particular data set, we would recommend the linear smoother over

the quadratic smoother.*32

We turn now to the construction of land prices using commercial property appraisal data.

*31 A similar problem of a lack of centering occurred when we implemented the Lowess smoothing procedure;
i.e., we had to divide by a constant to make the first component of the smoothed series equal to one. As
a result, the Lowess smooth tended to lie below the raw series as can be seen in Chart 2.

*32 A quadratic Henderson type smoother would be much smoother if we lengthened the window. But a
longer window would imply a longer revision period before the series would be finalized. Since the linear
smoother with window length 5 seems to do a nice job of smoothing, we would not recommend moving
to a longer window length for this particular application.
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8 The Builder’s Model Using Property Appraisal Data
As was indicated in Section 2 above, we have quarterly appraisal data for 41 commercial office
REIT office buildings located in Tokyo for the 44 quarters starting at Q1:2005 and ending at
Q4:2015, which of course, is the same period that was covered by the MLIT selling price data.
We will implement the builder’s model for this data set in this section.

The builder’s model using appraisal data is somewhat different from the builder’s model using
selling price data. The panel nature of the REIT data means that we can use a single property
specific dummy variable as a variable that concentrates all of the location attributes of the
property into a single variable; i.e., we do not have to worry about how close to a subway line
the property is or how many stories the building has or how much excess land is associated with
the property. The single property specific dummy variable will take all of these characteristics
into account.

There are 41 separate properties in our REIT data set. For each of our 44 quarters, we assume
that the 41 properties appear in the appraised property value for property n in period t, Vtn,
in the same order. Our initial regression model is the following one where the variables have
the same definitions as in equations (2) above except that ωn is now the property n sample
average land price (per m2) rather than a Ward n relative price of land:

Vtn =
∑41

n=1ωnLtn + pSt(1 − 0.025)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , 41. (25)

Thus in Model 1 above, there are no quarter t land price parameters in this very simple
model with 41 unknown property average land price ωn parameters to estimate. Note that
the geometric (net) depreciation rate in the model defined by (25) was assumed to be 2.5%
per year.

The final log likelihood for this model was −14968.77 and the R2 was 0.9426. Thus the 41
property average price parameters ωn explain a large part of the variation in the data.

In Model 2, we introduce quarterly land prices αt into the above model. The new nonlinear
regression model is the following one:

Vtn =
∑41

n=1αtωnLtn + pSt(1 − 0.025)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , 41. (26)

Not all of the quarterly land price parameters (the αt) and the average property price pa-
rameters (the ωn) can be identified. Thus we impose the following normalization on our
coefficients:

α1 = 1. (27)

We used the final parameter values for the ωn from Model 1 as starting coefficient values for
Model 2 (with all αt initially set equal to 1).*33 The final log likelihood for Model 2 was
−13999.00, a huge improvement of 969.77 for adding 43 new parameters. The R2 was 0.9804.

*33 The reader may well wonder why we estimated the ωn in Model 1 rather than first estimating the αt

in Model 1. When this alternative strategy was implemented, we found that the resulting Model 2 did
not converge to the “right” parameter values; i.e., the resulting R2 was very low. This is the reason
for following our nested estimation methodology where each successive model uses the final coefficient
values from the previous model. It is not possible to simply estimate our final models in one step and
obtain sensible results.
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Thus the 41 property average price parameters ωn and the 43 quarterly average land price
parameters αt explain most of the variation in the data.

Model 3 is the following nonlinear regression model:

Vtn = αtωnLtn + pSt(1 − δ)A(t,n)Stn + εtn; t = 1, . . . , 44;n = 1, . . . , 41 (28)

where δ is the annual geometric (net) depreciation rate. The normalization (27) is also im-
posed. Thus Model 3 is the same as Model 2 except that we now estimate the single geometric
depreciation rate δ.

We used the final parameter values for the αt and ωn from Model 2 as starting coefficient
values for Model 3 (with δ initially set equal to 0.025). The final log likelihood for this model
was −13993.47, and increase of 5.53 for one additional parameter, and the R2 was 0.9806. The
estimated geometric (net) depreciation rate was δ = 0.01353.*34 The estimated coefficients
and their t statistics are listed in Table 7. Recall that α1 was set equal to 1. The sequence of
land price (per m2) αt, for t = 1, 2, . . . , 44 is our estimated sequence of quarterly Tokyo land
prices, PLt

REIT, which appears in Chart 3 below.

Note that the implied standard errors on the quarterly land price coefficients, the αt, are
fairly large whereas they are fairly small for the property coefficients, the ωn. This means
that our estimated land price indexes, PLt

REIT = αt, are not reliably determined. Note
also that our estimated geometric depreciation rate δ is only 1.35% per year which is much
lower than our estimated depreciation rate from Model 7 in Section 3 above which was 3.41%
per year. One factor which may help to explain this divergence in estimates of wear and
tear depreciation is that appraisers take into account capital expenditures on the properties.
However, our current data base did not have information on capital expenditures and it is
likely that not having capital expenditures as an explanatory factor affected our estimates for
the depreciation rate. In our previous study of land prices using REIT data for Tokyo, Diewert
and Shimizu (2017) [18], we adjusted our nonlinear regressions for capital expenditures and
found that the resulting estimated quarterly wear and tear geometric depreciation rate was
0.005 which implied an annual (single) geometric depreciation rate of about 2%.*35

In the following section, we will estimate our final land price series for Tokyo commercial office
buildings using official estimates for the land values of commercial properties for taxation
purposes.

