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Abstract

We study mechanism design with limited commitment. In each period, a

principal offers a “spot” contract to a privately informed agent without com-

mitting to future contracts. In contrast to the classical model with a fixed in-

formation structure, we allow for all admissible information structures. We

represent the information structure as a fictitious mediator and re-interpret

the model as a mechanism design problem for the committed mediator. We

construct examples to explain why new equilibrium outcomes can arise when

considering general information structures. Next, we apply our approach to

durable-good monopoly. In the seller-optimal mechanism, trade dynamics

and welfare substantially differ from those in the classical model: the seller

offers a discount to the high-valuation buyer in the initial period, followed

by the high surplus-extracting price until an endogenous deadline, when the

buyer’s information is revealed without noise. The Coase conjecture fails.

We also discuss unmediated implementation of the seller-optimal outcome.
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1 Introduction

We study information structures in mechanism design problems with limited com-

mitment where, in each period, a principal offers a “spot” contract to a privately

informed agent without committing to future contracts. Durable-good monopoly is

a classical application and is also central in this paper: time is discrete, the horizon

is infinite, and, in each period, a seller (he) who owns a good and a buyer (she) may

trade. If they do, the game ends; otherwise, the game continues in the next period.

The buyer’s willingness to pay for the good is binary, is her private information,

and does not vary over time. With full commitment, the seller’s optimal long-term

mechanism takes the form of a perfectly rigid posted price (see, for example, Baron

and Besanko, 1984). That is, the seller sets a price for the good at the beginning

of the interaction, and the buyer buys in the initial period (resp., never buys) if

her willingness to pay for the good is above (resp., below) that price. Accordingly,

trade is inefficient, and both parties earn some ex ante surplus. With limited com-

mitment, the celebrated Coase conjecture (Coase, 1972) argues that the seller’s

rent is diluted relative to the full-commitment case. In particular, in the limiting

case of perfect patience, trade occurs at a price equal to the lowest buyer’s valu-

ation and with no delay; thus, trade is efficient. The Coase conjecture is formally

shown by Stokey (1981), Fudenberg, Levine, and Tirole (1985), and Gul, Sonnen-

schein, and Wilson (1986) for the case in which the seller can only post prices.

Some recent contributions observe that the standard model of mechanism de-

sign with limited commitment (such as that in the above papers) imposes an

implicit assumption on the players’ information structure. Thus, they study how

the conclusions change under alternative, but a specific class of, informational as-

sumptions. For example, Doval and Skreta (2022) consider the case in which, in

each period, the principal can garble the information input by the agent (namely,

her type report) in that period. In a durable-good monopoly example with two

periods, they show that it is not an equilibrium for the seller to post a price in

each period; thus, new equilibrium outcomes arise. When the time horizon is infi-

nite, however, Doval and Skreta (2021) show that the seller again finds it optimal

to post prices even if the contracts as in Doval and Skreta (2022) are available;

thus, the Coase conjecture survives. Brzustowski, Georgiadis-Harris, and Szentes
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(2021) consider a class of long-term contracts, subject to the constraint that the

seller does not want to revise the offered contract in the future, reflecting the lim-

ited commitment nature of the problem. Their long-term contract determines the

entire sequence of allocations as a function of the buyer’s initial type report, but

without revealing any information to the seller other than that revealed through

each period’s trading outcome. In particular, the buyer’s initial report can affect

allocations in the future, simultaneously keeping the seller in the dark. With these

“smart contracts”, the Coase conjecture now fails: even in the limiting case of per-

fect patience, the seller can guarantee himself a non-vanishing expected revenue.1

As such, the recent literature points out that the information structure plays

a crucial role in the predictions of mechanism design with limited commitment

and, in particular, in the durable-good monopoly setting. Although each of the

above papers considers some specific classes of information structures and stud-

ies their implications, a more systematic study of the entire class of information

structures seems important. For example, whereas Brzustowski et al. (2021) show

that keeping the buyer’s type report undisclosed to a limited-committed seller can

be beneficial for the seller’s ex ante expected revenue, is this the only way in which

the seller deviates from the Coase conjecture? What is the optimal information

structure from the seller’s (or the buyer’s or the society’s) viewpoint? What about

efficiency properties? Our goal is precisely this systematic analysis of information

structures in mechanism design with limited commitment.

We begin by formalizing a general model of mechanism design with limited

commitment in which any information structure that satisfies the following con-

ditions is admissible. First, a player’s private information in the game remains

private whenever the player would like to do so. In the durable-good monopoly

application, without this restriction, the seller’s optimal information structure

would trivially be the one in which he knows the buyer’s willingness to pay. Sec-

ond, each period’s realized allocation is publicly observed in that period. In the

durable-good monopoly application, observability of whether trade happens and,

if so, at which price seems a natural assumption. Third, the contract chosen by

1The above discussion is about the “gap case”, in which the Coase conjecture holds in all
equilibria of the model with price-posting sellers. In the “no-gap case,” the Coase conjecture fails
even with posted prices if buyers use non-stationary strategies (Ausubel and Deneckere, 1989).
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the principal in each period is publicly observed in that period. This assumption

is natural in many applications and also reflects the idea of limited commitment.

Our analysis allows for a rich class of admissible information structures. For

example, period-by-period noisy disclosure as in Doval and Skreta (2022, 2021)

and/or delayed disclosure as in Brzustowski et al. (2021) are possible, but so are

also more sophisticated history-dependent information structures.

After introducing our model, we construct three examples that explain why

the set of equilibrium outcomes can expand once we allow for general information

structures. Our examples identify three representative reasons for why this can be

the case: delayed disclosure of stored information; punishing a principal’s future

self who deviates to a non-equilibrium contract by deleting any planned disclosure

of stored information; punishing a principal’s current or future self who deviates

to a non-equilibrium contract by selecting a suboptimal continuation equilibrium.2

We identify equilibrium outcomes under all admissible information structures

building on the notion of (sequential) communication equilibrium of Forges (1986),

Myerson (1986), and Sugaya and Wolitzky (2021) (hereafter, FMSW). They con-

sider mediated communication in extensive-form games and establish various ver-

sions of revelation principle depending on the equilibrium concept of interest.

Roughly, these results state that any equilibrium outcome given any information

structure is attainable as an equilibrium outcome with the canonical informa-

tion structure (and viceversa). In the canonical information structure, in each

period: (i) a (fictitious) mediator (he) privately asks for each player’s informa-

tion and then privately recommends each player’s action for the period; and (ii)

players truthfully report their private information to the mediator and obey his

recommendation. In a sense, we apply the (sequential) communication equilibrium

notion to the setting in which one of the players is a limited-committed principal.

However, precisely that the principal is one of the players is the main challenge

we face. A naive application of the revelation principle in FMSW would imply

that, in the canonical information structure, the mediator recommends one of the

feasible contracts to the principal, and the principal prefers obeying to deviating

to any other contract. This statement, however, is not very useful in characterizing

possible outcomes because the set of feasible contracts is too large to be tractably

2Of course, additional reasons may be possible.
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handled. First, the revelation principle does not apply to the principal’s contract

space.3 Potentially, the contract the mediator should recommend to the principal

in each period might be a very complex indirect contract. Second, the set of obedi-

ence constraints could be large for the same reason, and there is not much guidance

as to which (indirect) contracts would be relevant for potential deviation.4

To circumvent these challenges, we propose an indirect approach for the durable-

good monopoly application. First, we consider an auxiliary game in which the

mediator—not the seller—proposes an allocation in each period after he privately

asks for each player’s information at the beginning of that period. This outcome-

based approach avoids the complications related to the mediator’s contract rec-

ommendations to the seller as the set of allocations is much more well-structured

than the unrestricted set of contracts.

Second, we identify necessary conditions for outcomes to form an equilibrium

of the game. More specifically, in the durable-good monopoly application, we

focus only on the seller’s deviations to the constant contact that ends the game

by allocating the good to all buyers types at a price equal to the lowest buyer’s

valuation. To the extent that all the other obedience constraints are ignored, this

problem is a relaxation of the original problem and is much simpler to solve; we

interpret it as a form of relaxed revelation principle (Theorem 1).

Third, we identify sufficient conditions for the outcomes satisfying the relaxed

problem to be equilibrium outcomes of the original game. We consider another

auxiliary problem where the seller’s deviation necessarily triggers reversion to the

Coasean outcome from that point on. Theorem 2 shows that this provides a lower

bound on the seller-optimal equilibrium outcome. Theorems 7 and 8 establish

what we call the mediated implementation result: the seller-optimal outcome in

this lower-bound problem is indeed attainable in the original problem. In Section

4.4, we also consider an alternative notion of implementation, unmediated imple-

mentation, where the seller—not the mediator—directly controls information as

in Doval and Skreta (2022, 2021)—crucially, however, not only to his next-period

self but also to his later selves—or as in Brzustowski et al. (2021). We establish

when mediated and unmediated implementation coincide.

3See Laffont and Tirole (1988) and Bester and Strausz (2000, 2001, 2007).
4To the best of our knowledge, this challenge is novel in the literature.
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Our characterization of the seller-optimal mechanism in the durable-good monopoly

application, summarized by Theorems 3–6, uncovers the following results of eco-

nomic substance. First, the optimal information structure specifies when the

buyer’s private information is publicly revealed; until then, no information—except

whether a trade has occurred or not—is revealed. 5 Second, in the seller’s optimal

mechanism, trade occurs with delay and is inefficient, even in the limiting case of

perfect patience, as opposed to what the Coase conjecture affirms.

Intuitively, delayed (but precise) information disclosure increases the seller’s

bargaining power. Relative to the case in which no such information arrives,

the seller’s incentive to offer a more aggressive price is stronger because even if

the buyer does not buy at that aggressive price, full extraction is still possible

once the time comes. Furthermore, once the seller becomes aggressive in some

period, he can also be more aggressive in the previous period as the buyer has less

continuation payoff conditional on no trading. In this sense, the aggressiveness

of each seller’s self is a “strategic complement” to each other. Indeed, except

for the initial period, the seller continues to offer a price equal to the highest

buyer’s valuation in every period until the time of revelation. This price pattern is

completely different from the classical pattern of decreasing posted prices: our case

may rather be interpreted as an initial “fire sale” followed by the rigid high price.

Related Literature. Our paper contributes to the literature on mechanism

design with limited commitment. The failure of the revelation principle is well-

known since the seminal contributions of Laffont and Tirole (1988) and Bester

and Strausz (2001), further developed in Bester and Strausz (2000) and Bester

and Strausz (2007). Bester and Strausz (2007) are the first to propose the medi-

ator approach based on Forges (1986) and Myerson (1986) to mechanism design

problems with limited commitment. In Bester and Strausz (2007), the game has

two periods, and the mechanism design is only in the initial period; in the second

period, the principal just selects an action from a given set. Therefore, the main

challenge we face in our long-horizon setting—namely, how to handle potentially

large sets of contracts for the principal, both on-path and off-path—does not arise.

5That the seller benefits from delayed information disclosure is consistent with Brzustowski
et al. (2021). However, our result shows that the seller can do better than in Brzustowski et al.
(2021)—even in the limiting case of perfect patience—and, moreover, that is the best possible.
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This challenge also makes our problem a non-trivial application of the (sequential)

communication equilibrium notion of Forges (1986), Myerson (1986), and Sugaya

and Wolitzky (2021). As we briefly discuss in the conclusion, we believe that our

approach can be useful in other potential applications of (sequential) communica-

tion equilibrium in which some players’ action space is complicated.

Several papers study durable-good monopoly (or, equivalently, bargaining with

one-sided incomplete information) as a representative application of mechanism

design with limited commitment.6 Classically, the literature of durable-good

monopoly implicitly assumes that the seller’s action is simply a price offer. The

(limited-committed) mechanism-design perspective adds by allowing for more gen-

eral contracts (Skreta, 2006; Doval and Skreta, 2022, 2021; Brzustowski et al.,

2021). In contrast to these papers, which consider specific classes of contracts

and/or information structures, we propose a more systematic treatment of them.

Our paper also relates to the literature that checks the robustness of the Coase

conjecture or documents its failure. For instance, Feinberg and Skrzypacz (2005)

show that higher-order uncertainty can generate delay in trading. Alternatively, a

monopolist could relax its commitment problem and increase its profit by renting

the good rather than selling it (Bulow, 1982), by introducing best-price provi-

sions (Butz, 1990), or by introducing new updated versions of the durable good

over time (Bulow, 1986; Levinthal and Purohit, 1989; Waldman, 1993, 1996; Choi,

1994; Fudenberg and Tirole, 1998; Lee and Lee, 1998).

Other studies have analyzed environments that preclude the market from fully

deteriorating. These include environments with capacity constraints (Kahn, 1986;

McAfee and Wiseman, 2008), with arrival of new traders (Sobel, 1991; Inderst,

2008b; Fuchs and Skrzypacz, 2010) or information (Daley and Green, 2020; Du-

raj, 2020; Lomys, 2021; Laiho and Salmi, 2021), with time-varying costs (Ortner,

2017), in which buyers’ valuations are subject to idiosyncratic stochastic shocks

(Biehl, 2001; Deb, 2014; Garrett, 2016), in which goods depreciate over time (Bond

and Samuelson, 1987), and in which demand is discrete (Bagnoli, Salant, and

Swierzbinski, 1989; von der Fehr and Kuhn, 1995; Montez, 2013).

6Other than durable-good monopoly, Liu, Mierendorff, Shi, and Zhong (2019) consider posted
prices in dynamic auctions, and Gerardi and Maestri (2020) consider repeated production.
Strulovici (2017) and Maestri (2017) study renegotiation with limited commitment.
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Another approach to breaking the Coase Conjecture is to allow the seller to

intratemporally screen, e.g., by producing a variety, see (Wang, 1998; Takeyama,

2002; Hahn, 2006; Inderst, 2008a), or if buyers can exercise an outside option

(Board and Pycia, 2014). Recently, Nava and Schiraldi (2019) show that these re-

sults are consistent with the Coasean logic in the sense that the seller’s limit payoff

is the maximal static monopoly profit subject to the market-clearing condition.

In contrast to these papers, we consider the same basic game as in the classical

seminal contributions. Instead, we examine alternative information structures.

Outline. In Section 2, we present the general model. In Section 3, we provide sev-

eral examples to motivate our approach to mechanism design with limited commit-

ment. In Section 4, we study the durable-good monopoly application. In Section

5, we conclude. Omitted proofs and additional details are in the Appendices.

2 Model

Primitives. There are three players: a principal (he), an agent (she), and a medi-

ator (he).7 Time is discrete and periods are indexed by t ∈ T := {0, . . . , T}, where

2 ≤ T ≤ ∞. Let T0 := T \ {0} and T1 := T \ {0, 1}. At the beginning of period

t = 0, the agent observes her private information (type) θ ∈ Θ, which is distributed

according to a full-support probability distribution µ. The agent’s type does not

change over time. Each period t ∈ T0, as a result of the interaction between the

players, an allocation at ∈ At is determined; the set of admissible allocations may

be time dependent—hence, its dependence on t. Each allocation set At contains

the element ∅, corresponding to the non-participation allocation. For all t ∈ T0, let

At := ×tτ=1Aτ be the set of all allocation sequences of the form at := (aτ )
t
τ=1. For

all t ∈ T1, there is a correspondence At : At−1 ⇒ At such that, for all at−1 ∈ At−1,

At(at−1) ⊆ At describes the set of all allocations that the principal can offer in

period t given the allocations he has offered through period t− 1. This allows for

the case in which past allocations restrict what the principal can offer the agent

in the future. We assume that ∅ ∈ At(at−1) for all t ∈ T1 and at−1 ∈ At−1.

The set of all payoff-relevant pure outcomes of the game is Θ × AT . The

7We focus on the single-agent case throughout the paper, but there is no conceptual difficulty
in extending the model to more agents (indeed, the example in Section C.2 considers two agents).
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principal’s (resp., agent’s) preferences are represented by a bounded payoff func-

tion UP : Θ × AT → R (resp., UA : Θ × AT → R). The mediator is indifferent

over payoff-relevant pure outcomes—that is, his preferences are represented by

a constant payoff function UM : Θ × AT → R. All players are expected-payoff

maximizers. Thus, the mediator can commit to any strategy.

In each period t ∈ T0, the principal offers a spot contract Ct := (Mt, αt) to the

agent, where: (i) Mt is a set of input messages to the contract; (ii) αt : Mt → ∆(At)

is an allocation rule. We write αt(mt) for the probability distribution on At when

the input message to the contract is mt and αt(at |mt) for the probability of allo-

cation at when the input message to the contract is mt. We endow the principal

with a class of input message setsM := {M i}i∈I , where I is an index set; each M i

contains element ∅, interpreted as non-participation message. For all t ∈ T0, let

Ct := {Ct := (Mt, αt) ∈ M×∆(At)
Mt : αt(∅ |∅) = 1, αt(∅ |mt) = 0 for all mt 6=

∅} be the set of all admissible spot contracts in period t. Let C := {Ct}t∈T0 be the

set of all admissible spot contracts. Finally, for all t ∈ T0, let Mt := ×tτ=1M and

Ct := ×tτ=1Cτ . Hereafter, we refer to spot contracts simply as contracts.

In period t = 0, the agent has a set of possible private reports to send to the

mediator, denoted by R, with |R| ≥ |Θ|. In each period t ∈ T0, the principal (resp.,

the agent) has a set of possible private signals to receive from the mediator, de-

noted by SP,t (resp., SA,t). For all t ∈ T0, let StP := ×tτ=1SP,τ and StA := ×tτ=1SA,τ .

Timing. The timing of events within period t = 0 is the following:

0.1 The agent privately observes her type θ ∈ Θ.

0.2 The agent sends a private report r ∈ R to the mediator.

The timing of events within each period t ∈ T0 is the following:

t.1 The mediator sends a private signal sP,t ∈ SP,t to the principal.

t.2 The principal offers a contract Ct ∈ Ct to the agent with the the following

property: if t = 1, then,
∑

at∈At αt(at |mt) = 1 for all mt ∈ Mt; if t ∈ T1,

then
∑

at∈At(at−1) αt(at |mt) = 1 for all mt ∈Mt.

t.3 After both the mediator and the agent observe Ct, the mediator sends a

private signal sA,t ∈ SA,t to the agent.

t.4 The agent sends input message mt ∈ Mt to the contract, where mt is ob-
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served by the mediator, but not by the principal.

t.5 An allocation at is drawn from αt(mt), the allocation at is publicly observed,

and the game proceeds to the next period.

For all t ∈ T and n ∈ {1, . . . , 5}, we refer to t.n as “stage t.n” of the game.

