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Abstract

We present a tractable framework for evaluating the cost of delays induced by infre-
quent trading in the corporate bond market. Using 341 corporate bond factors from
OpenBondAssetPricing.com and machine learning models trained on their underly-
ing signals, we demonstrate that, before transaction costs, 51 factors outperform the
bond market. However, this number drops to nearly zero after accounting for trading
frictions because the cost of delay is amplified for highly profitable factors. Trading a
subset of liquid bonds does not eliminate this cost because liquidity is hard to predict
and sales delays cannot be avoided, underscoring the critical impact of delay costs.
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1 Introduction

Factor investing research has a long tradition dating back to Fama and French (1993). Typ-

ically, researchers evaluate proposed strategies using historical data, assuming that the rep-

resentative investor is endowed with abundant trading opportunities and can trade instanta-

neously, without delay. This assumption may be justified in continuously traded, limit order

book-driven equity markets, where hedge funds and other active investors trade frequently.

However, this assumption is rendered questionable for illiquid assets, such as corporate bonds,

where trading occurs in fragmented, over-the-counter (OTC) markets. These markets are

characterized by relatively sparse trade frequency and the resulting trading delays are likely

to significantly alter the performance of factor strategies.
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Figure 1: Distribution of Bonds by Number of Trading Days over 2022:01–
2022:12.

As Fig. 1 illustrates, of the 29,543 publicly traded bonds in 2022, ∼70% of them traded

on 10 business days or less. Only 109 bonds (0.4% of the sample) traded daily. Despite trade

infrequency being a dominant characteristic of the corporate bond market, its implications for

factor investing remain largely unexplored. In this paper, we fill this gap and comprehensively
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evaluate the performance of corporate bond factors after accounting for delays. Delays are

costly because the predictive value of signals used in factor investing decays over time. With

the delay, investors end up trading with stale signals or not trading at all, which lowers the

average returns of the factors. The difference in average returns between factors with and

without delays is the ‘cost of delay’.

To transparently characterize the cost of delay, we simulate data on returns and delays,

where delays are generated from an exponential distribution. The simulation enables us

to quantify the cost of delay given a set of parameters, including the portfolio turnover

rate and average excess returns of the factor. In particular, we show that the trading

intensity parameter of the exponential distribution, which measures the probability of a

trade occurring in a given period, is key to determining the delay cost. Higher trade intensity

reduces the possibility of trade execution failure and thus the cost of delay. Consequently,

measuring delay costs crucially depends on estimates of trade intensity.

Our goal is to estimate the delay cost for an active factor investor. Thus, instead of taking

the historical trade frequency in Fig. 1 as given, we take into account the difference between

the trading intensity of active factor investors and that of buy-and-hold investors who both

generate the data. In addition, our procedure accounts for potential trade-offs between

delay and bid-ask spreads facing investors who optimally choose to delay, and provides a

lower bound for total transaction costs.1

Specifically, in our main results, we use two estimates of trade intensity: our own estimate

based on historical transaction data in TRACE, and another estimate based on order-level

data from an electronic trading platform, MarketAxess, provided by Kargar, Lester, Plante,

and Weill (2025). We estimate trade intensity by running predictive regressions of the

trade dummy on Li and Yu (2025)’s investor composition measure, which represents the

1In many OTC markets, including corporate bonds, large client orders enjoy lower half-spreads relative
to smaller orders (Edwards, Harris, and Piwowar, 2007). This phenomenon is known as the ‘size discount’.
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average trading activity of the holders of a given bond. Our model-based trade intensity

is computed using the 99th percentile values of the investor composition measure to obtain

the most conservative measure of delay. This intensity estimate represents the delay facing

active factor investors, who are most likely to demand high immediacy.

Armed with the estimated costs of delays and bid-ask spreads, we study the performance

of corporate bond factor investing using 341 characteristics based on the Intercontinental

Exchange (ICE) and TRACE corporate bond pricing data. We make our data library pub-

licly available on openbondassetpricing.com/machine-learning-data. To complement

the publicly available data offering, and to aid replicability in the field, our factors can be

reproduced with the newly developed PyBondLab package in Python.2 We use this package

to calculate gross average returns and portfolio turnover rates. We then assign the simulated

delay cost to each of the 341 factors by adjusting the simulation parameters based on the

factor’s portfolio turnover rate and average excess returns. Total transaction costs are the

sum of the delay costs and the standard measure of bid-ask spread costs, which is obtained

by multiplying the half spread by the portfolio turnover rate.

We have four main findings. First, pre-transaction costs, 58 of the 341 factors yield

statistically significant average returns, with 42 generating significant bond market CAPM

alpha. For ease of interpretation, we group the 58 bond factors into six categories based

on the characteristics they are formed on: Equity Momentum, Equity Reversal, Investment,

(Credit) Spreads, Value/Profits, and Volatility/Risk. Spread-based factors yield the highest

2This package is made available to the public and can be installed on any machine using pip (pip install

PyBondLab) to produce the factors used in this study. The package includes functionality to compute bond
portfolios rebalanced over any given horizon, as well as turnover, which correctly accounts for endogenous
changes in portfolio value. Furthermore, various tools are provided to dampen portfolio turnover, includ-
ing a buy-hold-spread (known as banding) and staggered holding periods. Detailed tutorials, examples,
and documentation can be found on the PyBondLab download webpage. The software can be used in con-
junction with the publicly available factor characteristic data and bond returns that we make available
on openbondassetpricing.com/machine-learning-data. In addition, the time-series of our factor returns
(341 of them) and monthly turnovers that are used in the main results (ICE returns) and robustness (TRACE
returns) are available for download here.
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average CAPM alpha (0.44% monthly), followed by Equity Reversal factors (0.43% monthly).

Across all 58 significant factors, the average CAPM alpha is 0.28%.

Second, the delay and bid-ask spread costs are both economically large, and mostly

eliminate these alphas. Starting with the Spread category, the delay cost is 0.11% per

month for large trades, which accounts for about one quarter of its gross (pre-transaction

cost) alpha. Our second-best performing category, Equity Reversal, yields substantially

higher delay costs at 0.22% per month, which exceeds half of its gross alpha. Notably, these

delay costs exceed both the bid-ask spread costs (0.09% and 0.20%) associated with these

two categories, highlighting the significance of delays for the best-performing factors. The

delay cost is also nontrivial for the Equity Momentum (0.11%) and Volatility/Risk (0.06%)

categories. On the other hand, it is negligible for the Investment (0.01%) and Value/Profit

(0.02%) categories that are based on slower moving Compustat accounting data.

The impact of delays is greatest for the Equity Reversal category because the factors

therein are highly profitable based on signals that change quickly month-to-month. Unlike

bid-ask spread costs, the delay cost is greater for more profitable factors because the oppor-

tunity cost of not trading immediately upon observing the signal is larger.3 The Reversal

factors’ high turnover rate exacerbates this cost. With smaller trade sizes, delay costs de-

crease, but this reduction comes at the expense of increased bid-ask spreads. Taken together,

we find that the average CAPM alpha of the 58 factors drops to 0.09% and 0.05% using large

and small trades, with the number of significant factors of 2 and 1, respectively. The delay

costs using the trading intensity estimates of Kargar et al. (2025) lead to a very similar

conclusion. After accounting for delay and bid-ask spread costs, the average CAPM alpha

is 0.09% and 0.04% for large and small trades, respectively.

Third, standard machine-learning models that optimally combine the 341 characteristics

3As part of our main results, we empirically verify that average factor returns and alphas exhibit more
rapid decay for factors with higher profitability.
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exacerbate the cost of delay. We follow Gu et al. (2020) and train nine machine learning

(ML) models based on the 341 characteristics and compute model-based expected returns

at the bond level. The long-short strategies based on the expected returns as signals are our

machine learning based factors.

These ML models generate impressive out-of-sample performance before transaction

costs, with an average CAPM alpha of 0.82% (9.89% per annum) and t-statistics above

4. Moreover, all of the ML-based factors generate significant bond CAPM alphas after sub-

tracting bid-ask spread costs. However, the models tend to place a large weight on signals

that move quickly and have a high predictive ability, such as past stock returns of the bond

issuer. As a result, the cost of delay for the ML model-based factor is high, ranging from

0.17% to 0.36% for large trades and 0.09% to 0.19% for small trades. After adjusting for the

cost of delay, the CAPM alphas of the ML-based factors become only marginally significant,

averaging 0.33% for large trades and 0.35% for small trades, a significant decline from the

pre-cost alpha of 0.82%. The large decline in alpha showcases the importance of accounting

for delays, particularly for factors with impressive performance before transaction costs.

Finally, various execution strategies designed to reduce delays fail to eliminate transaction

costs. We examine three approaches. First, we partition large $2 million orders into smaller

tranches. This strategy yields insignificant cost reductions, as widening bid-ask spreads from

trading in smaller size offset the benefits obtained from reduced execution delays. Second,

inspired by Chaudhary et al. (2023), we treat corporate bonds in each portfolio as close

substitutes and trade only those that offer faster execution. However, this method also fails

to significantly reduce delay costs because sales delays cannot be fully eliminated, and the

factor Sharpe ratio declines due to poor portfolio diversification from owning fewer bonds.

Third, we extend the holding period to three months and introduce inertia in portfolio

rebalancing, as proposed in Novy-Marx and Velikov (2019). This approach also fails to

improve net-of-cost factor returns, as the reduced delay costs are offset by declining factor
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performance from a slower rate of rebalancing.

Our paper contributes to the rapidly growing literature that evaluates (and re-evaluates)

the performance of factor investing in the corporate bond market (e.g., Bali et al. 2020;

Augustin et al. 2020; Kelly et al. 2023; Sandulescu 2022; van Binsbergen et al. 2025; Dickerson

et al. 2023; Dick-Nielsen et al. 2023). The paper closest to ours is Ivashchenko and Kosowski

(2024), which studies the performance of nine factors after accounting for transaction costs.

Our paper differs from Ivashchenko and Kosowski (2024) in that we highlight the novel

delay costs faced by investors and employ a comprehensive factor data library in testing the

performance of factor models.4

This paper also relates to the extensive literature measuring illiquidity and transaction

costs in the corporate bond market (e.g., Edwards et al. 2007; Chen et al. 2007; Feldhütter

2010; Bao et al. 2011; Schestag et al. 2016; Bao et al. 2018; Bessembinder et al. 2018; Dick-

Nielsen and Rossi 2018; O’Hara and Zhou 2021; Hendershott et al. 2021, 2022; Wu 2022; Choi

et al. 2024; Pinter et al. 2024). In particular, Kargar et al. (2025) measures execution delays

at the lower bound using relatively liquid corporate bonds traded on electronic exchanges.5

Other closely related papers include O’Hara et al. (2018), who examine market power in

determining corporate bonds’ half spreads, as well as Goldstein and Hotchkiss (2020) and

Reichenbacher and Schuster (2022), who argue that observed transaction costs strongly

depend on transaction size and dealers’ strategic inventory management. However, none

of these papers quantify the impact of trading delays in evaluating trading strategies.6

Our paper aims to provide a set of best practices in accounting for transaction costs

4In our companion paper, Dickerson, Nozawa, and Robotti (2024), we measure delays using an alternative
methodology. However, this method has the limitation of taking the observed trade frequency as given. In
the current paper, we overcome this limitation by adopting a simulation-based approach that offers greater
flexibility in analyzing trading patterns. Either way, the main results are closely aligned: pinning down a
profitable net-of-cost corporate bond factor is challenging.

5More broadly, there is a strand of literature that studies the role of liquidity and dealer inventory in
explaining credit spreads and bond risk premiums. This body of research includes Lin et al. (2011); Friewald
and Nagler (2019); He et al. (2019); Goldberg and Nozawa (2021); Eisfeldt et al. (2023).

6In the CLO market, Hendershott et al. (2024) measure delays after accounting for trade failures.
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in the study of the cross-section of corporate bond returns. Table 1 summarizes recent

papers examining factor investing in corporate bond markets and reports the holding period

length (in months) required to obtain the main results. The majority of prior research

assumes one-month rebalancing with immediate order execution, an assumption that appears

inconsistent with the infrequent trading activity observed in corporate bond markets, as

illustrated in Fig. 1. Moreover, even for the papers that account for transaction costs, they

only consider a variant of bid-ask spreads, not delay costs.7 This paper reevaluates bond

factor performance by highlighting a ‘paradox’ in realistic factor implementation. While

factors based on fast-moving, cross-sectionally predictive signals generate substantial gross

profits, these same factors face the largest execution challenges due to limited liquidity in

corporate bond markets.

The remainder of the paper is organized as follows: Section 2 describes our dataset; Sec-

tion 3 provides detailed methods for calculating delay costs using simulated data; Section 4

estimates the trade intensity and expected delays; Section 5 provides the evaluation of the

factor performance; Section 6 assesses the machine learning models; Section 7 extends the

baseline results with more advanced factor investment strategies; and Section 8 provides

concluding remarks.

2 Data

2.1 Data for Constructing Bond Factors

Our datasets include daily bond data for the constituent bonds of the Bank of America

(BAML) Investment Grade and High Yield indices as made available via the Intercontinental

Exchange (ICE). Factor returns are computed using quote-based ICE data, which does not

7The importance of transaction costs in other asset classes, such as stocks and options, are documented
in Novy-Marx and Velikov (2015), Novy-Marx and Velikov (2019), Chen and Velikov (2023), Detzel et al.
(2023), Avramov et al. (2023), and Muravyev et al. (2024).
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have missing observations even if a bond is not traded exactly on month end. This feature

allows us to estimate the portfolio turnover rate accurately.8 In robustness exercises, we

also compute returns with the TRACE transaction-based data and observe a very closely

aligned set of results.9 We source equity and accounting data from CRSP and Compustat.

We filter the data using standard approaches prescribed by the literature that are explicitly

described in Internet Appendix A. To form bond factors and train the machine learning

models, we construct commonly used bond and equity variables used in the literature and

then merge these to the equity-based characteristics from Chen and Zimmermann (2022,

CZ), and Jensen, Kelly, and Pedersen (2023, JKP).10 This data combines several monthly

bond and stock-based characteristics that have been shown to predict one-month-ahead

corporate bond excess returns. Our data includes 341 characteristics, of which 40 are bond-

based characteristics and 301 are equity-based, covering the majority of corporate bond

return predictors used in prior research. This data is publicly available for download on

openbondassetpricing.com/data.

Detailed descriptions for the construction of our 53 custom-made bond and stock charac-

teristics are provided in Table A.1 of the Internet Appendix. Extensive documentation for the

CZ and JKP equity characteristics is available on the respective authors’ websites. Missing

characteristic data is set equal to its cross-sectional median at each month t. All character-

istics are cross-sectionally ranked and then scaled to lie in the interval [−1,1]. Overall, the

data used to train the ML models with the 341 stock and bond characteristics comprises

19,768 bonds issued by 2,110 firms over the sample period from January 1998 to December

2022.

Because we need return data to construct factors and train the machine learning models,

8Missing transaction data induces additional portfolio turnover because the bond drops out of the tradable
universe at the portfolio formation date, artificially inflating turnover.

9These results are similar if we use the WRDS version of TRACE or our own version which has been
checked for potential data errors.

10Available on openassetpricing.com and WRDS, respectively.
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all factors, whether characteristic-based or ML-based, span the sample period from August

2002 to December 2022 (T = 244). That is, the sample prior to that is used only to generate

signals and train and validate the ML models.

2.2 Data for Trade Intensity Estimates

We use Enhanced TRACE to estimate trading intensity and half spreads. We filter the

TRACE data by removing trades that are i) when issued, ii) with special conditions, iii)

locked in, iv) have more than two days to settlement. We also remove observations with

extreme price reversals: if the product of two consecutive logarithmic price changes is less

than −0.25 (e.g., a 50% increase followed by a −50% decrease), then the observations in the

middle are dropped. To estimate trade intensity, we use only dealer-customer transactions.11

Finally, we use eMAXX for bond ownership information.

To measure the frequency at which bonds are traded, we construct a panel dataset with

an indicator dummy for the incidence of customer buys and sells. We treat missing customer

buy/sell trade observations in TRACE as no-transactions (zero trades), assigning zero to the

indicator. To distinguish no-transactions from missing observations, we first define the set

of bonds in the sample, which is the intersection of the bonds that exist in ICE, the WRDS

bond database (which is constructed from TRACE), and eMAXX. For each bond in the

intersection, we create a contiguous monthly time series based on the first and last month

the bond appears in ICE. We then merge the trading information in TRACE with this

resampled panel data to determine the month in which the bond exists but is not traded.

After the merge, our sample has 814,145 bond-month observations for 14,418 bonds. The

sample period is August 2002 to September 2021, with the sample end determined by the

availability of the eMAXX data.

11This filter is similar to Bessembinder et al. (2008) but our band is wider than theirs (+/− 20%) to
minimize the risk of deleting correct observations.
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3 Simulated Cost of Trade Delays

3.1 Cost of Delays

In this section, we estimate the cost of delays using simulated data. The simulation

method is necessary to distinguish no-trade days in TRACE that result from investor in-

activity from those that occur due to dealers’ unwillingness to provide liquidity. It also

demonstrates that the key determinants of the delay cost are the cross-sectional predictive

ability of the underlying characteristic (signal) used to form the factor and the speed of the

signal decay. In the empirical analysis, we use these determinants to assign this simulated

cost to the factors discovered in the data.

To this end, we consider a stylized model of factor investing. We suppose that bond i’s

gross return consists of predictable components and unpredictable shocks,

ri,t+1 = βi,tft+1 + ui,t+1, (1)

βi,t+1 = ρβi,t + vi,t+1, (2)

where ui,t+1 ∼i.i.d. N (0, σ2
u) and vi,t+1 ∼i.i.d. N (0, σ2

v). The variable βi,t is an observable

signal for investors. We have a systematic risk factor ft ∼i.i.d. N (E[f ], σ2
f ) in the dynamics

whose risk premium determines the Sharpe ratio of the strategy. While we obtain the main

results assuming constant expected returns, we consider time-varying premia, Et[f ], as an

extension in Section 7.4. The fact that the unconditional mean of βi,t is zero does not affect

the analysis because we focus on its cross-sectional variation.

We simulate the data using the system (1) and (2) for i = 1, . . . , 1, 000 (a cross-section of

1,000 bonds) and T = 244 months. We repeat this process 1,000 times: each time, we draw

a cross section of the initial βi,0 from a normal distribution with mean zero and standard

deviation of σv/
√

1− ρ2. Each month, we sort the bonds into quintiles based on the observed
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βi,t. We focus on two portfolios: one consisting of bonds in the top quintile (P(5)) and the

other consisting of bonds in the bottom quintile (P(1)). The long-short strategy return,

which takes long positions in P(5) and short positions in P(1), is our factor.

As βi,t changes, we need to rebalance bonds to keep track of which bonds belong to which

portfolio. When ρ is close to one, βi,t is stable over time, so the bonds move across portfolios

less frequently. A lower value of ρ renders the movement more frequent. This also implies

that the expected returns on the long-short strategy decay more quickly. In contrast, as

σv increases, the difference in betas between the bonds in P(5) and those in P(1) increases,

raising the factor’s expected returns. We will assess the effects of changing ρ and σv in the

next section.

Each month, initiating or closing positions on bond i can be delayed by τ i,t days. This

implies that the factor investor needs to trade bond i, but she is unable to enter or dispose

of the position because dealers cannot source the bond for same-day execution. To draw

random delays, we assume that on a given day, a transaction occurs independently with an

intensity λ. Then, delay τ i,t follows an exponential distribution

τ i,t ∼i.i.d. Exp(λ), (3)

with a mean delay of 1/λ days. Though delay τ i,t is bond specific, all bonds are ex-ante

identical as they share the same trade intensity λ.

Given the central role of λ in determining the delay cost, it merits a few remarks. First,

at this stage, we treat λ as a parameter that is fixed across bonds and over time. However, we

allow it to vary over time as a part of the extension in Section 7.4. Second, it is exogenously

given. In reality, traders face a trade-off between immediacy (i.e., a higher value of λ) and

trade costs (higher bid-ask spreads) and optimize their choice (see, for example, Baruch et al.

2017). This will be accounted for when we empirically estimate λ, which will be done in
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Section 4.

We consider buy and sell orders to fail if the delay is more than 21 days (i.e., a month).

Once an order fails (i.e., τ i,t > 21), we reset the order at the end of the month and re-examine

the delay over the next month (i.e., τ i,t+1), taking into account the updated signal βi,t+1.

This captures the idea that once the investor realizes that the delay is excessive, she can

cancel the order based on the updated information. Consistent with real-world OTC trading

dynamics, a long delay renders the trading signal obsolete, leading to an execution failure.

Trading failure drives a wedge between ideal portfolios where one purchases (sells) all

bonds in the fifth (first) quintile and the actual portfolios with trade failures. Let Q(π)t be

an ideal set of bonds in quintile π based on signal βi,t in month t and P(π)t be an actual

set of bonds in the corresponding portfolio in month t. The two sets differ from one another

because some bonds in the top (bottom) 20% may not be included in the portfolio if an

excessive delay leads to a failed purchase. In addition, other bonds that are not in the top

(bottom) 20% may be included in the portfolios due to sales failures. It is important to note

that the incidence of failure depends not only on the draw of τ i,t, but also on whether or not

the bond is already in the portfolio in the previous month.