*34 We also estimated the straight line depreciation model counterpart to Model 3. The resulting estimated
straight line depreciation rate δ was equal to 0.01317 (t statistic = 45.73). The R2 for this model was
0.9806 and the final log likelihood was −13989.83. The resulting land price series was very similar to the
land price series generated by Model 3 above.

*35 In the multiple geometric depreciation rate model estimated by Diewert and Shimizu (2017) [18], the
various rates averaged out to an annual rate of 2.6% per year. Our earlier study covered the 22 quarters
starting at Q1 of 2007 and ending at Q2 of 2012. The correlation coefficient between the price of land
series in this model in Diewert and Shimizu (2017) [18] and the above Model 3 price of land series for the
overlapping 22 quarters is 0.9901 so these two studies using REIT appraisal data show much the same
trends in Tokyo commercial property land prices even though the estimated wear and tear depreciation
rates are different. Note that in addition to wear and tear depreciation, depreciation due to the early
demolition of a structure before it reaches “normal” retirement age should be taken into account. Our
current study does not estimate this extra component of depreciation. However, Diewert and Shimizu
(2017) [18] estimated demolition depreciation for Tokyo commercial office buildings at 1.2% per year.
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Table 7 Estimated Coefficients for Model 3 Using REIT Data

Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat

α2 1.0268 2.121 α31 1.0645 1.403 ω15 2.1471 10.600
α3 1.0637 1.479 α32 1.0594 1.429 ω16 5.8157 44.703
α4 1.1045 1.541 α33 1.0498 1.466 ω17 5.8961 40.816
α5 1.1499 1.532 α34 1.0393 1.334 ω18 4.0615 34.128
α6 1.1987 1.607 α35 1.0341 1.380 ω19 5.4266 39.534
α7 1.2473 1.569 α36 1.0294 1.242 ω20 5.7298 36.905
α8 1.2994 1.636 α37 1.0277 1.226 ω21 1.0098 40.629
α9 1.3450 1.735 α38 1.0299 1.200 ω22 4.0731 47.336
α10 1.3882 1.904 α39 1.0350 1.253 ω23 2.0521 25.603
α11 1.4422 2.027 α40 1.0425 1.315 ω24 2.5844 38.974
α12 1.4904 2.052 α41 1.0564 1.270 ω25 1.0869 41.419
α13 1.5082 1.995 α42 1.0700 1.244 ω26 1.2409 22.634
α14 1.4990 2.075 α43 1.0874 1.286 ω27 2.0714 23.201
α15 1.4751 2.103 α44 1.1078 1.827 ω28 0.7289 32.147
α16 1.4419 2.238 ω1 3.8704 31.383 ω29 0.6271 7.422
α17 1.3976 1.721 ω2 4.8678 48.918 ω30 3.1068 39.453
α18 1.3423 1.838 ω3 1.7514 27.642 ω31 1.7773 32.149
α19 1.2892 1.705 ω4 2.3099 26.957 ω32 5.8748 41.597
α20 1.2428 1.522 ω5 1.8451 27.751 ω33 1.5201 20.558
α21 1.2108 1.634 ω6 3.7399 30.589 ω34 3.4731 30.059
α22 1.1766 1.583 ω7 2.6487 32.409 ω35 2.1225 27.539
α23 1.1543 1.419 ω8 3.2710 28.703 ω36 6.2429 48.012
α24 1.1375 1.485 ω9 4.8665 47.654 ω37 4.2053 22.829
α25 1.1166 1.414 ω10 4.9867 41.462 ω38 2.6778 21.825
α26 1.1007 1.479 ω11 1.1427 16.089 ω39 3.0139 23.805
α27 1.0967 1.314 ω12 2.3817 20.345 ω40 2.9460 12.591
α28 1.0908 1.401 ω13 1.1255 15.765 ω41 1.8028 15.349
α29 1.0799 1.437 ω14 0.8444 14.470 δ 0.0135 4.437
α30 1.0683 1.349

9 Estimating Land Prices for Commercial Properties using Tax

Assessment Data
In this section, we will use the Official Land Price (OLP) data described in section 2 above. We
have 6242 annual assessed values for the land components of commercial properties in Tokyo
covering the 11 years 2005-2015. We will label these years as t = 1, 2, . . . , 11. The assessed
land value for property n in year t is denoted as Vtn.*36 We have information on which Ward
each property is located and the ward dummy variables DW,tnj are defined by definitions (4)
above. The land plot area of property n in year t is denoted by Ltn and the subway variables
DStn and TTtn are defined as in section 2 above. The number of observations in year t is
N(t).

Our initial regression model is the following one where we regress property land value on the

*36 The units of measurement used in this section are in 100,000 yen.
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ward dummy variables times the land plot area:

Vtn =
(∑23

j=1ωjDW,tnj

)
Ltn + εtn; t = 1, . . . , 11;n = 1, . . . , N(t). (29)

Thus in Model 1 above, there are no year t land price parameters in this very simple model
and ωj is an estimate of the average land price (per m2) in Ward j for j = 1, . . . , 23. The final
log likelihood for this model was −67073.91 and the R2 was 0.3647.