Histories. For all t ∈ T , and n ∈ {1, . . . , 5}, we denote by ht.n a history at the

beginning of stage t.n and by H t.n the set of all such histories. Then, we have

H0.1 = {∅}, H0.2 = Θ, H1.1 = Θ×R, H1.2 = Θ×R×S1
P , H1.3 = Θ×R×S1

P ×C1,

H1.4 = Θ×R×S1
P ×C1×S1

A, H1.5 = Θ×R×S1
P ×C1×S1

A×M, and, for all t ∈ T1,

H t.1 = Θ×R× St−1
P × Ct−1 × St−1

A ×Mt−1 × At−1,

H t.2 = Θ×R× StP × Ct−1 × St−1
A ×Mt−1 × At−1,

H t.3 = Θ×R× StP × Ct × St−1
A ×Mt−1 × At−1,

H t.4 = Θ×R× StP × Ct × StA ×Mt−1 × At−1,

and H t.5 = Θ×R× StP × Ct × StA ×Mt × At−1.

For all t ∈ T0, we denote by ht a history at the end of period t and by H t the sets

of all possible such histories, with H t = Θ × R × StP × Ct × StA ×Mt × At. We

denote by HT the set of all terminal histories of the game.

Information Sets. For all i ∈ {P,A,M}, t ∈ T , and n ∈ {1, . . . , 5}, let ht.ni

denote player i’s information set at the beginning of stage t.n and by H t.n
i the set

of all such information sets.8

Mediated Contract-Selection Game. The above defines an extensive-form

game, which we dub the mediated contract-selection game (hereafter, MCS game)

and denote by G. Game G is common knowledge among the players.

Strategies. A behavioral strategy for the principal is a collection of functions

σP := (σt.2P )
T
t=1, where σt.2P : H t.2

P → ∆(Ct). A behavioral strategy for the agent

is a collection of functions σA :=
(
σ0.2
A , (σt.4A )

T
t=1

)
, where σ0.2

A : H0.2
A → ∆(R) and

σt.4A : H t.4
A → ∆(Mt). A behavioral strategy for the mediator is a collection of

8In particular, we have: H1.2
P is the projection of H1.2 on S1

P and, for all t ∈ T1, Ht.2
P is

the projection of Ht.2 on StP × Ct−1 × At−1; H0.2
A = H0.2, H1.4

A is the projection of H1.4 on
Θ×R×C1×S1

A, and, for all t ∈ T1, Ht.4
A is the projection of Ht.4 on Θ×R×Ct×StA×Mt−1×At−1;

H1.1
M is the projection of H1.1 on R, H1.3

M is the projection of H1.3 on R× S1
P × C1, and, for all

t ∈ T1, Ht.1
M is the projection of Ht.1 on R× St−1

P ×Ct−1 × St−1
A ×Mt−1 ×At−1 and Ht.3

M is the
projection of Ht.3 on R× StP × Ct × S

t−1
A ×Mt−1 ×At−1.
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functions σM := (σt.1M , σ
t.3
M )

T
t=1, where σt.1M : H t.1

M → ∆
(
SPt
)

and σt.3M : H t.3
M → ∆

(
SAt
)
.

A profile of behavioral strategies is σ := (σP , σA, σM).

A prior µ and a profile of behavioral strategies σ induce a probability distribu-

tion over payoff-relevant pure outcomes. We extend players’ payoff functions from

payoff-relevant pure outcomes
(
θ, aT

)
∈ Θ × AT to outcomes ν ∈ ∆

(
Θ × AT

)
in

the usual way. We denote by UP (ν) (resp., UA(ν)) the principal’s (resp., agent’s)

ex ante expected payoff at the beginning of the MCS game under outcome ν.

Beliefs. A principal’s belief is a collection of functions βP := (βt.2P )
T
t=1, where

βt.2P : H t.2
P → ∆(H t.2). Similarly, an agent’s belief is a collection of functions βA :=(

β0.2
A , (βt.4A )

T
t=1

)
, where β0.2

A : H0.2
A → ∆(H0.2) and βt.4A : H t.4

A → ∆(H t.4). Since

there are no optimality conditions on the mediator’s strategy, there is no need to

introduce beliefs for the mediator. A belief system is a pair β := (βP , βA).

Solution Concept. We refer to a profile of behavioral strategies and a belief

system (σ, β) as an assessment. The equilibrium notion we adopt is weak perfect

Bayesian equilibrium (hereafter, wPBE). An assessment (σ, β) is a wPBE of G if:

(i) σP (resp., σA) is sequentially rational given (σM , σA) (resp., (σM , σP )) and β;

and (ii) β is on-path consistent given σ (i.e., satisfies Bayes’ rule where possible).

Our wPBE notion does not restrict the belief system out of the equilibrium

path. However, all the wPBEs we study in this paper do not rely on “pathologi-

cal” or ad hoc specifications of the belief system out of the equilibrium path. In

particular, once our games are appropriately discretized in a way that they become

finite games, the wPBEs we construct can be sustained as sequential equilibria.

We say that ν ∈ ∆(Θ×AT ) is a wPBE outcome of G if there is a wPBE (σ, β)

of G that (together with µ) induces ν. We denote by E (resp., O) the set of all

wPBEs (resp., wPBE outcomes) of G.

Notation and Terminology. A contract Ct ∈ Ct is constant if, for some at ∈ At,
we have αt(at |mt) = 1 for all mt ∈ Mt \ {∅}. A contract Ct ∈ Ct is direct if

Mt = {∅} ∪Θ. Suppose E 6= ∅ and that arg maxν∈O UP (ν) 6= ∅; we say that ν∗ ∈
∆(Θ× AT ) is a principal-optimal wPBE outcome of G if ν∗ ∈ arg maxν∈O UP (ν).

Discussion. Our approach to mechanism design with limited commitment builds

on the notion of (sequential) communication equilibrium in multistage games with

communication (Forges, 1986; Myerson, 1986; Sugaya and Wolitzky, 2021, here-
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after FMSW). As in that literature, we interpret the mediator as a fictitious player

who has commitment power and designs the entire information structure of the

game. We follow this approach because, by the revelation-principle results in

FMSW (several versions depending on the specific solution concept), any admis-

sible information structure of the underlying multistage game without a mediator

and its equilibrium outcome can be represented by the mediated version of that

game and its corresponding equilibrium outcome (and viceversa).

We call an information structure admissible if it satisfies the two following con-

ditions. First, the agent’s type remains private unless the agent wants to disclose

it. Second, the exogenously given basic game—hence, the extensive form and the

principal’s limited commitment—is respected; in particular, in each period, the

contract chosen by the principal and the realized allocation are publicly observed.

3 Motivating Examples

We construct three examples to motivate the mediator approach to mechanism

design with limited commitment. The examples show that the set of all wPBE

outcomes under our approach can be larger than that under the alternative ap-

proaches in the literature. We identify three reasons for why this can be the case.9

1. Information Storage and Delayed Disclosure. In the MCS game, the me-

diator can store information—in particular, the agent’s report to the mediator—

and disclose it to the principal only in the future. Example 1 in Section 3.1 shows

that the principal’s ex ante expected wPBE payoff under information storage and

delayed disclosure can be greater than that when a given period’s information can

only be either (noisily) disclosed in the current period or never disclosed.

2. Deletion of Stored Information. In the MCS game, the information pro-

vided to the principal’s future selves can depend on their contract choices. In

particular, the mediator can punish a principal’s deviation to a non-equilibrium

contract by deleting any planned disclosure of stored information. Example 2 in

Appendix C.1 shows that the deletion of stored information is an effective threat

to prevent a principal’s deviation. As a result, the principal’s ex ante expected

9Of course, additional reasons may be possible.
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wPBE payoff can be greater than that when such punishments are not possible.

3. Equilibrium Multiplicity and Equilibrium Selection. In the MCS game,

continuation equilibrium selection can depend on the principal’s contract choice.

In particular, the mediator can punish a principal’s deviation to a non-equilibrium

contract by suboptimal equilibrium selection. Example 3 in Appendix C.2 shows

that suboptimal continuation equilibrium selection is an effective threat to prevent

a principal’s deviation. As a result, the principal’s ex ante expected wPBE payoff

can be greater than that when such punishments are not possible.

3.1 Example 1

Let T = {0, 1, 2, 3}. The principal is a seller who owns one unit of a durable,

indivisible good to which he assigns value 0 (normalization). The agent is a buyer

whose private type θ ∈ Θ = {1, 2} corresponds to her valuation for the good. Let

µ = 9
10

be the probability that θ = 2 at t = 0. If the buyer participates in period t,

an allocation for the period is a pair (xt, pt) ∈ {0, 1}×R, where xt indicates whether

the good is traded (xt = 1) or not (xt = 0) and pt is a transfer from the buyer

to the seller. If xt = 1 for some t < 3, by convention, allocation (xτ , pτ ) = (0, 0)

is implemented for all τ ∈ T with τ > t. Thus, the allocation set in period t is

At = {∅} ∪ ({0, 1} × R). If at = ∅, the seller’s and the buyer’s flow payoffs are

0; if at = (xt, pt), flow payoffs are θxt − pt for the buyer and pt for the seller. The

seller and the buyer share a common discount factor δ = 1
2
. The seller’s and the

buyer’s payoffs, UP (θ, a) and UA(θ, a), are the discounted sum of flow payoffs.

Information Storage and Delayed Disclosure. The following events occur in

a seller-optimal wPBE outcome the MCS game:10

• Period t = 0. The buyer truthfully reports her type θ to the mediator.

• Period t = 1. The mediator recommends to the seller to offer a menu with

two options: (i) trade with probability 17
18

at price 59
34

; (ii) do not trade. The

mediator recommends to type θ = 2 to choose option (i) and to type θ = 1

to choose option (ii). The seller and the buyer obey.

• Period t = 2. If no trade has occurred, the mediator recommends to the seller

10See Section 4 and Appendix H for the complete equilibrium characterization.
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to offer a menu with two options: (i) trade with probability 1 at price 2; (ii)

do not trade. The mediator recommends to type θ = 2 to choose option (i)

and to type θ = 1 to choose option (ii). The seller and the buyer obey.

• Period t = 3. If no trade has occurred, the mediator fully discloses the

buyer’s type report θ to the seller. The seller offers to trade at price θ and

type θ trades with probability 1 at price θ.

The mediator’s key role in this wPBE is to store the buyer’s report in period t =

0 and fully disclose it in period t = 3 to the seller. The mediator’s recommendation

to the seller in periods t = 1 and t = 2 does not depend on the buyer’s report.

To clarify the role of information storage and delayed disclosure, we contrast

the previous wPBE outcome with a seller-optimal wPBE outcome of the game in

which a given period’s information can only be either (noisily) disclosed in the cur-

rent period or never disclosed. The following events occur in a seller-optimal wPBE

outcome of the game studied by Doval and Skreta (2021) (hereafter, DS game):

• Period t = 1. Type θ = 2 trades with probability 8
9

at price 7
4
, while type

θ = 1 does not trade.

• Period t = 2. If no trade has occurred, type θ = 2 trades with probability 1

at price 3
2
, while type θ = 1 does not trade.

• Period t = 3. If no trade has occurred, both types trade with probability 1

at price 1.

Let x`,t (resp., xh,t) denote the probability with which type θ = 1 (resp.,

θ = 2) trades in period t; moreover, let p`,t (resp., ph,t) denote the transfer from

type θ = 1 (resp., θ = 2) to the seller conditional on trade in period t. The next

table summarizes the seller-optimal wPBE outcomes of the MCS and DS games.

Period t = 1 Period t = 2 Period t = 3

x`,1 p`,1 xh,1 ph,1 x`,2 p`,2 xh,2 ph,2 x`,3 p`,3 xh,3 ph,3

MCS Game 0 0 17
18

59
34

0 0 1
18

2 1 1 0 0

DS Game 0 0 8
9

7
4

0 0 1
9

3
2

1 1 0 0

In both wPBE outcomes, type θ = 2 trades with positive probability over

multiple periods, whereas type θ = 1 trades only in the last period. Crucially,

however, price paths and trade probabilities are different in the two wPBEs: first,
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the price path is not decreasing over time in the MCS game, whereas it is so in

the DS game; second, the probability of trading in period t = 1 (resp., t = 2) is

greater (resp., less) in the MCS game than in the DS game.

The intuition behind the different equilibrium dynamics is the following. In

the MCS game, in period t = 3, the seller can fully extract the surplus from the

transaction thanks to the mediator’s disclosure of the buyer’s type report (made in

period t = 0). Such surplus extraction is not possible without information storage.

In period t = 2, the seller offers price 2 in the MCS game and price 3
2

in the

DS game. In the MCS game, the seller has no incentive to lower the price below 2

because, even if type θ = 2 does not buy the good, the seller can still sell the good

at price 2 in period t = 3 thanks to the mediator’s disclosure of the buyer’s type

report. Since the seller’s (posterior) belief that θ = 2 at the beginning of period t =

2 is less than 1
2
, the ability to store information and delay its disclosure to the seller

is crucial to sustain a price of 2. Without such ability, sequential rationality would

require the seller to post a price equal to 1 whenever his (posterior) belief that θ = 2

at the beginning of period t = 2 is less than 1
2
. In other words, information storing

and its delayed disclosure increase the seller’s bargaining power in period t = 2.

In period t = 1, in the MCS game, the price is lower, but the probability of

trade is greater, than in the DS game. The probability of trade in the DS game

must be small enough for the seller’s (posterior) belief that θ = 2 at the beginning

of period t = 2 to be no less than 1
2
. Only when this occurs the seller can sell

to type θ = 2 at a price greater than 1; otherwise, sequential rationality would

require the seller to sell to both types with probability 1 at price 1.

The seller’s ex ante expected payoff in a seller-optimal wPBE outcome of the

MCS game is U∗P = µ
(∑3

t=1 δ
t−1xh,tph,t

)
+ (1 − µ)

(∑3
t=1 δ

t−1x`,tp`,t
)

= 558
360

, and

in a seller-optimal wPBE outcome of the DS game is Û∗P = µ
(∑3

t=1 δ
t−1xh,tph,t

)
+

(1 − µ)
(∑3

t=1 δ
t−1x`,tp`,t

)
= 540

360
. Since U∗P − Û∗P = 1

20
> 0, information storage

and delayed disclosure are beneficial from the seller’s ex ante viewpoint.

4 Durable-Good Monopoly

We apply the mediator approach to mechanism design with limited commitment to

the durable-good monopoly problem. The setting is as in Section 3.1, with the fol-
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lowing generalizations: the time horizon is infinite (T =∞); the common discount

factor is δ ∈ (0, 1); the buyer’s private valuation for the good is θ ∈ Θ = {θ`, θh},
where 0 < θ` < θh; the probability that θ = θh at t = 0 is µ ∈

(
θ`
θh
, 1
)

.11

Hereafter, G refers to the durable-good monopoly MCS game and E (resp., O)

to all its wPBEs (resp., wPBE outcomes). Finally, we denote by π := (δ, θ`, θh, µ)

the vector of exogenous parameters of the model.

Section Outline. We present our indirect approach to characterize the set O in

Section 4.1. We characterize a seller-optimal wPBE outcome of G in Section 4.2

and discuss its mediated and unmediated implementation in Sections 4.3 and 4.4.

4.1 Indirect Approach

To characterize the set O, we could rely on (some versions of) the revelation prin-

ciple in FMSW. Informally, when applied to our setting, the FMSW revelation

principle says that it is without loss to assume the following:

1. In period t = 0, the buyer’s report to the mediator is her type, i.e., R = Θ.

2. In each period t ∈ T0: the mediator’s signal to the seller is a recommendation

of an admissible contract, i.e., SP,t = Ct; the mediator’s signal to the buyer

is a recommendation of an input message to the contract, i.e., SA,t = Mt.

3. In period t = 0, the buyer truthfully reports her type to the mediator; in each

period t ∈ T0, the seller and the buyer obey the mediator’s recommendation.

The revelation principle in FMSW simplifies the characterization of the set O
relative to the original setting in which any indirect reports and signals are al-

lowed. However, its literal application is still challenging. In particular, when the

set of admissible contracts C is large, there are two challenges: (i) identifying the

sequence of contracts that the seller offers on the equilibrium path; and (ii) veri-

fying the seller’s obedience to the on-path contracts for all possible deviations to

off-path contracts. We circumvent these issues by following an indirect approach

based on the insights we develop in the remaining part of this section.

11When µ ≤ θ`
θh

, a fully committed seller would post price θ` and trade with both types in pe-
riod t = 1. This is also a seller-optimal wPBE outcome of the durable-good monopoly MCS game.
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4.1.1 Outcome-Based Approach

We represent any outcome of G by a sequence of trade probabilities and expected

transfers (x,p) := (x`,t, xh,t, p`,t, ph,t)
∞
t=1, where x`,t (resp., xh,t) denotes the proba-

bility with which the seller trades with type θ` (resp., θh) in period t, and p`,t (resp.,

ph,t) denotes the expected transfer from type θ` (resp., θh) to the seller in period t.

To form an outcome of G, a sequence (x,p) must satisfy the obvious feasibility con-

straints: xk,t ≥ 0 for all k ∈ {`, h} and t ∈ T0, and
∑∞

t=1 xk,t ≤ 1 for all k ∈ {`, h}.
Given an outcome (x,p):

• For all k ∈ {`, h}, we denote by xk,t(x,p) the probability with which type

θk trades in period t in outcome (x,p) conditional on no trade before.

• For all k ∈ {`, h}, we denote by pk,t(x,p) the expected transfer from type

θk to the seller in period t in outcome (x,p) conditional on no trade before.

• We denote by C(x,p) := (Ct(x,p))∞t=1 the sequence of direct contracts corre-

sponding to outcome (x,p). That is, Ct(x,p) is the direct contract allocating

(xt, pt) =

 (1, pk,t(x,p)) with probability xk,t(x,p)

(0, pk,t(x,p)) with probability 1− xk,t(x,p)

if the input message to the direct contract is θk for all k ∈ {`, h}.

Thus, one can think of the mediator’s strategy as directly recommending

outcomes—or, equivalently, direct contracts to the seller and type reports to the

direct contract to the buyer—instead of sending signals to the seller and the buyer.

4.1.2 Upper-Bound Problem

Let C` denote the constant contract allocating (x, p) = (1, θ`). To form a wPBE

outcome of G, an outcome (x,p) must be such that: (i) the buyer’s incentive

compatibility constraint when sending a report to the mediator in period t = 0

is satisfied; (ii) in each period t ∈ T0, the buyer’s expected continuation payoff is

non-negative; (iii) in each period t ∈ T0, the seller’s expected continuation payoff

is non-negative; (iv) in each period t ∈ T0 such that trade has not yet occurred,

the seller’s expected continuation payoff must be no less than that from ending

the game by offering the constant contract C` in period t. Requirements (i)–(iii)

are obvious. To understand requirement (iv), it is enough to note that, in any
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wPBE of G, if trade has not yet occurred by period t and the seller offers contract

C` in period t, both buyer types accept the contract, and the game ends.