Taking these delays and the possibility of trade failure into account, a net return on the

bonds in portfolio π is,

rNet
i,t+1 =



ri,t+1 if i ∈ P(π)t−1 and i ∈ Q(π)t,

ri,t+1(1− τ i,t/21) if i /∈ P(π)t−1 and i ∈ Q(π)t and τ i,t ≤ 21,

0 if i /∈ P(π)t−1 and i ∈ Q(π)t and τ i,t > 21,

ri,t+1(τ i,t/21) + rQ(π),t+1(1− τ i,t/21) if i ∈ P(π)t−1 and i /∈ Q(π)t and τ i,t ≤ 21,

ri,t+1 if i ∈ P(π)t−1 and i /∈ Q(π)t and τ i,t > 21.

(4)

The first two lines represent the intended positions for the bonds. These bonds are included in
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the portfolio either because the investor already holds them (the first line) or has successfully

acquired them (the second line). In the case of a bond purchase, a delay of τ i,t days reduces

the return. The third line accounts for the scenario of trade failure in initiating a new

position, resulting in a zero rate of return. Since the failure reduces the return for both

P(5) and P(1), replacing 0 with other values (such as the one-month U.S. T-Bill rate of

return) does not materially change the simulation results. The fourth and fifth lines pertain

to bonds present in the portfolio from the previous month, which the investor retains due to

delayed sales with a τ i,t-day delay (the fourth line) or unsuccessful sales attempts (the fifth

line).12 Then, the portfolio return after delay is rNet
P (π),t+1 =

1
NP (π),t

∑
rNet
i,t+1, where the average

is taken over all bonds that corresponds to one of the five cases in Eq. (4).13 In contrast, the

gross portfolio return is rQ(π),t+1 =
1

200

∑
i∈Q(π) ri,t+1.

For each draw of signal and delay, we record the month-t inventory for each bond in

portfolio π as follows:

1(i ∈ P(π)t) =



1 if i ∈ P(π)t−1 and i ∈ Q(π)t,

1 if i /∈ P(π)t−1 and i ∈ Q(π)t and τ i,t ≤ 21,

0 if i /∈ P(π)t−1 and i ∈ Q(π)t and τ i,t > 21,

0 if i ∈ P(π)t−1 and i /∈ Q(π)t and τ i,t ≤ 21.

1 if i ∈ P(π)t−1 and i /∈ Q(π)t and τ i,t > 21.

(5)

When computing month t + 2 portfolio returns in Eq. (4), we use this inventory record of

12In the fourth line, we assume that after a successful sale, the investor is allowed to invest the sale proceeds
in the ideal portfolio, Q(π). This condition ensures that, as τ → 0, the portfolio returns with delay converge
to the portfolio returns without delay.

13When averaging bond returns, we implicitly assume that, at the end of each month, investors can
rebalance their portfolios at no cost to ensure equal weighting. This assumption is made for tractability.
Otherwise, the weights of newly purchased bonds would differ depending on the amount of cash available at
the beginning of each month, influenced by past sales of existing bonds. To avoid this complexity, we assume
that each month the investor will have an equally weighted portfolio. Additionally, we assume risk-free
financing at a zero percent rate is available to cover the (usually small) difference in the number of bonds
between P(5) and P(1).
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bonds in P(π)t together with the updated signal in month t + 1 and the resulting ideal

quintile assignments Q(π)t+1. Similarly, inventory record P(π)t+1, a draw for τ i,t+2, and

Q(π)t+2 determine a return in t + 3. By iterating this process, in each sample, we keep

track of which bonds belong to which portfolio each month, taking into account the trading

successes and failures.

In the simulation, whether the investor takes action (buy or sell) or maintains existing

positions significantly affects factor performance. For example, suppose a bond is in Q(5)

for three consecutive months in a sample, t, t+ 1, and t+ 2. In some scenarios, an investor

successfully buys the bond in month t + 1 (i.e., τ i,t < 21). She can then ignore the draws

of delays in the following months, t + 1 and t + 2. This is because once the investor has

purchased the bond, she does not have to worry about delays in the subsequent month

until she has to sell it. In alternative scenarios, the purchase attempt fails in month t + 1,

requiring the investor to examine both the delay draw and underlying signal in the subsequent

month (τ i,t+1) to determine whether the bond can be purchased. If the purchase remains

unsuccessful, the investor continues checking successive delay draws until either the trade

attempt succeeds or the bond exits quintile Q(5).

Finally, the factor for each simulation is computed as the difference between the fifth

(P(5)) and first (P(1)) portfolios. The cost of delay in simulation m is the difference between

the average gross and net returns in the path,

CDelay,m(λ, ρ, σv) =
1

T

∑
t

(rQ(5),t,m − rQ(1),t,m)−
1

T

∑
t

(rNet
P (5),t,m − rNet

P (1),t,m), (6)

and our simulated cost of delay is the average over the simulated data m = 1, . . . , 1, 000. The

difference between the gross and net factor returns reflects the opportunity cost of delay. The

cost arises because the investor cannot exactly implement the profitable strategy of buying

bonds with high expected returns and selling those with low expected returns (given the
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signal).

3.2 Portfolio Turnover Rate and Bid-Ask Spread Cost

The key characteristic that determines transaction costs is the portfolio turnover rate.

This is calculated as the sum of the absolute values of the month-to-month changes in

portfolio weights, adjusting for endogenous changes in portfolio weights due to changes in

bond values,14

TOπ,t+1 =
∑
i∈Nt

∣∣∣∣wi,π,t+1 −
1 + ri,t+1

1 + rπ,t+1

wi,π,t

∣∣∣∣ , (7)

TOf =
1

2

∑
π∈1,5

1

T

∑
t

TOπ,t+1.

In addition to delays, our framework includes a standard cost of bid-ask spreads that

investors pay each time they trade. We compute two types of portfolio turnover rates in

each simulation: one based on the weights in portfolio P, denoted TOSim,P , and the other

based on the weights in the ideal portfolio Q, denoted TOSim,Q. Due to delays, the former

tends to be lower than the latter, TOSim,P < TOSim,Q. The product of the after-delay

portfolio turnover rate, TOSim,P , and the half spreads provides the bid-ask spread costs,

CBid−Ask,Sim = 2× TOSim,P × h, (8)

where h is a half spread. The turnover rate computed without any simulated delays, TOSim,Q,

is used to map the simulated transaction costs to our empirical factors, because in the data,

the factor turnover rate is computed without accounting for delays.

14The portfolio turnover rate, calculated by adding the absolute changes in portfolio weights defined in
Eq. (7), is between 0 and 200%. The maximum turnover of 200% rather than 100% can be illustrated with
a simple two-bond example. In one month the weights for the two bonds are (1,0) and in the next month
they change to (0,1). Ignoring the price changes, the turnover is |0− 1|+ |1− 0| = 200%. The investor pays
a half spread both when she sells the first bond and when she buys the second bond.
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3.3 Simulation Results

In this section, we present the cost estimates while remaining agnostic about the true

parameters of the model, in particular, about the trade intensity, λ. By considering a wide

range of parameters, we can better understand the nature and magnitude of the delay costs

in factor investing. To this end, we vary ρ = {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 0.99999},

which captures the speed of variation in the signal, and λ = {1, 1/5, 1/21, 1/42, 1/252},

which captures the trade intensity. For the other parameters, we set E[f ] = 0.30, σf = 1.67,

and σu = 3.35.15 In this illustration, we set the half spread to zero to focus on the cost of

delay.

Panel A of Fig. 2 plots the cost of delay as a function of the portfolio turnover rate

(which negatively depends on ρ) and expected delay (1/λ days). In this figure, we fix

σv = 0.6
√

1− ρ2, which corresponds to average factor returns of 0.51% per month. Panel A

of Table 2 provides the specific values plotted in the figure.

The cost of delay increases with the portfolio turnover rate and decreases with the trading

intensity, λ. Focusing on the case where a trade occurs on average once a month 1/λ = 21,

the figure shows that the cost of delay increases with the turnover rate. The cost of delay

is about 0.04% per month when the turnover rate is 19%, but increases above 0.30% when

the turnover rate is above 150%. This cost is substantial when compared to the gross return

of 0.51% per month, as more than half of the gross return is lost due to delays and trade

execution failures. For an extremely illiquid bond that trades once a year, the cost of delay

increases more steeply with the turnover rate, but tapers at the level of gross returns because

the delay cost cannot exceed the gross returns. As expected, for the bonds that trade with

a one-day delay (λ = 1), the cost of delay is nearly zero.

15E[f ] and σf are chosen to match the mean and standard deviation of the corporate bond market factor.
To obtain σu, we run the bond market CAPM regression for each bond in our sample and calculate the
average R-squared, which is 0.368. We choose σu such that a long-short strategy of a bond in P(5) and a
bond in P(1) has an R-squared of 0.368.
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Next, we examine how gross returns affect the cost of delay. To do so, we fix the trading

intensity parameter λ = 1/21 (i.e., a bond is traded on average once a month) and vary σv

such that the factor returns before delay range from 0.009% to 0.85% per month. A higher

value of σv effectively increases the predictive power of the signal, generating a higher gross

return for the long-short strategy. Panel B of Fig. 2 presents the cost of delay as a function

of portfolio turnover and σv, and Panel B1 of Table 2 provides the plotted values and gross

factor returns that correspond to each value of σv. The figure shows that the cost increases

with σv and highlights the fact that missing out on immediate order execution is costly when

the signal is more valuable. Therefore, the delay cost is distinct from standard transaction

costs based on bid-ask spreads, which do not depend on gross factor returns.

These cost estimates are quite general and the one-factor structure of the returns with

a normal distribution is not a restrictive assumption. We can include multiple factors and

heteroskedastic shocks with a skewed distribution, but ultimately, what matters is the av-

erage return difference between the long and short portfolios. The characterization of the

delay cost above highlights the fact that the cost of delay is linked to a factor, rather than to

a bond, through the return predictability of the underlying characteristic used to construct

the factor and the factor’s turnover. This observation allows us to assign the delay cost to

the factors constructed using real data.

3.4 Liquid Bond Substitution

Chaudhary et al. (2023) demonstrate that corporate bonds with similar characteristics

serve as close substitutes for one another. Consequently, investors may mitigate delay costs

by concentrating their trading activity on a subset of highly liquid bonds. To quantitatively

assess the importance of trading substitutes, we allow the investor to use real-time trade

information to minimize potential delays. Since all bonds within a quintile are similar to
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each other (in-terms of the underlying signal) and the delay is independent of the bonds,

we assume that the investor allocates her capital to the first n bonds traded in month t+ 1

instead of spreading it across all bonds that join the quintile.

To reduce the delay, we modify the portfolio rebalancing procedure as follows. Each

month and for each quintile, we determine the number of bonds she must buy, denoted by

nMustBuy, as the smaller of the following two values: (i) n, the target number of bonds to buy;

or (ii) the number of bonds that enter the quintile at the end of month t. We then rank these

newly entered bonds by their realized delay, τ i,t, and allocate capital to the nMustBuy bonds

with the lowest delay. This adjustment enables investors to act on buying opportunities as

they arise based on real-time trading conditions. Importantly, this change only applies to the

buying procedure. When a bond exits the quintile, the selling strategy remains unchanged

since the investor must sell the bond she has, and partially selling the position would only

worsen the delay.16

We set the target number of buys, n, equal to 10, 20, 50, 100, and 200 (i.e., the base case)

and calculate the simulated factor returns. Panels A and B of Fig. 3 show the average and

standard deviation of the factor returns with delays. Comparing the base case of n = 200

with that of n = 10 in Panel A, the average factor returns with delay are higher for n = 10

than for n = 200: the cost of delay is reduced as the investor only trades at most the first 10

bonds that trade in each month. As expected, the cases with n = 20, 50, 100 are in between

the two extreme cases. In Panel B, the standard deviation for the factors with n = 10 is

higher than the base case of n = 200 due to lower diversification benefits. Indeed, Panel D

shows that the average number of bonds in the portfolio is significantly lower when n is set

16For example, consider an investor who must allocate $100 million to create a portfolio in month t and
liquidate her position in month t+1. There are 100 bonds that can be included in the portfolio. The investor
could invest $1 million in all 100 bonds or reduce delays by buying $10 million of each of the 10 bonds that
trade first. However, this idea will not work when she exits the position in month t + 1 because she must
sell the ten bonds she has purchased. If she sells fewer than 10 bonds, she can recover only n× 10% of the
investment proceeds and will end up with unwanted inventory, which is equivalent to a sales failure. Thus,
despite the possibility of delays, it is optimal for her to try to sell everything.
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equal to 10 or 20 than the baseline. We note that even when n is set equal to 10, the number

of bonds in each portfolio is more than 10 because n controls the number of bonds to be

traded each month, and the investor can accumulate the positions over time when the signal

is stable.

The annualized Sharpe ratio is plotted in Panel C, showing that it is lower for the case of

n = 10 than for the base case. This result indicates that the loss of diversification benefits

dominates the benefit of reduced delay costs; thus, the Sharpe ratio decreases as we reduce

the number of bonds in the portfolio.

The Sharpe ratio is lower with a lower target number of bonds to be bought partly

because buying only a part of the portfolio does not eliminate the cost of sales delays. In

Panels E and F, we plot the trade failure rate, which is defined as the number of bonds

with delays τ i,t > 21 to the total number of bonds that must be traded. For buy trades

(Panel E), setting n = 10 effectively eliminates the probability of trade failure. Given that

investors are required to purchase only a small number of bonds, they can always fulfill

their entire allocation requirement.17 In contrast, Panel F shows that the sales failure rate

does not depend on n. Since delays constitute independent random variables and investors

must liquidate their existing portfolio holdings, constraining n to fewer than 200 bonds

does not affect the sales delay. As a result, buying a small number of bonds only partly

reduces the cost of delay while inflating the portfolio volatility. Our results suggest that

using substitutes cannot eliminate the cost of delays and potentially worsens the factor

risk-adjusted performance.

The results thus far are not specific to corporate bond markets. In any asset class where

delays are not negligible relative to the speed of changing signals, one can refer to Table 2

17For n = 20 to 100, the fail rate is a decreasing function of the turnover rate. When the turnover rate is
high, the investor must buy almost 200 bonds every month and limiting the order size to buy n < 200 bonds
makes the order easier to be fulfilled. If, on the other hand, the investor has to buy only 50 bonds due to a
lower turnover rate, limiting n to 50 means that she still has to buy everything. In such a case, limiting n
to less than 200 does not reduce the rate of trade failure.

19



for the cost of delays.

4 Estimating Trade Intensity

4.1 Estimation Framework

To quantify the delay cost, we require an estimate of the trade intensity, denoted by λ

in Eq. (3), facing an ‘active’ factor investor, who needs to rebalance portfolios frequently

and requires fast trade execution. This trade intensity differs from the observed frequency

of historical trades because the data reflects trading by a multitude of institutional investors

such as insurance firms and pension funds, who tend to buy and hold (Koijen and Yogo,

2023; Bretscher et al., 2024). These investors have a low demand for fast trade execution and

primarily trade via a slow-moving mandate that is often independent of signals related to

factor investing. Thus, we simulate a counterfactual scenario in which inactive investors are

replaced with hypothetical active investors pursuing factor investing strategies, such as hedge

funds and mutual funds. In this counterfactual, both trade intensity and the compensation

for the intensity, namely, half spreads can differ from the data. They can be estimated by

specifying liquidity supply and demand curves.

In our setup, we consider the probability of trades in a given time period as the quantity

of a service provided by dealers. The market is segmented by trade size, with large investors

executing large trades and small investors executing small trades. To compensate the dealers

for the production of this service, customers pay half spreads, hi,t.
18 More formally, for each

18In the canonical model of Duffie et al. (2005), dealers provide immediacy to investors and charge bid-ask
spreads. Thus, at a very high level, our framework is related to theirs. In their model, however, trading
delays are determined by search delays of fixed intensity, and bid-ask spreads are set to allocate rent through
bargaining. Our specification below deviates from this setup by allowing the dealer to expend costly effort
to increase immediacy, resulting in an upward-sloping liquidity supply curve.
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trade size k, the liquidity demand for bond i in month t is given by

Probi,t,k[1i,t+1,k = 1] = αkhi,k,t + δkDi,t + ζkXi,t. (9)

The parameter αk represents the sensitivity of customers’ trade probability to half spreads.

Di,t is an idiosyncratic demand shifter not captured by the bond characteristics in vector

Xi,t.

For the size-specific probability of transactions in Eq. (9), the trade indicator function

1i,t,k is defined as a dummy variable equal to one if a trade with size above threshold k (such

as $100,000 or $2 million) occurs at least once per month. This is because, when dealers

are willing to accommodate large trades, they will also take smaller trades. The dummy

variable is defined at the monthly rather than daily level because at the daily sampling

frequency, trades tend to cluster, violating the underlying trade independence assumption

of the exponential distribution.

We can similarly consider a potentially upward-sloping liquidity supply curve, reflecting

increasing marginal costs to the dealer.19 These curves are plotted in Fig. 4. With the

upward-sloping supply curve, there is a tradeoff between immediacy and half spreads and an

upward shift in the demand curve will increase both the equilibrium probability of trades and

half spreads (point ECF ). Estimating this new equilibrium requires estimates of the slopes

of the supply and demand curves, which depend crucially on identification assumptions.

In this paper, we avoid this complexity and focus on the lower bound estimate of trans-

action costs. These lower bound estimates are obtained by assuming that the supply curve

is inelastic to half spreads. In Fig. 4, this supply function is depicted as the vertical line.

The new equilibrium (point ELB) provides lower bound estimates for transaction costs be-

19There can be several ways to microfound such a supply curve. For example, Li and Schürhoff (2019)
show that investors face tradeoffs between bid-ask spreads and delays because dealers at the center of the
network offer fast execution but at a higher cost, while those at the periphery offer lower costs with more
delays.
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cause half spreads do not increase due to the upward shift in the demand curve, and the

probability of trade is higher than the level that would be observed if the dealer responded

to the demand increase by raising half-spreads. Therefore, this counterfactual provides the

lowest estimated transaction costs among the possible alternatives that consider the trade-off

between trade intensity and half spread.

Estimating the probability of transactions is equivalent to estimating delays. Once we

estimate the trade probability, we can use the exponential distribution and back out λ from

the average probability of trade, given a trade size. Specifically, we set λ to satisfy the

following equation,

Probk[1i,t+1,k = 1] = 1− e−21×λk , (10)

where Probk[1i,t+1,k = 1] is the estimated probability averaged over the sample for trade size

k.

4.2 Estimating the Demand Shift Due to Changes in Investor Base

To quantify the shift in the demand curve, Di,t, we use the logarithm of the investor

composition measure of Li and Yu (2025), denoted as InvComp. This variable measures the

average activeness of the bond holders and is constructed as the net transactions of investors

averaged at the bond level.20 The idea is that the frequency with which investors receive a

20Specifically, for investor j in quarter q, the net transaction is

ntj,q =
|
∑

i holdingi,j,q −
∑

i holdingi,j,q−1|∑
i holdingi,j,q−1

,

and we use the four-quarter average,

NTj,q =
1

4

3∑
k=0

ntj,q−k.

Finally, we aggregate at the bond level to obtain the investor composition measure,

InvCompi,q =

∑
j holdingi,j,q ×NTj,q∑

j holdingi,j,q
.
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liquidity shock or an information update is persistent, and thus the investor with high past

net transactions has a higher future liquidity demand, and the bond held by these investors

is more likely to be traded.

To obtain an unbiased estimate of δ in Eq. (9), we need log InvComp to be independent

of liquidity supply shocks that also affect the probability of trade. However, this is unlikely

to be true since investors can predict which bonds dealers will provide liquidity for in the

future, and active investors will self-select into owning those bonds. To account for this

potential endogeneity, we use two proxies for liquidity supply shocks as instruments for hi,t,

including the dealer capital ratio of He et al. (2017), denoted as CAPi,t, and the 28-day

inventory changes to capture the inventory pressure on dealers, denoted as ∆Inventoryi,t.
21

We are interested in estimating δ but not α and thus replace hi,t in Eq. (9) with CAPi,t and

∆Inventoryi,t to estimate δ. We run a forecasting regression of transactions in month t+1,

1i,t+1,k = α0,k + α0,kCAPt + α0,k∆Inventoryi,t + δk log InvCompi,t + ζkXi,t + ei,t+1,k, (11)

and compute the fitted value P̂ robi,t,k[1i,t+1,k = 1| log InvCompi,t]. When running the re-

gression, we standardize the right-hand-side variables for ease of interpretation. Standard

errors are double clustered at the bond and month level.

Panel A of Table 3 reports the coefficient estimates, adjusted R2 values, and the associ-

ated t-statistics. We find that the measure of investor composition positively predicts the

incidence of bond transactions, suggesting that investors who experience more frequent liq-

uidity shocks are more likely to demand liquidity and to trade the bonds in their portfolio.

The coefficients on the control variables also satisfy economic intuition: a bond with a lower

credit rating (higher numerical value of the rating), shorter maturity, and larger size tends

We use InvCompi,q to predict transactions in each month in quarter q + 1.
21To compute the change in inventory, we calculate the difference in volume between the total customer

buy over the previous 28 calendar days and the total customer sells over the same period for each bond. For
this calculation, we use all trade sizes.