In Model 2, we introduce annual land prices αt into the above model. The new nonlinear
regression model is the following one:

Vtn = αt

(∑23
j=1ωjDW,tnj

)
Ltn + εtn; t = 1, . . . , 11;n = 1, . . . , N(t). (30)

Not all of the 11 annual land price parameters (the αt) and the 23 Ward average property
relative price parameters (the ωn) can be identified. Thus we impose the normalization α1 = 1.

We used the final parameter values for the ωn from Model 1 as starting coefficient values
for Model 2 (with all αt initially set equal to 1). The final log likelihood for Model 2 was
−67022.90, an increase of 51.01 for adding 43 new parameters. The R2 was 0.3748.

In our next model, we allowed the price of land to vary as the lot size increased. We divided
up our 6242 observations into 5 groups of observations based on their lot size. The Group 1
properties had lots less than 100 m2, the Group 2 properties had lots greater than or equal to
100 m2 and less than 150 m2, the Group 3 properties had lots greater than or equal to 150 m2

and less than 200 m2, the Group 4 properties had lots greater than or equal to 200 m2 and
less than 300 m2 and the Group 5 properties had lots greater than or equal to 300 m2.*37 For
each observation n in period t, we define the 5 land dummy variables, DL,tnk, for k = 1, . . . , 5
as follows:

DL,tnk ≡ 1 if observation tn has land area that belongs to group k;
0 if observation tn has land area that does not belong to group k.

(31)

Define the constants L1 - L4 as 100, 150, 200 and 300 respectively. These constants and the
dummy variables defined by (31) are used in the definition of the following piecewise linear
function of Ltn, f(Ltn):

f(Ltn) ≡ DL,tn1λ1Ltn + DL,tn2[λ1L1 + λ2(Ltn − L1)]

+ DL,tn3[λ1L1 + λ2(L2 − L1) + λ3(Ltn − L2)]

+ DL,tn4[λ1L1 + λ2(L2 − L1) + λ3(L3 − L2) + λ4(Ltn − L3)]

+ DL,tn5[λ1L1 + λ2(L2 − L1) + λ3(L3 − L2) + λ4(L4 − L3) + λ5(Ltn − L4)]. (32)

Model 3 was defined as the following nonlinear regression model:

Vtn = αt

(∑23
j=1ωjDW,tnj

)
f(Ltn) + εtn; t = 1, . . . , 11;n = 1, . . . , N(t). (33)

We imposed the normalizations α1 = 1 and λ1 = 1 so that all of the remaining parameters in
(33) could be identified. These normalizations were also imposed in Model 4 below.

*37 The sample probabilities of an observation falling in the 5 land size groups were: 0.171, 0.285, 0.175, 0.178
and 0.191.
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We used the final parameter values for the αt and ωj from Model 2 as starting coefficient values
for Model 3 (with all λk initially set equal to 1). Thus Model 3 adds the 4 new marginal prices
of land, λ2, λ3, λ4 and λ5 to Model 2. The final log likelihood for Model 3 was −66044.02, an
increase of 978.88 for adding 4 new parameters. The R2 was 0.4668.

Our final land price model added the subway variables to Model 3. Thus Model 4 was defined
as the following nonlinear regression model:*38

Vtn = αt

(∑23
j=1ωjDW,tnj

)
(1 + η(DStn − 50)) (1 + θ(TTtn − 4)) f(Ltn) + εtn;

t = 1, . . . , 11;n = 1, . . . , N(t). (34)

Thus Model 4 has added two new subway parameters, η and θ, to Model 3. We used the
final parameter values for the αt, ωj and λk from Model 3 as starting coefficient values for
Model 4 (with η and θ initially set equal to 0). The final log likelihood for Model 4 was
−65584.56, an increase of 459.46 for adding 2 new parameters. The R2 was 0.5401. The
estimated coefficients for this model are listed in Table 8. The αt sequence of estimated
parameters (along with α1 ≡ 1) forms an annual (quality adjusted) Official Land Price series.
For comparison purposes, we repeat each αt four times and convert the annual Official Land
Price series into the quarterly Official Land Price series, PLt

OLP. It will be listed and compared
with our final transactions based MLIT land price series PLt

MLIT and its linear smooth PLt
L

along with our final REIT based land price series PLt
REIT in the following section.