The next theorem formalizes the previous discussion by identifying necessary

conditions on outcomes (x,p) to form a wPBE outcome of G.

Theorem 1 (Upper-Bound Problem). Consider any (x,p) ∈ O. Then, there

exists (σ, β) ∈ E that induces (x,p) and satisfies the following conditions:

1. For all θ, θ′ ∈ Θ, at information set h0.2
A = {θ}, the buyer’s expected contin-

uation payoff by playing σ0.2
A (θ) is at least as high as that by playing σ0.2

A (θ′).

2. For all t ∈ T0 and ht.4A ∈ H t.4
A , the buyer’s expected continuation payoff is

non-negative.

3. For all t ∈ T0 and ht.2P ∈ H t.2
P , the seller’s expected continuation payoff is

non-negative.

4. For all t ∈ T0 and ht.2P ∈ H t.2
P such that trade has not yet occurred by period

t, the seller’s expected continuation payoff is not less than that from ending

the game by offering the constant contract C` in period t.

Relaxed Revelation Principle. The outcome-based approach and Theorem 1

together can be interpreted as a relaxed revelation principle. They allow us to

characterize candidate wPBE outcomes by solving a problem that is a much sim-

pler relaxation of the original problem. First, the space of all outcomes is much

more well-structured than the unrestricted set of all admissible contracts C. Sec-

ond, the set of incentive compatibility and obedience constraints is much smaller;

in particular, for the seller’s obedience, we can focus only on deviations to the

constant contract C`, ignoring all the other obedience constraints.

4.1.3 Lower-Bound Problem

For all µ̃ ∈ (0, 1), let (xc(µ̃),pc(µ̃)) denote the Coasean outcome of G when the

seller’s initial belief that θ = θh is µ̃. That is, (xc(µ̃),pc(µ̃)) is the outcome that

would arise in the essentially unique equilibrium of G in which the mediator repli-

cates the information structure in Doval and Skreta (2021) when the seller’s initial

belief that θ = θh is µ̃. Moreover, let C(xc(µ̃),pc(µ̃)) := (Ct(x
c(µ̃),pc(µ̃)))∞t=1 be

the corresponding sequence of direct contracts.
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The next theorem identifies sufficient conditions on outcomes (x,p) to form a

wPBE outcome of G. Let H̃1.4
A be the projection of H1.4 on R×C1×S1

A, and, for all

t ∈ T1, let H̃ t.4
A be the projection of H t.4 on R×Ct×StA×Mt−1×At−1. For all t ∈ T0,

we denote by h̃t.4A a typical element of H̃ t.4
A . Note that H t.4

A = Θ×H̃ t.4
A for all t ∈ T0.

Theorem 2 (Lower-Bound Problem). Consider an outcome (x,p) of G and let

(σ, β) be an assessment of G that induces (x,p) and such that β is on-path con-

sistent given σ. Suppose that the following conditions hold:

1. For all θ, θ′ ∈ Θ, at information set h0.2
A = {θ}, the buyer’s expected contin-

uation payoff by playing σ0.2
A (θ) is at least as high as that by playing σ0.2

A (θ′).

2. For all t ∈ T0 and ht.4A ∈ H t.4
A , the buyer’s expected continuation payoff is

non-negative.

3. For all t ∈ T0, θ, θ′ ∈ Θ and h̃t.4A ∈ H̃ t.4
A , at information set ht.4A =

(
θ, h̃t.4A

)
,

the buyer’s expected continuation payoff by playing σt.4A
(
θ, h̃t.4A

)
is at least

as high as that by playing σt.4A
(
θ′, h̃t.4A

)
.

4. For all t ∈ T0 and ht.2P ∈ H t.2
P , the seller’s expected continuation payoff is

not less than that he would obtain by offering the sequence of contracts

C(xc(µt),pc(µt)) thereafter, where µt is the seller’s belief that θ = θh at ht.2P

derived from (σ, β).

Then, (σ, β) ∈ E and (x,p) ∈ O.

Conditions 1 and 2 in Theorem 2 correspond to conditions 1 and 2 in Theorem

1. Condition 3 in Theorem 2 requires the buyer’s incentive compatibility constraint

when sending an input message to the contract to be satisfied in each period. When

conditions 1–3 in Theorem 2 hold, the buyer’s sequential rationality follows.

Condition 4 in Theorem 2 says that if an outcome satisfies the seller’s obe-

dience with respect to deviations to contracts C(xc(µt),pc(µt)), then the seller’s

sequential rationality follows. To see why it suffices to focus on such deviations,

consider the following mediator’s strategy at any t ∈ T0:

• Stage t.1: the mediator recommends the direct contract Ct(x,p) to the seller.

• Stage t.3: (i) if the seller offered contract Ct(x,p) at stage t.2, the mediator

recommends the buyer to participate and truthfully report her type; (ii) if the

seller offered contract Ct 6= Ct(x,p) at stage t.2, the mediator reverts to the
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replication of the essentially unique equilibrium outcome in Doval and Skreta

(2021), in which the seller can do no better and no worse than if he could only

set prices in each period, and so the Coasean outcome obtains thereafter.

Given the mediator’s strategy, the seller’s most profitable deviation in period t is to

the sequence of contracts C(xc(µt),pc(µt)). If an outcome (x,p) satisfies condition

4 in Theorem 2, it also satisfies the necessary conditions 3 and 4 in Theorem 1.

Mediated Implementation in Direct Contracts. The outcome-based ap-

proach and Theorem 2 together can be interpreted as mediated implementation

in direct contracts. They allow us to characterize wPBE outcomes by solving a

problem that is simpler than the original problem. In particular, for the seller’s

obedience, we can focus only on deviations to a well-defined sequence of contracts.

4.2 Seller-Optimal wPBE Outcomes

We denote by U∗P the seller’s ex ante expected payoff in a seller-optimal wPBE out-

come of G. Moreover, we denote by Rn∞ the set of all sequences with values in Rn.

Upper-Bound Problem. By Theorem 1, to find a candidate for a seller-optimal

wPBE outcome of G, it suffices to solve the following linear program:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P1)

s.t. x`,t, xh,t ≥ 0 ∀ t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θ`x`,t − p`,t) ≥
∞∑
t=1

δt−1(θ`xh,t − ph,t) (IC`)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 ∀ τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 ∀ τ ∈ T0 (IRh)
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µ

(
τ−1∑
t=1

θ`xh,t +
∞∑
t=τ

δt−τph,t

)
(O`)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` ∀ τ ∈ T0.

The inequalities (F1)–(F3) are the feasibility constraints. The inequalities (IC`)

and (ICh) are the buyer’s incentive compatibility constraints in period t = 0 (con-

dition 1 in Theorem 1). The inequalities (IR`) and (IRh) are the buyer’s individual

rationality (or participation) constraints for all τ ∈ T0 (condition 2 in Theorem

1). The inequalities in (O`) are the seller’s obedience constraints for all τ ∈ T0

with respect to the deviation to contract C` (condition 4 in Theorem 1). The

inequalities in (O`) also ensure that the seller’s expected continuation payoff is

non-negative for all τ ∈ T0 (condition 3 in Theorem 1).

In Appendix B, by using linear programming duality arguments, we solve the

linear program (P1) and establish the following result.

Theorem 3 (A Candidate for a Seller-Optimal wPBE Outcome). The following

characterizes a candidate for a seller-optimal wPBE outcome of G. For all δ ∈ (0, 1)

and µ ∈
(
θ`
θh
, 1
)

, there exists a positive integer T ≥ 2 such that:12

1. The game ends in period t = T .

2. Type θ` trades only (and with probability 1) in period t = T at price θ`.

3. Type θh trades with positive probability in all periods t ∈
{

1, . . . , T − 1
}

at

price θh, except for period t = 1, when he trades at price in (θ`, θh).

4. As δ → 1, T →∞.

Hereafter, we denote by (x∗,p∗) the solution to program (P1) we describe in

Theorem 3 and characterize in Appendix B. At (x∗,p∗) of G, the Coase conjecture

fails, as the following theorem formalizes (see Appendix D for the proof).

Theorem 4 (Failure of the Coase Conjecture). For all µ ∈
(
θ`
θh
, 1
)

, at the solution

(x∗,p∗) to program (P1), as δ → 1:

1. The seller’s ex ante expected payoff is bounded away from θ`.

2. The outcome is bounded away from first-best efficiency.

12The value of T as well as that of all the other endogenous variables depend on the model’s ex-
ogenous parameters π. Hereafter, we omit such dependence from the notation unless it is needed.
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3. If, in addition, θ` → 0, the seller’s ex ante expected payoff converges to the

commitment payoff.

Lower-Bound Problem. Let U c
P (µ̃; δ) denote the seller’s expected payoff from

contracts C(xc(µ̃),pc(µ̃)) when the seller’s initial belief that θ = θh is µ̃. Moreover,

let (x,p) := (x`,t, xh,t, p`,t, ph,t)
∞
t=1 be an outcome of G. For all τ ∈ T0, let

µτ (x,p) :=

(
1−

τ−1∑
t=1

xh,t

)
µ(

1−
τ−1∑
t=1

x`,t

)
(1− µ) +

(
1−

τ−1∑
t=1

xh,t

)
µ

(1)

be the seller’s belief that θ = θh at the beginning of stage τ.2 under outcome (x,p).

Thus, under outcome (x,p), U c
P (µτ (x,p); δ) corresponds to the seller’s expected

continuation payoff at stage τ.2 from contracts C(xc(µτ (x,p)),pc(µτ (x,p))).

By Theorem 2, if (x∗,p∗) also satisfies the following constraints

∞∑
t=τ

δt−τ (θ`x
∗
`,t − p∗`,t) ≥ (θ`x

∗
h,τ − p∗h,τ )

(
1−

τ−1∑
t=1

x∗`,t

)
∀ τ ∈ T0, (IC`′)

∞∑
t=τ

δt−τ (θhx
∗
h,t − p∗h,t) ≥ (θhx

∗
`,τ − p∗`,τ )

(
1−

τ−1∑
t=1

x∗h,t

)
∀ τ ∈ T0, (ICh′)

µ

(
τ−1∑
t=1

U c
P (µτ (x

∗,p∗); δ)x∗h,t +
∞∑
t=τ

δt−τp∗h,t

)
(O)

+ (1− µ)

(
τ−1∑
t=1

U c
P (µτ (x

∗,p∗); δ)x∗`,t +
∞∑
t=τ

δt−τp∗`,t

)
≥ U c

P (µτ (x
∗,p∗); δ) ∀ τ ∈ T0,

then (x∗,p∗) is a seller-optimal wPBE outcome of G. The inequalities in (IC`′) and

(ICh′) are the buyer’s incentive compatibility constraints for all τ ∈ T0 (condition

3 in Theorem 2). To understand the right-hand side of the inequalities in (IC`′)

(resp., (ICh′)), note that if type θ` (resp., θh) deviates in period τ , then in period

τ+1 the mediator can disclose the buyer’s true type to the seller, who then extracts

the full surplus; as a result, type θ`’s (resp., θh’s) payoff from deviating is at most

θ`x
∗
h,τ − p∗h,τ (resp., θhx

∗
`,τ − p∗`,τ ). The inequalities in (O) are the seller’s obedience

constraints at stage τ.2 for all τ ∈ T0 with respect to the deviation to offering

contracts C(xc(µτ (x,p)),pc(µτ (x,p))) thereafter (condition 4 in Theorem 2).

In Appendix E, we show that (x∗,p∗) satisfies constraints (IC`′) and (ICh′).

Moreover, we also show that, for all δ ∈ (0, 1), there exists µ(δ) ∈
(
θ`
θh
, 1
)

such
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that, for all µ ∈
(
θ`
θh
, µ(δ)

]
, µ2(x∗,p∗) ≤ θ`

θh
, and so µτ (x

∗,p∗) ≤ θ`
θh

for all

τ > 2. Hence, for all τ ∈ T1 such that min
{∑τ−1

t=1 x`,t,
∑τ−1

t=1 xh,t
}
< 1, we have

U c
P (µτ (x

∗,p∗); δ) = θ`. Therefore, since (x∗,p∗) satisfies constraint (O`), it also

satisfies constraint (O) for all τ ∈ T1. Moreover, since (x∗,p∗) maximizes the

seller’s ex ante expected payoff in the relaxed upper-bound problem (P1), it also

satisfies constraint (O) in period τ = 1. The next theorem follows.

Theorem 5 (A Seller-Optimal wPBE Outcome). For all δ ∈ (0, 1), there exists

µ(δ) ∈
(
θ`
θh
, 1
)

such that, for all µ ∈
(
θ`
θh
, µ(δ)

]
, (x∗,p∗) is a seller-optimal wPBE

outcome of G. Moreover, µ(δ) satisfies the following properties: (i) µ(δ) is decreas-

ing in δ; (ii) µ(δ)→ 1 as δ → 0; and (iii) µ(δ) is bounded away from θ`
θh

as δ → 1.

For µ > µ(δ), (x∗,p∗) need not satisfy constraint (O), as it can be that

U c
P (µ2(x∗,p∗); δ) > θ`. However, in Appendix F we show that a sufficient condition

for (x∗,p∗) to satisfy constraint (O) is that it satisfies the following constraint:

µ

(
τ−1∑
t=1

(θ` + ε(δ))x∗h,t +
∞∑
t=τ

δt−τp∗h,t

)
(O′)

+ (1− µ)

(
τ−1∑
t=1

θ`x
∗
`,t +

∞∑
t=τ

δt−τp∗`,t

)
≥ θ` + µε(δ) ∀ τ ∈ T0,

where ε(δ) := U c
P (µ̃; δ) − θ` and µ̃ is some (well-chosen) element of

(
θ`
θh
, 1
)

. By

the Coase conjecture, as δ → 1, U c
P (µ̃; δ)→ θ`, and so ε(δ)→ 0; that is, as δ → 1,

constraint (O′) converges to constraint (O`) in program (P1).

Next, consider the following linear program:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P2)

s.t. (F1), (F2), (F3), (IC`), (ICh), (IR`), (IRh), (IC`′), (ICh′), (O′).

Denote by UP2
P (π) the optimal value of the linear program (P2). Since con-

straint (O′) is more demanding than constraint (O), we have that UP2
P (π) ≤ U∗P

for all δ ∈ (0, 1). In Appendix G, we characterize a solution to program (P2),

which we denote by (x∗(δ),p∗(δ)), and establish the following theorem.

Theorem 6 (A Seller-Approximately Optimal wPBE Outcome). For all µ ∈
(µ(δ), 1), as δ → 1: (i) (x∗(δ),p∗(δ))→ (x∗,p∗), and (ii) UP2

P (π)→ U∗P .
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By Theorems 4–6, the Coase conjecture fails at the seller-optimal mechanism.

Discussion. Our characterization of the seller-optimal information structure un-

covers the following results of economic substance. In general, the seller finds it op-

timal if the information input by the buyer arrives precisely (i.e., without garbling)

but with delay. Formally, the optimal information structure specifies an endoge-

nous deadline T at which the buyer’s private information report is made public; un-

til then, no information—except whether a trade has occurred or not—is revealed.

Intuitively, delayed (but precise) information disclosure increases the seller’s

bargaining power. Relative to the case in which no such information arrives, the

seller’s incentive to offer a more aggressive price is stronger because even if the

buyer did not buy at that aggressive price, full extraction would be possible once

the time comes. Furthermore, once the seller becomes aggressive in some period,

he can also be more aggressive in the previous period as the buyer has less con-

tinuation payoff conditional on no trading. In this sense, the aggressiveness of

each seller’s self is a “strategic complement” to each other. Indeed, except for the

initial period, the seller offers the high, surplus-extracting price until the time of

revelation.

As a result, equilibrium prices are different from the classical pattern of de-

creasing prices: our case may be interpreted as an initial “fire sale” followed by the

rigid high price. Even in the limiting case of perfect patience, the seller extracts

surplus from trade and trade is not efficient. Thus, we identify a novel reason why

the Coase conjecture can fail.

4.3 Mediated Implementation

Let C(x∗,p∗) := {Ct(x∗,p∗)}∞t=1 be the sequence of direct contracts corresponding

to outcome (x∗,p∗). Then, we have the following.

Theorem 7 (Mediated Implementation of (x∗,p∗)). Suppose µ ∈
(
θ`
θh
, µ(δ)

]
.

Then, there exists a wPBE of G which satisfies the following properties:

1. The two buyer types fully separate from each other at stage 0.2.

2. The seller and the buyer always obey the mediator’s recommendations.

3. For all t ∈ T0: at stage t.1, the mediator recommends contract Ct(x
∗,p∗) to
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the seller; at stage t.3, the mediator recommends the buyer to participate

and to truthfully report her type.

Such wPBE induces outcome (x∗,p∗).

That any wPBE in which properties 1–3 in Theorem 7 hold induces outcome

(x∗,p∗) is obvious. Moreover, since (x∗,p∗) satisfies constraints (IC`), (ICh),

(IR`), (IRh), (IC`′), (ICh′), and (O), it satisfies the sufficient conditions 1–4 in

Theorem 2. Thus, Theorem 7 follows.

Now let C(x∗(δ),p∗(δ)) := {Ct(x∗(δ),p∗(δ))}∞t=1 be the sequence of direct

contracts corresponding to (x∗(δ),p∗(δ)). Then, we have the following.

Theorem 8 (Mediated Implementation of (x∗(δ),p∗(δ))). Suppose µ ∈
(
θ`
θh
, 1
)

.

Then, there exists a wPBE of G which satisfies the following properties:

1. The two buyer types fully separate from each other at stage 0.2.

2. The seller and the buyer always obey the mediator’s recommendations.

3. For all t ∈ T0: at stage t.1, the mediator recommends contract Ct(x
∗(δ),p∗(δ))

to the seller; at stage t.3, the mediator recommends the buyer to participate

and to truthfully report her type.

Such wPBE induces outcome (x∗(δ),p∗(δ)).

That any wPBE in which properties 1–3 in Theorem 8 hold induces outcome

(x∗(δ),p∗(δ)) is obvious. Since (x∗(δ),p∗(δ)) satisfies constraints (IC`), (ICh),

(IR`), (IRh), (IC`′), and (ICh′), it satisfies conditions 1–3 in Theorem 2. More-

over, since (x∗(δ),p∗(δ)) satisfies constraint (O′), which is more stringent than

constraint (O), it also satisfies condition 4 in Theorem 2. Thus, Theorem 8 follows.