23



to trade more frequently.

Based on the regression estimates, we consider the probability of trading that a factor

investor would experience. Since the investor composition measure is not the same as the

investor portfolio turnover rate, we do not know exactly the value of log InvComp for a factor

investor who rebalances her portfolio monthly. Thus, we set log InvComp equal to the 99th

percentile and calculate P̂ robi,t,k[1i,t+1,k = 1| log InvComp99th].22 The 99th percentile value

(2.278) is higher than the sample average of log InvComp for active mutual funds (−4.30),

providing us with a more conservative (i.e., higher) estimate for the probability of trade.

We then compute the fitted value of the regression in Eq. (11), keeping the coefficients

unchanged, and report the average “hypothetical” probability of trading at the bottom of

Panel B of Table 3. The hypothetical probability of a sell order, estimated at 95.3% and

70.8% for $100,000 and $2 million trades respectively, is higher than the observed historical

frequency of trades (87.7% and 58.8%). This implies that a trade delay facing active investors

is less than what would be estimated by simply taking the data as given. Converting the

monthly probability of trades into trade intensities using Eq. (10), the estimated intensities

for $100,000 and $2 million transactions are 0.145 (1/λ = 6.9 days) and 0.059 (1/λ = 17.1

days), respectively.23

Finally, we obtain the intensity estimates from Kargar et al. (2025). Since their delay

estimates are conditional on bond and trading characteristics, we compute the delay for each

combination of attributes, such as a bond’s age, turnover, maturity, and amount outstanding,

and average them. This intensity estimate is 0.111 (1/λ = 9.1 days) for $100,000 trades

22Table A.2 of the Internet Appendix reports the summary statistics of the panel data used for this
regression estimates.

23Our results are not sensitive to the specification of the investor liquidity demand variable. In Tables A.3,
A.4, and A.5 of the Internet Appendix, we conduct robustness checks by running logit regressions instead of
linear regressions, allowing for the nonlinear dependence of the probability of trading on investor composi-
tion, and introducing the interaction between investor composition and bond characteristics. The resulting
counterfactual trade intensities are not materially different from those in Table 3.
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(odd lot) and 0.070 (1/λ = 14.4 days) for $2 million trades (round lot).24 Compared to

our estimates, their intensity for small trades is lower than ours, while that for large trades

is higher because they focus on liquid bonds traded on electronic platforms using the most

recent data since 2017. In the next section, we compare the cost estimates based on these

two estimates and show that the difference in trade intensity estimates does not materially

affect the assessment of factor investing performance.

5 Performance of the Corporate Bond Factors

In this section, we comprehensively examine the performance of corporate bond factors

after transaction costs by applying our simulation-based methodology outlined in Sections 3

and 4.

5.1 Analytical Framework

Factor Construction. To generate the 341 corporate bond factors, we compute monthly

bond total returns in the standard manner: ri,t+1 =
Pi,t+1+AIi,t+1+Ci,t+1

Pi,t+AIi,t
− 1, where Pi,t+1 is

the clean price of bond i in month t + 1, AIi,t+1 is the accrued interest, and Ci,t+1 is the

coupon payment, if any.

In the main results, the factors are assumed to be rebalanced monthly, based on charac-

teristic based signals observed by the factor investor at month-end.25 We use bond excess

24We start from their Table 8 and enter the estimates into their Eq. (2) to obtain the delay in days
for the number of failures of one. Then the intensity λ is obtained as 1/(delay in days). Specifically, for
each period (Covid or non-Covid), credit rating, and customer attribute, we compute 25 combinations of
attributes, including trade direction, age, turnover, maturity, and amount outstanding and take the equal-
weighted average delay conditional on the number of failure being one. Then, the estimated delay is averaged
across rating and customer attributes with the respective weights in our bond data for each mode of trade
(MarketAxess, Voice, or Both), which is then equally averaged. This intensity estimate is 0.115 for $100,000
trades (odd lot) and 0.072 for $2 million trades (round lot) in booms, and 0.068 and 0.042 during recessions
(the Covid episode). Finally, the intensity is obtained by averaging the two estimates using the probability
of booms (0.91) and recessions (0.09) during the sample period.

25Extensions to the month-end assumption are discussed in Section 7.
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returns, rei,t+1, defined as the bond total returns minus the one-month risk-free rate of re-

turn from Kenneth French’s webpage. Following the literature (Novy-Marx and Velikov

2015, Chen and Velikov 2023), we form the high-minus-low factor strategy using deciles with

(bond) market capitalization as the weights. The long (short) position is assumed to be

decile ten (one) such that all factors are sign-corrected to be increasing in expected returns.

We also compute the monthly turnover of each factor based on Eq. (7).

Factor Classification. In order to present our main results in a tractable manner, we only

consider corporate bond factors that generate a statistically significant average return at the

5% significance level before transaction costs, leaving us with 58 factors (17% of the 341).26

In the spirit of Jensen et al. (2023), we then cluster these factors into 6 distinct groups

including (i) Equity Momentum (EquityMomentum), (ii) Equity Short-Term Reversal (Eq-

uityReversal), (iii) Firm Investment and Accruals (Investment), (iv) Corporate bond yields,

prices and credit spreads (Spreads), (v) Firm Value/Profitability (Value/Profit), and lastly,

(vi) Bond and Stock Volatility/Risk-Based Characteristics (Volatility/Risk). We present the

factor mnemonics, short name, the clusters, and associated references in Table A.6 of the

Internet Appendix.

Risk Adjustments. To compute factor alphas, we use the net of cost bond market factor

computed using liquid bond market ETFs. We estimate the net bond CAPM (CAPMB)

alpha by running time series regressions of the factor i’s excess returns on the corporate

bond market factor:

fi,t = α + β MKTBNet,t + εi,t, (12)

26All factors are sign-corrected to have a positive mean. The number of significant factors we document is
larger than Dick-Nielsen et al. (2023), who examine 151 factors (41 significant) with a different sample and
time period.
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where MKTBNet,t is the net excess return of BlackRock’s corporate bond exchange-traded

funds (ETFs), averaged between the investment-grade ETF (Ticker: LQD) and the high-

yield ETF (Ticker: HYG) using the total market value of corporate bonds in each respective

rating category as the weights.27 To account for autocorrelation in the returns, we adjust

the standard errors using the Newey and West (1987) procedure with 12 lags.

Half Spread Estimates. To measure half spreads, we follow O’Hara and Zhou (2021)

and compute the half spread for each trade. Let P̄ denote the transaction price of the most

recent interdealer trade preceding a customer-dealer trade. The cost of the customer-dealer

trade for bond i in transaction ν is then given by

hi,ν = (logPi,ν − log P̄i,ν)× Ii,ν , (13)

where Ii,ν equals 1 if the trade is a customer buy and −1 if the trade is a customer sell.

The reference trade is allowed to occur within a five-business-day window preceding the

customer-dealer trade. If no interdealer trades occur within this window, the half spread

for that trade is treated as missing. The daily half-spread is then calculated as the volume-

weighted average of transactions with size above k on a given day, and the monthly measure

is obtained by averaging daily half-spreads across all days within a month. Half spreads are

winsorized at the 0.5 and 99.5 percentiles to reduce the influence of outliers.28

27We use the ETF returns because they reflect the real cost of buying and holding the bond market
portfolio. Therefore, ETF returns provide a fair benchmark to evaluate the performance of trading strategies
net of costs. The detailed construction methodology of the combined net of cost market factor is provided
in Appendix B. We find that the average net excess returns on our ETF-based market factor is 0.32% per
month, while the corresponding value for the value-weighted market bond portfolio of Dickerson et al. (2023)
is 0.36% (gross) over the same period. The lower value of the ETF-based market factor suggests that even
holding the market is marginally costly for investors.

28Fig. 5 plots average half spreads as a function of trade size. Consistent with Edwards et al. (2007),
half spreads decline sharply with trade size. This pattern is explained by the bargaining power of large
customers (Duffie et al., 2005) and the strategic behavior of dealers who pre-arrange large trades (Goldstein
and Hotchkiss, 2020; Choi et al., 2024).
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Factor Net Returns. For net returns, the delay and bid-ask spread costs are assigned

to each factor based on their average turnover rate and gross returns. Specifically, we first

estimate delay costs by interpolating over the simulated delay cost grids corresponding to

different trade intensities and turnover levels, as reported in Panels B2 and B3 of Table 2.29

Second, we calculate bid-ask spread costs using average observed half spreads and turnover

rates after accounting for delays, interpolating across trade sizes and turnover grids (as

reported in Panel C of Table 2) to obtain factor-specific estimates. Third, we combine the

delay and bid-ask spread costs to derive the total trading cost for each factor. Finally, we

compute the net of cost average factor return and alpha by subtracting the (time-invariant)

total trading cost from the gross return and alpha. A detailed description of this procedure

is provided in Section C of the Internet Appendix.

5.2 Empirical Results: Net of Cost Performance

We examine the performance of the selected 58 corporate bond factors before and after

transaction costs. Panel A of Table 4 reports the gross bond CAPM alpha of the 58 factors,

averaged within each category and across all factors. On average, the factors earn a gross

CAPM alpha of 0.28% per month with an average t-statistic of 2.48. Moreover, 42 out of

the 58 factors earn a statistically significant alpha. Thus, consistent with Dick-Nielsen et al.

(2023), there is a wide range of factors that perform well after adjusting for market risk.

Across categories (clusters), the best-performing factor-types are Spreads (CAPM alpha =

0.44%) and Equity Reversal (0.43%), followed by Equity Momentum (0.29%). Table A.7 of

the Internet Appendix reports the performance of each individual factor by category. Among

the 58 factors, the best performer is the equity short-term reversal factor (ret10; Chordia

et al. 2017), from the Equity Reversal category, earning a CAPM alpha of 0.69%. The second

best factor is based on the previous month’s corporate bond price (bondprice: Bartram et al.

29Panel D of Table 2 reports the gross and net turnover rates.
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2025) with a CAPM alpha of 0.63%. Similar to the equity factor zoo, other significant bond

factors stem from value and momentum (see, e.g., Gebhardt et al. 2005a and Choi and Kim

2018).30

The CAPM alphas largely disappear after adjusting for transaction costs. Panels B1 and

B2 of Table 4 use the estimates of delay costs CDelay and bid-ask costs CBid−Ask discussed in

Section 5.1 to compute total costs and net CAPM alphas for small ($100,000) and large ($2

million) trades, respectively. After accounting for transaction costs, the average CAPM alpha

across the 58 factors declines to 0.05% and 0.09% for small and large trades, respectively.

For small trades, the average bid-ask spread cost is 0.19% and the cost of delay is 0.04%.

For large trades, the bid-ask spread cost decreases to 0.12%, while the cost of delay increases

to 0.08%. Given that the bid-ask spread cost decreases more than the increase in the cost

of delay, the total cost is lower for large trades than for small trades. Nevertheless, the

net CAPM alpha for large trades is only 0.09% per month, suggesting that it is difficult for

investors to exploit these anomalies in practice. Only two factors earn statistically significant

CAPM alphas with large trades, while one factor earns a significant alpha with small trades

(bond kurtosis in the Volatility and Risk category; see Table A.7 of the Internet Appendix).31

Delay costs are particularly significant for the Equity Momentum and Equity Reversal

categories, which are associated with rapidly decaying signals. For large trades, the average

delay costs are 0.11% (Equity Momentum) and 0.22% (Equity Reversal) compared to 0.01%

(Investment) and 0.02% (Value/Profit), which are based on slower moving Compustat ac-

counting signals. The Equity Reversal factor category has the highest average cost of delay

(0.22%) due to its high turnover and average excess return, which is higher than its bid-ask

30As an additional exercise, Fig. A.1 of the Internet Appendix employs a 3× 3 conditional rating × signal
double tercile sort and reveals similar results; however, the double tercile sort produces substantially lower
average gross factor returns with only marginally reduced turnover. The average monthly returns across
the union of the 67 significant factors (58 for deciles and 42 for terciles) are 0.31% and 0.15%, respectively.
Average turnover decreases from 70% (deciles) to 54% (terciles).

31Bond kurtosis is calculated using the last 60 months of returns according to Bai et al. (2016).
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spread cost of 0.20%. The Spreads factor category, which comprises factors formed on bond

yields, prices, and credit spreads (fast-moving market data), also yields an average delay cost

of 0.11% for large trades, exceeding the associated bid-ask cost of 0.09%. Since these factors

generate high average excess returns, the opportunity cost of not trading upon immediately

observing the underlying signal is very high. In contrast, the cost of delay is negligible for

the Investment and Value/Profit categories because these signals are slow moving (updated

every quarter) and generate relatively low returns.

Fig. 6 presents the performance and transaction cost analysis for the 58 individual fac-

tors. Panel A plots the gross CAPM alphas with associated two-standard error bars, while

Panels B and C present the breakdown of total costs between bid-ask spread and delay costs

for small and large trades. The plot confirms the relative importance of the cost of delays for

highly profitable factors in the Equity Momentum, Equity Reversal, and Spread categories,

especially for large trades. Delay costs associated with these factor categories constitute

a substantially larger share of total trading costs because their underlying signals change

rapidly.32

Panels C1 and C2 of Table 4 report the net CAPM alphas, where the cost of delay

is computed using the delay estimates of Kargar et al. (2025) with intensity parameter

λ$100,000 = 0.111 and λ$2M = 0.070.33 Using Kargar et al. (2025)’s delay estimates, the

average net CAPM alphas are 0.042% for small trades and 0.094% for large trades, very

similar to our corresponding estimates of 0.050% and 0.087% reported in Panels B1 and B2

of Table 4.34

32The results are also qualitatively similar when using the duration-adjusted returns of van Binsbergen
et al. (2025) (see Table A.8 of the Internet Appendix) and TRACE data (see Table A.9 of the Internet
Appendix).

33Fig. A.2 of the Internet Appendix shows the transaction cost breakdown using the delay estimates of
Kargar et al. (2025).

34The delay costs exceed the borrowing cost for short sales. To show this, we account for costs associated
with short-selling corporate bonds by relying on the indicative borrowing cost from Markit discussed in
Section D of the Internet Appendix. We subtract the fee from the short leg of the trade and report the
resulting performance of factors net of fees in Table A.10 of the Internet Appendix. The fee averages about

30



6 Combining Characteristics With Machine Learning

Models

The previous section demonstrated that transaction costs and delays largely eliminate

individual bond factor profitability. However, this does not imply that a factor formed with

an optimal combination of signals is dominated by transaction costs (DeMiguel, Martin-

Utrera, Nogales, and Uppal, 2020). We now explore the application of machine learning

models for forming bond factors after accounting for transaction costs.

6.1 Estimating the Machine Learning Models

Following Gu, Kelly, and Xiu (2020), we model corporate bond returns as ri,t+1 =

Et(ri,t+1) + ϵi,t+1, where Et(ri,t+1) = g∗(zi,t). We seek to estimate g∗(·) as a flexible function

of the 341-dimensional predictor vector zi,t that maximizes out-of-sample explanatory power.

All of our model estimates minimize the mean squared prediction errors (MSE). Using the

estimated expected returns ĝ∗(zi,t), bonds are sorted monthly into ten value-weighted port-

folios. The ML-based factors are long decile ten (high expected return) and short decile one

(low expected return).

In total, we consider six linear and non-linear machine learning models including penal-

ized linear regressions: Lasso (LASSO), Ridge (RIDGE) and Elastic Net (ENET); non-linear

regression tree ensembles including random forests (RF) and extreme trees (XT); and feed

forward neural networks (NN). In addition, we form the linear ensemble model (LENS), the

nonlinear ensemble model (NENS), and the ensemble across all models (ENS), which is the

equally-weighted average across the respective models’ one-month ahead predictions (Ra-

pach, Strauss, and Zhou, 2010). We provide extensive details related to the cross-validation

0.03% per month. To investigate the impact of short sales constraints, we reproduce the main results using
a long-only strategy. The impact of delay costs reported in Table A.11 of the Internet Appendix is very
similar to our main results.
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and training of the respective models in Section E of the Internet Appendix.

6.2 Performance of Machine-Learning Models After Costs

Fig. 7 presents the gross alphas and net alphas for small trades (Panel A) and large

trades (Panel B), along with their 95% confidence intervals for the ML factors. The models

successfully combine the signals to generate high gross alphas, ranging from 0.62% (RF) to

0.90% (XT), which are also highly statistically significant. These values are also reported in

Table 5. On the other hand, the portfolio turnover rate is relatively high, ranging from 97%

to 126% per month.

When accounting for transaction costs, we compute two versions of net alpha, one in

which we subtract only the bid-ask spread cost, CBid−Ask, from the gross factor alpha, and

another in which we subtract the total cost to trade, TC. We first focus on the net alphas

that take into account bid-ask spreads only. The figure shows that the ML models generate

large CAPM alphas after accounting for bid-ask spreads. For trade sizes of $100,000, the

alpha ranges from 0.34% to 0.58% per month, while for trade sizes of $2 million, it ranges

from 0.45% to 0.70% per month. Importantly, all alphas are statistically significant. This

implies that using bid-ask spreads alone as a measure of transaction costs would lead to

the conclusion that investors can profit from the models’ forecasts. With an average alpha

exceeding 0.6% per month for large trades, the evidence in favor of ML models is quite

striking.35

Next, we focus on the alphas net of both the bid-ask spread and delay costs. From

the figure, delay costs are substantial, ranging from 0.09% to 0.19% for small trades and

from 0.17% to 0.36% for large trades. For large trades, the delay cost exceeds the bid-

35The results reported above are very robust, and do not depend on the particular estimates of the trading
intensity which underpins the transaction delay or the portfolio formation methodology (deciles or conditional
tercile sorts). In Fig. A.3 of the Internet Appendix, we employ a 3× 3 conditional rating double tercile sort
and observe similar results, although the double tercile sort produces worse average gross returns.
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ask spread cost for all nine models. After adjusting for delay costs, the net CAPM alphas

remain positive, but four factors (with small trades) and six factors (with large trades) lose

statistical significance, while the remainder are only marginally significant. For large trades,

the extreme tree (XT) model performs best, yielding a net CAPM alpha of 0.41% (t = 2.31),

which represents less than half of its gross alpha of 0.87% (t = 4.89).

ML models incur significant delay costs because they maximize average gross returns

without considering portfolio turnover rates. Consequently, these models heavily weight

rapidly changing signals (e.g., short-term reversals), leading to high turnover rates and gross

alphas, which amplify delay costs. For machine learning models with illiquid assets, penal-

izing high turnover rates is essential, and in this regard, the methodologies of Bredendiek,

Ottonello, and Valkanov (2023) and Jensen et al. (2025) offer a promising approach to ad-

dressing transaction costs within a machine learning portfolio construction framework.

7 Extensions of Our Framework

7.1 Different Investment Horizons and Banding

Traditional portfolio sorting procedures may overstate factor trading costs. Investment

managers can employ cost-mitigation techniques while preserving expected returns. We ex-

amine two approaches using PyBondLab: staggered rebalancing, where only a fraction of the

position is traded each month (Jegadeesh and Titman, 1993),36 and banding, which imple-

ments thresholds for initiating versus maintaining positions (Novy-Marx and Velikov, 2015).

The latter creates portfolio inertia that can reduce trading frequency while maintaining

strategy performance.

36In any month t + 1, the factor return is the equally weighted average month t + 1 return of the factor
strategy implemented in the prior month and up to H months earlier, where H is the staggered holding
period. For example, if H = 3, this mechanically limits the one-sided monthly portfolio turnover to be
≤ 33.33%.
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Staggered partial rebalancing. Panel A1 of Table 6 reports the average gross CAPM

alphas and t-statistics of the six factor clusters when using a staggered three-month holding

period. The final column reports the averages across all clusters. Panels A2 and A3 report

the average net of cost alphas, bid-ask spread, and delay costs. As expected, the slower

rebalancing frequency substantially reduces delay costs, which now average 0.01% per month

for small trades and 0.03% per month for large trades, compared to the corresponding values

of 0.04% and 0.08% under monthly rebalancing reported in Table 4.37

However, this benefit is accompanied by rapid signal deterioration, leading to diminished

return predictability. Comparing the results with a one-month holding period in Panel A of

Table 4, the average gross alpha falls from 0.28% to 0.20% per month, while the turnover rate

falls from 70% to 34%. Since these effects roughly cancel with each other, the net performance

changes very little. For example, the average net alpha for trade sizes of $100,000 and

$2 million with the three-month holding period are 0.07% and 0.10%, respectively, which

are only slightly higher than the corresponding values (0.05% and 0.09%) with the one-

month holding period. The number of significant factors net of costs declines to 1 (Bond

Kurtosis). Thus, infrequent rebalancing alone is insufficient to generate profitable factors

after accounting for half-spread and delay costs.

Banding. Novy-Marx and Velikov (2015, 2019) demonstrate that banding is the most

successful method for reducing portfolio turnover in the equity market. Following their

approach, we implement a band width of two around the first and tenth portfolios, allowing

bonds to remain in their respective portfolios while their signals stay within the first or last

three deciles. This approach maintains positions despite minor signal fluctuations, thereby

37Fig. A.4 of the Internet Appendix plots delay costs across holding periods ranging from one to twelve
months, demonstrating that these costs decline substantially when the investment horizon extends beyond
three months. These results suggest that future research seeking to identify novel factors in corporate bond
markets should evaluate whether a factor’s predictive power persists beyond the standard one-month holding
period.
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reducing portfolio turnover.