Table 8 Estimated Coefficients for Model 4 Using Annual Tax Assessment Data

Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat

ω1 181.560 26.429 ω14 172.950 14.037 α5 1.2595 27.892
ω2 164.660 25.788 ω15 146.350 9.085 α6 1.1865 27.452
ω3 236.800 26.434 ω16 213.590 21.443 α7 1.1486 28.356
ω4 263.190 24.031 ω17 91.988 10.182 α8 1.1382 27.710
ω5 124.920 17.418 ω18 83.365 17.515 α9 1.1120 26.484
ω6 126.740 22.236 ω19 145.590 7.685 α10 1.0919 25.122
ω7 77.712 7.866 ω20 193.350 6.975 α11 1.1154 25.699
ω8 84.417 8.496 ω21 86.169 9.314 λ2 0.7011 6.032
ω9 137.330 18.302 ω22 87.688 11.699 λ3 −0.3331 −2.907
ω10 230.320 14.959 ω23 64.602 6.739 λ4 0.3568 7.247
ω11 101.550 12.494 α2 1.0751 27.758 λ5 0.1440 18.745
ω12 195.970 13.212 α3 1.1643 28.318 η −0.000740 −27.937
ω13 385.910 23.858 α4 1.3399 28.916 θ −0.022807 −45.349

It can be seen that the standard errors on the estimated annual land prices αt are fairly small;
recall that they were fairly large for the RIET based quarterly land price series, PLt

REIT.
Except for λ3, it can be seen that the λk monotonically decrease as k increases; this indicates
that the marginal price of land decreases as the land plot size increases. The two estimated
subway parameters, η and θ, both have the expected negative sign and are reasonable in
magnitude. Since we do not have additional information on the height or size of the buildings,
we cannot add more explanatory variables to the Model 4 regression.

*38 The minimum value for the distance to the nearest subway station DStn is 50 meters and the minimum
value for the subway running time from the nearest station to the central Tokyo subway station was 4
minutes.
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10 Comparing Land Price Indexes from Different Sources
Table 6 lists the MLIT transactions based land price series PLt

MLIT and its linear smooth,
PLt

L. Table 7 lists the REIT based land price series PLt
REIT and the Official Land Price series

PLt
OLP can be constructed using the estimated αt listed in Table 8. These 4 series along with

the official construction price series PSt are listed in Table 9 and plotted in Chart 3.

Chart 3 Alternative Land Price Series and the Price of Structures

It can be seen that the land price series based on transactions data, PLt
MLIT and its linear

smooth, PLt
L, paint a very different picture of land price movements as compared to the series

based on appraisal values for commercial land in Tokyo, PLt
REIT, and the series based on

property tax assessed values, PLt
OLP. As was noted in section 1 above, appraisal prices tend

to lag behind the movements in transaction prices and they also smooth the sales data. The
same phenomenon evidently applies to assessed value prices. Chart 3 shows that the appraisal
and assessed value based price indexes for commercial land fluctuate far less than the index
based actual transactions prices. However, it can be seen that the appraisal and assessed
value series do tend to move in the same direction as the transactions prices but with a lag.
The Chart also shows the problem with the transactions based series: its quarter to quarter
fluctuations are massive. But it also can be seen that the linear smoothed series PLt

L (which is
essentially a centered five quarter moving average of the unsmoothed series PLt

MLIT) captures
the trend in transactions prices quite well. This series can be finalized after a two quarter
delay. Our preferred land price series is the linear smoothed transaction series PLt

L.

In the following section, we will use the MLIT and REIT data to construct alternative com-
mercial property price indexes; i.e., we will aggregate the land and structure price data into
overall property price indexes and compare these indexes with other indexes which are simpler
to construct.
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Table 9 Alternative Land Price Series and the Price of Structures

Quarter t PLt
MLIT PLt

L PLt
REIT PLt

OLP PSt

1 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.55293 1.31711 1.02676 1.00000 0.99636
3 1.63422 1.42867 1.06369 1.00000 0.99211
4 1.53523 1.58159 1.10454 1.00000 0.98941
5 1.42096 1.70218 1.15004 1.07513 0.99184
6 1.76462 1.72654 1.19883 1.07513 0.99790
7 2.15588 1.87309 1.24744 1.07513 1.00351
8 1.75601 2.11368 1.29953 1.07513 1.00918
9 2.26798 2.25488 1.34499 1.16432 1.01241
10 2.62393 2.30843 1.38812 1.16432 1.01770
11 2.47061 2.45153 1.44194 1.16432 1.02208
12 2.42362 2.34178 1.49019 1.16432 1.02971
13 2.47153 2.15709 1.50818 1.33985 1.04572
14 1.71923 2.07466 1.49977 1.33985 1.09410
15 1.70045 1.88313 1.47635 1.33985 1.11708
16 2.05848 1.56540 1.44330 1.33985 1.09343
17 1.46597 1.35840 1.39905 1.25946 1.05114
18 0.88287 1.25719 1.34400 1.25946 1.02499
19 0.68422 1.04127 1.29130 1.25946 1.01141
20 1.19442 0.98237 1.24531 1.25946 0.99425
21 0.97889 1.05818 1.21368 1.18646 0.98011
22 1.17144 1.10914 1.18021 1.18646 1.00021
23 1.26194 1.02848 1.15830 1.18646 0.99197
24 0.93901 1.00673 1.14173 1.18646 0.98385
25 0.79111 1.01445 1.12141 1.14862 0.99586
26 0.87016 1.01155 1.10598 1.14862 1.00424
27 1.21003 1.08928 1.10225 1.14862 0.99826
28 1.24743 1.13287 1.09666 1.14862 0.99692
29 1.32764 1.18341 1.08618 1.13820 0.99776
30 1.00910 1.25811 1.07504 1.13820 1.00624
31 1.12286 1.24647 1.07151 1.13820 1.00058
32 1.58349 1.27629 1.06681 1.13820 1.00290
33 1.18925 1.35573 1.05778 1.11199 1.01027
34 1.47675 1.44159 1.04788 1.11199 1.02160
35 1.40632 1.46396 1.04320 1.11199 1.02960
36 1.55214 1.50250 1.03916 1.11199 1.05012
37 1.69536 1.54949 1.03814 1.09194 1.07326
38 1.38194 1.66709 1.04095 1.09194 1.08818
39 1.71167 1.63026 1.04657 1.09194 1.09886
40 1.99436 1.61806 1.05460 1.09194 1.11577
41 1.36798 1.64401 1.06887 1.11544 1.12204
42 1.63437 1.71076 1.08289 1.11544 1.12769
43 1.51167 1.73534 1.10053 1.11544 1.12651
44 2.04541 1.75991 1.12109 1.11544 1.11855
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11 A Comparison of Alternative Commercial Property Price Indexes
Recall that in Section 3 above, the MLIT value of property n in quarter t was defined as
Vtn in period t and the corresponding property land and structure areas were defined as Stn