4.4 Unmediated Implementation

So far, by considering the mediator, we allowed for arbitrary information struc-

tures. However, it is also interesting to understand whether the seller-optimal

wPBE outcome of G is attainable without a mediator. Recently, Brzustowski

et al. (2021) consider an unmediated durable-good monopoly problem where the

seller can offer a long-term “smart” contract, though he may discard it and em-

ploy a new long-term contract in any future period, reflecting the idea of limited
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commitment. They construct an equilibrium where the seller initially offers a d-

abiding contract, which is a contract that no future seller wants to discard, and

show that the Coase conjecture fails if players are sufficiently patient. Following

Brzustowski et al. (2021), in this section, we consider the unmediated durable-

good monopoly problem with long-term smart contracts and argue that the medi-

ated seller-optimal outcome is attainable if and only if µ ≤ µ(δ). However, even if

µ > µ(δ), we argue that an appropriately-modified version of our approach is useful

to characterize the best unmediated equilibrium. Since it is well beyond the scope

of this paper to formally introduce such an unmediated model where the seller can

also offer long-term contracts, we keep the argument informal and concise.

Low Prior. Suppose µ ≤ µ(δ). Assume that the seller in period t = 1 can

design the following long-term smart contract : first, the buyer is asked to report

her type θ; this report is not observed by the seller but remains under crypto-

graphic encryption, which is to be decrypted at some predetermined date T ; until

T , the contract specifies the same sequence of allocations as in the mediated so-

lution. Due to limited commitment, the seller can discard this contract in any

future period and propose a new long-term smart contract. However, discarding

the original contract implies the loss of the encrypted information.

If the seller does not discard the original contract, the same outcome as in the

mediated solution obtains. At the mediated solution, if µ ≤ µ(δ), the seller’s obe-

dience constraint in binding and so his continuation expected payoff is θ` in any pe-

riod t ≥ 2. Thus, even a fully-committed seller prefers obeying the mediator’s rec-

ommendation to any deviation. Clearly, the same is true in the unmediated case.

High Prior. If µ > µ(δ), in the mediated solution, we obtain both an upper and

a lower bound for the seller’s ex ante expected payoff, and show that they coincide

as δ → 1. In particular, to attain the lower bound, the mediator actively selects

an information structure and a continuation equilibrium after any deviation of the

seller in a way that the Coasian outcome obtains (so that the deviating seller’s

continuation payoff converges to θ` as δ → 1). In this sense, the set of continuation

outcomes for a deviating seller is carefully selected by the mediator.

In the unmediated environment, in each period, the seller has the same set of

feasible continuation outcomes and so a larger set of possible deviations. Thus, the
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seller’s ex ante expected payoff at a seller-optimal unmediated equilibrium can be

lower than that at a seller-optimal wPBE outcome of G. We next argue that, even

in such cases, an appropriately-modified version of our approach can be useful.

Let V ∗u (µ) be the seller’s ex ante expected payoff in the seller-optimal unmedi-

ated equilibrium when the seller’s initial belief that θ = θh is µ. The function

V ∗u : [0, 1]→ R can be characterized pointwise (i.e., for each µ ∈ [0, 1]) as follows:

V ∗u (µ) := max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(Pu)

s.t. (F1), (F2), (F3), (IC`), (ICh), (IR`), (IRh),

µ

(
τ−1∑
t=1

V ∗u (µτ (x,p))xh,t +
∞∑
t=τ

δt−τph,t

)
(0u)

+ (1− µ)

(
τ−1∑
t=1

V ∗u (µτ (x,p))x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ V ∗u (µτ (x,p)) ∀ τ ∈ T0.

The same V ∗u appears in the seller’s obedience constraint (0u) because, in each

period, the seller has the same set of feasible deviations as in the first period.

For any convex, increasing function V : [0, 1] → R, let W (V ) be the value

function of the constrained maximization problem (Pu) in which V ∗u (µτ (x,p)) in

constraint (0u) is replaced by V (µτ (x,p)) for all τ ∈ T0. Then, V ∗u is a fixed point

of the operator W : V ∗u = W (V ∗u ). Clearly, W is non-increasing in the sense that,

if V ≤ V ′ (pointwise, i.e., V (µ) ≤ V ′(µ) for all µ ∈ [0, 1]), then W (V ) ≥ W (V ′).

We know that (i) V ∗u (µ) = θ` for µ ∈
[
0, θ`

θh

]
, and (ii) V ∗u (µ) is equal to the value

under the mediated solution for µ ∈
(
θ`
θh
, µ(δ)

]
. Let V 1 be the smallest convex,

increasing function V : [0, 1]→ R that satisfies (i) and (ii).13 Clearly, V 1 ≤ V ∗u .

Let V̂ 1 = W (V 1) be the value function of the constrained maximization prob-

lem (Pu) in which V 1 is used in constraint (0u). By monotonicity of W , V ∗u ≤ V̂ 1.

Now, we conjecture that there exists µ1 ∈ (µ(δ), 1] such that V̂ 1(µ) = V ∗u (µ) >

V 1(µ) for all µ ∈ (µ(δ), µ1]. The idea is that, if µ < µ1, then the optimal mech-

anism in the problem of W (V 1) would be such that, right after the initial trade,

the posterior µ1 drops below µ(δ). Since V 1 and V ∗u already coincide for beliefs

below µ(δ), the same mechanism continues to be feasible (given µ) even in the

13This V 1 is identified by V 1(µ) = V ∗u (µ(δ)) + ∂V
∂µ (µ(δ))(µ− µ(δ)) for µ > µ(δ).
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problem of W (V ∗u ). Therefore, we must have V̂ 1(µ) = V ∗u (µ) for µ < µ1.14

This further suggests that the entire V ∗u can be characterized iteratively. Let

V 2 be the smallest convex function such that V 2(µ) = V̂ 1(µ) (= V ∗u (µ)) for µ < µ1,

and let V̂ 2 = W (V 2). In the problem of W (V 2), it is conjectured that there would

be µ2 > µ1 such that V̂ 2(µ) = V ∗u (µ) for all µ < µ2. If the increasing sequence

µ1, µ2, . . . converges to 1, then the entire V ∗u is characterized.

5 Conclusion

We propose a mediator approach to mechanism design with limited commitment.

Our approach builds on the (sequential) communication equilibrium notion in mul-

tistage games with communication and enables a systematic study of equilibrium

outcomes under all admissible information structures. We represent the informa-

tion structure as a fictitious mediator and re-interpret the model as mechanism de-

sign by the committed mediator. We construct examples to explain why new equi-

librium outcomes can arise when general information structures are considered.

In the durable-good monopoly application, trading outcomes and welfare con-

sequences can substantially differ from those in the classical model with a fixed

information structure. In the seller-optimal mechanism, the seller offers a discount

to the high-valuation buyer in the initial period, followed by the high, surplus-

extracting price until some endogenous deadline, when the buyer’s information is

revealed and fully extracted. As a result, the Coase conjecture fails. We also char-

acterize mediated and unmediated implementation of the seller-optimal outcome.

To circumvent the key challenge regarding the complexity of the seller’s con-

tract space, we take an outcome-based approach and propose two simpler auxiliary

problems whose values provide an upper and a lower bound to the value of the

original problem. These bounds are enough to characterize seller-optimal equi-

librium outcomes. We interpret the two auxiliary problems as relaxed revelation

principle and mediated implementation in direct contracts.

Our approach can be used to characterize robust predictions in bargaining

games with one-sided incomplete information—i.e., to characterize the set of all

equilibrium outcomes that can arise under any admissible information structure.

14If δ ' 1, µ(δ) ' 0.8 and µ1 ' 0.956 > 0.8. A more formal argument is available upon request.
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Moreover, our approach is potentially useful in other problems with a partially

committed principal. A first example is mechanism design with an informed prin-

cipal, where the principal can perfectly commit to a mechanism, but only after

observing a private signal, and so he is subject to sequential rationality given each

signal realization. A second example is mechanism design with multiple principals,

where each principal can perfectly commit to his mechanism but cannot control

other principals’ mechanisms. We plan to explore these ideas in future work.
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A Notation

Throughout the appendices, we use the following notation:

∆θ := θh − θ`, (2)

r :=
θh − δθ`
δ∆θ

, (3)

ρ := δr. (4)

Note that ∆θ > 0 and that r > 1 and ρ > 1 for all δ ∈ (0, 1). Moreover, note that

(3) =⇒ 1− r = −(1− δ)θh
δ∆θ

(5)

and (4) =⇒ 1− ρ = −(1− δ)θ`
∆θ

. (6)

B Proof of Theorem 3

B.1 Simplifying the Primal Program (P1)

In the primal program (P1): (i) we ignore constraint (IC`) and we will verify

in Appendix B.5 that it is satisfied by the solution to the relaxed version of the

program; (ii) constraints (ICh) and (IR`) for τ = 1, together with the assumption

that θh > θ`, imply that constraint (IRh) is satisfied for τ = 1; (iii) that the seller’s

payoff in a seller-optimal wPBE must be at least θ` implies that constraint (O`) is

satisfied for τ = 1. As a result, the relaxed version of program (P1) is the following:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P1a)

s.t. x`,t, xh,t ≥ 0 ∀ t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 ∀ τ ∈ T0 (IR`)
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∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 ∀ τ ∈ T1 (IRh)

µ

(
τ−1∑
t=1

θ`xh,t +
∞∑
t=τ

δt−τph,t

)
(O`)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` ∀ τ ∈ T1.

B.2 The Dual of Program (P1a)

Let ξ :=
(
α, β, ζ, (λ`,t, λh,t+1, γt+1)∞t=1

)
∈ R3 × R3∞, where: α (resp., β) is the

Lagrange multiplier associated to constraint (F2) (resp., (F3)) in program (P1a);

ζ is the Lagrange multiplier associated to constraint (ICh) in program (P1a); for

all t ∈ T0, λ`,t is the Lagrange multiplier associated to constraint (IR`) in period

t in program (P1a); for all t ∈ T0, λh,t+1 is the Lagrange multiplier associated

to constraint (IRh) in period t + 1 in program (P1a); for all t ∈ T0, γt+1 is the

Lagrange multiplier associated to constraint (O`) in period t+1 in program (P1a).

The dual program of program (P1a) is the following:

min
ξ∈R3×R3∞

α + β −
∞∑
t=2

θ`γt (P1b)

s.t. α ≥ 0, β ≥ 0, ζ ≥ 0, λ`,t, λh,t+1, γt+1 ≥ 0 ∀ t ∈ T0 (7)

α ≥ −δt−1θhζ +
t∑

τ=1

δt−τθ`λ`,τ +
∞∑

τ=t+1

(1− µ)θ`γτ ∀ t ∈ T0, (8)

β ≥ δt−1θhζ +
t∑

τ=2

δt−τθhλh,τ +
∞∑

τ=t+1

µθ`γτ ∀ t ∈ T0, (9)

δt−1ζ −
t∑

τ=1

δt−τλ`,τ +
t∑

τ=2

δt−τ (1− µ)γτ + δt−1(1− µ) = 0 ∀ t ∈ T0, (10)

− δt−1ζ −
t∑

τ=2

δt−τλh,τ +
t∑

τ=2

δt−τµγτ + δt−1µ = 0 ∀ t ∈ T0, (11)

where constraints (10) and (11) hold with equality as p`,t and ph,t are unrestricted

(i.e., they can be positive or negative) for all t ∈ T0 in the primal program (P1a).
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B.3 A Candidate Solution to the Dual Program (P1b)

We recover a candidate solution ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,t, λ

∗
h,t+1, γ

∗
t+1

)∞
t=1

)
∈ R3×R3∞

to program (P1b).

Step 1. Solve equations (11) at successive values of t, starting with t = 1, to find

ζ∗ = µ and λ∗h,t = µγ∗t for all t ∈ T1. (12)

Next, solve equations (10) at successive values of t, starting with t = 1, to find

λ∗`,1 = 1 and λ∗`,t = (1− µ)γ∗t for all t ∈ T1. (13)

Step 2. Given equations (12) and (13), the dual program (P1b) simplifies to:

min
(α,β,(γt)

∞
t=2)∈R2×R∞

α + β −
∞∑
t=2

θ`γt (P1c)

s.t. α ≥ 0, β ≥ 0, γt ≥ 0 ∀ t ∈ T1 (14)

α ≥ δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγτ +
∞∑

τ=t+1

γτ

]
∀ t ∈ T0, (15)

β ≥ δt−1µθh + µ

[
t∑

τ=2

δt−τθhγτ +
∞∑

τ=t+1

θ`γτ

]
∀ t ∈ T0. (16)

Step 3. As program (P1c) is a minimization problem, its solutions must satisfy

α∗ = max

{
0,max

t∈T0

{
δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγ∗τ +
∞∑

τ=t+1

γ∗τ

]}}
(17)

and

β∗ = max

{
0,max

t∈T0

{
δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]}}
. (18)

Step 4. Guess that, for some T ∈ T1, γ∗t = 0 for all t > T . Moreover, guess that

δt−1µθh+µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]
= δtµθh+µ

[
t+1∑
τ=2

δt+1−τθhγ
∗
τ +

∞∑
τ=t+2

θ`γ
∗
τ

]
(19)

for all t ∈
{

1, . . . , T − 1
}

. Solve equations (19) for γ∗t at successive values of t,

starting with t = 1, to find

γ∗t =
(1− δ)θh
θh − θ`

(
θh − δθ`
θh − θ`

)t−2

=
(1− δ)θh

∆θ
ρt−2 for all t ∈

{
2, . . . , T

}
, (20)

34



where the last equality holds by definitions (2) and (4).

Step 5. Use equation (18), the guess in equations (19), and the guess that γ∗t = 0

for all t > T , to obtain

β∗ = µθh + µθ`

(
T∑
t=2

γ∗t

)
. (21)

Step 6. By using equations (17) and (20), definition (3), and the guess that

γ∗t = 0 for all t > T , constraint (15) becomes

α∗= max
t∈{1,...,T}

{
δt−1(θ`−µθh)+

(1−µ)θ`(1−δ)θh
∆θ

(
δt−2 1−rt−1

1−r
+
ρt−1−ρT−1

1−ρ

)}
, (22)

assuming that the right-hand side of equation (22) is non-negative (which we will

show to be the case in Step 8 of this section). The maximand on the right-hand

side of equation (22) simplifies as follows:

δt−1(θ` − µθh) +
(1− µ)θ`(1− δ)θh

∆θ

(
δt−2 1− rt−1

1− r
+
ρt−1 − ρT−1

1− ρ

)
= δt−1(θ` − µθh)− δt−1(1− µ)θ`

(
1− rt−1

)
− (1− µ)θh

(
ρt−1 − ρT−1

)
(23)

= (1− µ)θhρ
T−1 − δt−1∆θ

(
µ+ (1− µ)rt−1

)
,

where: the first equality holds by implications (5) and (6); the second equality

holds by definition (4). Thus, by equation (23), equation (22) is equivalent to

α∗ = max
t∈{1,...,T}

{
(1− µ)θhρ

T−1 − δt−1∆θ
(
µ+ (1− µ)rt−1

)}
. (24)

Let

t∗ := arg max
t∈{1,...,T}

{
(1− µ)θhρ

T−1 − δt−1∆θ
(
µ+ (1− µ)rt−1

)}
. (25)

Moreover, let t be defined as follows: t ∈ R such that δt−1∆θ
(
µ+ (1− µ)rt−1

)
=

δt∆θ
(
µ+(1−µ)rt

)
. Since the maximand on the right-hand side of equation (25) is

concave in t and T is yet to be determined (and so can be chosen arbitrarily large),

t∗ = inf {t ∈ T0 : t ≥ t} . (26)

Note that

δt−1∆θ
(
µ+ (1− µ)rt−1) = δt∆θ

(
µ+ (1− µ)rt

)
⇐⇒ µ(1− δ) = −rt−1(1− µ)(1− δr)
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⇐⇒ µ(1− δ) = rt−1(1− µ)
(1− δ)θ`

∆θ

⇐⇒ rt−1 =
µ∆θ

(1− µ)θ`
(27)

⇐⇒ t = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r

, (28)

where the second equivalence holds by implication (6). Since µ ∈
(
θ`
θh
, 1
)

, µ∆θ
(1−µ)θ`

>

1, and so ln
(

µ∆θ
(1−µ)θ`

)
> 0. Moreover, r > 1, and so ln r > 0. Thus,

ln
(

µ∆θ
(1−µ)θ`

)
ln r

> 1,

which implies, together with equations (26) and (28), that t∗ ≥ 2.

Step 7. The choice of T is part of the choice of the Lagrange multipliers (γ∗t )
∞
t=2.

Thus, T must be chosen to minimize the objective function of program (P1b).

Let UP1b
P (π) denote the optimal value of program (P1b). Note that

UP1b
P (π) = α∗ + β∗ −

∞∑
t=2

θ`γ
∗
t

= α∗ + µθh + µθ`

(
T∑
t=2

γ∗t

)
−

T∑
t=2

θ`γ
∗
t

= α∗ + µθh − (1− µ)θ`

(
T∑
t=2

(1− δ)θh
∆θ

ρt−2

)

= α∗ + µθh −
(1− µ)θ`(1− δ)θh

∆θ

1− ρT−1

1− ρ
(29)

= α∗ + µθh + (1− µ)θh

(
1− ρT−1

)
= (1− µ)θhρ

T−1 − δt∗−1∆θ
(
µ+ (1− µ)rt

∗−1
)

+ θh − (1− µ)θhρ
T−1

= θh − δt
∗−1∆θ

(
µ+ (1− µ)rt

∗−1
)
,

where: the second equality holds by equation (21) and the guess that γ∗t = 0 for

all t > T ; the third equality holds by equation (20); the fifth equality holds by

implication (6); the sixth equality follows from equation (24) and the definition of

t∗. Since UP1b
P (π) does not depend on T , we take

T = t∗. (30)

Step 8. We show that α∗ ≥ 0. From the two previous steps, we have

α∗ = (1− µ)θhρ
T−1 − δt∗−1∆θ

(
µ+ (1− µ)rt

∗−1
)

36



= (1− µ)θhρ
T−1 − δT−1∆θ

(
µ+ (1− µ)rT−1

)
= δT−1

[
(1− µ)θ`r

T−1 − µ∆θ
]

≥ δt−1
[
(1− µ)θ`r

t−1 − µ∆θ
]

= 0,

where: the first equality holds by equation (24) and definition (25); the second

equality holds by equation (30); the third equality holds by definition (4); the

inequality holds by equation (24), definition (25), and equation (30); the last

equality holds by equation (27).