Panel B of Table 6 reports the average of the gross and net CAPM alphas with banding.

The average net CAPM alphas for small and large trades are 0.05% and 0.08%, which are

again similar to the baseline results reported in Table 4. However, banding improves the right

tail of the distribution: now, the number of factors with significant net alphas increases to 2

(trade size of $100,000)38 and 5 (trade size of $2 million)39 from the corresponding values of

1 and 2 in Table 4, respectively. In summary, neither method of reducing portfolio turnover

greatly improves net CAPM alphas.

7.2 Liquid Bond Substitution – Double-Sort Approach

In Section 3.4, we rely on simulations to determine whether trading substitutes can speed

up execution, assuming that all bonds have an ex-ante identical trade intensity, which pre-

vents sales delays from being eliminated. In reality, some bonds might be persistently liquid

and investors may select subsamples of ex-ante liquid bonds to reduce delays. To investi-

gate this possibility, we employ a conditional double-sort approach, first dividing bonds into

two groups based on month t trading volume scaled by par amount outstanding, or month

t amount outstanding. Within the high-liquidity subsample, we form ten value-weighted

portfolios and construct a long-short strategy (long in portfolio ten, short in portfolio one).

We re-estimate the trade intensity parameter λ using a dummy for above-median trading

volume or a dummy for above-median amount outstanding as predictors in Eq. (11). In the

latter case, however, we drop the (continuous) amount outstanding from the set of control

variables. Results in Table 7 show that both bonds with above-median volume and above-

median size have higher customer sell probabilities and shorter delays.40 For example, using

38These signals are Bond Kurtosis and Bond Price.
39These signals are Bond Kurtosis, Bond Price, Announcement Return (bond PEAD), ∆Financial Liabil-

ities (fnlgr1a), and ∆Net Financial Assets (nfnagr1a).
40To conserve space, the results for customer buy probabilities, which are very similar, are reported in
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the subsample of bonds with high past trading volumes, the customer sell order intensity is

0.183 and 0.070 for small and large trades, compared to 0.145 and 0.059 in Table 3.41

We simulate costs using these higher trade intensity estimates to compute net CAPM

alphas using the subsample of liquid bonds. In Panel C of Table 6, we use the subsample

of bonds with above-median volume. We find that the gross CAPM alpha is higher (0.32%

vs. baseline 0.28%), but turnover increases to 99% from 70% because the investor must

rebalance frequently to ensure she always holds only liquid bonds to reduce sales delays. As

a result, the net CAPM alpha averaged across 58 factors declines to −0.002% and −0.04%

for small and large trades, respectively. On the other hand, in Panel D, using bonds with

above-median amount outstanding helps reduce delay costs more effectively. However, the

gross CAPM alpha declines to 0.26% for this subsample, resulting in net CAPM alphas of

0.07% and 0.09% for small and large trades, which are both similar to our main results. In

summary, trading only liquid bonds, though intuitive, does not improve the CAPM alpha

net of costs.

7.3 Splitting Large Orders into Smaller Pieces

In the stock market, it is common for traders to split a large order into smaller pieces to

reduce price impact. In limit order book markets, trade size serves as an important signal of

the trader’s potential private information. In OTC markets, the identity of the investor is

known to the dealer, so splitting orders does not necessarily reduce price impact, as shown

in Fig. 5. Splitting a large order into smaller pieces, however, can increase the speed of

transactions and reduce the cost of delay.

To quantify the trade-offs between costs related to the half-spread and immediacy, we

consider a simulation in which the trader is allowed to split a $2 million trade into κ equal-

Table A.12 of the Internet Appendix.
41Using the subsample of bonds with above-median amount outstanding, the estimated hypothetical prob-

ability exceeds one, thus in this case we set the λ = 9, 999 in simulation such that delays are minimized.
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sized pieces. Each trade faces a delay that is independently drawn from the exponential

distribution with the trade intensity estimated for its size based on Eq. (11). For example,

for κ = 2, we estimate λ for trade size $1 million (=$2 million/2) and draw delays for two

trades in a month. The monthly return is the average of the returns arising from these two

trades. In this simulation, we choose two values of gross returns (high, 0.51%; low, 0.09%)

and two values of turnover rate (high, 135%; low, 38%) from Table 2.

Fig. 8 plots the simulated bid-ask spread and delay costs for κ = 1, 2, 4, 10, 20. As

expected, the delay cost decreases as we split the trade into more pieces. However, each

trade has higher half spreads, resulting in higher bid-ask spread costs. For example, consider

the case with high gross returns and low turnover rate in Panel D. When κ = 4, the total

cost is 0.139%, which is slightly lower than the cost of 0.148% when not splitting. If we split

the order into smaller pieces, the cost increases. For κ = 20, each order size is $100,000, and

the total cost increases to 0.165% due to the higher half spreads. When the gross returns

are low at 0.09% (Panels A and C), splitting the order merely increases the total cost as the

half spread cost increases sharply.

This result illustrates the fundamental tension between trade immediacy and the half-

spread cost of trading corporate bonds. Trading in smaller sizes implies a smaller chance of

execution failure but is commensurate with a higher half-spread.

7.4 Effect of Time-Varying Delays

Our main results are based on a constant trade intensity λ. In this section, we relax this

assumption and examine the effect of the cyclical pattern of factor performance on delay

costs. According to Kargar et al. (2025), trade intensity tends to decline during recessions,

leading to the wider divergence between ideal and actual bond portfolios. Meanwhile, the

cyclical behavior of factor performance varies substantially across factors. For example,
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factors that likely capture time-varying risk premia, such as the credit spread factor, exhibit

high cyclicality with elevated returns during economic expansions and depressed returns

during recessions. In contrast, factors that likely represent mispricing, such as the post-

earnings announcement drift factor of Nozawa et al. (2023), are countercyclical, generating

higher average returns during recessions than during economic expansions.

Empirically, we find that the majority of factors with statistically significant average

returns fall into the ‘mispricing’ category. Fig. A.5 of the Internet Appendix plots the

average annualized return difference between factor premia earned during NBER recession

periods versus non-NBER periods. For many of the signals, the factor premium is earned

mostly over a very small part of the sample, during periods of market turmoil, precisely

when trade immediacy is likely to be more constrained.

To examine how factor cyclicality affects delay costs, we employ a two-state Markov

regime-switching model calibrated to the historical duration of economic expansions and

recessions.42 Specifically, we set the transition matrix between good (State 1) and bad

(State 2) states to

Pr =

 0.99 0.10

0.01 0.90

 , (14)

which implies the stationary distribution of (0.9095, 0.0905). In each state, we use the

trade intensity estimates from Kargar et al. (2025), as their results demonstrate that trade

intensity declines significantly during adverse market conditions (such as the COVID-19

period in March 2020) relative to normal market states.

We assume that the expected factor return Et[f ] varies across states such that E1[f ] −

E2[f ] = ∆E[f ], where ∆E[f ] ∈ {−1.5,−1,−0.5, 0, 0.5}. In each case, E1[f ] and E2[f ] are

set such that the unconditional expected return matches the baseline of 0.51%. We vary

42During our sample period, the average duration of NBER recessions is (18+2)/2 = 10 months, while that
of economic expansions is (73 + 128)/2 = 100.5 months. This yields an unconditional recession probability
of 10/110.5 = 0.0905, which matches the parameters in our transition matrix.
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∆E[f ] to capture the broad spectrum of cyclical factor behavior.

In Fig. 9, we plot the delay cost as a function of ∆E[f ]. The plot shows that procyclical

factors with ∆E[f ] > 0 have a lower delay cost than countercyclical factors. This result

reveals an interesting property of delay costs: when the signal’s forecast is incorrect, the

delay helps avoid executing unprofitable trades. Thus, if a factor exhibits cyclical behavior,

lower trade intensity (increased delay) during recessions prevents investors from entering

positions that would subsequently generate low returns. This explains why the delay cost

for ∆E[f ] = 0.5 is lower than in the base case of ∆E[f ] = 0. In contrast, mispricing factors

with ∆E[f ] < 0 incur higher delay costs because delays become more severe precisely when

these factors generate high returns. Since 37 of our 58 factors are of the ‘mispricing’ type

with ∆E[f ] < 0, these results indicate that time-varying delays likely exacerbate delay costs

for the majority of factors in our sample.43

8 Conclusion

Both researchers and investors alike are attracted to factors that generate high average

returns. Thus, it is tempting to frequently rebalance portfolios to chase fast-moving signals

and generate impressive results on a gross-return basis. However, this practice deviates

substantially from the original work of Fama and French (1993), who rebalance portfolios

once a year to ensure that the factors represent real-life, implementable trading strategies.

In this article, we propose a novel method to quantify the cost of delays that factor

investors would face in an illiquid, over-the-counter market. We show that, unlike the trans-

action costs arising from bid-ask spreads, the delay cost is more severe for factors with higher

43In this exercise, we keep the leverage of the investor constant over time. With time-varying systematic
risk premiums, we can consider a dynamic trading strategy to increase leverage when Et[ft+1] is high. While
this is another potential source of trading cost, we focus on the static case to present the cost estimates by
following the literature on the cross-section of corporate bonds (e.g., Dickerson et al. (2023); Dick-Nielsen
et al. (2023)).
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gross performance, which are precisely those researchers tend to discover. Moreover, large

trades, which have lower bid-ask spreads, incur a greater cost of delay. This cost cannot be

removed by simply trading a subset of liquid bonds because liquidity is difficult to predict,

and thus sales delays cannot be eliminated.

Our results suggest that delay costs significantly reduce the number of factors that gener-

ate bond CAPM alphas. Machine-learning-based factors are severely affected by delay costs

because the underlying models generate valuable return predictions that decay quickly. This

implies the cost of delays, or analogously, the cost of not trading with immediacy is elevated

because these models require frequent trading. Currently, the actual trade frequency in the

U.S. corporate bond market is not high enough to justify monthly rebalancing to chase such

signals. Since delay costs can be minimized for signals that depend on quarterly-updated

financial statements, we recommend evaluating the performance of corporate bond factors

over a holding period longer than one month.
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Li, Dan, and Norman Schürhoff, 2019, Dealer networks, Journal of Finance 74, 91–144.

Li, Jian, and Haiyue Yu, 2025, Investor composition and the liquidity component in the U.S. corporate bond
market, Journal of Finance forthcoming.

Lin, Hai, Junbo Wang, and Chunchi Wu, 2011, Liquidity risk and expected corporate bond returns, Journal of
Financial Economics 99, 628–650.

44



Muravyev, Dmitriy, Neil D. Pearson, and Joshua M. Pollet, 2024, Anomalies and their short-sale costs, Working
Paper.

Newey, Whitney K., and Kenneth D. West, 1987, A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix, Econometrica 55, 703–708.

Novy-Marx, Robert, and Mihail Velikov, 2015, A taxonomy of anomalies and their trading costs, Review of
Financial Studies 29, 104–147.

Novy-Marx, Robert, and Mihail Velikov, 2019, Comparing cost-mitigation techniques, Financial Analysts Jour-
nal 75, 85–102.

Nozawa, Yoshio, Yancheng Qiu, and Yan Xiong, 2023, Disagreement and price drifts in the corporate bond
market, Working Paper.

O’Hara, Maureen, and Xing Alex Zhou, 2021, The electronic evolution of corporate bond dealers, Journal of
Financial Economics 140, 368–390.

O’Hara, Maureen, Yihui Wang, and Xing Zhou, 2018, The execution quality of corporate bonds, Journal of
Financial Economics 130, 308–326.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
2011, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12, 2825–2830.

Pinter, Gabor, Chaojun Wang, and Junyuan Zou, 2024, Size discount and size penalty: Trading costs in bond
markets, Review of Financial Studies 37, 2156–2190.

Rapach, David E., Jack K. Strauss, and Guofu Zhou, 2010, Out-of-sample equity premium prediction: Combi-
nation forecasts and links to the real economy, Review of Financial Studies 23, 821–862.

Reichenbacher, Michael, and Philipp Schuster, 2022, Size-adapted bond liquidity measures and their asset
pricing implications, Journal of Financial Economics 146, 425–443.

Sandulescu, Mirela, 2022, How integrated are corporate bond and stock markets?, Working Paper.

Schestag, Raphael, Philipp Schuster, and Marliese Uhrig-Homburg, 2016, Measuring liquidity in bond markets,
Review of Financial Studies 29, 1170–1219.

Tao, Xinyuan, Bo Wang, Junbo Wang, and Chunchi Wu, 2022, Economic policy uncertainty and the cross-
section of corporate bond returns, Journal of Fixed Income 32, 6–44.

van Binsbergen, Jules H., Yoshio Nozawa, and Michael Schwert, 2025, Duration-based valuation of corporate
bonds, Review of Financial Studies 38, 158–191.

Wu, Botao, 2022, Post-crisis regulations, trading delays, and increasing corporate bond liquidity premium,
Working Paper.

45



Figure 2: Cost of Delays (% Per Month)

Panel A. Changes in the Trade Intensity λ
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Panel B. Changes in Factor Average Excess Returns

0 20 40 60 80 100 120 140 160

Turnover (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

p
e
rc

e
n
t

E[R]=0.009

E[R]=0.085

E[R]=0.255

E[R]=0.510

E[R]=0.850

The figure plots the simulated cost of delay on the y-axis, defined as the difference in average

returns between gross factors without delays and net factors with delays, as discussed in Section 3.

Delays follow an exponential distribution with trade intensity parameter λ. Panel A varies the

signal persistence parameter ρ to alter the portfolio turnover rate while holding the gross factor

profitability parameter σv fixed such that average excess returns equal 0.51% per month. Panel B

varies σv while maintaining λ at 1/21.
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Figure 3: Buying Only n Bonds Among Substitutes

A. Net Returns

0 50 100 150

Turnover (%)

0.2

0.3

0.4

0.5
p
e
rc

e
n
t

B. Std. Dev.

0 50 100 150

Turnover (%)

1

1.5

2

2.5

3

p
e
rc

e
n
t

C. Sharpe Ratio

0 50 100 150

Turnover (%)

0.58

0.59

0.6

0.61

0.62

0.63

0.64

D. Avg. Number of Bonds

0 50 100 150

Turnover (%)

0

100

200

300

400

E. Buy Fail Rate

0 50 100 150

Turnover (%)

0

10

20

30

40

p
e

rc
e

n
t

F. Sell Fail Rate

0 50 100 150

Turnover (%)

0

10

20

30

40

p
e

rc
e

n
t

n=10

n=20

n=50

n=100

n=200

Each month, an investor purchases at most n bonds within each quintile, even when more than

n bonds enter the quintile, treating these bonds as close substitutes (see Section 3.4). We set σv

such that the average excess returns without delays equal 0.51% per month and λ = 1/21. Net

returns represent average excess returns after accounting for delay costs, and Std. Dev. denotes the

standard deviation of portfolio returns after delays. Avg. number of bonds represents the number

of bonds in each portfolio (averaged across long and short positions) averaged over time. Buy and

Sell Fail Rates indicate the percentage of bonds that cannot be traded due to delays exceeding one

month relative to total bonds targeted for trading.
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Figure 4: Liquidity Supply and Demand
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The figure illustrates the supply and demand curves for corporate bond liquidity, where the quantity

is measured by the probability of transactions, Prob[1 = 1], and the price is measured by half

spreads charged by dealers, h, discussed in Section 4.1. EData denotes the equilibrium observed in

the data, which is the intersection between the supply curve S and the demand curve D. D′ denotes

the hypothetical demand curve when an active investor is introduced and ELB is the hypothetical

equilibrium if the supply curve is flat. ECF is the counterfactual with an active investor and dealers

responding to the introduction of the active investor.

Figure 5: Average Half Spreads by Trade Size
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The figure plots the average half spreads for bond transactions of a given trade size from Section 5.

Half spreads are defined in Eq. (13). Each day, we compute the volume-weighted average of all

transactions above a trade-size threshold and then take the average within the month. The figure

plots the average values in the panel data given the respective trade size.
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Figure 6: CAPM α of 58 Individual Factors

Panel A. Gross CAPM α
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Panel B. Transaction Cost Breakdown (Trade Size = $100,000)
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Panel C. Transaction Cost Breakdown (Trade Size = $2 million)
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The figure plots the bond CAPM alpha (% per month) before transaction costs (Panel A), the breakdown

of transaction costs using our lower bound estimates for small trades of $100,000 (Panel B) and $2 million

(Panel C) discussed in Section 5.2. From the 341 candidate factors, we select 58 factors with statistically

significant average excess returns and classify them into six groups, represented by different colors. The

error bars in Panel A represent the two standard error bounds that account for serial autocorrelation with

the Newey-West procedure using 12 lags. The dots in Panels B and C represent the gross αs for each factor.

All factors are formed with the PyBondLab Python package.
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Figure 7: CAPM α of the Machine Learning Model-Based Factors

Panel A. Trade Size = $100,000
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Panel B. Trade Size = $2 million
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The figure plots the bond CAPM alpha (% per month) associated with the machine learning-

based factors constructed in Section 6 before transaction costs, after bid-ask spread costs, and after

total transaction costs (including bid-ask spread and delay costs). Panel A applies the transaction

costs from our lower bound estimates for a trade size of $100,000, while Panel B uses that of

$2 million. The machine learning factors are formed by sorting on the one-month ahead bond

return forecasts across several models trained on the 341 stock and bond characteristics using

decile sorts, where the factor initiates a long position in decile 10 and a short position in decile

1. The linear models with penalization comprise an elastic net (ENET), Lasso (LASSO), Ridge

(RIDGE), and the average of the three linear return forecasts, Linear Ensemble (LENS). The

nonlinear models comprise a feedforward neural network (NN), tree-based aggregation methods

comprising an extremely randomized set of trees (XT) and a random forest (RF). NENS is the

average of the three nonlinear return forecasts, and ENS is the average return forecast across all

models. The error bars represent the two standard error bounds that account for the Newey-West

12 lags. All factors are formed with the PyBondLab Python package.
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Figure 8: Splitting a $2 Million Order Into Smaller Pieces
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The figure plots the delay and bid-ask spread costs based on the simulation with parameters σv =

{0.10%, 0.60%} and ρ = {0.3, 0.95}, which correspond to average excess returns of 0.09% and 0.51%, and

turnover rates of 135% and 38%. We consider the strategy to split the orders of $2 million into κ pieces, as

discussed in Section 7.3. The delay for each piece is independently drawn from the exponential distribution

with corresponding trade sizes. For example, if κ = 2, then we use the λ (the lower bound estimate) and half

spread for a trade size of $1 million (=2/2). Then, the size-specific delay is averaged across pieces to compute

the total delay. If at the end of the month, the orders are partially filled, then we consider the unfilled pieces

as executed exactly at the end of the month and assign zero returns. When no pieces are executed within a

month, then we consider it as an execution failure and do not assume month-end execution.
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Figure 9: Factor Cyclicality and the Cost of Delay

Panel A. Small Trade Size
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Panel B. Large Trade Size
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The figure plots the simulated cost of delay on the y-axis, defined as the difference in average returns

between gross factors without delays and net factors with delays accounting for time-variation in

the trade intensity, as discussed in Section 7.4. Delays follow an exponential distribution with trade

intensity parameter λt, which varies across two states of the economy. The intensity estimates are

from Kargar et al. (2025): 0.115 for $100,000 trades (odd lot) and 0.072 for $2 million trades (round

lot) during booms, and 0.068 and 0.042 during recessions. We set the baseline factor average excess

return to 0.51% per month and vary the factor cyclicality parameter ∆E[f ] from −1.5% (counter-

cyclical) to 0.5% (cyclical).
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Table 1: List of Papers on the Cross-Section of Corporate Bond Returns

Article Cost Estimates Holding
Period

Panel A. Papers Without Transaction Costs

Bai, Bali, and Wen (2019) 1
Bai, Bali, and Wen (2021) 1
Bali, Subrahmanyam, and Wen (2021a) 1
Bali, Subrahmanyam, and Wen (2021b) 1
Ceballos (2023) 1
Chen, Wang, and Wu (2022) 1
Chung, Wang, and Wu (2019) 1
Dang, Hollstein, and Prokopczuk (2023) 1
Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023) 1
Dickerson, Mueller, and Robotti (2023) 1
Dickerson, Julliard, and Mueller (2025) 1
Duan, Li, and Wen (2025) 12
Friewald and Nagler (2024) 0.25
Gebhardt, Hvidkjaer, and Swaminathan (2005a) 1
Gebhardt, Hvidkjaer, and Swaminathan (2005b) 1−13
Haesen, Houweling, and Zundert (2017) 6
Huang, Qin, and Wang (2024) 1
Lin, Wang, and Wu (2011) 1
Tao, Wang, Wang, and Wu (2022) 1

Panel B. Papers Incorporating Transaction Costs

Bali et al. (2020) Roll measure of Bao et al. (2011) 1
Bali, Beckmeyer, and Goyal (2023) Fixed at 35bps 1
Baltussen, Muskens, and Verwijmeren
(2024)