and Ltn for n = 1, . . . , N(t) and t = 1, . . . , 44. In the property price literature, a frequently
used index of overall property prices is the period average of the individual property values
Vtn divided by the corresponding structure area Stn. Thus define the (preliminary) quarter t
mean property price P t

MEANP as follows:

P t
MEANP ≡ (1/N(t))

∑N(t)
n=1 Vtn/Stn; t = 1, . . . , 44. (35)

The final mean property price index for quarter t, P t
MEAN, is defined as the corresponding

preliminary index P t
MEANP divided by P 1

MEANP; i.e., we normalize the series defined by (35)
to equal 1 in quarter 1.

As could be expected, the mean property price series P t
MEAN is rather volatile and so in

order to capture the trends in Tokyo commercial property prices, it is necessary to smooth
this series. We used the same linear smoothing procedure that was explained in Section 7
above to construct the smoothed land price series PLt

L. Thus we set the initial value of the
smoothed mean series, P 1

MEANS, equal to the corresponding unsmoothed value P 1
MEAN. We

set the quarter 2 value of the smooth equal to the average of the first and third observations
in the raw series (so that P 2

MEANS ≡ (1/2)[P 1
MEAN + P 3

MEAN]. For the Quarter 3 value of the
smooth, we used the simple 5 term centered moving average so that P 3

MEANS ≡ (1/5)[P 1
MEAN+

P 2
MEAN + P 3

MEAN + P 4
MEAN + P 5

MEAN] and we carried on using this 5 term centered moving
average until Quarters 43 and 44 where we used Rows 4 and 5 of the matrix X(XT X)−1XT

defined in Section 7 for our Henderson linear regression smoother. The resulting smoothed
mean price series, P t

MEANS, is listed in Table 10 and plotted in Chart 4 below. We note that
the average value of the unsmoothed series P t

MEAN is 1.1644 while the average value of the
corresponding smoothed series P t

MEANS is 1.1614.

Table 9 in the previous section lists the land price index PLt
MLIT based on the builder’s model

using the MLIT transactions data. Table 9 also lists the quarter t structure price indexes, PSt.
We can use the predicted values from the Model 11 regression explained in Section 5 above
in order to construct the imputed value of land sold during quarter t. This quarter t value of
land is defined as follows:

V t
L ≡αt

∑N(t)
n=1

(∑4
j=1ωjDW,tnj

)(∑5
m=1χmDEL,tnm

)
(1 + µ(Htn − 3)) (1 + η(DStn − 0))×

(1 + θ(TTtn − 1)) fL(Ltn); t = 1, . . . , 44. (36)

In a similar fashion, we can use the predicted values from the Model 11 regression in order to
define the impute value of structures sold during quarter t, V t

S , as follows:

V t
S ≡ pSt

∑N(t)
n=1 gA(Atn)

(∑10
h=3φhDH,tnh

)
Stn t = 1, . . . , 44. (37)

The quality adjusted quarter t quantities of land and of structures, Qt
L and Qt

S , are defined as
follows:

Qt
L ≡ V t

L/PLt
MLIT;Qt

S ≡ V t
S/PSt; t = 1, . . . , 44. (38)
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Table 10 Alternative Overall Commercial Property Price Indexes