Step 9. Summing up, a candidate solution ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,t, λ

∗
h,t+1, γ

∗
t+1

)∞
t=1

)
∈

R3 × R3∞ to program (P1b) is as follows. For

T = inf {t ∈ T1 : t ≥ t} , where t = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r

,

we have:

α∗ = δT−1
[
(1− µ)θ`r

T−1 − µ∆θ
]
,

β∗ = µθh + µθ`

(
T∑
t=2

γ∗t

)
ζ∗ = µ (31)

λ∗`,t =

1 if t = 1

(1− µ)γ∗t otherwise
, (32)

λ∗h,t = µγ∗t for all t ∈ T0, (33)

γ∗t =


(1−δ)θh

∆θ
ρt−2 if t ∈

{
2, . . . , T

}
0 if t > T

. (34)

All elements of ξ∗ are clearly non-negative. Moreover, we have

UP1b
P (π) = θh − δT−1∆θ

(
µ+ (1− µ)rT−1

)
, (35)

where the equality holds by equations (29) and (30).
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B.4 A Solution to the Primal Program (P1a)

We recover a solution (x∗,p∗) :=
(
x∗`,t, x

∗
h,t, p

∗
`,t, p

∗
h,t

)∞
t=1
∈ R4∞ to program (P1a).

Step 1. Since λ∗`,t > 0 for all t ∈
{

1, . . . , T
}

(see equation (32)), constraint (IR`)

is binding for all such t. Thus,

p∗`,t = θ`x
∗
`,t for all t ∈

{
1, . . . , T

}
. (36)

Since λ∗h,t > 0 for all t ∈
{

2, . . . , T
}

(see equation (33)), constraint (IRh) is binding

for all such t. Thus,

p∗h,t = θhx
∗
h,t for all t ∈

{
2, . . . , T

}
. (37)

Moreover, guess that the solution to program (P1a) is such that

T−1∑
t=1

x∗h,t = 1. (38)

and

x∗h,t = p∗h,t = 0 for all t ≥ T . (39)

Step 2. From constraint (O`) binding for t = T (as γ∗
T
> 0, see equation (34))

and the conjectures in equations (38) and (39), we have that
∑∞

t=T δ
t−Tp`,t = θ`,

from which we guess that

p∗
`,T

= θ`. (40)

From equations (36) and (40), we have that

x∗
`,T

= 1, (41)

and so x∗`,t = p∗`,t = 0 for all t ∈
{

1, . . . , T − 1
}

. Finally, guess that

p∗l,t = 0 for all t > T . (42)

Step 3. Since ζ∗ > 0 (see equation (31)), constraint (ICh) is binding. This,

together with equations (37), (40), and (41), implies that θhx
∗
h,1 − p∗h,1 = δT−1∆θ

or, equivalently,

p∗h,1 = θhx
∗
h,1 − δT−1∆θ.

Step 4. To find x∗h,t for all t ∈
{

2, . . . , T − 1
}

, we use that constraint (O`) is
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binding for all such t (as γ∗t > 0 for all such t, see equation (34)). From constraint

(O`) binding for t = T −1, we obtain µ
[
θ`
(
1−x∗

h,T−1

)
+θhx

∗
h,T−1

]
+(1−µ)δθ` = θ`

or, equivalently

x∗
h,T−1

=
(1− δ)(1− µ)θ`

µ∆θ
.

Similarly, solving for constraint (O`) binding backwards for all t ∈
{

2, . . . , T −2
}

,

starting with t = T − 2, we obtain

x∗h,t =
(1− δ)(1− µ)θ`

µ∆θ

(
θh − δθ`

∆θ

)T−t−1

=
(1− δ)(1− µ)θ`

µ∆θ
ρT−t−1,

where the second equality holds by definition (4). Finally, using the guess in

equation (38), we have

x∗h,1 = 1−
T−1∑
t=2

x∗h,t

= 1−
T−1∑
t=2

(1− δ)(1− µ)θ`
µ∆θ

ρT−t−1

= 1− (1− δ)(1− µ)θ`
µ∆θ

1− ρT−2

1− ρ
(43)

= 1 +
1− µ
µ

(
1− ρT−2

)
=

1

µ

(
1− (1− µ)ρT−2

)
,

where the fourth equality holds by implication (6).

Step 5. It remains to show that x∗h,1 ≥ 0 or, equivalently, that

(1− µ)ρT−2 ≤ 1. (44)

To begin, note that (1 − µ)ρT−2 ≤ (1 − µ)ρt−1 = (1 − µ)δt−1rt−1 = δt−1 µ∆θ
θ`

,

where: the inequality holds because ρ > 1 and the fact that T = inf {t ∈ T1 : t ≥ t}
=⇒ t−1 ≥ T−2; the first equality holds by definition (3); the second equality holds

by equation (27). Thus, a sufficient condition for inequality (44) to hold is that

δt−1µ∆θ

θ`
≤ 1. (45)

Since t = 1 for µ = θ`
θh

(see equation (28)), the left-hand side of inequality (45)

evaluated at µ = θ`
θh

equals ∆θ
θh

, which is less than 1; thus, to show that inequality
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(44) holds, it suffices to show that µδt−1 is non-increasing in µ. Note that

∂

∂µ

[
µδt−1

]
= δt−1 + µδt−1 ln δ

∂

∂µ

[
t− 1

]
= δt−1 + µδt−1 ln δ

(1− µ)θ`
µ∆θ

∆θ(1− µ)θ` + µθ`∆θ

[(1− µ)θ`)]2
1

ln r

= δt−1

(
1 +

ln δ

(1− µ) ln r

)
,

where the second equality holds by equation (28). Thus, to show that µδt−1 is

non-increasing in µ, it suffices to show that

1 +
ln δ

(1− µ) ln r
≤ 0. (46)

Since the left-hand side of inequality (46) is decreasing in µ (as δ ∈ (0, 1), and so

ln δ < 0), it suffices to show that inequality (46) is satisfied for µ = θ`
θh

, i.e., that

1 + ln δ
∆θ
θh

ln r
≤ 0 or, equivalently,

∆θ

θh
ln r + ln δ ≤ 0. (47)

Since inequality (47) is satisfied with equality if δ = 1 (as r = 1 if δ = 1, see

definition (3)), it suffices to show that its left-hand side is increasing in δ (so that,

for δ < 1, the left-hand side is negative). To see this, note that

∂

∂δ

[
∆θ

θh
ln r + ln δ

]
=

∆θ

θh

1

r

∂r

∂δ
+

1

δ
= −∆θ

θh

δ∆θ

θh − δθ`
θh
δ2∆θ

+
1

δ
=

(1− δ)θ`
δ(θh − δθ`)

> 0,

where the second equality holds by using definition (3).

Remark 1. The previous argument shows that: (i) x∗h,1 > 0 (not only that x∗h,1 ≥
0); and (ii) 1 + ln δ

(1−µ) ln r
< 0 for all µ ∈

(
θ`
θh
, 1
)

, and so µδt−1 is decreasing in µ.

Step 6. Summing up, a candidate solution (x∗,p∗) :=
(
x∗`,t, x

∗
h,t, p

∗
`,t, p

∗
h,t

)∞
t=1
∈

R4∞ to program (P1a) is as follows. For

T = inf {t ∈ T1 : t ≥ t} , (48)

where

t = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r

, (49)
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we have:

x∗`,t =

1 if t = T

0 otherwise
, (50)

x∗h,t =


1
µ

(
1− (1− µ)ρT−2

)
if t = 1

(1−δ)(1−µ)θ`
µ∆θ

ρT−t−1 if t ∈
{

2, . . . , T − 1
}

0 otherwise

, (51)

p∗`,t = θ`x
∗
`,t for all t ∈ T0, (52)

p∗h,t =

θhx
∗
h,1 − δT−1∆θ if t = 1

θhx
∗
h,t otherwise

. (53)

All elements of x∗ are clearly non-negative.

Let UP1a
P (π) be the optimal value of the primal program (P1a). Thus, we have

UP1a
P (π) = µ

(
∞∑
t=1

δt−1p∗h,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p∗`,t

)

= µ

(
T−1∑
t=1

δt−1p∗h,t

)
+ δT−1(1− µ)p∗

`,T

= µ

[
θh
µ

(
1− (1− µ)ρT−2

)
− δT−1∆θ +

T−1∑
t=2

δt−1 (1− δ)(1− µ)θ`θh
µ∆θ

ρT−t−1

]
+ δT−1(1− µ)θ`

= θh

(
1− (1− µ)ρT−2

)
− δT−1µ∆θ (54)

+ δT−2 (1− δ)(1− µ)θ`θh
∆θ

1− rT−2

1− r
+ δT−1(1− µ)θ`

= θh

(
1− (1− µ)ρT−2

)
− δT−1µ∆θ

− δT−1(1− µ)θ`

(
1− rT−2

)
+ δT−1(1− µ)θ`

= θh

(
1− (1− µ)ρT−2

)
− δT−1µ∆θ + δT−1(1− µ)θ`r

T−2,

where: the second and third equalities hold by equations (50)–(53); the fourth

equality holds because, by definition (4), δt−1ρT−t−1 = δT−2rT−t−1; the second-to-

last equality holds by using implication (5).

Step 7. We show that UP1a
P (π) = UP1b

P (π), so that, by weak duality, the candidate
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solution to program (P1a) is indeed a solution to the program.

To obtain the desired result, note that

UP1b
P (π)− UP1a

P (π) = θh − δT−1∆θ
(
µ+ (1− µ)rT−1

)
− θh

(
1− (1− µ)ρT−2

)
+ δT−1µ∆θ − δT−1(1− µ)θ`r

T−2

= −(1− µ)∆θρT−1 + (1− µ)θhρ
T−2 − (1− µ)

ρT−1

r
θ`

= (1− µ)θhρ
T−2 − (1− µ)ρT−1

(
∆θ +

θ`
r

)
= (1− µ)θhρ

T−2 − (1− µ)ρT−1

(
θh∆θ

θh − δθ`

)
∝ 1− ρ ∆θ

θh − δθ`
= 1− ρ1

ρ

= 0,

where: the first equality holds by equations (35) and (54); the second equality

holds by using definition (4); the fourth equality holds by using definition (3); the

second-to-last equality holds by using definition (4).

B.5 A Solution to the Primal Program (P1)

We show that the solution (x∗,p∗) ∈ R4∞ to program (P1a) described in Step

6 of Appendix B.4 satisfies constraint (IC`) in the primal program (P1), so that

(x∗,p∗) is also a solution to program (P1).

By equations (50) and (52), the left-hand side of constraint (IC`) evaluated

at (x∗,p∗) equals 0. By equations (51) and (53), and since θh > θ`, the right-

hand side of constraint (IC`) evaluated at (x∗,p∗) is smaller than θ`x
∗
h,1 − p∗h,1.

Thus, to show that (x∗,p∗) satisfies constraint (IC`), it suffices to show that

θ`x
∗
h,1 − p∗h,1 ≤ 0. To begin, note that

θ`x
∗
h,1 − p∗h,1 ≤ 0⇐⇒ θ`x

∗
h,1 − θhx∗h,1 + δT−1∆θ ≤ 0

⇐⇒ ∆θ
(
δT−1 − x∗h,1

)
≤ 0

⇐⇒ δT−1 ≤ x∗h,1

⇐⇒ µδT−1 ≤ 1− (1− µ)ρT−2,

(55)
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where: the first equivalence holds by equation (53); the third equivalence holds

because ∆θ > 0; the fourth equivalence holds by equation (51). Since T =

inf {t ∈ T1 : t ≥ t} =⇒ T − 2 ≤ t− 1 ≤ T − 1, δ < 1, and ρ > 1, we have that

µδT−1 ≤ µδt−1 and 1− (1− µ)ρt−1 ≤ 1− (1− µ)ρT−2. (56)

From the equivalences in (55) and the inequalities in (56), we have that µδt−1 ≤
1−(1−µ)ρt−1 =⇒ θ`x

∗
h,1−p∗h,1 ≤ 0. Thus, to show that (x∗,p∗) satisfies constraint

(IC`′) for τ = 1, it is enough to show that µδt−1 ≤ 1− (1−µ)ρt−1. Now note that

µδt−1 ≤ 1− (1− µ)ρt−1 ⇐⇒ µδt−1 ≤ 1− (1− µ)δt−1rt−1

⇐⇒ µδt−1 ≤ 1− (1− µ)δt−1 µ∆θ

(1− µ)θ`

⇐⇒ µδt−1

(
1 +

µ∆θ

θ`

)
≤ 1

⇐= µδt−1

(
1 +

∆θ

θ`

)
≤ 1, (57)

where: the first equivalence holds by definition (4); the second equivalence holds

by equation (27). Since µδt−1 is non-increasing in µ (see Step 5 in Appendix B.4),

it suffices to show that inequality (57) is satisfied for µ = θ`
θh

. Since t = 1 if µ = θ`
θh

,

and 1 + ∆θ
θ`

= θh
θ`

, the desired result follows.

Remark 2. Since µδt−1 is decreasing (see Remark 1), the previous argument

shows that x∗h,1 > δT−1 (or, equivalently, 0 > θ`x
∗
h,1 − p∗h,1) for all µ ∈

(
θ`
θh
, 1
)

.

That is, constraint (IC`) is not binding at (x∗,p∗).

B.6 Completing the Proof of Theorem 3

At the solution (x∗,p∗) to the primal program (P1) described in Step 6 of Ap-

pendix B.4, properties 1, 2, and 3 in Theorem 3 hold true. Moreover, from equa-

tions (48) and (49), we have that T is finite for any δ ∈ (0, 1) and, in addition,

lim
δ→1

T ≥ lim
δ→1

ln
(

µ∆θ
(1−µ)θ`

)
ln r

= lim
δ→1

ln
(

µ∆θ
(1−µ)θ`

)
ln
(
θh−δθ`
δ∆θ

) =∞,

where: the inequality holds by equations (48) and (49); the first equality holds by

definitions (2) and (3). Thus, property 4 in Theorem 3 holds true at (x∗,p∗). �
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C Example 2 and Example 3

C.1 Example 2

Let T = {0, 1, 2, 3}. The agent’s type θ is uniformly distributed over Θ = {−1, 1}.
The allocation sets are A1 = A3 = {∅,−1, 1} and A2 = {∅, e, n}, where a2 = e

is interpreted as “extract” and a2 = n is interpreted as “not extract”. Non-

participation in any period t is an irreversible option for the agent (i.e., it implies

non-participation in all future periods). The principal’s payoff is

UP (θ, a) =


0 if a1 = ∅ or a2 = ∅

1{a2=e} if a1 6= ∅, a2 6= ∅, and a3 = ∅

1{a2=e} − θa3λ otherwise

and the agent’s payoff is

UA(θ, a) =



0 if a1 = ∅

θa1λ−K if a1 6= ∅ and a2 = ∅

−1−K if a1 6= ∅, a2 = e, and a3 = ∅

θa1λ−K if a1 6= ∅, a2 = n, and a3 = ∅

−1 if a1 6= ∅, a2 = e, and a3 6= ∅

θa1λ+ θa3 if a1 6= ∅, a2 = n, and a3 6= ∅

,

where λ ∈ (1, 2) and K > 0 is high enough for participation in periods 2 and 3 to

be optimal for the agent.

Deletion of Stored Information. If the principal could commit to the allocation

sequence (a1, a2, a3) = (θ, n,−θ), the agent would be truthful and the principal’s

payoff would be λ > 0. However, without commitment and without the possibility
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of storing information, the principal’s ex ante expected payoff in any wPBE of the

resulting game is 0. To establish this point, it suffices to show that, in any wPBE,

the agent never participate to any contract in period t = 1. By contradiction,

suppose the agent participates in period t = 1. Then, in period t = 2, the principal

offers a constant contract allocating a2 = e (and the agent participates), because

it increases the principal’s payoff without affecting the agent’s incentive constraint

in period t = 3; thus, the agent’s flow payoff in period t = 2 is -1. In period t = 3,

the principal’s expected flow payoff is non-negative because he can always offer

any constant contract guaranteeing 0 expected flow payoff; thus, the agent’s flow

payoff in period t = 3 is non-positive. Therefore, the agent’s expected payoff from

participating in period t = 1 is −1. This is a contradiction because the agent can

always guarantee herself a payoff of 0 by not participating in period t = 1.

In contrast, the MCS game has a wPBE in which the principal’s ex ante ex-

pected payoff is λ. As in Example 1, the mediator again stores the agent’s type

report in period t = 0 and fully disclose it in period t = 3 to the principal, but his

role is different. In particular, the mediator’s role is now to prevent the principal

deviation to the constant contract allocating a2 = e in period t = 2; this is achieved

by the threat of not disclosing the agent’s type report in period t = 3 if the prin-

cipal deviates in period t = 2. The next claim and its proof formalize these ideas.

Claim 1. The MCS game has a wPBE in which the principal’s ex ante expected

payoff is λ.

Proof. We begin by describing a candidate wPBE of the MCS game. On-path

events are the following:

• Period t = 0. The agent truthfully report her type θ to the mediator.

• Period t = 1. The mediator sends signal sP,1 = θ with probability α and

signal sP,1 = −θ with probability 1−α to the principal, where (1 +λ)/2λ <

α < (2λ−1)/2λ. The principal offers a constant contract allocating a1 = sP,1.

The agent participates to the contract.

• Period t = 2. The principal offers a constant contract allocating a2 = n.

The agent participates to the contract.

• Period t = 3. The mediator fully discloses the agent’s type report θ (made
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in period t = 0) to the principal. The principal offers a constant contract

allocating a3 = −θ. The agent participates to the contract.

Off-path events are the following:

• If the principal observes any off-path event by period t = 2, then he offers a

constant contract allocating a2 = e.

• If the principal deviates in period t = 1 or t = 2 (which is observed by the

mediator by assumption), then the mediator does not reveal the agent’s type

report θ (made in period t = 0) to the principal in period t = 3.

• If the principal observes any off-path event by period t = 3, then he offers

any best responding contract in period t = 3.

The principal’s ex ante expected payoff in the candidate wPBE is λ. Thus, it

remains to show that the candidate wPBE is indeed a wPBE of the MCS game.

We begin with the agent’s incentives. The agent’s participation in periods t = 2

and t = 3 is optimal. In period t = 0, the agent’s expected continuation payoff

from truthfully reporting her type to the mediator is λ(α− (1− α))− 1, whereas

her expected continuation payoff from lying to the mediator is λ(−α+(1−α))+1;

since the former is greater than the latter for α > (1 + λ)/2λ, the agent finds it

optimal to be truthful. In period t = 1, the agent’s expected continuation payoff

from participating to the mechanism is λ(α− (1−α))−1, whereas the agent’s ex-

pected continuation payoff from non-participation is 0; since the former is greater

than the latter for α > (1 + λ)/2λ, the agent finds it optimal to participate.