Bid-ask spreads from imputed roundtrip
trades (IRT)

1

Bartram, Grinblatt, and Nozawa (2025) Portfolio-level bid-ask spreads 1
Bredendiek, Ottonello, and Valkanov (2023) Round-trip transaction costs 1
Cao et al. (2023) Estimates following Edwards et al. (2007) 1
Choi and Kim (2018) Considers transaction costs as characteristics 1, 12
Chordia et al. (2017) Portfolio-level bid-ask spreads 1
He, Feng, Wang, and Wu (2025) Fixed at 20 to 80bps 1
Houweling and Zundert (2017) Maturity-rating, following Chen et al. (2007) 12
Israel, Palhares, and Richardson (2018) Maturity-rating, following Chen et al. (2007) 1
Ivashchenko (2024) Average 12m moving average of bond bid-

ask spreads
1

Ivashchenko and Kosowski (2024) Estimates following Kyle and Obizhaeva
(2016)

1

Jostova et al. (2013) Estimates following Edwards et al. (2007) 6
Kelly, Palhares, and Pruitt (2023) Fixed at 19bps 1
Nozawa, Qiu, and Xiong (2023) Bond-level bid-ask spreads 1

The table lists papers on the cross-section of corporate bond returns. Holding Period is the period over

which a bond is held before rebalancing occurs, and it is measured in months.
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Table 2: Simulated Cost of Delay (% Per Month)

Panel A. Fix σv = 0.6 and Vary λ

λ Expected Turnover Rate (%)

Delay 3.7 18.7 37.9 52.4 88.7 114.0 134.6 152.3 159.5

1.000 1 0.000 0.002 0.005 0.007 0.012 0.016 0.019 0.022 0.023
0.200 5 0.001 0.010 0.024 0.034 0.062 0.081 0.098 0.113 0.119
0.048 21 0.003 0.035 0.078 0.112 0.194 0.245 0.282 0.311 0.321
0.024 42 0.005 0.055 0.121 0.171 0.278 0.333 0.368 0.392 0.401
0.004 252 0.027 0.151 0.291 0.359 0.443 0.467 0.479 0.487 0.489

Panel B. Fix λ and Vary σv

σv Gross Turnover Rate (%)

Returns 3.7 18.7 37.9 52.4 88.7 114.0 134.6 152.3 159.5

B1. λ = 1/21
0.01 0.009 0.000 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.006
0.10 0.085 0.001 0.006 0.013 0.019 0.032 0.041 0.047 0.052 0.054
0.30 0.255 0.002 0.018 0.039 0.056 0.097 0.122 0.141 0.156 0.161
0.60 0.510 0.003 0.035 0.078 0.112 0.194 0.245 0.282 0.311 0.321
1.00 0.850 0.005 0.058 0.130 0.186 0.323 0.408 0.469 0.517 0.535

B2. Own Estimates of λ, Small Trade ($100,000)
0.01 0.009 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.003
0.10 0.085 0.000 0.003 0.006 0.008 0.015 0.019 0.023 0.026 0.027
0.30 0.255 0.001 0.007 0.017 0.024 0.043 0.057 0.068 0.078 0.082
0.60 0.510 0.001 0.015 0.033 0.048 0.086 0.114 0.136 0.155 0.163
1.00 0.850 0.002 0.024 0.055 0.080 0.144 0.189 0.226 0.259 0.272

B3. Own Estimates of λ, Large Trade ($2 million)
0.01 0.009 0.000 0.001 0.001 0.002 0.003 0.004 0.004 0.005 0.005
0.10 0.085 0.000 0.005 0.012 0.016 0.029 0.036 0.042 0.047 0.049
0.30 0.255 0.001 0.015 0.034 0.049 0.086 0.109 0.127 0.141 0.147
0.60 0.510 0.003 0.030 0.068 0.097 0.171 0.218 0.254 0.282 0.293
1.00 0.850 0.004 0.050 0.113 0.162 0.285 0.364 0.423 0.470 0.489

Panel C. Bid-Ask Spread Costs

Trade Size Turnover Rate (%)

3.7 18.7 37.9 52.4 88.7 114.0 134.6 152.3 159.5

Small ($100,000) 0.018 0.071 0.132 0.174 0.263 0.314 0.348 0.371 0.378
Large ($2 million) 0.011 0.044 0.080 0.105 0.159 0.191 0.214 0.230 0.236

Panel D. Net Turnover Rates

Trade Size Turnover Rate (%)

3.7 18.7 37.9 52.4 88.7 114.0 134.6 152.3 159.5

Small ($100,000) 3.5 13.8 25.6 33.5 50.8 60.6 67.3 71.6 72.9
Large ($2 million) 3.5 13.5 25.0 32.7 49.5 59.3 66.3 71.5 73.2

Panels A and B report the simulated cost of delays from Eq. (6) in Section 3.3. λ is the trade
intensity and σv is the volatility of the shock to the factor loading discussed in Section 3. We
vary the speed of mean reversion of the signal, ρ, from 0.01 to 1− 10−5, corresponding to monthly
turnover rates ranging from 159.5% to 3.7%. Other parameters include T = 244, N = 1, 000,
E[f ] = 0.30, and σf = 1.67, with σu calibrated to match the average time-series R2 of 0.369
obtained by regressing each bond’s excess returns on the bond market factor. The number of
simulated paths is 1,000. Panel C reports the bid-ask spread costs defined in Eq. (8), and Panel D
reports the net turnover rate, TOSim,P , accounting for delays.
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Table 3: Forecasting Regressions of Corporate Bond Transactions

Customer Sell Customer Buy

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
log InvComp 0.018 (15.08) 0.028 (12.13) 0.017 (14.61) 0.030 (12.76)

∆Inventory −0.010 (−23.58) −0.047 (−45.14) 0.008 (15.59) 0.044 (35.25)
CAP 0.002 (0.79) 0.016 (5.14) 0.000 (-0.12) 0.013 (4.40)
Rating 0.054 (26.37) 0.109 (41.40) 0.054 (26.53) 0.111 (43.05)
Maturity −0.017 (−7.65) −0.007 (−4.45) −0.020 (−9.61) −0.002 (−1.40)
logFaceV alue 0.099 (45.10) 0.206 (107.89) 0.104 (49.34) 0.203 (107.22)
Coupon −0.028 (−14.25) −0.003 (−0.81) −0.028 (−14.11) 0.002 (0.74)
Age −0.031 (−17.09) −0.077 (−37.19) −0.036 (−19.18) −0.078 (−38.25)
Intercept 0.877 (435.77) 0.588 (188.51) 0.868 (439.30) 0.576 (187.46)

Adj. R2 0.142 0.251 0.151 0.248
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.877 0.588 0.868 0.576

ProbCF 0.953 0.708 0.941 0.702

λ λData 0.100 0.042 0.097 0.041

λCF 0.145 0.059 0.135 0.058

Exp. Delay 1/λData 10.014 23.672 10.362 24.442

(days) 1/λCF 6.891 17.054 7.418 17.355

The table reports the coefficient estimates for the regressions of the bond trading dummy on corporate bond
characteristics based on Eq. (11) of Section 4.2. The variable InvComp is the investor composition metric
of Li and Yu (2025), which measures the activeness of bond investors at the end of the previous quarter.
The variable ∆Inventory is the difference between customer buys and customer sells in the preceding 28
days, CAP is the intermediary capital ratio of He et al. (2017) in the previous month. The right-hand-side
variables are standardized for ease of interpretation. Values in parentheses are t-statistics double clustered
at the bond and month levels. The sample is at the monthly frequency from August 2002 to November
2022.
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Table 4: Gross and Net Bond CAPM α of 58 Factors by Category

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Count 9 4 13 14 7 11 58

Panel A. Gross CAPM α
Avg. α 0.287 0.426 0.143 0.437 0.160 0.241 0.277
Avg. t(α) (2.95) (2.43) (2.54) (2.31) (1.95) (2.60) (2.48)
Avg. Turnover 142.46 136.30 29.43 47.45 35.33 83.99 69.75
#(t(α) > 1.96) 8 3 11 9 4 7 42

Panel B. Net CAPM α, Own Estimates of Delay
B1. Small Trades
Avg. α −0.103 −0.019 0.031 0.232 0.026 0.005 0.050
Avg. t(α) (−1.48) (−0.13) (0.54) (1.06) (0.18) (−0.92) (−0.01)
Avg. BidAsk Cost 0.332 0.328 0.105 0.153 0.123 0.202 0.188
Avg. Delay Cost 0.058 0.117 0.007 0.052 0.011 0.034 0.039
#(t(α) > 1.96) 0 0 0 0 0 1 1
#(t(αBidAskOnly) > 1.96) 0 0 0 1 0 1 2

B2. Large Trades
Avg. α −0.025 0.008 0.065 0.239 0.062 0.053 0.087
Avg. t(α) (−0.57) (0.06) (1.15) (1.14) (0.69) (−0.17) (0.50)
Avg. BidAsk Cost 0.205 0.203 0.064 0.093 0.074 0.125 0.115
Avg. Delay Cost 0.107 0.215 0.014 0.105 0.023 0.063 0.075
#(t(α) > 1.96) 0 0 0 1 0 1 2
#(t(αBidAskOnly) > 1.96) 2 1 2 4 0 1 10

Panel C. Net CAPM α, Kargar et al. (2023) Estimates of Delay
C1. Small Trades
Avg. α −0.115 −0.043 0.030 0.220 0.024 −0.002 0.042
Avg. t(α) (−1.61) (−0.26) (0.52) (1.00) (0.16) (−1.02) (−0.08)
Avg. BidAsk Cost 0.332 0.328 0.105 0.152 0.122 0.202 0.188
Avg. Delay Cost 0.070 0.142 0.008 0.064 0.014 0.041 0.047
#(t(α) > 1.96) 0 0 0 0 0 1 1
#(t(αBidAskOnly) > 1.96) 0 0 0 1 0 1 2

C2. Large Trades
Avg. α −0.015 0.029 0.067 0.251 0.065 0.059 0.094
Avg. t(α) (−0.46) (0.17) (1.18) (1.21) (0.71) (−0.09) (0.57)
Avg. BidAsk Cost 0.206 0.203 0.064 0.094 0.075 0.125 0.116
Avg. Delay Cost 0.097 0.194 0.012 0.092 0.020 0.057 0.067
#(t(α) > 1.96) 0 0 1 1 0 1 3
#(t(αBidAskOnly) > 1.96) 2 1 2 4 0 1 10

The table reports the average bond CAPM α, the associated average t-statistic, and the number
of factors with a t-statistic greater than 1.96 before and after accounting for transaction costs,
including bid-ask spread costs and delay costs across factors associated with the six categories
from Section 5.2. Of the 341 factors that we generate, we consider the 58 factors with significant
average excess returns. We regress each factor on the corporate bond market factor and estimate
the intercept of the regression, α. We group the 58 factors into six categories and average the
estimates within each group. The values in parentheses are the average of the t-statistics (Newey-
West adjusted with 12 lags). In Panel B, we use our own estimates of trade intensity to calculate
the cost of delays and present the alphas net of costs and the number of factors that remain
statistically significant. In Panel C, we use the Kargar et al. (2025) delay estimates for the trade
intensity parameter and compute the cost of delays for small and large trades, respectively. All
factors are formed with the PyBondLab Python package.
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Table 5: Profitability of ML Strategies Based on Simulated Cost of Transactions

Trade Size: $100,000 Trade Size: $2M

Signal Turnover Gross α Net α Cost (%) Net α Cost (%)

(%) (%) (%) Delay BA (%) Delay BA

ENET 125 0.850 0.344 0.175 0.332 0.317 0.331 0.203
(5.03) (2.03) (1.87)

ENS 121 0.901 0.392 0.184 0.326 0.352 0.350 0.199
(4.71) (2.05) (1.84)

LASSO 126 0.848 0.336 0.178 0.335 0.308 0.335 0.204
(5.09) (2.02) (1.85)

LENS 125 0.868 0.348 0.188 0.332 0.310 0.356 0.203
(4.71) (1.89) (1.68)

NENS 106 0.847 0.405 0.145 0.297 0.385 0.281 0.181
(4.81) (2.30) (2.19)

NN 117 0.801 0.323 0.159 0.320 0.303 0.303 0.195
(4.64) (1.87) (1.75)

RF 97 0.620 0.251 0.089 0.280 0.276 0.174 0.170
(4.62) (1.87) (2.06)

RIDGE 120 0.811 0.312 0.176 0.324 0.279 0.335 0.198
(4.51) (1.73) (1.55)

XT 101 0.870 0.437 0.146 0.288 0.411 0.285 0.175
(4.89) (2.45) (2.31)

The table reports the bond CAPM α for the bond factors formed using the predictions of the machine
learning (ML) models from Section 6 and the transaction cost estimates based on the simulations described in
Section 3. The machine learning factors are formed by sorting on the one-month ahead bond return forecasts
across several models trained on the 341 stock and bond characteristics using decile sorts, where the factor
initiates a long position in decile 10 and a short position in decile 1. The simulated costs are assigned to each
ML factor using the factor’s gross returns and turnover rates. Net α is the difference between gross α and the
simulated total costs. The trade intensity is our own estimate based on the counterfactual trade probability.
The linear models with penalization comprise an elastic net (ENET), Lasso (LASSO), Ridge (RIDGE),
and the average of the three return forecasts, Linear Ensemble (LENS). The nonlinear models comprise a
feedforward neural network (NN), tree-based aggregation methods comprising an extremely randomized set
of trees (XT) and a random forest (RF). NENS is the average of the three nonlinear model bond return
forecasts, and ENS is the average across all models. All factors are formed with the PyBondLab Python
package.
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Table 6: Effect of Delay Cost Mitigation Techniques

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Panel A. 3-Month Holding Period
A1. Gross CAPM α
Avg. α 0.174 0.271 0.117 0.333 0.130 0.169 0.200
Avg. t(α) (2.51) (2.26) (2.32) (1.78) (1.71) (2.09) (2.10)
Avg. Turnover 54.36 48.50 26.45 27.09 25.00 35.84 34.06

A2. Net CAPM α, Small Trades
Avg. α −0.018 0.086 0.016 0.214 0.033 0.036 0.069
Avg. t(α) (−0.99) (0.53) (0.29) (1.01) (0.34) (−0.67) (0.11)
Avg. BidAsk Cost 0.178 0.160 0.096 0.097 0.091 0.121 0.117
Avg. Delay Cost 0.013 0.025 0.005 0.023 0.007 0.011 0.013
#(t(α) > 1.96) 0 0 0 0 0 1 1

A3. Net CAPM α, Large Trades
Avg. α 0.039 0.124 0.048 0.228 0.061 0.073 0.102
Avg. t(α) (0.10) (0.91) (0.95) (1.13) (0.76) (0.16) (0.68)
Avg. BidAsk Cost 0.108 0.097 0.058 0.059 0.055 0.074 0.071
Avg. Delay Cost 0.027 0.050 0.010 0.047 0.013 0.022 0.027
#(t(α) > 1.96) 0 0 0 0 0 1 1

Panel B. Banding
B1. Gross CAPM α
Avg. α 0.240 0.395 0.114 0.289 0.098 0.190 0.208
Avg. t(α) (2.86) (2.46) (2.35) (1.95) (1.43) (2.44) (2.25)
Avg. Turnover 111.07 101.25 18.70 20.80 17.78 60.67 47.08

B2. Net CAPM α, Small Trades
Avg. α −0.091 0.031 0.040 0.200 0.027 0.003 0.049
Avg. t(α) (−1.44) (0.12) (0.81) (1.30) (0.31) (−0.68) (0.19)
Avg. BidAsk Cost 0.291 0.279 0.071 0.073 0.067 0.164 0.137
Avg. Delay Cost 0.041 0.085 0.003 0.016 0.004 0.023 0.022
#(t(α) > 1.96) 0 0 0 1 0 1 2

B3. Net CAPM α, Large Trades
Avg. α −0.015 0.063 0.064 0.212 0.050 0.045 0.082
Avg. t(α) (−0.44) (0.36) (1.31) (1.40) (0.67) (0.04) (0.68)
Avg. BidAsk Cost 0.179 0.170 0.043 0.045 0.041 0.101 0.084
Avg. Delay Cost 0.077 0.162 0.007 0.033 0.008 0.044 0.042
#(t(α) > 1.96) 1 0 2 1 0 1 5

The table presents results that refer to the factor cost mitigation strategies discussed in Section 7.1.
We report the average bond CAPM α, the average t-statistic of the CAPM α, and the number of
factors with a t-statistic greater than 1.96 before and after accounting for transaction costs, including
bid-ask spread costs and delay costs. We consider the 58 factors with significant average excess
returns. We regress each factor on the corporate bond market factor and estimate the intercept
of the regression, α. We group the 58 factors into six categories and average the estimates within
each group. The values in parentheses are the average of the t-statistics (Newey-West adjusted
with 12 lags). To compute the cost of delays, we use our own estimates of the trade intensity. In
Panel A, we extend the holding period from one month to three months, employing the staggered
rebalancing approach of Jegadeesh and Titman (1993). In Panel B, we hold a bond in the high
or low portfolios once it enters, contingent on the bond remaining within two neighboring deciles
(i.e., within a 2-decile ‘band’) following Novy-Marx and Velikov (2015). The bond only exits the
portfolio once it drops out of this band. (Continued on the next page.)
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Table 6 (Continued)

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Panel C. Subsample of Bonds with Above-Median Trading Volume
C1. Gross CAPM α
Avg. α 0.318 0.496 0.191 0.486 0.175 0.290 0.320
Avg. t(α) (2.61) (2.56) (2.44) (2.08) (1.69) (2.50) (2.31)
Avg. Turnover 152.67 150.53 67.80 81.03 70.33 114.63 99.06

C2. Net CAPM α, Small Trades
Avg. α −0.087 0.022 −0.039 0.163 −0.066 −0.047 0.002
Avg. t(α) (−0.86) (0.11) (−0.61) (0.50) (−0.86) (−1.05) (−0.45)
Avg. BidAsk Cost 0.349 0.352 0.212 0.241 0.218 0.282 0.264
Avg. Delay Cost 0.056 0.122 0.017 0.083 0.023 0.055 0.054
#(t(α) > 1.96) 0 0 0 0 0 0 0

C3. Net CAPM α, Large Trades
Avg. α −0.013 0.032 0.024 0.161 −0.008 0.001 0.044
Avg. t(α) (−0.20) (0.18) (0.24) (0.54) (−0.20) (−0.45) (0.06)
Avg. BidAsk Cost 0.216 0.218 0.129 0.147 0.133 0.174 0.162
Avg. Delay Cost 0.114 0.247 0.038 0.178 0.051 0.115 0.114
#(t(α) > 1.96) 0 0 0 0 0 0 0

Panel D. Subsample of Bonds with Above-Median Amount Outstanding
D1. Gross CAPM α
Avg. α 0.300 0.375 0.137 0.378 0.151 0.236 0.257
Avg. t(α) (2.63) (2.15) (2.22) (2.15) (1.79) (2.51) (2.27)
Avg. Turnover 142.71 136.68 30.54 46.93 36.79 84.37 70.19

D2. Net CAPM α, Small Trades
Avg. α −0.034 0.044 0.028 0.225 0.023 0.032 0.067
Avg. t(α) (−0.57) (0.22) (0.44) (1.16) (0.17) (−0.46) (0.24)
Avg. BidAsk Cost 0.334 0.330 0.109 0.152 0.128 0.204 0.190
Avg. Delay Cost 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#(t(α) > 1.96) 0 0 0 0 0 1 1

D3. Net CAPM α, Large Trades
Avg. α 0.015 0.036 0.061 0.221 0.058 0.068 0.092
Avg. t(α) (−0.06) (0.19) (0.99) (1.17) (0.63) (0.08) (0.60)
Avg. BidAsk Cost 0.207 0.204 0.067 0.094 0.079 0.126 0.117
Avg. Delay Cost 0.078 0.134 0.009 0.063 0.014 0.042 0.048
#(t(α) > 1.96) 0 0 1 0 0 1 2

In Panels C and D, we employ the subsample of bonds whose turnover rate (volume/amount outstanding)
or amount outstanding, respectively, is above the median in the previous month and construct quintile
portfolios to create the factors. All factors are formed with the PyBondLab Python package.
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Table 7: Forecasting Regressions of Corporate Bond Transactions: Liquid Bonds

Bonds with High Turnover Large Bonds

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
log InvComp 0.015 (13.62) 0.022 (10.74) 0.019 (12.89) 0.030 (11.10)

∆Inventory −0.011 (−24.70) −0.050 (−47.64) −0.009 (−25.16) −0.044 (−37.39)
CAP 0.001 (0.33) 0.014 (4.77) −0.007 (−2.55) −0.002 (−0.73)
Rating 0.042 (21.04) 0.081 (34.20) 0.052 (23.84) 0.105 (38.71)
Maturity −0.017 (−7.88) −0.008 (−5.35) −0.013 (−5.63) 0.000 (0.16)
logFaceV alue 0.089 (46.35) 0.182 (108.50)
Coupon −0.026 (−13.33) 0.003 (1.04) −0.053 (−20.77) −0.054 (−18.24)
Age −0.025 (−13.46) −0.061 (−33.90) −0.030 (−14.83) −0.073 (−32.22)
HighTurnover 0.077 (23.33) 0.181 (53.69)
LargeFaceV alue 0.156 (41.09) 0.327 (90.07)
Intercept 0.839 (270.78) 0.498 (148.89) 0.804 (190.55) 0.435 (110.21)

Adj. R2 0.153 0.278 0.118 0.207
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.916 0.679 0.960 0.762

ProbLB 0.979 0.770 - 0.890

λ λData 0.118 0.054 0.153 0.068

λLB 0.183 0.070 - 0.105

Exp. Delay 1/λData 8.488 18.503 6.515 14.613

(days) 1/λLB 5.451 14.305 - 9.498

The table reports the coefficient estimates for the regressions of the bond trading dummy for the customer
sell side on characteristics based on Eq. (11) of Section 3.4. The variable InvComp is the investor com-
position variable of Li and Yu (2025), which measures the activeness of bond investors at the end of the
previous quarter. The variable ∆Inventory is the difference between customer buys and customer sells in
the preceding 28 days, CAP is the intermediary capital ratio of He et al. (2017) in the previous month.
HighTurnover is a dummy which is one if the bond is above the median in terms of bond turnover rate in
month t and zero otherwise. LargeFaceV alue is a dummy which is one if the bond is above the median
in terms of amount outstanding in month t and zero otherwise. Except for the two dummy variables, the
right-hand-side variables are standardized for ease of interpretation. Values in parentheses are t-statistics
clustered at the bond and month levels. The − in the probability of trade estimate, ProbLB , indicates that
the estimate exceeds one. In this case, we set λ = 9999 in the simulations to minimize the delay. The sample
is monthly, spanning August 2002 to November 2022.
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A Data and Variable Construction

The following sections describe the various databases that we use in the paper. Across

all databases, we filter out bonds that have a time-to-maturity of less than 1 year. Fur-

thermore, for consistency, across all databases, we define bond ratings as those provided by

Standard&Poors (S&P). We include the full spectrum of ratings (AAA to D), but exclude

bonds that are unrated. For each database that we consider, we do not winsorize or trim

bond returns in any way.