Quarter t P t
MEAN P t

MEANS P t
FMLIT P t

FMLITS P t
FREIT P t

LPHED P t
LPHEDS

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.18211 1.11644 1.25260 1.15058 1.01858 1.12578 1.12971
3 1.23289 1.16886 1.26945 1.18790 1.04447 1.25942 1.16157
4 1.22061 1.21225 1.21852 1.23585 1.07364 1.24404 1.20967
5 1.20868 1.24444 1.18141 1.28993 1.10761 1.17860 1.24030
6 1.21694 1.28112 1.33886 1.32389 1.14501 1.24052 1.27364
7 1.34307 1.30365 1.51703 1.40608 1.18219 1.27892 1.32785
8 1.41632 1.43708 1.33632 1.46794 1.22201 1.42612 1.42052
9 1.33326 1.43627 1.56545 1.56057 1.25638 1.51511 1.45011
10 1.87582 1.46519 1.76501 1.63832 1.28961 1.64193 1.51268
11 1.21289 1.47075 1.64041 1.63363 1.33051 1.38846 1.54175
12 1.48766 1.44451 1.64183 1.61144 1.36814 1.59179 1.49237
13 1.44413 1.34393 1.66991 1.55087 1.38555 1.57148 1.43715
14 1.20203 1.36900 1.35804 1.48591 1.39181 1.26820 1.43887
15 1.37291 1.33842 1.37911 1.45152 1.38040 1.36580 1.35784
16 1.33824 1.25163 1.52799 1.32192 1.34982 1.39708 1.27652
17 1.33477 1.18789 1.23700 1.19171 1.30617 1.18664 1.21455
18 1.01018 1.10527 0.95988 1.12128 1.25869 1.16489 1.16196
19 0.88336 1.01512 0.86424 1.02333 1.21607 0.95832 1.08358
20 0.95981 0.92967 1.08210 0.98875 1.17747 1.10288 1.05599
21 0.88749 0.90702 0.97954 1.01588 1.15025 1.00516 1.03546
22 0.90749 0.90880 1.07696 1.04978 1.13033 1.04872 1.04410
23 0.89697 0.88131 1.11188 1.00911 1.11178 1.06220 1.02744
24 0.89223 0.88767 0.96497 0.99329 1.09728 1.00156 1.03771
25 0.82235 0.91494 0.90797 1.00329 1.08506 1.01955 1.06638
26 0.91929 0.93288 0.94799 1.00717 1.07552 1.05652 1.06417
27 1.04386 1.01361 1.09552 1.04126 1.07103 1.19205 1.11638
28 0.98669 1.06931 1.10571 1.05758 1.06634 1.05119 1.15239
29 1.29586 1.08824 1.14663 1.08420 1.05854 1.26258 1.16835
30 1.10084 1.08174 1.00751 1.11102 1.05216 1.19961 1.15112
31 1.01394 1.10295 1.05406 1.10498 1.04790 1.13634 1.17367
32 1.01135 1.04434 1.27150 1.13668 1.04475 1.10587 1.16224
33 1.09274 1.05850 1.08869 1.15609 1.03958 1.16397 1.16253
34 1.00285 1.08167 1.21316 1.19959 1.03469 1.20540 1.18833
35 1.17163 1.13272 1.19967 1.22353 1.03293 1.20105 1.23764
36 1.12980 1.14552 1.26047 1.24145 1.03474 1.26535 1.25125
37 1.26657 1.17903 1.36487 1.30179 1.03940 1.35244 1.27450
38 1.15674 1.19541 1.22411 1.34261 1.04489 1.23201 1.30450
39 1.17042 1.20649 1.36521 1.33301 1.05141 1.32164 1.32267
40 1.25353 1.21222 1.51213 1.35536 1.06127 1.35104 1.35608
41 1.18520 1.22743 1.23270 1.34508 1.07319 1.35622 1.40102
42 1.29522 1.23749 1.35747 1.38881 1.08475 1.51951 1.44634
43 1.23277 1.23569 1.31046 1.40686 1.09736 1.45668 1.49583
44 1.22073 1.23388 1.55012 1.42906 1.11051 1.54825 1.54532
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With the prices and quantities of land and structures defined for each quarter, we calculated
Fisher (1922) [19] property price indexes, which are listed as P t

FMLIT in Table 10 above and
plotted on Chart 4 below.*39

From viewing Chart 4, it can be seen that the Fisher property price indexes using MLIT data,
P t

FMLIT, are quite volatile (due of course to the volatility of the MLIT land price component
indexes, PLt

MLIT). The Henderson linear regression smooth of the unsmoothed land price
series PLt

MLIT was listed as PLt
L in Table 9. We use this smoothed land price series along

with the new land quantities defined as Qt
L ≡ V t

L/PLt
L in order to define the smoothed Fisher

property price index, P t
FMLITS, which is listed in Table 10 above and plotted on Chart 4 below.

This series is our preferred measure of overall commercial property prices for Tokyo.

Recall Model 3 in Section 8 above that used REIT data to implement a version of the builder’s
model. We can use the predicted values from the Model 3 regression in order to construct the
imputed value of land sold during quarter t. This quarter t value of land is defined as follows:

V t
L ≡ ∑41

n=1αtωnLtn; t = 1, . . . , 44. (39)

In a similar fashion, we can use the predicted values from the Model 3 REIT regression in
order to define the impute value of structures sold during quarter t, V t

S , as follows:

V t
S ≡ ∑41

n=1pSt(1 − δ)A(t,n)Stn t = 1, . . . , 44. (40)

The (REIT data based) quality adjusted land price for quarter t is the αt which appears in
(39) and is listed as PLt

REIT in Table 9 above. The price of structures is P t
S = pSt where

pSt is the official construction price index. The corresponding period t quantities of land and
structure are defined as follows:

Qt
L ≡ V t

L/PLt
REIT;Qt

S ≡ V t
S/P t

S ; t = 1, . . . , 44. (41)

The overall REIT based property price index for quarter t is defined as the Fisher index
P t

FREIT using the above prices and quantities for land and structures as the basic building
blocks. The REIT based overall property price series P t

FREIT is listed in Table 10 above and
plotted in Chart 4. It can be seen that this series is not volatile and does not require any
smoothing.