Next, we consider the principal’s incentive. First, in period t = 3, the principal

has no incentive to deviate since the allocation a3 = −θ is the best one from the

period-3 principal’s viewpoint. The principal’s continuation payoff from following

the candidate equilibrium strategy in period t = 1 and t = 2 is λ. If the principal

deviates in period t = 1 or t = 2, then the mediator does not reveal the agent’s type

report to the principal in period t = 3. Accordingly, at the beginning of period

t = 3, the principal has only the partial information sP,1 about the agent’s type

θ. Thus, the principal in period t = 3 can do no better than offering a constant

contract allocating a3 = sP,1. Therefore, the principal’s expected continuation

payoff from deviating in period t = 1 or t = 2 is at most 1 + λ(2α − 1). Since

λ > 1 + λ(2α − 1) for α < (2λ− 1)/2λ, the principal has no incentive to deviate
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from the candidate equilibrium strategy in periods t = 1 and t = 2. �

C.2 Example 3

Let T = {0, 1, 2}. There are two agents, denoted by i = 1, 2. In each period t ∈ T0,

the principal allocates at = (a1,t, a2,t) ∈ At = {∅,−1, 1}2, where ai,t = ∅ if and

only if agent i does not participate in period t. Each agent i has a type θi ∈ Θ =

{−1, 1}, equally likely and independent across players. The principal’s payoff is

UP ((θ1, θ2), a) =


0 if a1,1 = ∅ or a2,1 = ∅∑

i ai,1θi if a1,1 6= ∅, a2,1 6= ∅, and a1,2 = ∅ or a2,2 = ∅∑
i(ai,1θi + ai,2ε) otherwise

,

where ε ∈ (0, 1). Agent i’s payoff is

Ui(θi, a) =


0 if ai,1 = ∅

1 if ai,1 6= ∅, and a1,2 = ∅ or a2,2 = ∅

2− ai,1θi otherwise

.

Each agent finds it optimal to participate in the contract in period t = 1. The

best continuation event from the period-2 principal’s viewpoint is such that both

agents participate in period t = 2 and the allocation is (a1,2, a2,2) = (1, 1); the

worst continuation event from the period-2 principal’s viewpoint is such that (at

least) one agent does not participate in period t = 2. If (at least) one agent does

not participate in period t = 2, the principal and agent i have the same preferences

regarding ai,1 for i = 1, 2; in contrast, if both agents participate in period t = 2,

the principal and agent i have opposite preferences regarding ai,1 for i = 1, 2.

Equilibrium Multiplicity and Equilibrium Selection. The MCS game has

a wPBE in which the principal’s ex ante expected payoff is 2; such wPBE re-

quires the worst continuation equilibrium selection from the period-2 principal’s

viewpoint. The next claim and its proof formalize these ideas.

Claim 2. The MCS game has a wPBE in which the principal’s ex ante expected

payoff is 2.

Proof. Regardless of what happens in period t = 1, a continuation equilibrium

in period t = 2 has no agent participating in whatever contract is offered by the
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principal: if agent −i does not participate, then agent i’s participation is payoff

irrelevant and so it is a best response for i not to participate. Given this, each

agent’s continuation payoff in period t = 1 (upon participation, which is optimal

for each agent) is 1; thus, for i = 1, 2, the principal offers a direct contract with

allocation rule αi,1(ai,1 = mi,1 |mi,1) = 1, and agents are truthful. Thus, the

principal’s ex ante expected payoff in this wPBE is 2. �

The next claim and its proof show that if the best continuation equilibrium

from the period-2 principal viewpoint is selected, then the principal’s ex ante

expected payoff in a wPBE cannot exceed 2ε. Since ε ∈ (0, 1), so that 2ε < 2,

the principal-optimal wPBE outcome necessarily requires suboptimal continuation

equilibrium selection from the period-2 principal viewpoint.

Claim 3. If the best continuation equilibrium from the period-2 principal’s view-

point is selected, then the principal’s ex ante expected wPBE payoff is at most 2ε.

Proof. Regardless of what happens in period t = 1, the best continuation equi-

librium from the period-2 principal’s viewpoint is as follows: for i = 1, 2, the

principal offers a constant contract allocating ai,2 = 1 if agent i participates; both

agents participate. Given this, each agent i’s continuation payoff in period t = 1

(upon participation, which is optimal for each agent) is 2−ai,1θi; thus, for i = 1, 2,

the principal finds it optimal to offer any constant contract in period t = 1. As a

result, the principal’s ex ante expected payoff in this wPBE is 2ε. �

D Proof of Theorem 4

Step 1. Let (x∗,p∗) be the solution to program (P1) we characterize in Appendix

B (see Step 6 of Appendix B.4). To begin, note that

T = inf {t ∈ T1 : t ≥ t} =⇒ t− 1 ≤ T − 1 ≤ t. (58)

From implication (58) and since δ ∈ (0, 1), we have δt ≤ δT−1 ≤ δt−1. Thus,

lim
δ→1

δT−1 = lim
δ→1

δt−1 = lim
δ→1

δ

ln

(
µ∆θ

(1−µ)θ`

)
ln

(
θh−δθ`
δ∆θ

)
=

(
µ∆θ

(1− µ)θ`

)−∆θ
θh

, (59)

where: the first equality holds by the sandwich theorem for the limits of functions;

the second equality holds by equation (28) and definition (3).
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From implication (58) and since r > 1, we have rt−1 ≤ rT−1 ≤ rt. Moreover,

as δ → 1, r → 1 (see definition (3)). Thus,

lim
δ→1

rT−1 = lim
δ→1

rt−1 =
µ∆θ

(1− µ)θ`
, (60)

where: the first equality holds by the sandwich theorem for the limits of functions;

the second equality holds by equation (27).

Step 2. To establish part 1 of Theorem 4, we need to show that limδ→1 U
P1
P (π) >

θ`. Note that

lim
δ→1

UP1
P (π) > θ` ⇐⇒ lim

δ→1
UP1b
P (π) > θ`

⇐⇒ lim
δ→1

[
θh − δT−1∆θ

(
µ+ (1− µ)rT−1

)]
> θ`

⇐⇒ θh −∆θ

(
µ∆θ

(1− µ)θ`

)−∆θ
θh

(
µ+ (1− µ)

µ∆θ

(1− µ)θ`

)
> θ` (61)

⇐⇒ ∆θ −
(

µ∆θ

(1− µ)θ`

)−∆θ
θh µ∆θθh

θ`
> 0

⇐⇒ θ`
µθh
−
(

µ∆θ

(1− µ)θ`

)−∆θ
θh

> 0, (62)

where: the first equivalence holds because, by the analysis in Appendix B, UP1
P (π) =

UP1b
P (π) holds true at (x∗,p∗); the second equivalence holds by equation (35); the

third equivalence holds by equations (59) and (60). The left-hand side of inequality

(62) evaluated at µ = θ`
θh

equals 0. Thus, to obtain the desired result, it is enough

to show that the left-hand side of inequality (62) is increasing in µ. Note that

∂

∂µ

[
θ`
µθh
−
(

µ∆θ

(1− µ)θ`

)−∆θ
θh

]
=

(
µ∆θ

(1− µ)θ`

)− θ`
θh

− 1. (63)

The right-hand side of equation (63) evaluated at µ = θ`
θh

equals 0. Moreover,

∂

∂µ

[(
µ∆θ

(1− µ)θ`

)− θ`
θh

− 1

]
=

θ`∆θ

[(1− µ)θ`]
2 > 0.

Thus, the right-hand side of equation (63) is positive for all µ ∈
(
θ`
θh
, 1
)

. The

desired result follows.

Step 3. From the analysis in Appendix B (see step 6 of Appendix B.4), the

following hold true at (x∗,p∗): the payoff of type θ` is 0; the expected payoff of
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type θh is δT−1∆θ. Thus, the expected payoff of the buyer is µδT−1∆θ and the

expected total surplus, denoted by S(π), is

S(π) := UP1
P (π) + µδT−1∆θ

= θh − (1− µ)∆θδT−1rT−1, (64)

where the equality holds by equation (35).

To establish part 2 of Theorem 4, we need to show that limδ→1 S(π) < µθh +

(1−µ)θ` (µθh+(1−µ)θ` is the expected total surplus at the first best). Note that

lim
δ→1

S(π) < µθh + (1− µ)θ` ⇐⇒ lim
δ→1

[
θh − (1− µ)∆θδT−1rT−1

]
< µθh + (1− µ)θ`

⇐⇒ θh − (1− µ)∆θ

(
µ∆θ

(1− µ)θ`

) θ`
θh

< µθh + (1− µ)θ`

⇐⇒ (1− µ)∆θ < (1− µ)∆θ

(
µ∆θ

(1− µ)θ`

) θ`
θh

⇐⇒ 1 <
µ∆θ

(1− µ)θ`

⇐⇒ θ` < µθh,

where: the first equivalence holds by equation (64); the second equivalence holds

by equations (59) and (60). Since µ ∈
(
θ`
θh
, 1
)

, the desired result follows.

Step 4. For all k ∈ N, let θk` := θh
k

. Then, limk→∞ θ
k
` = 0 and ∆θk := θh − θk` =

θh(k−1)
k

. Moreover,

lim
k→∞

UP1
P

(
π; θk`

)
:= lim

k→∞
θh

(
1−

(
µ∆θk

(1− µ)θk`

)−∆θk

θh µ∆θk

θk`

)

= lim
k→∞

θh

(
1− (1− µ)

(
µ(k − 1)

(1− µ)

) 1
k

)

= lim
k→∞

θh

(
1− (1− µ) exp

(
1

k
ln
µ(k − 1)

(1− µ)

))
= θh(1− (1− µ) exp(0))

= µθh.

Since µθh is the commitment payoff, part 3 of Theorem 4 follows. �
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E Proof of Theorem 5

Let (x∗,p∗) be the solution to program (P1) we characterize in Appendix B (see

Step 6 of Appendix B.4). By Theorem 2, if (x∗,p∗) satisfies constraints (IC`′),

(ICh′), and (O), then (x∗,p∗) is a wPBE outcome of G.

Step 1. We show that (x∗,p∗) satisfies constraint (IC`′) for all τ ∈ T0.

For all τ ∈ T0, p∗`,t = θ`x
∗
`,t (see equation (52)). Thus, the left-hand side of

constraint (IC`′) equals 0 for all τ ∈ T0.

For all τ ∈ T1, θ`x
∗
h,τ − p∗h,τ ≤ θhx

∗
h,τ − p∗h,τ = 0, where the inequality holds be-

cause θ` < θh and the equality holds by equality (53). Moreover, 1−
∑τ−1

t=1 x
∗
`,t ≥ 0

for all τ ∈ T0. Thus, the right-hand side of constraint (IC`′) is non-positive for all

τ ∈ T1, and so (x∗,p∗) satisfies constraint (IC`′) for all τ ∈ T1.

To show that (x∗,p∗) satisfies constraint (IC`′) for τ = 1, we need to show

that θ`x
∗
h,1 − p∗h,1 ≤ 0, which we have already established in Appendix B.5.

Step 2. We show that (x∗,p∗) satisfies constraint (ICh′) for all τ ∈ T0.

For all τ 6= T , x∗`,τ = 0 and p∗`,τ = 0 (see equations (50) and (52)). Thus, the

right-hand side of constraint (ICh′) equals 0 for all τ 6= T . Moreover,
∑T−1

t=1 x
∗
h,t =

1 (see equation (43)), and so the right-hand side of constraint (ICh′) equals 0 also

for τ = T . Since (x∗,p∗) satisfies constraint (IRh) for all τ ∈ T0, that (x∗,p∗)

also satisfies constraint (ICh′) for all τ ∈ T0 follows.

Step 3. We show that, for all δ ∈ (0, 1), there exists µ(δ) ∈
(
θ`
θh
, 1
)

such that,

for all µ ∈
(
θ`
θh
, µ(δ)

]
, (x∗,p∗) satisfies constraint constraint (O).

A sufficient condition for constraint (O) to hold is that µ2(x∗,p∗) ≤ θ`
θh

(see the

discussion in Section 4.2 before the statement of Theorem 5). To begin, note that

µ2(x∗,p∗) ≤ θ`
θh
⇐⇒

(1− x∗h,1)µ

(1− x∗h,1)µ+ (1− µ)
≤ θ`
θh

⇐⇒
−(1− µ)

(
1− ρT−2

)
−(1− µ)

(
1− ρT−2

)
+ (1− µ)

≤ θ`
θh

⇐⇒ −1− ρT−2

ρT−2
≤ θ`
θh

⇐⇒ ∆θ

θh
ρT−2 ≤ 1
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⇐⇒ ln

(
∆θ

θh

)
+ (T − 2) ln ρ ≤ 0, (65)

where: the first equivalence holds by definition (1); the second equivalence holds

by the fourth equality in equation (43). Since ρ > 1, ln ρ > 0; moreover,

T = inf {t ∈ T1 : t ≥ t} =⇒ t− 1 ≥ T − 2. Therefore, we have

ln

(
∆θ

θh

)
+ (t− 1) ln ρ ≤ 0 =⇒ ln

(
∆θ

θh

)
+ (T − 2) ln ρ ≤ 0. (66)

Moreover, note that

ln

(
∆θ

θh

)
+ (t− 1) ln ρ ≤ 0⇐⇒ ln

(
∆θ

θh

)
+

(
ln
(

µ∆θ
(1−µ)θ`

)
ln r

)
ln(δr) ≤ 0

⇐⇒ ln

(
∆θ

θh

)
+ [ln(µ∆θ)− ln((1− µ)θ`)]

ln(δr)

ln r
≤ 0, (67)

where the first equivalence holds by equation (28) and definition (4). Sum-

ming up, from implications and equivalences (65)–(67), a sufficient condition for

µ2(x∗,p∗) ≤ θ`
θh

to hold is that

ln

(
∆θ

θh

)
+ [ln(µ∆θ)− ln((1− µ)θ`)]

ln(δr)

ln r
≤ 0. (68)

Let µ(δ) be the value of µ ∈ (0, 1) that satisfy inequality (68) with equality (note

that such µ(δ) always exists). Since δr > 1 and r > 1, we have

ln(δr)

ln r
> 0. (69)

Thus, the left-hand side of inequality (68) is increasing in ln(µ∆θ)− ln((1−µ)θ`).

In turn, ∂
∂µ

[ln(µ∆θ) − ln((1 − µ)θ`)] = 1
µ(1−µ)

> 0 for all µ ∈ (0, 1), so that the

left-hand side of inequality (68) is increasing in µ. Therefore, inequality (68) is

satisfied by all µ ∈ (0, µ(δ)]. Since µ ∈
(
θ`
θh
, 1
)

, we have µ∆θ > (1− µ)θ`, and so

ln(µ∆θ)−ln((1−µ)θ`) > 0. Thus, the left-hand side of inequality (67) is increasing

in ln(δr)
ln r

. In turn, limδ→1
∂
∂δ

ln(δr)
ln r

= limδ→1

[
ln
(
θh−δθ`

∆θ

)
+ δθ`

θh−δθ`
ln δ
]

= 0, where the

first equality holds by definition (3) and (4). Moreover, ∂2

∂δ2

ln(δr)
ln r

= θ`θh
(θh−δθ`)2 ln δ < 0

for all δ ∈ (0, 1). Thus, ln(δr)
ln r

is increasing in δ. Hence,

∂

∂δ

ln(δr)

ln r
> 0 (70)

for all δ ∈ (0, 1), so that the left-hand side of inequality (68) is increasing in δ.
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Step 4. We show that µ(δ) satisfies properties (i)–(iii) in the statement of

Theorem 5. By the Implicit Function Theorem, µ(δ) is continuous in δ and
∂µ(δ)
∂δ

= −
ln(δr)
ln r

∂
∂µ

[ln(µ∆θ)−ln((1−µ)θ`)]

[ln(µ∆θ)−ln((1−µ)θ`)]
∂
∂δ

ln(δr)
ln r

< 0, where the inequality holds by inequalities

(69) and (70). As a result, µ(δ) is decreasing in δ.

Consider the left-hand side of inequality (68). Note that

lim
δ→0

[
ln

(
∆θ

θh

)
+ [ln(µ∆θ)− ln((1− µ)θ`)]

ln(δr)

ln r

]
= ln

(
∆θ

θh

)
+ [ln(µ∆θ)− ln((1− µ)θ`)] lim

δ→0

ln θh−δθ`
∆θ

ln θh−δθ`
δ∆θ

= ln

(
∆θ

θh

)
< 0,

where: the first equality holds by definition (3); the inequality holds because

∆θ < θh (so that ∆θ
θh
< 1). That µ(δ)→ 1 as δ → 0 follows.

Consider again the left-hand side of inequality (68). By definition (3), it is

immediate that limδ→1 ln r = 0 and limδ→1 ln δr = 0, where the first equalities

hold by definition (3). By using de L’Hôpital’s rule, we have limδ→1
ln(δr)
ln r

=

limδ→1

∂
∂δ

(ln(δr))
∂
∂δ

(ln r)
= limδ→1

δθ`−(1−δ)θh
δθh

= θ`
θh

. Hence,

lim
δ→1

{
ln

(
∆θ

θh

)
+ [ln(µ∆θ)− ln((1− µ)θ`)]

ln(δr)

ln r

}
≤ 0

⇐⇒ ln

(
θh
∆θ

)
≥ [ln(µ∆θ)− ln((1− µ)θ`)]

θ`
θh

⇐⇒
(
θh
∆θ

) θh
θ`

≥ µ∆θ

(1− µ)θ`

⇐⇒ µ ≤

(
θh
∆θ

) θh
θ`

∆θ
θ`

+
(
θh
∆θ

) θh
θ`

.

Since (
θh
∆θ

) θh
θ`

∆θ
θ`

+
(
θh
∆θ

) θh
θ`

>
θ`
θh
⇐⇒

(
θh
∆θ

) θh
θ`

> 1

and θh > ∆θ, that µ(δ) is bounded away from θ`
θh

as δ → 1 follows. �
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F Constraint (O′) is Sufficient for Constraint (O)

Constraint (O) can be expressed equivalently as

µ

(
∞∑
t=τ

δt−τp∗h,t

)
+ (1− µ)

(
∞∑
t=τ

δt−τp∗`,t

)
(71)

≥

[
1− µ

(
τ−1∑
t=1

x∗h,t

)
− (1− µ)

(
τ−1∑
t=1

x∗`,t

)]
U c
P (µτ (x

∗,p∗); δ) ∀ τ ∈ T0.