A.1 Corporate Bond Databases

Mergent Fixed Income Securities Database (FISD)

FISD for academia is a comprehensive database of publicly-offered U.S. bonds. FISD

provides details on market trends, deal structures, issuer capital structures, and other areas

of fixed income debt research. We apply the standard filters to the FISD data as they relate

to corporate bond pricing:

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE 144A == ‘N’.

5. Remove all asset-backed bonds, ASSET BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.
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7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds

with a floating (variable) coupon, COUPON TYPE != ‘V’.

8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-

backed, based on their BOND TYPE.

Bank of America Merrill Lynch (BAML) Database

The BAML data is provided by the Intercontinental Exchange (ICE) and provides daily

bond price quotes, accrued interest, and a host of pre-computed corporate bond characteris-

tics such as the bond option-adjusted credit spread (OAS), the asset swap spread, duration,

convexity, and bond returns in excess of a portfolio of duration-matched Treasuries. The

ICE sample spans the time period 1997:01 to 2022:12 and includes constituent bonds from

the ICE Bank of America High Yield (H0A0) and Investment Grade (C0A0) Corporate Bond

Indices.

ICE Bond Filters. We follow van Binsbergen, Nozawa, and Schwert (2025) and take the

last quote of each month to form the bond-month panel. We then merge the ICE data to

the filtered FISD data. The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind Lvl 1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE Bond Returns. Total bond returns are computed in a standard manner in

ICE, and no assumptions about the timing of the last trading day of the month are made

because the data is quote-based, i.e., there is always a valid quote at month-end to compute
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a bond return. This means that each bond return is computed using a price quote at exactly

the end of the month, each and every month. This introduces homogeneity into the bond

returns because prices are sampled at exactly the same time each month. ICE only provides

bid-side pricing, meaning bid-ask bias is inherently not present in the monthly sampled

prices, returns, and credit spreads. The monthly ICE return variable is (as denoted in the

original database) trr mtd loc, which is the month-to-date return on the last business day

of month t. We use this return specification (in excess of the one-month risk-free rate of

return) and the bond returns in excess of a portfolio of duration-matched U.S. Treasury bond

returns (denoted as ex rtn mtd in the ICE dataset) as the dependent variables to train the

machine learning models. In robustness exercises, we use several versions of the TRACE

data – our main results remain unchanged.

Enhanced TRACE Database

TRACE provides data on corporate bond transactions. Since we measure the profitabil-

ity of factor investing from an end-user perspective, we use only dealer-customer transac-

tions (cntra mp id = ‘C’). We remove trades that are i) when-issued (wis fl != ‘Y’),

ii) locked-in (lckd in ind != ‘Y’), iii) with special conditions (sale cndtn cd = ‘@’ or

sale cndtn cd = ‘’). In addition, we restrict our sample to those with standard settle-

ment days (days to sttl ct = ‘’ or days to sttl ct = ‘000’ or days to sttl ct =

‘001’ or days to sttl ct = ‘002’).

However, some transaction records contain prices that appear to reflect clerical/recording

errors. We avoid simply removing outliers in terms of prices and returns because such pro-

cedures bias the standard deviation of returns downward and inflate Sharpe ratios. Further-

more, if we simply removed very low returns, we would eliminate bonds that have defaulted,

leading to potentially spurious profitability of a given factor. To avoid these problems, we
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apply the reversal filter of Bessembinder et al. (2008) with a wider band. That is, we exam-

ine the log price changes of a bond using two consecutive transactions. If a product of two

adjacent log price changes is less than −0.25 (i.e., a 50% decline followed by a 50% increase),

then we consider the price record in the middle to be an error and remove it. Finally, we

follow Edwards et al. (2007) and remove transactions whose volume is more than 50% of the

amount outstanding or whose volume is not an integer.

After applying these filters, we compute the average price of a bond on a day, separately

for dealer buys and dealer sells.

A.2 Bond and Stock Characteristics

We describe our 53 ‘custom-made’ bond and equity characteristics in Table A.1. Panel A

describes our 37 bond-based characteristics that span the vast majority of those used in the

literature on corporate bond factors. Panel B describes additional equity-based character-

istics that are not included in publicly available equity repositories, but have all been used

in research that attempts to predict bond returns or form bond factors. All rank-demeaned

characteristics are made publicly available on openbondassetpricing.com/data.

For the publicly available equity databases, we follow Chen and Velikov (2023) and

drop characteristics that are discrete (i.e., exchange indicators) or dominated by missing

values at the stock level. When there are overlaps between the Chen and Zimmermann

(2022), CZ, and Jensen et al. (2023), JKP, characteristics, we drop the CZ version of the

characteristic. In total, after dropping characteristics based on the above, we are left with

137 CZ characteristics and 151 JKP characteristics.
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B Net-of-Fees Corporate Bond Market Factor

We risk-adjust our net-of-cost strategies with a realistic corporate bond market factor

that combines tradable passively managed investment grade and high yield exchange traded

funds (ETFs). We source the BlackRock iShares iBoxx Investment Grade (ticker: LQD)

and High Yield (ticker: HYG) ETF net returns from the CRSP Mutual Funds database as

provided by WRDS. The LQD ETF has an inception date of 2002:06, which spans the full

length of our out-of-sample period. The HYG inception date is 2007:03. To address the

shorter sample period for HYG, we source high yield gross return data from the Bloomberg-

Barclays (BB) High-Yield bond index. Thereafter, we estimate a simple OLS regression of

the HYG net returns on the BB gross returns such that we can extrapolate values for HYG

before 2007:03,

RHY G,t = β0 + βBB ·RBB,t + εt,

R̂HY G,t = −0.095
(−2.010)

+ 0.883
(60.13)

·RBB,t,

where RHY G,t and RBB,t are the net-of-cost and gross returns on the HYG ETF and BB

High-Yield bond index over the sample period 2007:03–2023:06 (T = 251). The intercept,

β0, is estimated at −9.5 basis points (statistically different from zero at the 5% nominal

level), which captures the fact that HYG is adversely impacted by trading costs and ETF

fees. From the OLS estimation above, we set the net return value of the HYG index to

R̂HY G before 2007:03 and to the actual net return of the HYG index thereafter. We denote

this return RHY G.

To generate the MKTBNet factor, we require appropriate weights for the representative

investor to apportion their funds between HYG and LQD. To accomplish this, we source all

bonds that are included in the Bank of America Merrill Lynch Investment Grade (C0A0)
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and High Yield (H0A0) corporate indices and compute their respective market capitalizations

(Clean Price × Units Outstanding). The weight for each index for each month is simply the

sum of the respective index market capitalization at month t divided by the total market

capitalization. On average, over the sample period, the investor apportions 19.90% to the

high yield index and 80.10% to the investment grade index. Finally, the MKTBNet factor

is computed as,

RNet
MKTB,t+1 = (RHY G,t+1 · ωHY G,t +RLQD,t+1 · ωLQD,t)−Rf,t+1,

where ωHY G,t is the weight in the HYG ETF, ωLQD,t is the weight in the LQD ETF, and

Rf,t+1 is the one-month risk-free rate of return from Kenneth French’s webpage.

We report summary statistics for the MKTBNet, MKTBGross (computed using the same

weights as above with the Bloomberg-Barclays Investment Grade and High Yield index gross

returns), and MKTB available from openbondassetpricing.com in Table A.14.

C Computing Bid-Ask and Delay Costs for the Factors

More specifically, for each factor fi = 1, . . . , 58, we compute the bid-ask, delay, and total

costs as follows:
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Procedure Computation of Delay and Bid-Ask Costs for Each Factor fi = 1, . . . , 58

Input: Gross average factor returns f i, alphas fαi
, turnovers TOfi , trade intensities

λ$100,000 and λ$2M, simulated turnover grids, and average half-spreads hk.

Output: Net-of-cost average factor return f
Net

i and alpha f
Net

αi
for each factor fi.

for each factor fi = 1, . . . , 58 do

Step 1: Simulated Delay Cost
Using the grid of simulated delay costs (e.g., λ$100,000 = 0.123, λ$2M = 0.053) and

simulated turnover from Panel B2 ($100,000 trades) or B3 ($2M trades) of Table 2, linearly
interpolate to compute the delay cost CDelay,fi using f i and TOfi computed in Step 1.

Step 2: Bid-Ask Spread Cost
For a given trade size and simulated turnover TOSim,P , compute the bid-ask spread

cost as:
CBid−Ask,Sim = 2× TOSim,P × hk.

This generates a vector of average bid-ask costs for a given trade size across different
levels of simulated turnover rates (Panel C of Table 2).

Using the average realized factor turnover TOfi , linearly interpolate to compute the
bid-ask spread cost CBid−Ask,fi for fi across the grid defined by TOSim,Q.

Step 3: Total Cost to Trade
Compute the total cost to trade for each factor fi:

TCfi = CDelay,fi + CBid−Ask,fi .

Step 4: Net of Cost Return and Alpha
Compute the net of total cost average factor return:

f
Net

i = f i − TCfi .

Similarly, compute the net of cost alphas.
end for
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D Markit Corporate Bond Short Selling Costs

D.1 IndicativeFee Borrowing Costs

For additional robustness, we adjust for the cost associated with short selling corporate

bonds with the Markit IndicativeFee variable. The exact definition of IndicativeFee

form Markit is as follows:

The expected borrow cost, in fee terms, for a hedge fund on a given day. This

is a derived rate using Data Explorers proprietary analytics and data set. The

calculation uses both borrow costs between Agent Lenders and Prime Brokers as

well as rates from hedge funds to produce an indication of the current market

rate. It should not be assumed that the indicative rate is the actual rate a Prime

Broker will quote or charge but rather an indication of the standard market cost.

The fee can be interpreted as the difference between the market short term interest

rate and the rebate rate paid on the cash collateral associated with shorting the underlying

(for the use of the data within an asset pricing context (see Hendershott et al. 2020 and

Muravyev et al. 2024). The data is available daily. We resample the data to the monthly

horizon by taking the average of the IndicativeFee each month as the representative cost

to sell short a corporate bond. Given that the data only starts in September 2006, and our

sample start is August 2002, we impute and backfill the IndicativeFee data to our sample

start. First, we merge the Markit data to our bond level data, such that the two samples

align. Thereafter, for each month, we compute the equally-weighted average IndicativeFee

grouped by rating category. The time series of the average monthly IndicativeFee by rating

category is presented in Figure A.7. These average monthly values in basis points are as

follows: 3.10 (AAA to AA−), 3.15 (A+ to A), 3.13 (A− to BBB+), 3.20 (BBB to BBB−),

4.36 (BB to B−), and 15.20 (CCC+ to D). The imputation method allows the fee to vary
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in the cross-section before September 2006 based on each bond month t rating category.

Descriptive Statistics. Table A.13 reports pooled bond-month summary statistics for

IndicativeFee over the full sample period of August 2002 to November 2022. The average

fee for all bonds is relatively modest at 3.6 basis points per month, compared to bid-ask

spreads of 18.8 basis points for small trades and 11.5 basis points for large trades, and delay

costs of 3.9 and 7.5 basis points, respectively, as reported in Panels B.1 and B.2 of Table 4.

Notably, our lower bound estimates for the cost of delays exceed the average cost of short-

selling corporate bonds. The average IndicativeFee is relatively homogeneous across rating

classes, ranging between 3.14 and 4.36 basis points, except for bonds rated CCC+ and below,

which exhibit costs of 12.55 basis points – approximately four times higher than other rating

categories.44 Intuitively, it is far more expensive to short-sell poorly rated corporate bonds

that are close to default relative to more highly rated bonds.

D.2 Adjusting the Short Leg of the Factor for the Borrowing Cost

To adjust the returns of the short-leg of each factor for short-selling fees, we compute

the average monthly IndicativeFee over the holding period. Thereafter, the net return on

the short leg portfolio is simply the average gross return minus the average IndicativeFee

over the holding period.

44The median is within an even closer range of 3.12 (for 4 categories) to 3.27 (BB+ to B− bonds).
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E Machine Learning Model Estimation and Cross Val-

idation

Estimation and cross validation. For the first estimation as of July 2002 (start of the

TRACE data), we source the last 55 months of data back to January 1998, and estimate

the respective ML model. We measure excess returns at t and the 341-dimensional vector of

bond characteristics at t− 1. We perform cross-validation using a 70:30 training-validation

split that preserves the temporal ordering of the panel data. We then employ the vector of

characteristics available at time t to produce a forecast of bond excess returns for t+1. These

forecasts (expected returns) are available to the bond portfolio manager at time t, meaning

that she can trade on them at the end of the month. Thereafter, all models are re-trained

every 12-months and cross-validated every five-years with an expanding window.45

For all of our machine learning models, we cross-validate the model hyperparameters

every five-years and re-train the model every 12-months with an expanding window. Within

each window, we perform the cross-validation with a 70:30 training-validation split. For

example, if we have a window of 1,000 temporally ordered observations, 1-700 are used to

train the model and the remaining 300 are used for validation. We graphically depict the

sample splitting strategy for the training and cross-validation in Fig. A.8. For all models

except for the feed forward neural network we utilize the sklearn Python package (Pedregosa

et al., 2011). We use the tensorflow Python package to estimate the neural network.

We report the respective sets of hyperparameters that we cross-validate over in Ta-

ble A.15.

Linear Models with Penalties. Panel A of Table A.15 reports the hyperparameters for

the linear models with penalties for the Lasso (LASSO), Ridge (RIDGE) and the Elastic Net

45This gives the models an advantage in that they are re-trained and re-cross-validated multiple times
over our sample.
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(ENET). For the LASSO-style penalty, we cross-validate over 100 possible ℓ1 penalties that

change dynamically with the sample. The 100 potential ℓ1 penalties are set by default with

sklearn with a logarithmic scale. The maximum penalty is set to be the smallest value such

that the coefficients are all set to zero. The minimum penalty is set to be 0.001 scaled by the

maximum penalty. The ℓ2 (RIDGE) penalties are defined as 100 values between 0.0001 and

1 with a logarithmic scale. The elastic net model hyperparameters are tuned with the 100

possible ℓ1 penalties that change dynamically with the sample and a set of ℓ1 vs. ℓ2 ratios.

Nonlinear Tree-Based Ensembles Panel B of Table A.15 reports the hyperparameters

for the tree-based nonlinear ensemble models that include the Random Forest (RF) and the

Extremely Randomized Trees (XT). For both ensemble models, we use 100 estimators (trees).

We also follow Gu et al. (2020) and set the maximum tree depth to be ∈ [2, 4, 6]. Thereafter,

we allow the trees to consider a maximum of 5, 10, 15, or 30 features (characteristics) at

each split point. Finally, at each end node of the tree (final leaf), we impose a minimum of

1, 10, or 50 samples (i.e., bond returns) in each leaf.

Feed Forward Neural Network Ensemble. Panel C of Table A.15 reports the hyper-

parameters for the feed forward neural network (NN). We estimate a shallow network with a

single layer and 32 neurons. Since our sample starts off with a relatively smaller sample size

than that of Gu et al. (2020) and other work that utilizes equity data only, we set the batch

size to 1024 (with batch normalization) and the number of epochs to 100. We cross-validate

over the learning rate that is ∈ [0.001, 0.01] and an ℓ1 penalty ∈ [0.001, 0.01]. We also imple-

ment early stopping with the ‘patience’ parameter set to 5. The prediction variance of each

individually estimated neural network is high. In order to reduce prediction variance across

estimated neural network models, at each training date we estimate 10 models with different

randomly assigned initial weights. In doing so, we select the best performing 5 models based
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on the smallest mean squared error estimated in the validation sample at that training date.

This means that at each date t+1, we produce five predictions from the five best performing

models estimated at the training date. The overall t+1 prediction is the average over these

five best performing models. At each training date, we then repeat this process ten times,

yielding ten ensembled predictions. The final NN prediction for each month t + 1 is the

average over these ten ensembled predictions, i.e., an ensemble over the ensemble.

F Additional Results

This section reports the additional figures and tables that we refer to in the main body

of the paper.
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Figure A.1: Deciles vs. Conditional 3×3 Rating and Signal Terciles Av-
erage Factor Returns
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The figure plots the 67 factors that have a statistically significant average return (factor

premium) at the 5% nominal level of the test. The 67 factors include those that are signif-

icant using the decile sorts (58 in total from the main text) and those that are significant

using a conditional 3×3 rating tercile double sort (42 in total). The 67 factors represent

the union of those factors that are statistically significant from both sorting methods. All

factors are formed with the PyBondLab Python package.
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Figure A.2: CAPM α of 58 Individual Factors: Cost Estimates from Kargar
et al. (2025)
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Panel B. Transaction Cost Breakdown (Trade Size = $100,000)
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Panel C. Transaction Cost Breakdown (Trade Size = $2 million)

s
e
a
s
2
5
a

n
M

o
m

S
e
a
s
o

n
0
6
Y

rP
lu

s
d
V

o
lP

u
t

s
e
a
s
6
1
0
a

n
d
V

o
lC

a
ll

A
n
n
o

u
n
c
e
m

e
n
tR

e
tu

rn
re

t3
1

T
re

n
d
F

a
c
to

r
s
e
a
s
1
1
n

a
rm

a
x
5
rv

o
l2

1
d

rm
a
x
5
2
1

d
In

d
R

e
tB

ig
re

t1
0

G
rA

d
E

x
p

e
m

p
g

r1
A

s
s
e
tG

ro
w

th
c
o
lg

r1
a

c
o
a
g
r1

a
p
p
e
in

v
g
r1

a
in

v
g
r1

a
n
o
a
g
r1

a
in

v
g

r1
n
fn

a
g
r1

a
a
tg

r1
c
o
w

c
g
r1

a
fn

lg
r1

a
v
a
lu

e
e
m

p
v
a
lu

e
im

p
lie

d
s
p
re

a
d

m
o
m

3
m

s
p
re

a
d

ra
ti
n
g
x
s
p
re

a
d

s
tr

u
c
v
a
lu

e
s
w

a
p
s
p
re

a
d

d
ts

2
6
s
p
rt

o
d
2

d
1
8
s
p
re

a
d

y
ie

ld
y
ld

to
w

o
rs

t
2
5
m

o
m

6
m

s
p
re

a
d

b
o
n
d
p
ri
c
e

E
B

M
e
q
n
e
ti
s
a
t

8
n
im

e
e
q
n
p
o
m

e
n
im

e
e
q
d

u
r

tu
rn

o
v
e
rv

a
r1

2
6

d
c
o
rr

1
2
6
0

d
rs

k
e
w

2
1

d
is

k
e
w

c
a
p
m

2
1

d
2
8
V

a
R

is
k
e
w

h
x
z
4
2
1

d
is

k
e
w

ff
3
2
1

d
b
e
ta

d
o
w

n
2
5
2
d

2
7
v
o
la

ti
lit

y
C

o
s
k
e
w

A
C

X
k
u

rt
s
p
re

a
d
v
o
l

p
e
rc

e
n

t

0

0.2

0.4

0.6
Bid-Ask Spread Cost

Delay Cost

The figure plots the bond CAPM alpha (% per month) before transaction costs (Panel A), the breakdown

of transaction costs using the delay estimates of Kargar et al. (2025) for small trades of $100,000 (Panel B)

and $2 million ( Panel C), as discussed in Section 5.2. From the 341 candidate factors, we select 58 factors

with statistically significant average excess returns and classify them into six groups, represented by different

colors. The error bars in Panel A represent the two standard error bounds that account for serial autocor-

relation with the Newey-West procedure using 12 lags. The dots in Panels B and C represent the gross αs

for each factor. All factors are formed with the PyBondLab Python package.
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Figure A.3: Deciles vs. Conditional 3×3 Rating and ML Prediction Terciles
Average Factor Returns
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The figure plots the 9 machine learning (ML)-based factors formed with deciles (as in the main

text) and with a conditional 3×3 rating double sort. Standard error bars are adjusted using the

Newey-West procedure with 12 lags. All factors are formed with the PyBondLab Python package.
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Figure A.4: Cost of Delays with Longer Rebalancing Frequency
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(b) Individual Factors, Large Trades
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(c) ML Models, Small Trades
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(d) ML Models, Large Trades

The figure plots the delay costs as a function of the portfolio rebalancing frequency from 1 to

12 months. Every month, we rebalance the portfolios and hold the bonds in the portfolio for

H = 1, . . . , 12 months. In month t+1, we take the average of H monthly returns on the portfolios

formed in months t, t − 1, ..., t − H + 1. The portfolio turnover rate is computed using Eq. (7),

which is used to assign the cost of delay. Small trades are the ones with trade size of $100,000
and large trades are those with trade size of $2 million. All factors are formed with the PyBondLab

Python package.
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Figure A.5: Average Factor Return Differences – During NBER Reces-
sions Minus Non-Recession Periods
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The figure plots the annualized average return differences between NBER and non-NBER

recession periods for the 58 characteristic-based and 9 machine learning (ML)-based decile-

sorted factors. The NBER recession dates span 20 months (8.20%) of the sample period

over 2002-08:2022-11. All factors are formed with the PyBondLab Python package.
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Figure A.6: Trade Size and Transaction Costs
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The figure plots the delay and half-spread costs based on simulations with parameters σv = 0.20%

and ρ = 0.95. The delay is drawn from the exponential distribution with an intensity (lower bound)

estimated for each trade size. The half spread is the median half-spread for each trade size and the

half-spread cost accounts for portfolio turnovers.
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Figure A.7: Markit Short Selling Fees (Indicative Fee) Over Time
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The figure presents the time series of the average (equally-weighted) Markit IndicativeFee over

time across S&P bond rating categories. The averages are monthly and presented in basis points.