Our final property price index will be generated by a traditional log price time dummy hedonic
regression using the MLIT data.

We use the same notation and definitions of variables as was used in Section 4 above. Define
the natural logarithms of Vtn, Ltn and Stn as LVtn, LLtn and LStn for t = 1, . . . , 44 and
n = 1, . . . , N(t). The log price time dummy hedonic regression model is the following linear
regression model:

LVtn = βt +
∑4

j=2ωjDW,tnj + γAtn + λLLtn + µLStn +
∑10

h=4φhDH,tnh

+ ηDStn + θTTtn + εtn; t = 1, . . . , 44; n = 1, . . . , N(t). (42)

*39 The Laspeyres and Paasche indexes for quarter t are defined as P t
L ≡ [PLt

MLITQ1
L +

PStQ
1
S ]/[PL1

MLITQ1
L + PS1Q1

S ] and P t
P ≡ [PLt

MLITQt
L + PStQ

t
S ]/[PL1

MLITQt
L + PS1Qt

S ] respectively.

The quarter t Fisher index is defined as P t
FMLIT ≡ [P t

LP t
P ]1/2 for t = 1, . . . , 44. See Fisher (1922) [19]

for additional materials on these indexes. The Fisher index has strong economic and axiomatic justifi-
cations; see Diewert (1976) [7] (1992) [8]. We also calculated chained Fisher property price indexes using
the same data but these indexes were virtually the same as the Fisher fixed base indexes listed in Table
10.
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The 4 combined ward dummy variables DW,tnj were defined by equations (4) and the discussion
around Model 2 in Section 3. The building height dummy variables, DH,tnh, were defined just
above equations (19) in Section 3. However, due to the small number of observations in the
heights equal to 10-14 stories, all buildings in this range were aggregated into the height 10
stories category. As usual, Atn is the age of building n sold in quarter t and DStn and TTtn are
the two subway variables pertaining to building n in quarter t. The 44 time dummy variable
coefficients are β1, . . . , β44. Note that the dummy variable for the first combined ward, DW,tn,1,
is not included in the linear regression defined by (42) in order to prevent multicollinearity.
Similarly, the dummy variable for building height equal to 3 was also excluded from the
regression to prevent multicollinearity. There are 59 unknown parameters in the regression.
The R2 for this regression was 0.7593. This is higher than our Model 9 and Model 11 R2

using the same data, which were 0.7091 and 0.7143 respectively. The estimated coefficients
and their t statistics are listed in Table 11.

Table 11 Estimated Coefficients for the Log Price Time Dummy Hedonic Regression Model

Coef Estimate t Stat Coef Estimate t Stat Coef Estimate t Stat

β1 −0.20529 −1.542 β21 −0.20015 −1.393 β41 0.09941 0.718
β2 −0.08681 −0.607 β22 −0.15772 −1.076 β42 0.21310 1.472
β3 0.02537 0.194 β23 −0.14495 −1.024 β43 0.17087 1.205
β4 0.01308 0.100 β24 −0.20373 −1.462 β44 0.23184 1.554
β5 −0.04096 −0.299 β25 −0.18593 −1.248 γ −0.00970 −10.490
β6 0.01025 0.075 β26 −0.15031 −0.981 µ 0.49390 12.890
β7 0.04072 0.301 β27 −0.02962 −0.203 λ 0.52956 14.200
β8 0.14967 1.077 β28 −0.15537 −1.098 ω2 −0.32900 −13.990
β9 0.21020 1.524 β29 0.02786 0.195 ω3 −0.49677 −16.620
β10 0.29059 2.097 β30 −0.02329 −0.160 ω4 −0.73092 −21.530
β11 0.12291 0.844 β31 −0.07748 −0.531 φ4 0.02949 0.868
β12 0.25957 1.811 β32 −0.10465 −0.698 φ5 0.12691 3.384
β13 0.24673 1.738 β33 −0.05345 −0.378 φ6 0.12419 2.766
β14 0.03231 0.227 β34 −0.01848 −0.132 φ7 0.18867 3.748
β15 0.10645 0.751 β35 −0.02209 −0.160 φ8 0.31515 5.874
β16 0.12910 0.861 β36 0.03006 0.214 φ9 0.45593 7.579
β17 −0.03416 −0.239 β37 0.09662 0.712 φ10 0.55094 8.261
β18 −0.05266 −0.323 β38 0.00336 0.023 η −0.00018 −4.234
β19 −0.24786 −1.715 β39 0.07358 0.522 θ 0.00067 0.458
β20 −0.10737 −0.737 β40 0.09558 0.680

The standard errors for the time coefficients βt were fairly large (in the 0.13 to 0.15 range).
Define the unnormalized land price for quarter t, αt, as the exponential of βt; i.e., αt ≡ exp(βt)
for t = 1, . . . , 44. The log price hedonic regression property price for quarter t, P t

LPHED is
defined as αt/α1 for t = 1, . . . , 44. This traditional hedonic regression model property price
index P t

LPHED is listed in Table 10 above and graphed in Chart 4 below.