U c
P (µ̂; δ) is convex and increasing in µ̂ on

[
θ`
θh
, 1
]
. Moreover, U c

P (µ̂; δ) = θ` for all

µ̂ ∈
[
0, θ`

θh

]
and so U c

P (µ̂; δ) > θ` for all
(
θ`
θh
, 1
]
. Therefore, U c

P (µτ (x
∗,p∗); δ) <

µτ (x
∗,p∗)U c

P (1; δ)+(1−µτ (x∗,p∗))U c
P (0; δ) = µτ (x

∗,p∗)U c
P (1; δ)+(1−µτ (x∗,p∗))θ`

for all µτ (x
∗,p∗) ∈ (0, µ]. Moreover, since U c

P is continuous, there exists µ ∈ (µ, 1)

such that, for all µ̃ ∈ (µ, 1), we have U c
P (µτ (x

∗,p∗); δ) ≤ µτ (x
∗,p∗)U c

P (µ̃; δ) + (1−
µτ (x

∗,p∗))θ` for all µτ (x
∗,p∗) ∈ [0, µ], and so

U c
P (µτ (x

∗,p∗); δ) ≤ θ` + µτ (x
∗,p∗)

(
U c
P (µ̃; δ)− θ`

)
. (72)

for all µτ (x
∗,p∗) ∈ [0, µ]. Let ε(δ) := U c

P (µ̃; δ)−θ`. From equations (71) and (72),

a sufficient condition for constraint (O) to be satisfied is

µ

(
∞∑
t=τ

δt−τp∗h,t

)
+ (1− µ)

(
∞∑
t=τ

δt−τp∗`,t

)
(73)

≥

[
1− µ

(
τ−1∑
t=1

x∗h,t

)
− (1− µ)

(
τ−1∑
t=1

x∗`,t

)](
θ` + µτ (x

∗,p∗)ε(δ)
)
∀ τ ∈ T0.

From definition (1), it follows that equation (73) is equivalent to constraint (O′)

in period τ , establishing the desired result. �

G Proof of Theorem 6

Throughout Appendix G, we use the following notation:

r(δ) :=
θh − δ(θ` + ε(δ))

δ(∆θ − ε(δ))
(74)

ρ(δ) := δr(δ). (75)
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Since U c
P (µ̃; δ) < θh for all δ ∈ (0, 1), we have ∆θ−ε(δ) = θh−θ`−(U c

P (µ̃; δ)−θ`) >
0. Moreover, note that r(δ) > 1, ρ(δ) > 1 for all δ ∈ (0, 1),

(74) =⇒ 1− r(δ) = − (1− δ)θh
δ(∆θ − ε(δ))

, (76)

and (75) =⇒ 1− ρ(δ) = −(1− δ)(θ` + ε(δ))

∆θ − ε(δ)
. (77)

G.1 Simplifying Program (P2)

Consider the following relaxation of program (P2):

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P2a)

s.t. x`,t, xh,t ≥ 0 ∀ t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θ`x`,t − p`,t) ≥
∞∑
t=1

δt−1(θ`xh,t − ph,t) (IC`)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 ∀ τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 for all τ ∈ T0 (IRh)

µ

(
τ−1∑
t=1

(θ` + ε(δ))xh,t +
∞∑
t=τ

δt−τph,t

)
(O′)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` + µε(δ) ∀ τ ∈ T0.

Program (P2a) is obtained from program (P2) by ignoring constraints (IC`′) and

(ICh′). Below we solve program (P2a) and show that its solution satisfies the omit-

ted constraint of program (P2). The approach to solve program (P2a) mimics that

to solve program (P1) in Appendix B.
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G.2 Simplifying the Primal Program (P2a)

In the primal program (P2a): (i) we ignore constraint (IC`) and constraint (O′) for

τ = 1, and we will verify in Appendix G.6 that they are satisfied by the solution

to the relaxed version of the program; (ii) constraints (ICh) and (IR`) for τ = 1,

together with the assumption that θh > θ`, imply that constraint (IRh) is satisfied

for τ = 1. As a result, the relaxed version of program (P2a) is the following:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P2b)

s.t. x`,t, xh,t ≥ 0 ∀ τ ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 ∀ τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 ∀ τ ∈ T1 (IRh)

µ

(
τ−1∑
t=1

(θ` + ε(δ))xh,t +
∞∑
t=τ

δt−τph,t

)
(O′)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` + µε(δ) ∀ τ ∈ T1.

G.3 The Dual of Program (P2b)

Let ξ :=
(
α, β, ζ, (λ`,t, λh,t+1, γt+1)∞t=1

)
∈ R3 × R3∞, where: α (resp., β) is the

Lagrange multiplier associated to constraint (F2) (resp., (F3)) in program (P2b);

ζ is the Lagrange multiplier associated to constraint (ICh) in program (P2b); for

all t ∈ T0, λ`,t is the Lagrange multiplier associated to constraint (IR`) in period

t in program (P2b); for all t ∈ T0, λh,t+1 is the Lagrange multiplier associated

to constraint (IRh) in period t + 1 in program (P2b); for all t ∈ T0, γt+1 is the

Lagrange multiplier associated to constraint (O′) in period t+1 in program (P2b).
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The dual program of program (P2b) is the following:

min
ξ∈R3×R3∞

α + β −
∞∑
t=2

(θ` + µε(δ))γt (P2c)

s.t. α ≥ 0, β ≥ 0, ζ ≥ 0, λ`,t, λh,t+1, γt+1 ≥ 0 ∀ t ∈ T0 (78)

α ≥ −δt−1θhζ +
t∑

τ=1

δt−τθ`λ`,τ +
∞∑

τ=t+1

(1− µ)θ`γτ ∀ t ∈ T0, (79)

β ≥ δt−1θhζ +
t∑

τ=2

δt−τθhλh,τ +
∞∑

τ=t+1

µ(θ` + ε(δ))γτ ∀ t ∈ T0, (80)

δt−1ζ −
t∑

τ=1

δt−τλ`,τ +
t∑

τ=2

δt−τ (1− µ)γτ + δt−1(1− µ) = 0 ∀ t ∈ T0, (81)

− δt−1ζ −
t∑

τ=2

δt−τλh,τ +
t∑

τ=2

δt−τµγτ + δt−1µ = 0 ∀ t ∈ T0, (82)

where constraints (81) and (82) hold with equality as p`,t and ph,t are unrestricted

(i.e., they can be positive or negative) for all t ∈ T0 in the primal program (P2b).

G.4 A Candidate Solution to the Dual Program (P2c)

We recover a candidate solution ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,t, λ

∗
h,t+1, γ

∗
t+1

)∞
t=1

)
∈ R3×R3∞

to program (P2c).

Step 1. Solve equations (82) at successive values of t, starting with t = 1, to find

ζ∗ = µ and λ∗h,t = µγ∗t for all t ∈ T1. (83)

Next, solve equations (81) at successive values of t, starting with t = 1, to find

λ∗`,1 = 1 and λ∗`,t = (1− µ)γ∗t for all t ∈ T1. (84)

Step 2. Given equations (83) and (84), the dual program (P2c) simplifies to:

min
(α,β,(γt)

∞
t=2)∈R2×R∞

α + β −
∞∑
t=2

(θ` + µε(δ))γt (P2d)

s.t. α ≥ 0, β ≥ 0, γt ≥ 0 ∀ t ∈ T1 (85)

α ≥ δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγτ +
∞∑

τ=t+1

γτ

]
∀ t ∈ T0, (86)
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β ≥ δt−1µθh + µ

[
t∑

τ=2

δt−τθhγτ +
∞∑

τ=t+1

(θ` + ε(δ))γτ

]
∀ t ∈ T0. (87)

Step 3. As program (P2d) is a minimization problem, its solutions must satisfy

α∗ = max

{
0,max

t∈T0

{
δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγ∗τ +
∞∑

τ=t+1

γ∗τ

]}}
(88)

and

β∗ = max

{
0,max

t∈T0

{
δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

(θ` + ε(δ))γ∗τ

]}}
. (89)

Step 4. Guess that, for some T (δ) ∈ T1, γ∗t = 0 for all t > T (δ). Moreover, guess

that

δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

(θ` + ε(δ))γ∗τ

]
(90)

= δtµθh + µ

[
t+1∑
τ=2

δt+1−τθhγ
∗
τ +

∞∑
τ=t+2

(θ` + ε(δ))γ∗τ

]

for all t ∈
{

1, . . . , T (δ)− 1
}

. Solve equations (90) for γ∗t at successive values of t,

starting with t = 1, to find

γ∗t =
(1− δ)θh

θh − θ` − ε(δ)

(
θh − δ(θ` + ε(δ))

θh − θ` − ε(δ)

)t−2

=
(1− δ)θh
∆θ − ε(δ)

ρ(δ)t−2 (91)

for all t ∈
{

2, . . . , T (δ)
}

, where the last equality holds by definition (75).

Step 5. Use equation (89), the guess in equation (90), and the guess that γ∗t = 0

for all t > T (δ), to obtain

β∗ = µθh + µ(θ` + ε(δ))

(
T (δ)∑
t=2

γ∗t

)
. (92)

Step 6. By using equations (88) and (91), definition (74), and the guess that

γ∗t = 0 for all t > T (δ), constraint (86) becomes

α∗ = max
t∈{1,...,T (δ)}

{
δt−1(θ` − µθh) (93)

+
(1− µ)θ`(1− δ)θh

∆θ − ε(δ)

(
δt−2 1− r(δ)t−1

1− r(δ)
+
ρ(δ)t−1 − ρ(δ)T (δ)−1

1− ρ(δ)

)}
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assuming that the right-hand side of equation (93) is non-negative (which we will

show to be the case in Step 8 of this section). The maximand on the right-hand

side of equation (93) simplifies as follows:

δt−1(θ` − µθh) +
(1− µ)θ`(1− δ)θh

∆θ − ε(δ)

(
δt−2 1− r(δ)t−1

1− r(δ)
+
ρ(δ)t−1 − ρ(δ)T (δ)−1

1− ρ(δ)

)
= δt−1(θ` − µθh)− δt−1(1− µ)θ`

(
1− r(δ)t−1) (94)

− (1− µ)θ`θh
θ` + ε(δ)

(
ρ(δ)t−1 − ρ(δ)T (δ)−1

)
=

(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 − δt−1µ∆θ − δt−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t−1,

where: the first equality holds by implications (76) and (77); the second equality

holds by definition (4). Thus, by equation (94), equation (93) is equivalent to

α∗ = max
t∈{1,...,T (δ)}

{
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 (95)

− δt−1µ∆θ − δt−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t−1

}
.

Let

t∗ := arg max
t∈{1,...,T (δ)}

{
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 (96)

− δt−1µ∆θ − δt−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t−1

}
.

Moreover, let t(δ) be defined as follows: t(δ) ∈ R such that

δt(δ)−1µ∆θ + δt(δ)−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t(δ)−1

= δt(δ)µ∆θ + δt(δ)
(1− µ)θ`(∆θ − ε(δ))

θ` + ε(δ)
r(δ)t(δ).

Since the maximand on the right-hand side of equation (96) is concave in t and

T (δ) is yet to be determined (and so can be chosen arbitrarily large),

t∗ = inf {t ∈ T0 : t ≥ t(δ)} . (97)

Note that

δt(δ)−1µ∆θ + δt(δ)−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t(δ)−1
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= δt(δ)µ∆θ + δt(δ)
(1− µ)θ`(∆θ − ε(δ))

θ` + ε(δ)
r(δ)t(δ)

⇐⇒ µ(1− δ)∆θ = −(1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

(1− δr(δ))r(δ)t(δ)−1

⇐⇒ µ(1− δ)∆θ =
(1− µ)θ`(∆θ − ε(δ))

θ` + ε(δ)

θ` + ε(δ)

(1− δ)(∆θ − ε(δ))
r(δ)t(δ)−1

⇐⇒ r(δ)t(δ)−1 =
µ∆θ

(1− µ)θ`
(98)

⇐⇒ t(δ) = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r(δ)

, (99)

where the second equivalence holds by implication (77). Since µ ∈
(
θ`
θh
, 1
)

,

µ∆θ
(1−µ)θ`

> 1, and so ln
(

µ∆θ
(1−µ)θ`

)
> 0. Moreover, r(δ) > 1, and so ln r(δ) > 0. Thus,

ln

(
µ∆θ

(1−µ)θ`

)
ln r(δ)

> 1, which implies, together with equations (97) and (99), that t∗ ≥ 2.

Step 7. The choice of T (δ) is part of the choice of the Lagrange multipliers (γ∗t )
∞
t=2.

Thus, T (δ) must be chosen to minimize the objective function of program (P2c).

Let UP2c
P (π) denote the optimal value of program (P2c). Note that

UP2c
P (π) = α∗ + β∗ −

∞∑
t=2

(θ` + µε(δ))γ∗t

= α∗ + µθh + µ(θ` + ε(δ))

(
T (δ)∑
t=2

γ∗t

)
− (θ` + µε(δ))

(
T (δ)∑
t=2

γ∗t

)

= α∗ + µθh − (1− µ)θ`

(
T (δ)∑
t=2

(1− δ)θh
∆θ − ε(δ)

ρ(δ)t−2

)

= α∗ + µθh −
(1− µ)θ`(1− δ)θh

∆θ − ε(δ)
1− ρ(δ)T (δ)−1

1− ρ(δ)
(100)

= α∗ + µθh +
(1− µ)θ`θh
θ` + ε(δ)

(
1− ρ(δ)T (δ)−1

)
=

(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 − δt∗−1µ∆θ − δt∗−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t
∗−1

+ µθh +
(1− µ)θ`θh
θ` + ε(δ)

(
1− ρ(δ)T (δ)−1

)
=
θh(θ` + µε(δ))

θ` + ε(δ)
− δt∗−1µ∆θ − δt∗−1 (1− µ)θ`(∆θ − ε(δ))

θ` + ε(δ)
r(δ)t

∗−1,

where: the second equality holds by equation (92) and the guess that γ∗t = 0 for

all t > T (δ); the third equality holds by equation (91); the fifth equality holds by
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implication (77); the sixth equality holds by equation (95) and the definition of

t∗. Since UP2c
P (π) does not depend on T (δ), we take

T (δ) = t∗. (101)

Step 8. We show that α∗ ≥ 0. From the two previous steps, we have

α∗ =
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 − δt∗−1µ∆θ − δt∗−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)t
∗−1

=
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−1 − δT (δ)−1µ∆θ − δT (δ)−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)T (δ)−1

= δT (δ)−1
[
(1− µ)θ`r(δ)

T (δ)−1 − µ∆θ
]

≥ δt(δ)−1
[
(1− µ)θ`r(δ)

t(δ)−1 − µ∆θ
]

= 0

where: the first equality holds by equation (95) and definition (96); the second

equality holds by equation (101); the third equality holds by definition (75); the

inequality holds by equation (95), definition (96), and equation (101); the last

equality holds by equation (98).

Step 9. Summing up, a candidate solution ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,t, λ

∗
h,t+1, γ

∗
t+1

)∞
t=1

)
∈

R3 × R3∞ to program (P2c) is as follows. For

T (δ) = inf {t ∈ T1 : t ≥ t(δ)} , where t(δ) = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r(δ)

,

we have:

α∗ = δT (δ)−1
[
(1− µ)θ`r(δ)

T (δ)−1 − µ∆θ
]
, (102)

β∗ = µθh + µ(θ` + ε(δ))

(
T (δ)∑
t=2

γ∗t

)
(103)

ζ∗ = µ (104)

λ∗`,t =

1 if t = 1

(1− µ)γ∗t otherwise
, (105)

λ∗h,t = µγ∗t for all t ∈ T0, (106)
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γ∗t =


(1−δ)θh
∆θ−ε(δ)ρ(δ)t−2 if t ∈

{
2, . . . , T (δ)

}
0 if t > T (δ)

. (107)

All elements of ξ∗ are clearly non-negative. Moreover, we have

UP2c
P (π) =

θh(θ` + µε(δ))

θ` + ε(δ)
− δT (δ)−1µ∆θ (108)

− δT (δ)−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)T (δ)−1,

where the equality holds by equations (100) and (101).

G.5 A Solution to the Primal Program (P2b)

We recover a solution (x∗(δ),p∗(δ)) :=
(
x∗`,t(δ), x

∗
h,t(δ), p

∗
`,t(δ), p

∗
h,t(δ)

)∞
t=1
∈ R4∞ to

program (P2b).

Step 1. Since λ∗`,t > 0 for all t ∈
{

1, . . . , T (δ)
}

(see equation (105)), constraint

(IR`) is binding for all such t. Thus,

p∗`,t(δ) = θ`x
∗
`,t(δ) for all t ∈

{
1, . . . , T (δ)

}
. (109)

Since λ∗h,t > 0 for all t ∈
{

2, . . . , T (δ)
}

(see equation (106)), constraint (IRh) is

binding for all such t. Thus,

p∗h,t(δ) = θhx
∗
h,t(δ) for all t ∈

{
2, . . . , T (δ)

}
. (110)

Moreover, guess that the solution to program (P2b) is such that

T (δ)−1∑
t=1

x∗h,t(δ) = 1. (111)

and

x∗h,t(δ) = p∗h,t(δ) = 0 for all t ≥ T (δ). (112)

Step 2. From constraint (O′) binding for t = T (δ) (as γ∗
T (δ)

> 0, see equation

(107)) and the conjectures in equations (111) and (112), we have that

∞∑
t=T (δ)

δt−T (δ)p`,t(δ) = θ`,
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from which we guess that

p∗
`,T (δ)

(δ) = θ`. (113)

From equations (36) and (40), we have that

x∗
`,T (δ)

(δ) = 1, (114)

and so x∗`,t(δ) = p∗`,t(δ) = 0 for all t ∈
{

1, . . . , T (δ)− 1
}

. Finally, we guess that

p∗l,t(δ) = 0 for all t > T (δ). (115)

Step 3. Since ζ∗ > 0 (see equation (104)), constraint (ICh) is binding. This,

together with equations (110), (113), and (114), implies that θhx
∗
h,1(δ)− p∗h,1(δ) =

δT (δ)−1∆θ or, equivalently,

p∗h,1(δ) = θhx
∗
h,1(δ)− δT (δ)−1∆θ.

Step 4. To find x∗h,t(δ) for all t ∈
{

2, . . . , T (δ)
}

, we use that constraint (O′)

is binding for all such t (as γ∗t > 0 for all such t, see equation (107)). From

constraint (O′) binding for t = T (δ)−1, we obtain µ
[
(θ`+ε(δ))

(
1−x∗

h,T (δ)−1
(δ)
)

+

θhx
∗
h,T (δ)−1

(δ)
]

+ (1− µ)δθ` = θ` + µε(δ) or, equivalently

x∗
h,T (δ)−1

(δ) =
(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

.