The IndicativeFee variable is the net buy side fee paid to borrow the underlying bond. Specifically,

it is defined as the interest rate on cash funds minus the rebate rate (that is paid for collateral) and

is directly provided by Markit. This fee (cost) is used to adjust the short-leg of the bond factors.

The data spans the sample period September 2006 to November 2022. IndicativeFee data are

unavailable for all bonds prior to September 2006, Therefore, we impute these missing values using

the average IndicativeFee within each rating category, enabling the sample to begin in August

2002 and align with the sample we employ for our main results.
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Figure A.8: Sample Splitting for Cross-Validation of Model Hyperparameters.

The figure shows the sample splitting scheme used for cross-validation of the machine learning model hy-
perparameters for the various machine learning models we consider. The forecasting exercise involves an
expanding window that starts in January 1998. The initial window spans 1998:01–2002:07 (T = 55), and
then expands forward each and every month until the sample end on 2022:12. The first (last) out-of-sample
forecast is made in 2002:07 (2022:11) for the following month 2002:08 (2022:12). Hence, the out-of-sample
ML portfolio returns commence in 2002:08 and end in 2022:12, T = 245. For each window, the blue area
represents the training sample and the grey area represents the validation sample. The former consists of the
first 70% of the observations while the latter consists of the final 30% of the observations. The training and
the validation samples are contiguous in time and not randomly selected in order to preserve the temporal
dependence of the data.
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Figure A.9: Alpha Decay Across Factor Clusters
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Alpha decay across exogenously imposed gaps between signal observation and bond prices used for

trade. The figure presents the average monthly returns (Panel A) and CAPM alphas (Panel B)

across factor clusters. The x-axis represents the “gap” between the observation of the month-end

signal at month t and the price used to enter into a position in the bond g-days later in month

t + 1. That is, we estimate returns using the price g = 1, 3 and 5 days into month t + 1 and the

month-end price on the last business day of month t + 1. The signal is assumed to be observed

on the last business day of month t. When g = 0, we assume concurrent observation of the cross-

section of signals and prices used to compute the monthly returns. The y-axis captures the average

returns/alphas across this gap. Factor returns are scaled by so that they capture a representative

month’s return: Radj ≈ Rk ×Dayst+1/(Dayst+1 − g), where Dayst+1 are the number of business

days in month t+ 1. The within month returns are computed with the BAML/ICE data.
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Table A.1: List of the Corporate Bond and Stock Characteristics.

Num. ID Characteristic Name and Description Reference Source

Panel A: Bond Characteristics Available on openbondassetpricing.com/data

1 age Bond age. The number of years the bond has been in
issuance scaled by the tenor of the bond.

Israel et al. (2018) BAML/ICE

2 ave12mspread Rolling 12-month moving average of bond option ad-
justed credit spreads skipping the prior month

Elkamhi et al. (2021) BAML/ICE

3 bond mom ipr 6-month bond credit momentum skipping the prior
month. Demeaned with duration-times-spread.

Israel et al. (2018) BAML/ICE

4 bond price Bond price. Clean price of the bond. Bartram et al. (2023) BAML/ICE

5 convexity Bond convexity. Convexity of the bond. – BAML/ICE

6 coupon Bond coupon. The annualised bond coupon payment in
percent (%)

Chung et al. (2019) BAML/ICE

7 dspread First difference in bond option adjusted credit spread. – BAML/ICE

8 dts Duration-times-spread. Annualized bond duration mul-
tiplied by the bond option adjusted credit spread.

Dor et al. (2007) BAML/ICE

9 duration Bond duration. The derivative of the bond value to the
credit spread divided by the bond value, and is calcu-
lated by ICE

Israel et al. (2018) BAML/ICE

10 emp value Empirical bond value. Defined as the percentage dif-
ference between the actual credit spread and the fitted
(“fair”) credit spread for each bond. The fitted spread
is derived from cross-sectional regressions of the log of
bond option adjusted credit spreads onto the log of du-
ration, bond ratings and bond credit return volatility.
Demeaned with duration-times-spread.

Israel et al. (2018) BAML/ICE

11 faceval Face value. The bond amount outstanding in units Israel et al. (2018) BAML/ICE

12 impliedspread The fitted spread used to estimate the 33. value char-
acteristic.

Houweling and Van Zun-
dert (2017)

BAML/ICE

13 kurtosis Bond kurtosis. Rolling bond excess kurtosis com-
puted with a minimum amount of rolling observations
equalling 12 which then expands up to 60-months

– BAML/ICE

14 ltrev30 6 Bond long-term reversal (medium-term). Computed as
the rolling sum of the prior 30-months of bond returns
(minimum 12 monthly values) minus the rolling sum of
the most recent 6-month returns (minimum 6 monthly
values).

Subrahmanyam (2023) BAML/ICE

15 ltrev48 12 Bond long-term reversal (long-term). Computed as the
rolling sum of the prior 48-months of bond returns (min-
imum 12 monthly values) minus the rolling sum of the
most recent 12-month returns (minimum 6 monthly val-
ues).

Bali et al. (2021) BAML/ICE

16 mom3mspread Mom. 3m log(Spread). The log of the spread 3 months
earlier minus current log spread

– BAML/ICE

17 mom6 Corporate bond momentum. The sum of the last 6-
months of bond returns minus the prior month

Gebhardt et al. (2005) BAML/ICE

18 mom6ind Corporate bond portfolio industry momentum. The
sum of the last 6-months of bond portfolio returns mi-
nus the prior month. Portfolios are formed based on the
Fama-French Industry 17 classification

Kelly et al. (2021) BAML/ICE

19 mom6mspread Mom. 6m log(Spread). The log of the spread 6 months
earlier minus current log spread

– BAML/ICE

20 mom6xrtg Corporate bond momentum multiplied by bond rating.
The sum of the last 6-months of bond returns minus the
prior month multiplied by the bond’s numerical rating
AAA = 1, ... , D = 22

Kelly et al. (2021) BAML/ICE

21 rating Bond S&P rating. Bond numerical rating. AAA = 1,
... , D = 22

Kelly et al. (2021) BAML/ICE

22 ratingxspread Corporate bond ratings multiplied by credit spread. – BAML/ICE

23 sizeb Bond market capitalization. Computed as bond units
amount outstanding multiplied by the clean price of the
bond

Houweling and Van Zun-
dert (2017)

BAML/ICE

24 skew Bond skewness. The rolling 60-month skewness of bond
total returns. We require a minimum of 12 observations,
once this threshold is hit, the rolling window expands
upward to 60-months

Kelly et al. (2021) BAML/ICE
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25 sprtod2d Spread-to-Distance-to-Default. Spread-to-D2D is the
option-adjusted spread, divided by one minus the CDF
of the distance-to-default

Kelly et al. (2021) CRSP/COMP

26 spread Bond option adjusted credit spread. The option ad-
justed spread of the bond provided by ICE

Kelly et al. (2021) BAML/ICE

27 spreadvol Volatility of the first difference of the bond option ad-
justed credit spread. Rolling period of 24-months with
a minimum required observations of 12

– BAML/ICE

28 strevb Short-term bond reversal. Defined as the previous
months bond return

– BAML/ICE

29 struc value Structural bond value. Defined as the percentage dif-
ference between the actual credit spread and the fit-
ted (“fair”) credit spread for each bond. The fitted
spread is derived from cross-sectional regressions of the
log of bond option adjusted credit spreads onto the log
of the probability of default computed with firm-level
distance-to-default. Demeaned with duration-times-
spread.

Israel et al. (2018) BAML/ICE

30 swap spread Bond swap spread. The swap spread of the bond pro-
vided by ICE

Kelly et al. (2021) BAML/ICE

31 tmt Bond time to maturity – BAML/ICE

32 value Bond value. Defined as the percentage difference be-
tween the actual credit spread and the fitted (“fair”)
credit spread for each bond. The fitted spread is de-
rived from cross-sectional regressions of the log of bond
option adjusted credit spreads onto the 3-month change
in spreads, maturity and credit ratings.

Houweling and Van Zun-
dert (2017)

BAML/ICE

33 var Historical 95% value-at-risk. Rolling 36-month bond to-
tal 95% value-at-risk. We require a minimum of 12 ob-
servations, once this threshold is hit, the rolling window
expands upward to 36-months

Bai et al. (2019) BAML/ICE

34 vixbeta VIX beta. Rolling 60-month regression of bond returns
on the Fama French 3-factors (Mkt-RF ,SMB,HML),
the default risk factor DEF , and the interest rate risk
factor, TERM and the first difference in the CBOE VIX
and lagged VIX. The VIX beta in month t is the sum
of the coefficient on VIX and lagged VIX. We require a
minimum of 12 observations, once this threshold is hit,
the rolling window expands upward to 60-months

Chung et al. (2019) BAML/ICE

35 volatility Bond return volatility. Rolling 36-month bond total
return volatility. We require a minimum of 12 obser-
vations, once this threshold is hit, the rolling window
expands upward to 36-months

Kelly et al. (2021) BAML/ICE

36 yield Bond yield. The yield-to-maturity of the bond provided
by ICE

Gebhardt et al. (2005) BAML/ICE

37 yld to worst Bond yield-to-worst. The yield-to-worst of the bond
provided by ICE

– BAML/ICE

Panel B: Equity Characteristics Available on openbondassetpricing.com/data

38 book lev Book leverage. Shareholder’s equity and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
minus cash and inventories (CHEQ), divided by share-
holder’s equity minus preferred stock

Kelly et al. (2021) COMP

39 book prc Book-to-price. Firm Book-to-price is the sum of share-
holder’s equity and preferred stock divided by equity
market capitalization for the issuing firm

Kelly et al. (2021) CRSP/COMP

40 chg gp at Profitability change. The 5-year change in gross prof-
itability

Asness et al. (2019) COMP

41 d2d Distance-to-default. Computed as in Bharath and
Shumway (2008)

Bharath and Shumway
(2008)

CRSP/COMP

42 debt ebitda Debt-to-EBITDA. Total debt (DLTTQ + DLCQ) divided
by EBITDA (SALEQ − COGSQ − XSGAQ)

Kelly et al. (2021) CRSP/COMP

43 eqtyvol Equity volatility defined as the month-end value from a
180-day rolling-period

Campbell and Taksler
(2003)

CRSP

44 gp at Profitability. Sales (REVTQ) minus cost-of-goods-sold
(COGSQ), divided by assets (ATQ)

Choi and Kim (2018) COMP

45 gross prof ipr Demeaned profitability. Duration-times-spread de-
meaned gp at

Israel et al. (2018) COMP/ICE

46 me Equity market capitalization Choi and Kim (2018) CRSP

47 mkt lev Market leverage. Market capitalization and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
and preferred stock minus cash and inventories (CHEQ),
divided by market capitalization

Kelly et al. (2021) CRSP/COMP

xxiii

https://openbondassetpricing.com/data/


48 mkt lev ipr Demeaned Market leverage. Duration-times-spread de-
meaned mkt lev

Israel et al. (2018) COMP/ICE

49 ni me Earnings-to-price. Net income (NIQ) divided by market
equity

Correia et al. (2012) CRSP/COMP

50 operlvg Operating leverage. Sales (SALEQ) minus EBITDA
(SALEQ − COGSQ − XSGAQ), divided by EBITDA

Gamba and Saretto (2013) COMP

51 stock mom ipr Demeaned equity momentum. Duration-times-spread
demeaned momentum (sum of the past 6 months, skip-
ping the most recent month).

Israel et al. (2018) COMP/ICE

52 totaldebt Total firm debt (DLTTQ + DLCQ) Kelly et al. (2021) COMP

53 turnvol Turnover volatility. Turnover volatility is the quarterly
standard deviation of sales (SALEQ) divided by assets
(ATQ). The volatility is computed over 80 quarters, with
a minimum required period of 10 quarters. Thereafter,
the volatility is averaged (smoothed) over the preceding
4-quarters in a rolling fashion

Kelly et al. (2021) CRSP/COMP

The table presents information on the 53 characteristics that are generated by the authors and that
are made publicly available on openbondassetpricing.com/data. The remaining characteristics
are sourced from the publicly available equity data repositories of Chen and Zimmermann (2022)
and Jensen et al. (2023). Panel A reports the 37 bond-only characteristics that are constructed using
the BAML/ICE corporate bond database. Panel B reports the 16 equity-and-bond characteristics
that are constructed using CRSP and COMPUSTAT (COMP). Additional resources and description
notes for the equity openassetpricing.com-based data can be downloaded here. Documentation
for the Jensen et al. (2023) data can be found here.
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Table A.2: Summary Statistics of the Dataset for the Trade Intensity Estimates

Variable N Mean Std. Percentiles

p1 p10 p25 p50 p75 p90 p99

log invcomp 814,145 −2.161 1.049 −3.627 −3.162 −2.831 −2.391 −1.823 −0.910 2.278
inventory28 814,145 0.095 10.310 −32.135 −8.021 −1.960 0.000 2.001 8.220 31.691
capratio 814,145 0.062 0.015 0.026 0.044 0.050 0.061 0.075 0.083 0.090
halfspread 703,346 1.616 2.850 −0.341 0.274 0.596 1.131 1.936 3.122 9.645
rat 814,145 9.403 3.741 1 5 7 9 11 15 19
tau 814,145 10.660 9.935 1.126 2.370 4.047 6.795 16.219 26.186 31.981
log facevalue 814,145 6.133 0.662 4.745 5.416 5.704 6.109 6.551 7.003 7.919
coupon 814,145 5.809 2.126 1.554 3.125 4.250 5.750 7.125 8.500 11.375
age 814,145 1675.4 1471.9 80 284 618 1280 2282 3414 6998

The table presents the summary statistics of the panel data used to estimate the liquidity supply

and demand curves. The unit of the analysis is at the bond-month level, and the sample is from

August 2002 to November 2022 based on an intersection between the ICE and TRACE data.

xxv



Table A.3: Logit Regressions of Corporate Bond Transactions

Customer Sell Customer Buy

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
log InvComp 0.270 (23.12) 0.158 (28.44) 0.247 (22.12) 0.163 (29.72)

∆Inventory −0.255 (−43.01) −0.378 (−77.92) 0.336 (60.06) 0.403 (90.75)
CAP 0.110 (12.26) 0.102 (20.13) 0.092 (10.54) 0.086 (17.07)
Rating 0.679 (34.66) 0.612 (60.24) 0.657 (34.90) 0.620 (61.65)
Maturity −0.136 (−9.98) −0.025 (−3.36) −0.159 (−12.25) 0.006 (0.74)
logFaceV alue 1.587 (78.32) 1.239 (146.39) 1.597 (81.97) 1.222 (145.81)
Coupon −0.245 (−12.69) 0.022 (2.40) −0.231 (−12.31) 0.049 (5.28)
Age −0.188 (−14.84) −0.414 (−40.36) −0.216 (−17.64) −0.420 (−41.85)
Intercept 2.815 (150.57) 0.531 (76.08) 2.733 (152.55) 0.472 (67.46)

Pseudo R2 0.230 0.220 0.236 0.218
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.877 0.588 0.868 0.577

ProbCF 0.953 0.704 0.943 0.698

λ λData 0.100 0.042 0.096 0.041

λCF 0.145 0.058 0.137 0.057

Exp. Delay 1/λData 10.013 23.670 10.363 24.441

(days) 1/λCF 6.892 17.255 7.322 17.563

The table reports the coefficient estimates for the logit regressions of the bond trading dummy
on characteristics. Variable InvComp is the investor composition of Li and Yu (2025), which
measures the activeness of bond investors at the end of the previous quarter. Variable ∆Inventory
is the difference between customer buys and customer sells in the preceding 28 days, CAP is the
intermediary capital ratio of He et al. (2017) on the previous month. The right-hand-side variables
are standardized for ease of interpretation. Values in parentheses are t-statistics clustered at the
bond level. The sample is monthly, spanning August 2002 to November 2022.
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Table A.4: Forecasting Regression of Corporate Bond Transactions: Nonlinear
Model

Customer Sell Customer Buy

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
InvComp 0.051 (7.04) 0.016 (1.91) 0.053 (7.81) 0.008 (0.97)
1/InvComp −0.008 (−13.76) −0.009 (−16.29) −0.008 (−14.77) −0.009 (−16.91)
InvComp2 −0.003 (−5.93) −0.001 (−1.78) −0.003 (−6.72) −0.000 (−0.71)
log InvComp −0.055 (−8.93) −0.034 (−5.19) −0.058 (−9.77) −0.031 (−4.63)

∆Inventory −0.947 (−23.53) −4.423 (−45.55) 0.788 (15.78) 4.140 (35.47)
CAP 0.298 (2.16) 1.430 (7.06) 0.190 (1.48) 1.236 (6.48)
Rating 0.014 (24.94) 0.028 (40.95) 0.014 (25.31) 0.028 (43.22)
Maturity −0.001 (−5.77) −0.000 (−1.20) −0.002 (−7.58) 0.000 (1.75)
logFaceV alue 0.145 (42.70) 0.303 (104.82) 0.153 (46.50) 0.298 (103.80)
Coupon −0.013 (−14.51) −0.002 (−1.19) −0.014 (−14.54) 0.001 (0.37)
Age −0.006 (−14.05) −0.017 (−30.81) −0.008 (−16.02) −0.017 (−31.70)
Intercept −0.067 (−2.83) −1.492 (−58.17) −0.114 (−5.05) −1.478 (−58.80)

Adj. R2 0.148 0.257 0.157 0.254
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.877 0.588 0.868 0.576

ProbCF 0.912 0.587 0.896 0.585

λ λData 0.100 0.042 0.097 0.041

λCF 0.116 0.042 0.108 0.042

Exp. Delay 1/λData 10.014 23.672 10.362 24.442

(days) 1/λCF 8.635 23.727 9.273 23.887

The table reports the coefficient estimates for the logit regressions of the bond trading dummy
on characteristics. The model is similar to that of Table A.3, except that we add a nonlinear
transformation of the investor composition measure of Li and Yu (2025) and that the right-hand-
side variables are not standardized. The sample is monthly, spanning August 2002 to November
2022.
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Table A.5: Forecasting Regression of Corporate Bond Transactions: Interactions
between Investor Composition and Bond Characteristics

Customer Sell Customer Buy

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
log InvComp 0.260 (15.79) 0.173 (9.74) 0.268 (16.07) 0.182 (10.03)
log InvComp×Rating −0.004 (−8.89) −0.002 (−4.94) −0.004 (−8.72) −0.002 (−4.15)
log InvComp× logFaceV alue −0.037 (−16.35) −0.016 (−6.19) −0.038 (−16.35) −0.016 (−6.42)
log InvComp× Coupon 0.002 (3.82) −0.005 (−4.97) 0.002 (3.06) −0.006 (−6.09)
log InvComp×Age 0.001 (2.97) 0.000 (1.26) 0.001 (2.11) 0.001 (1.53)

∆Inventory −0.911 (−23.77) −4.404 (−45.10) 0.825 (16.90) 4.160 (35.94)
CAP 0.063 (0.48) 1.172 (5.66) −0.050 (−0.41) 0.982 (4.99)
Rating 0.006 (6.48) 0.025 (21.01) 0.006 (6.34) 0.026 (23.84)
Maturity −0.002 (−7.10) −0.001 (−4.14) −0.002 (−9.03) −0.000 (−1.16)
logFaceV alue 0.074 (11.73) 0.278 (41.11) 0.081 (12.52) 0.272 (40.10)
Coupon −0.008 (−5.46) −0.011 (−4.52) −0.008 (−5.59) −0.011 (−4.54)
Age −0.005 (−6.90) −0.018 (−16.89) −0.007 (−8.81) −0.018 (−17.33)
Intercept 0.485 (10.83) −1.198 (−24.33) 0.459 (10.19) −1.176 (−23.47)

Adj. R2 0.148 0.252 0.157 0.249
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.877 0.588 0.868 0.576

ProbCF 0.958 0.730 0.947 0.725

λ λData 0.100 0.042 0.097 0.041

λCF 0.151 0.062 0.140 0.061

Exp. Delay 1/λData 10.014 23.672 10.362 24.442

(days) 1/λCF 6.602 16.042 7.136 16.267

The table reports the estimates of the logit regression of monthly bond transactions. The model is
similar to that of Table A.3, except that we add interaction terms between the investor composition
measure of Li and Yu (2025) and bond characteristics such as credit ratings (Rating), time to
maturity (Maturity), log face value (FaceV alue), coupon rate (Coupon), and time since issuance
(Age), and that the right-hand-side variables are not standardized. The sample is monthly, spanning
August 2002 to November 2022.
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Table A.6: List of the Statistically Significant Corporate Bond Factors (Gross
Returns).