It is interesting to note that our estimated λ and µ parameters almost sum to unity. Thus a
generic commercial property sold in quarter t at price P with land and structure areas L and
S respectively has a price that is approximately proportional to the Cobb-Douglas function
αtL

λSµ which has returns to scale that are approximately equal to one. Note also that the
estimated ωk follow the same pattern that we saw in Sections 3-5 for land prices; i.e., the
composite Ward 1 is the most expensive ward, Ward 2 the next most expensive, Ward 3
less expensive again and Ward 4 has the lowest level of property prices. The height dummy
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variables exhibit the same trends that we saw in our MLIT builder’s models: the higher the
height of the structure, the higher is the price of the property. Finally, the distance from
the nearest subway station parameter η is significantly negative indicating that property value
falls as the distance increases. The subway travel time parameter θ has an unexpected positive
sign but is not significantly different from 0. Finally, it is possible to convert the estimated age
coefficient γ into an estimate for a geometric rate of structure depreciation, δ. The formula
for this conversion is δ ≡ 1 − eγ/β .*40 When this conversion formula is utilized, we find that
our estimated δ is 0.01945; i.e., the traditional hedonic regression model generates an implied
annual geometric depreciation rate equal to 1.945% per year, which is a reasonable estimate.

Viewing Table 10 or Chart 4, it can be seen that the time dummy hedonic regression model
implied property price index P t

LPHED is just as volatile as the corresponding builder’s model
property price index P t

FMLIT. Thus we apply our modified Henderson linear smoothing oper-
ator to P t

LPHED which produces the smoothed series, P t
LPHEDS, which is also listed in Table

10 and plotted in Chart 4 below.

Chart 4 Alternative Commercial Property Price Indexes Using MLIT and REIT Data

The two top jagged lines are the Fisher property price index using the builder’s model, P t
FMLIT,

and the log price time dummy hedonic regression property price index, P t
LPHED. Both of these

series use the MLIT sales transaction data. Their linear smooths are P t
FMLITS and P t

LPHEDS.
It can be seen that these two smoothed series approximate each other reasonably well.*41

*40 See McMillen (2003; 289-290) [29], Shimizu, Nishimura and Watanabe (2010; 795) [39] and Diewert,
Huang and Burnett-Isaacs (2017; 24) [14] for derivations of this formula.

*41 Diewert (2010) [10] noticed that the Fisher property price index generated by the builder’s model fre-
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What is somewhat surprising is that the smoothed mean index P t
MEANS (which uses the

same transactions data) approximates the two smoothed hedonic indexes reasonably well but
the series gradually diverge due to the fact that an index based on average prices per m2

cannot take depreciation into account.*42 The hills and valleys in the P t
MEANS series are less

pronounced than the corresponding fluctuations in the P t
FMLITS and P t

LPHEDS series but the
turning points are the same. Finally, it can be seen that the Fisher property price series that
is based on appraised values of properties, P t

FREIT, does not provide a good approximation
to the two smoothed series based on transactions, the P t

FMLITS and P t
LPHEDS series. The

fluctuations in P t
FREIT are too small and the turning points in this series lag well behind our

preferred series.

12 Conclusion
Here are our main conclusions:

• It is possible to construct a quarterly transactions based commercial property price
index that can be decomposed into land and structure components.

• The main characteristics of the properties that are required in order to implement our
approach are: (i) the property location (or neighbourhood); (ii) the floor space area
of the structure on the property; (iii) the area of the land plot; (iv) the age of the
structure and (v) the height of the building. We also require an appropriate exogenous
commercial property construction price index.

• The land price index that our hedonic regression model generates may be too volatile
and hence may need to be smoothed. We found that a slightly modified five quarter
moving average of the raw land price indexes did an adequate job of smoothing. This
means that the final land price index could be produced with a two quarter lag.

• We found that a smoothed version of a traditional log price time dummy hedonic regres-
sion model produced an acceptable approximation to our preferred smoothed builder’s
model overall price index.

• We also found that a very simple overall price index which is proportional to the quar-
terly arithmetic average of each property price divided by the corresponding structure
area provided a rough approximation to our preferred price index. This model cannot
take depreciation into account and hence will in general have an downward bias but it
has the advantage of requiring information on only a single property characteristic (the
structure floor space area) in order to be implemented.

• The price indexes that were based on appraisal and assessed value information were
not satisfactory approximations to the transactions based indexes. The turning points
in these series lagged our preferred series and the appraisal based series smoothed the
data based series to an unacceptable degree.*43

• The two versions of the builder’s model that estimated multiple (net) depreciation
rates produced virtually the same indexes and virtually identical depreciation sched-
ules. These rates of depreciation changed materially as the structure aged and the

quently approximated the traditional log price time dummy property price index using the same data.
However, the key to a successful approximation is that the time dummy model must generate a reasonable
implied structure depreciation rate, which is the case for our particular data set.

*42 If the age structure of the quarterly sales of properties remains reasonably constant, then this neglect of
depreciation will not be a factor.

*43 These points are well known in the real estate literature; see Chapter 25 in Geltner, Miller, Clayton and
Eichholtz (2014) [25].
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depreciation rates became appreciation rates for structures over age 40.

Our overall conclusion is that it should be possible for national income accountants to construct
acceptable commercial land price series using transactions data on the sales of commercial
properties. The required information on the characteristics of the properties is being collected
by some private sector businesses. It should be possible for government statisticians to collect
the same information using building permit, land registry and property assessment data.
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