Similarly, solving for constraint (O′) binding backwards for all t ∈
{

2, . . . , T (δ)−
2
}

, starting with t = T (δ)− 2, we obtain

x∗h,t(δ) =
(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

(
θh − δθ`

∆θ − ε(δ)

)T (δ)−t−1

=
(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

ρ(δ)T (δ)−t−1,

where the second equality holds by definition (75). Finally, using the guess in

equation (111), we have

x∗h,1(δ) = 1−
T (δ)−1∑
t=2

x∗h,t(δ)

= 1−
T (δ)−1∑
t=2

(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

ρ(δ)T (δ)−t−1

= 1− (1− δ)(1− µ)θ`
µ(∆θ − ε(δ)

1− ρ(δ)T (δ)−2

1− ρ(δ)
(116)
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= 1 +
(1− µ)θ`
µ(θ` + ε(δ))

− (1− µ)θ`
µ(θ` + ε(δ))

ρ(δ)T (δ)−2

=
1

µ(θ` + ε(δ))

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2],

where the fourth equality holds by implication (77).

Step 5. Summing up, a candidate solution

(x∗(δ),p∗(δ)) :=
(
x∗`,t(δ), x

∗
h,t(δ), p

∗
`,t(δ), p

∗
h,t(δ)

)∞
t=1
∈ R4∞

to program (P2b) is as follows. For

T (δ) = inf {t ∈ T1 : t ≥ t(δ)} , (117)

where

t(δ) = 1 +
ln
(

µ∆θ
(1−µ)θ`

)
ln r(δ)

, (118)

we have:

x∗`,t(δ) =

1 if t = T (δ)

0 otherwise
, (119)

x∗h,t(δ) =


1

µ(θ`+ε(δ))

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
if t = 1

(1−δ)(1−µ)θ`
µ(∆θ−ε(δ)) ρ(δ)T (δ)−t−1 if t ∈

{
2, . . . , T (δ)− 1

}
0 otherwise

, (120)

p∗`,t(δ) = θ`x
∗
`,t(δ) for all t ∈ T0, (121)

p∗h,t(δ) =

θhx
∗
h,1(δ)− δT (δ)−1∆θ if t = 1

θhx
∗
h,t(δ) otherwise

. (122)

Except for x∗h,1(δ), all elements of x∗ are clearly non-negative. We will show in

step 7 of this section that x∗h,1(δ) ≥ 0 if δ is sufficiently high.

Let UP2b
P (π) be the optimal value of the primal program (P2b). Thus, we have

UP2b
P (π) = µ

(
∞∑
t=1

δt−1p∗h,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p∗`,t

)

= µ

(
T (δ)−1∑
t=1

δt−1p∗h,t

)
+ δT (δ)−1(1− µ)p∗

`,T (δ)
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= µ

[
θh

µ(θ` + ε(δ))

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]

− δT (δ)−1∆θ +

T (δ)−1∑
t=2

δt−1 (1− δ)(1− µ)θ`θh
µ(∆θ − ε(δ)

ρ(δ)T (δ)−t−1

]
+ δT (δ)−1(1− µ)θ`

=
θh

θ` + ε(δ)

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
− δT (δ)−1µ∆θ (123)

+ δT (δ)−2 (1− δ)(1− µ)θ`θh
∆θ − ε(δ)

1− r(δ)T (δ)−2

1− r(δ)
+ δT (δ)−1(1− µ)θ`

=
θh

θ` + ε(δ)

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
− δT (δ)−1µ∆θ

+ δT (δ)−1(1− µ)θ`r(δ)
T (δ)−2,

where: the second and third equalities hold by equations (119)–(122); the fourth

equality holds because, by definition (4), δt−1ρ(δ)T (δ)−t−1 = δT (δ)−2r(δ)T (δ)−t−1;

the last equality holds by using implication (76).

Step 6. We show that x∗(δ) → x∗ as δ → 1 which implies, from equations

(50)–(53) and (119)–(122), that (x∗(δ),p∗(δ)) → (x∗,p∗) as δ → 1. This step

establishes part (i) of Theorem 6 provided that x∗(δ) is a solution to program

(P2), which we show to be the case in Appendix G.7.

To begin, we show that limδ→1

[
T (δ)− T

]
= 0. From equations (117) and

(48), it follows that it is enough to show that limδ→1[t(δ) − t] = 0. The desired

result follows by observing the following:

lim
δ→1

[t(δ)− t] = 0⇐⇒ lim
δ→1

[
1

ln r(δ)
− 1

ln r

]
= 0

⇐⇒ lim
δ→1

[
ln r − ln r(δ)

ln r ln r(δ)

]
= 0

⇐⇒ lim
δ→1

ln

[
r

r(δ)

]
= 0

⇐⇒ lim
δ→1

ln

(
θh−δθ`
δ∆θ

θh−δ(θ`+ε(δ))
δ(∆θ−ε(δ))

)
= 0

⇐⇒ ln 1 = 0,

where: the first equivalence holds by equations (49) and (118); the fourth equiv-

alence holds by definitions (3) and (74).
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Since limδ→1

[
T (δ)− T

]
= 0, that limδ→1[x∗`,t(δ) − x∗`,t] = 0 for all t ∈ T0

immediately follows from equations (50) and (119).

Next, note that

lim
δ→1

x∗h,1 = lim
δ→1

1

µ

(
1− (1− µ)ρT−2

)
=

1

µ
− 1− µ

µ
lim
δ→1

1

ρ
δT−1rT−1 (124)

=
1

µ
− 1− µ

µ

(
µ∆θ

(1− µ)θ`

)−∆θ
θh µ∆θ

(1− µ)θ`
,

where: the first equality holds by equation (51); the third equality holds by equa-

tions (59) and (60). Moreover, note that

T (δ) = inf {t ∈ T1 : t ≥ t(δ)} =⇒ t(δ)− 1 ≤ T (δ)− 1 ≤ t(δ). (125)

From implication (125) and since δ ∈ (0, 1), we have δt(δ) ≤ δT (δ)−1 ≤ δt(δ)−1.

Thus,

lim
δ→1

δT (δ)−1 = lim
δ→1

δt(δ)−1 = lim
δ→1

δ

ln

(
µ∆θ

(1−µ)θ`

)
ln
θh−δ(θ`+ε(δ))
δ(∆θ−ε(δ)) =

(
µ∆θ

(1− µ)θ`

)−∆θ
θh

, (126)

where: the first equality holds by the sandwich theorem for the limits of functions;

the second equality holds by equation (99) and definition (74); the third equality

holds as limδ→1 ε(δ) = 0. From implication (125) and since r(δ) > 1, we have

r(δ)t(δ)−1 ≤ r(δ)T (δ)−1 ≤ r(δ)t(δ). Moreover, as δ → 1, r → 1 (see definition (74)).

Thus,

lim
δ→1

r(δ)T (δ)−1 = lim
δ→1

r(δ)t(δ)−1 =
µ∆θ

(1− µ)θ`
, (127)

where: the first equality holds by the sandwich theorem for the limits of functions;

the second equality holds by equation (98). Therefore, we have

lim
δ→1

x∗h,1(δ) = lim
δ→1

1

µ(θ` + ε(δ))

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
=

1

µ
− 1− µ

µ
lim
δ→1

1

ρ(δ)
δT (δ)−1r(δ)T (δ)−1 (128)

=
1

µ
− 1− µ

µ

(
µ∆θ

(1− µ)θ`

)−∆θ
θh µ∆θ

(1− µ)θ`
,

where: the first equality holds by equation (120); the third equality holds by equa-

tions (126) and (127). That limδ→1[x∗h,1(δ)−x∗h,1] = 0 follows from equations (124)
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and (128).

Since ρT−1 = δT−1rT−1, from equations (59) and (60), it follows that limδ→1 ρ
T−1

is finite. In addition, for all t ∈ T1, limδ→1 ρ
t = 1. Therefore, for all t ∈ T1,

lim
δ→1

x∗h,t = lim
δ→1

(1− δ)(1− µ)θ`
µ∆θ

ρT−t−1 = lim
δ→1

(1− δ)(1− µ)θ`
µ∆θ

1

ρt
ρT−1 = 0, (129)

where the first equality holds by equation (51). Moreover, since ρ(δ)T (δ)−1 =

δT (δ)−1r(δ)T (δ)−1, from equations (126) and (127), it follows that limδ→1 ρ(δ)T (δ)−1

is finite. In addition, for all t ∈ T1, limδ→1 ρ(δ)t = 1. Therefore, for all t ∈ T1,

lim
δ→1

x∗h,t(δ) = lim
δ→1

(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

ρ(δ)T (δ)−t−1

= lim
δ→1

(1− δ)(1− µ)θ`
µ(∆θ − ε(δ))

1

ρ(δ)t
ρ(δ)T (δ)−1 (130)

= 0,

where the first equality holds by equation (120). That limδ→1[x∗h,t(δ) − x∗h,t] = 0

for all t ∈ T1 follows from equation (129) and (130).

Step 7. We show that x∗h,1(δ) ≥ 0 if δ is sufficiently high.

Note that: x∗h,1(δ) is continuous in δ; and limδ→1[x∗h,1(δ)−x∗h,1] = 0. Moreover,

in step 5 of Appendix B.4 we show that x∗h,1 > 0 (see Remark 1). Therefore, there

exists δ1 ∈ (0, 1) such that x∗h,1(δ) ≥ 0 for all δ ∈ (δ1, 1).

Step 8. We show that UP2b
P (π) = UP2c

P (π), so that, by weak duality, the candidate

solution to program (P2b) is indeed a solution to the program for all δ ∈ (δ1, 1).

To obtain the desired result, note that

UP2c
P (π)− UP2b

P (π) =
θh(θ` + µε(δ))

θ` + ε(δ)
− δT (δ)−1µ∆θ

− δT (δ)−1 (1− µ)θ`(∆θ − ε(δ))
θ` + ε(δ)

r(δ)T (δ)−1

− θh
θ` + ε(δ)

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
+ δT (δ)−1µ∆θ

− δT (δ)−1(1− µ)θ`r(δ)
T (δ)−2

=
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−2

− (1− µ)θ`ρ(δ)T (δ)−1

(
∆θ − ε(δ)
θ` + ε(δ)

+
1

r(δ)

)
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=
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−2

− (1− µ)θ`ρ(δ)T (δ)−1 θh(∆θ − ε(δ))
(θ` + ε(δ))(θh − δ(θ` + ε(δ)))

=
(1− µ)θ`θh
θ` + ε(δ)

ρ(δ)T (δ)−2 − (1− µ)θ`ρ(δ)T (δ)−1 θh
θ` + ε(δ)

1

ρ(δ)

= 0

where: the first equality holds by equations (108) and (123); the second to fourth

equalities hold by definitions (74) and (75).

Step 9. We show that limδ→1[UP2b
P (π)− UP1

P (π)] = 0. This step establishes part

(i) of Theorem 6 provided that x∗(δ) is a solution to program (P2), which we show

to be the case in Appendix G.7.

Note that

lim
δ→1

UP2b
P (π) = lim

δ→1

θh
θ` + ε(δ)

[
θ` + µε(δ)− (1− µ)θ`ρ(δ)T (δ)−2

]
− lim

δ→1
δT (δ)−1µ∆θ + lim

δ→1
δT (δ)−1(1− µ)θ`r(δ)

T (δ)−2

= lim
δ→1

θh
θ` + ε(δ)

[
θ` + µε(δ)− (1− µ)θ`

1

ρ(δ)
ρ(δ)T (δ)−1

]
− lim

δ→1
δT (δ)−1µ∆θ + lim

δ→1
δT (δ)−1(1− µ)θ`

1

r(δ)
r(δ)T (δ)−1 (131)

= θh − (1− µ)θh

(
µ∆θ

(1− µ)θ`

)−∆θ
θh µ∆θ

(1− µ)θ`

− µ∆θ

(
µ∆θ

(1− µ)θ`

)−∆θ
θh

+ (1− µ)θ`

(
µ∆θ

(1− µ)θ`

)−∆θ
θh µ∆θ

(1− µ)θ`

= θh −∆θ

(
µ∆θ

(1− µ)θ`

)−∆θ
θh

(
µ+ (1− µ)

µ∆θ

(1− µ)θ`

)
,

where: the first equality holds by equation (123); the second equality holds be-

cause limδ→1 ε(δ) = 0, limδ→1 r(δ) = 0, limδ→1 ρ(δ) = 1, and by equations (126)

and (127). The desired result follows from equivalence (61) and equation (131).

G.6 A Solution to the Primal Program (P2a)

We show that the solution (x∗(δ),p∗(δ)) ∈ R4∞ to program (P2b) described in

Step 5 of Appendix G.5 satisfies constraint (IC`) and constraint (O′) for τ = 1

in the primal program (P2a), so that (x∗(δ),p∗(δ)) is also a solution to program
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(P2a) if δ is sufficiently high.

Step 1. By equations (119) and (121), the left-hand side of constraint (IC`) eval-

uated at (x∗(δ),p∗(δ)) equals 0. By equations (120) and (122), and since θh > θ`,

the right-hand side of constraint (IC`) evaluated at (x∗(δ),p∗(δ)) is smaller than

θ`x
∗
h,1(δ) − p∗h,1(δ). Thus, to show that (x∗(δ),p∗(δ)) satisfies constraint (IC`), it

suffices to show that 0 ≥ θ`x
∗
h,1(δ) − p∗h,1(δ). Note that: x∗h,1(δ) and p∗h,1(δ) are

continuous in δ; limδ→1[x∗h,1(δ) − x∗h,1] = 0; and limδ→1[p∗h,1(δ) − p∗h,1] = 0. More-

over, in Appendix B.5, we show that 0 > θ`x
∗
h,1 − p∗h,1 (see Remark 2). Therefore,

there exists δ2 ∈ (0, 1) such that 0 ≥ θ`x
∗
h,1(δ)− p∗h,1(δ) for all δ ∈ (δ2, 1).

Step 2. In step 9 of Appendix G.5, we show that limδ→1[UP2b
P (π)− UP1

P (π)] = 0.

In step 2 of Appendix D, we show that limδ→1 U
P1
P (π) > θ`. Moreover, note that:

(i) the left-hand side of constraint (O′) for τ = 1 is equal to UP2b
P (π); and (ii)

the right-hand side of constraint (O′) converges to θ` as δ → 1 (as ε(δ) → 0).

Therefore, there exists δ3 ∈ (0, 1) such that, for all δ ∈ (δ3, 1), (x∗(δ),p∗(δ))

satisfies constraint (O′) for τ = 1 in the primal program (P2a).

Step 3. We conclude that (x∗(δ),p∗(δ)) is a solution to program (P2a) for all

δ ∈ (δ, 1), where δ := max {δ1, δ2, δ3}.

G.7 A Solution to the Primal Program (P2)

We show that the solution (x∗(δ),p∗(δ)) ∈ R4∞ to program (P2a) described in

Step 5 of Appendix G.5 satisfies constraints (IC`′) and (ICh′) if δ ∈ (δ, 1).

Step 1. We show that (x∗(δ),p∗(δ)) satisfies constraint (IC`′) for all τ ∈ T0.

For all τ ∈ T0, p∗`,t(δ) = θ`x
∗
`,t(δ) (see equation (121)). Thus, the left-hand side

of constraint (IC`′) equals 0 for all τ ∈ T0.

For all τ ∈ T1, θ`x
∗
h,τ (δ)− p∗h,τ (δ) ≤ θhx

∗
h,τ (δ)− p∗h,τ (δ) = 0, where the inequal-

ity holds because θ` < θh and the equality holds by equality (122). Moreover,

1−
∑τ−1

t=1 x
∗
`,t(δ) ≥ 0 for all τ ∈ T0. Thus, the right-hand side of constraint (IC`′)

is non-positive for all τ ∈ T1, and so (x∗(δ),p∗(δ)) satisfies constraint (IC`′) for

all τ ∈ T1.

To show that (x∗(δ),p∗(δ)) satisfies constraint (IC`′) for τ = 1, we need to

show that θ`x
∗
h,1(δ) − p∗h,1(δ) ≤ 0. In Appendix G.6, we have already shown that

69



the previous inequality holds true for all δ ∈ (δ2, 1).

Step 2. We show that (x∗(δ),p∗(δ)) satisfies constraint (ICh′) for all τ ∈ T0.

For all τ 6= T (δ), x∗`,τ (δ) = 0 and p∗`,τ (δ) = 0 (see equations (119) and (121)).

Thus, the right-hand side of constraint (ICh′) equals 0 for all τ 6= T (δ). Moreover,∑T (δ)−1
t=1 x∗h,t(δ) = 1 (see equation (116)), and so the right-hand side of constraint

(ICh′) equals 0 also for τ = T (δ). Since (x∗,p∗) satisfies constraint (IRh) for all

τ ∈ T0, that (x∗(δ),p∗(δ)) also satisfies constraint (ICh′) for all τ ∈ T0 follows. �

H Calculations for Section 3.1

Consider the parametric specification in Example 1: δ = 1
2
, θ` = 1, θh = 1,

and µ = 9
10

. Under such specification, by Theorems 1 and 3 and the solution to

program (P1) in Appendix B, a candidate for a seller-optimal wPBE outcome of

G is as follows (see Step 6 of Appendix B.4).

1. t = 1 +
ln

(
µ∆θ

(1−µ)θ`

)
ln r

= 1 + ln 9
ln 3

= 3, and so T = inf {t ∈ T1 : t ≥ t} = 3.

2. x∗`,1 = 0, x∗`,2 = 0, and x∗`,3 = 1.

3. x∗h,1 = 1
µ

(
1− (1− µ)ρT−2

)
= 10

9

(
1− 3

20

)
= 17

18
, x∗h,2 = (1−δ)(1−µ)θ`

µ∆θ
= 1

18
, and

x∗h,3 = 0.

4. p∗`,1 = 0, p∗`,2 = 0, and p∗`,3 = 1.

5. p∗h,1 = θhx
∗
h,1−δT−1∆θ = 217

9
− 1

4
= 59

36
, p∗h,2 = θhx

∗
h,2 = 2 1

18
= 1

9
, and p∗h,3 = 0.

6. From 2 and 4, the transfers from type θ = 1 to the principal conditional on

trade in period t, denoted by p`,t, are p`,1 = 0, p`,2 = 0, and p`,3 = 1. From

3 and 5, the transfers from type θ = 2 to the principal conditional on trade

in period t, denoted by ph,t, are ph,1 = 59
34

, ph,2 = 2, and ph,3 = 0.

Steps 1–6 show that the entries of the first row in Table 3.1 in Section 3.1

describe a candidate for a seller-optimal wPBE outcome of the MCS game. To

show that this is indeed a wPBE outcome of the MCS game, by Theorems 2 and

5, it is enough to show that µ2(x∗,p∗) ≤ 1
2

(see also Section E). Note that

µ2(x∗,p∗) :=

(
1− x∗h,1

)
µ(

1− x∗`,1
)
(1− µ) +

(
1− x∗h,1

)
µ

=
1
18

9
10

1 1
10

+ 1
18

9
10

=
1

3
<

1

2
,

from which the desired result follows. �
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