Factor Cluster Reference Sign Source

Cluster 1: Factors Formed on Bond Yields, Credit Spreads and Bond Prices

18spread Spreads Kelly et al. (2021) 1 OSBAP
25mom6mspread Spreads Kelly et al. (2021) -1 OSBAP
26sprtod2d Spreads Kelly et al. (2021) 1 OSBAP
bondprice Spreads Bartram et al. (2023) -1 OSBAP
dts Spreads Kelly et al. (2021) 1 OSBAP
empvalue Spreads Israel et al. (2018) 1 OSBAP
impliedspread Spreads Israel et al. (2018) 1 OSBAP
mom3mspread Spreads - -1 OSBAP
ratingxspread Spreads Kelly et al. (2021) 1 OSBAP
strucvalue Spreads Israel et al. (2018) 1 OSBAP
swapspread Spreads - 1 OSBAP
value Spreads Houweling and Van Zundert

(2017)
1 OSBAP

yield Spreads Gebhardt et al. (2005) 1 OSBAP
yldtoworst Spreads - 1 OSBAP

Cluster 2: Factors Formed on Equity Momentum

AnnouncementReturn EquityMomentum Nozawa et al. (2024) 1 OSAP
dVolCall EquityMomentum Cao et al. (2023) 1 OSAP
dVolPut EquityMomentum Cao et al. (2023) -1 OSAP
MomSeason06YrPlus EquityMomentum - 1 JKP
ret31 EquityMomentum - 1 JKP
seas11na EquityMomentum - 1 JKP
seas25an EquityMomentum - 1 JKP
seas610an EquityMomentum - 1 JKP
TrendFactor EquityMomentum - 1 OSAP

Cluster 3: Factors Formed on Short-Term Equity Reversal

IndRetBig EquityReversal - 1 OSAP
rmax5rvol21d EquityReversal - 1 JKP
rmax521d EquityReversal - 1 JKP
ret10 EquityReversal Chordia et al. (2017) 1 JKP

Cluster 4: Factors Formed on Volatility/Risk-Based Characteristics

27volatility VolatilityRisk Bai et al. (2021) 1 OSBAP
28VaR VolatilityRisk Bai et al. (2019) 1 OSBAP
betadown252d VolatilityRisk - 1 JKP
corr1260d VolatilityRisk - 1 JKP
CoskewACX VolatilityRisk - -1 OSAP
iskewcapm21d VolatilityRisk - 1 JKP
iskewff321d VolatilityRisk - 1 JKP
iskewhxz421d VolatilityRisk - 1 JKP
kurt VolatilityRisk Bai et al. (2016) -1 OSBAP
rskew21d VolatilityRisk - 1 JKP
spreadvol VolatilityRisk - 1 OSBAP

Cluster 5: Factors Formed on Firm Investment/Accruals

AssetGrowth Investment Choi & Kim (2018) 1 OSAP
atgr1 Investment Choi & Kim (2018) -1 JKP
coagr1a Investment - -1 JKP
colgr1a Investment - -1 JKP
cowcgr1a Investment - -1 JKP
empgr1 Investment - -1 JKP
fnlgr1a Investment - -1 JKP
GrAdExp Investment - 1 OSAP
invgr1 Investment - -1 JKP
invgr1a Investment - -1 JKP
nfnagr1a Investment - -1 JKP
noagr1a Investment - -1 JKP
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ppeinvgr1a Investment - -1 JKP

Cluster 6: Factors Formed on Firm Value/Profitability

8nime ValueProfit - -1 JKP
EBM ValueProfit - 1 OSAP
eqdur ValueProfit - 1 JKP
eqnetisat ValueProfit - 1 JKP
eqnpome ValueProfit - 1 JKP
nime ValueProfit - -1 JKP
turnovervar126d ValueProfit - 1 JKP

The table presents information on the 58 long-short corporate bond factors that have a statis-
tically significant average gross return at the 5% nominal level of the tests. That is, we screen
out any bond factor that does not have a Newey-West t-statistic >1.96 (estimated with 12-
lags). The bond factors are sign-corrected such they all have a positive mean by construction.
The first column, Factor, presents the factor mnemonic, followed by Cluster, which gives the
respective cluster that factor has been grouped into. The final three columns present the rele-
vant reference (if applicable), the sign correction, and the original source of the underlying char-
acteristic data. Additional resources and description notes for the corporate bond signals can
be found on openbondassetpricing.com/machine-learning-data/ (OSBAP), while the equity
openassetpricing.com-based data (OSAP) can be downloaded here. Documentation for the
Jensen et al. (2023), JKP, data can be found here.
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Table A.7: Bond CAPM Alphas of 58 Factors

Trade Size : $100,000 Trade Size : $2M

Signal Turnover Gross α Net α Cost (%) Net α Cost (%)

(%) (%) (%) Delay BA (%) Delay BA

Equity Momentum

seas25an 174 0.155 −0.268 0.045 0.378 −0.162 0.082 0.236
(2.60) (−4.50) (−2.72)

MomSeason06YrPlus 171 0.187 −0.230 0.039 0.378 −0.120 0.071 0.236
(1.97) (−2.43) (−1.26)

dVolPut 185 0.195 −0.245 0.063 0.378 −0.153 0.113 0.236
(3.27) (−4.11) (−2.56)

seas610an 174 0.199 −0.220 0.041 0.378 −0.110 0.073 0.236
(1.94) (−2.16) (−1.08)

dVolCall 185 0.286 −0.188 0.096 0.378 −0.122 0.172 0.236
(3.36) (−2.20) (−1.43)

AnnouncementReturn 70 0.333 0.078 0.038 0.217 0.126 0.076 0.131
(4.64) (1.09) (1.75)

ret31 134 0.353 −0.066 0.071 0.347 0.007 0.133 0.213
(2.97) (−0.55) (0.06)

TrendFactor 124 0.438 0.017 0.091 0.331 0.065 0.171 0.202
(2.60) (0.10) (0.38)

seas11na 65 0.440 0.197 0.038 0.206 0.240 0.076 0.124
(3.16) (1.41) (1.72)

Equity Reversal

rmax5rvol21d 170 0.300 −0.175 0.098 0.378 −0.111 0.176 0.236
(1.99) (−1.17) (−0.74)

rmax521d 132 0.356 −0.107 0.118 0.345 −0.077 0.222 0.211
(1.85) (−0.56) (−0.40)

IndRetBig 68 0.358 0.097 0.049 0.212 0.132 0.098 0.129
(2.62) (0.71) (0.96)

ret10 175 0.691 0.109 0.204 0.378 0.089 0.366 0.236
(3.26) (0.51) (0.42)

Investment

GrAdExp 20 0.076 −0.002 0.002 0.075 0.025 0.005 0.046
(2.04) (−0.06) (0.66)

empgr1 21 0.097 0.014 0.004 0.078 0.041 0.008 0.048
(1.91) (0.28) (0.80)

AssetGrowth 21 0.116 0.033 0.004 0.079 0.060 0.008 0.048
(2.18) (0.62) (1.12)

The table reports the gross and net bond CAPM alphas and associated monthly turnover rates
for small ($100,000) and large ($2M) trade sizes, which accounts for transaction costs including
bid-ask spread costs and delay costs. The ‘Cost’ column decomposes the total cost to trade into
the Delay and bid-ask (BA) components. We use the 58 factors with significant average excess
returns. We regress each factor on the corporate bond market factor (CAPMB) and estimate the
intercept of the regression, α. We group the 58 factors into six categories and report the results by
group. The values in parentheses are the t-statistics (Newey-West adjusted with 12 lags). We use
our own estimates of trade intensity to calculate the cost of delays. All factors are formed with the
PyBondLab Python package.
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Table A.7 (Continued)

Trade Size : $100,000 Trade Size : $2M

Signal Turnover Gross α Net α Cost (%) Net α Cost (%)

(%) (%) (%) Delay BA (%) Delay BA

Investment, Contd.

colgr1a 35 0.136 0.004 0.010 0.123 0.042 0.019 0.075
(1.56) (0.04) (0.48)

coagr1a 32 0.137 0.016 0.009 0.112 0.051 0.018 0.068
(2.39) (0.28) (0.89)

ppeinvgr1a 25 0.143 0.048 0.005 0.091 0.078 0.010 0.056
(2.97) (0.98) (1.62)

invgr1a 31 0.147 0.029 0.007 0.111 0.066 0.013 0.067
(2.25) (0.45) (1.01)

noagr1a 30 0.149 0.035 0.007 0.107 0.069 0.015 0.065
(2.53) (0.59) (1.17)

invgr1 34 0.152 0.025 0.008 0.119 0.065 0.015 0.073
(2.46) (0.41) (1.04)

nfnagr1a 37 0.164 0.026 0.008 0.130 0.068 0.017 0.079
(4.26) (0.67) (1.77)

atgr1 30 0.179 0.063 0.010 0.107 0.095 0.019 0.065
(2.46) (0.86) (1.30)

cowcgr1a 34 0.183 0.053 0.009 0.121 0.091 0.019 0.074
(2.35) (0.67) (1.17)

fnlgr1a 32 0.186 0.063 0.008 0.115 0.099 0.017 0.070
(3.63) (1.22) (1.94)

Spreads

value 48 0.161 −0.033 0.034 0.160 −0.005 0.069 0.097
(1.89) (−0.39) (−0.06)

empvalue 56 0.279 0.062 0.035 0.182 0.099 0.070 0.110
(3.59) (0.80) (1.27)

impliedspread 38 0.337 0.167 0.036 0.133 0.182 0.074 0.081
(1.71) (0.85) (0.92)

mom3mspread 126 0.406 −0.047 0.117 0.335 −0.021 0.222 0.205
(2.56) (−0.29) (−0.13)

ratingxspread 24 0.410 0.295 0.027 0.088 0.301 0.055 0.054
(1.56) (1.12) (1.15)

strucvalue 45 0.432 0.231 0.047 0.154 0.243 0.096 0.093
(2.83) (1.51) (1.59)

swapspread 32 0.433 0.275 0.043 0.115 0.276 0.087 0.070
(1.91) (1.21) (1.22)

dts 29 0.437 0.293 0.040 0.103 0.292 0.082 0.063
(1.93) (1.30) (1.29)

26sprtod2d 40 0.441 0.262 0.040 0.139 0.276 0.081 0.085
(3.14) (1.87) (1.96)

18spread 33 0.512 0.348 0.047 0.118 0.345 0.096 0.072
(2.06) (1.40) (1.38)

yield 30 0.516 0.368 0.042 0.106 0.366 0.086 0.065
(2.10) (1.50) (1.49)

yldtoworst 30 0.519 0.369 0.043 0.108 0.366 0.087 0.066
(2.11) (1.50) (1.49)

25mom6mspread 103 0.603 0.170 0.141 0.291 0.151 0.275 0.177
(2.71) (0.77) (0.68)

bondprice 30 0.632 0.484 0.041 0.107 0.482 0.085 0.065
(2.27) (1.73) (1.73)
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Table A.7 (Continued)

Trade Size : $100,000 Trade Size : $2M

Signal Turnover Gross α Net α Cost (%) Net α Cost (%)

(%) (%) (%) Delay BA (%) Delay BA

Value and Profit

EBM 46 0.088 −0.074 0.006 0.155 −0.019 0.013 0.094
(2.04) (−1.70) (−0.44)

eqnetisat 21 0.124 0.039 0.006 0.079 0.063 0.012 0.048
(1.39) (0.43) (0.71)

8nime 30 0.142 0.022 0.012 0.108 0.052 0.024 0.066
(1.31) (0.20) (0.48)

eqnpome 27 0.159 0.053 0.007 0.099 0.084 0.015 0.060
(2.35) (0.78) (1.24)

nime 31 0.175 0.051 0.013 0.110 0.081 0.027 0.067
(1.65) (0.49) (0.76)

eqdur 35 0.206 0.073 0.011 0.122 0.109 0.023 0.074
(2.62) (0.93) (1.38)

turnovervar126d 57 0.224 0.016 0.023 0.185 0.066 0.047 0.112
(2.30) (0.16) (0.67)

Volatility and Risk

corr1260d 15 0.038 −0.021 0.002 0.057 −0.000 0.004 0.035
(0.94) (−0.51) (−0.01)

rskew21d 180 0.156 −0.272 0.051 0.378 −0.170 0.091 0.236
(3.21) (−5.59) (−3.50)

iskewcapm21d 180 0.218 −0.228 0.068 0.378 −0.141 0.123 0.236
(4.62) (−4.86) (−2.99)

28VaR 19 0.230 0.139 0.018 0.073 0.149 0.037 0.044
(1.30) (0.79) (0.84)

iskewhxz421d 180 0.233 −0.213 0.068 0.378 −0.125 0.122 0.236
(4.00) (−3.65) (−2.14)

iskewff321d 180 0.235 −0.215 0.072 0.378 −0.130 0.129 0.236
(2.51) (−2.30) (−1.39)

betadown252d 40 0.243 0.085 0.019 0.139 0.120 0.038 0.085
(1.95) (0.68) (0.96)

27volatility 18 0.254 0.170 0.017 0.068 0.179 0.034 0.042
(1.85) (1.24) (1.30)

CoskewACX 64 0.265 0.039 0.025 0.201 0.094 0.050 0.122
(3.25) (0.48) (1.15)

kurt 25 0.365 0.262 0.014 0.090 0.282 0.028 0.055
(2.92) (2.09) (2.25)

spreadvol 23 0.415 0.310 0.019 0.086 0.323 0.040 0.052
(2.07) (1.54) (1.61)
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Table A.8: CAPM Alphas Using Duration-Adjusted Returns

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Count 9 4 13 14 7 11 58

Panel A. Gross CAPM α
Avg. α 0.269 0.404 0.152 0.465 0.167 0.239 0.281
Avg. t(α) (2.83) (2.51) (2.79) (2.31) (2.13) (2.64) (2.55)
Avg. Turnover 142.47 136.34 29.54 47.48 35.41 84.04 69.80
#(t(α) > 1.96) 9 3 12 8 4 8 44

Panel B. Net CAPM α, Own Estimates of Delay
B1. Small Trades
Avg. α −0.117 −0.038 0.039 0.258 0.032 0.002 0.055
Avg. t(α) (−1.74) (−0.26) (0.70) (1.15) (0.18) (−1.00) (−0.02)
Avg. BidAsk Cost 0.332 0.328 0.106 0.153 0.123 0.202 0.188
Avg. Delay Cost 0.054 0.113 0.008 0.054 0.012 0.035 0.039
#(t(α) > 1.96) 0 0 0 1 0 1 2
#(t(αBidAskOnly) > 1.96) 0 0 0 2 0 2 4

B2. Large Trades
Avg. α −0.036 −0.007 0.072 0.265 0.068 0.049 0.092
Avg. t(α) (−0.75) (−0.03) (1.33) (1.21) (0.72) (−0.25) (0.51)
Avg. BidAsk Cost 0.205 0.203 0.064 0.093 0.075 0.125 0.115
Avg. Delay Cost 0.100 0.209 0.015 0.107 0.025 0.065 0.074
#(t(α) > 1.96) 0 0 1 1 0 2 4
#(t(αBidAskOnly) > 1.96) 2 1 3 4 1 2 13

Panel C. Net CAPM α, Kargar et al. (2023) Estimates of Delay
C1. Small Trades
Avg. α −0.128 −0.061 0.038 0.247 0.030 −0.005 0.046
Avg. t(α) (−1.86) (−0.40) (0.68) (1.09) (0.15) (−1.11) (−0.09)
Avg. BidAsk Cost 0.332 0.328 0.105 0.152 0.122 0.202 0.188
Avg. Delay Cost 0.065 0.137 0.009 0.066 0.015 0.042 0.047
#(t(α) > 1.96) 0 0 0 1 0 1 2
#(t(αBidAskOnly) > 1.96) 0 0 0 2 0 2 4

C2. Large Trades
Avg. α −0.027 0.012 0.074 0.277 0.070 0.056 0.099
Avg. t(α) (−0.64) (0.09) (1.35) (1.27) (0.76) (−0.16) (0.58)
Avg. BidAsk Cost 0.206 0.203 0.065 0.094 0.075 0.125 0.116
Avg. Delay Cost 0.090 0.189 0.013 0.095 0.022 0.058 0.066
#(t(α) > 1.96) 0 0 1 1 0 2 4
#(t(αBidAskOnly) > 1.96) 2 1 3 4 1 2 13

The table reports the average bond CAPM α, the associated average t-statistic, and the number
of factors with a t-statistic greater than 1.96 before and after accounting for transaction costs,
including bid-ask spread costs and delay costs across factors associated with the six categories
from Section 5.2. Of the 341 factors that we generate, we consider the 58 factors with significant
average excess returns. We regress each factor’s duration-adjusted returns on the corporate bond
market factor and estimate the intercept of the regression, α. We group the 58 factors into six
categories and average the estimates within each group. The values in parentheses are the averages
of the t-statistics (Newey-West adjusted with 12 lags). In Panel B, we employ our own estimates
of trade intensity to calculate the cost of delays and present the net-of-cost alphas and the number
of factors that remain statistically significant. In Panel C, we employ the Kargar et al. (2025)
delay estimates for the trade intensity parameter and compute the cost of delays for small and large
trades respectively. All factors are formed with the PyBondLab Python package.
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Table A.9: CAPM Alphas Using TRACE Returns

Category Equity Equity Investment Spreads Value Volatility All

Momentum Reversal Profit Risk
Count 9 4 13 14 7 11 58

Panel A. Gross CAPM α
Avg. α 0.288 0.437 0.146 0.339 0.180 0.238 0.256
Avg. t(α) (2.80) (2.42) (2.15) (1.75) (2.20) (2.41) (2.23)
Avg. Turnover 144.37 138.48 34.49 51.09 40.78 88.06 73.64
#(t(α) > 1.96) 7 3 8 2 5 6 31

Panel B. Net CAPM α, Own Estimates of Delay
B1. Small Trades
Avg. α −0.106 −0.020 0.017 0.131 0.026 −0.015 0.018
Avg. t(α) (−1.39) (−0.15) (0.22) (0.41) (0.21) (−0.78) (−0.20)
Avg. BidAsk Cost 0.335 0.332 0.121 0.163 0.139 0.214 0.199
Avg. Delay Cost 0.059 0.124 0.008 0.044 0.014 0.039 0.039
#(t(α) > 1.96) 0 0 0 0 0 0 0
#(t(αBidAskOnly) > 1.96) 0 0 0 0 0 0 0

B2. Large Trades
Avg. α −0.028 0.004 0.056 0.151 0.066 0.033 0.059
Avg. t(α) (−0.53) (0.00) (0.82) (0.59) (0.75) (−0.15) (0.31)
Avg. BidAsk Cost 0.207 0.205 0.074 0.099 0.084 0.132 0.122
Avg. Delay Cost 0.109 0.228 0.016 0.089 0.029 0.073 0.075
#(t(α) > 1.96) 0 0 0 0 0 0 0
#(t(αBidAskOnly) > 1.96) 2 1 0 1 0 1 5

Panel C. Net CAPM α, Kargar et al. (2023) Estimates of Delay
C1. Small Trades
Avg. α −0.118 −0.045 0.016 0.122 0.024 −0.023 0.010
Avg. t(α) (−1.51) (−0.29) (0.20) (0.36) (0.17) (−0.88) (−0.27)
Avg. BidAsk Cost 0.335 0.332 0.121 0.163 0.139 0.214 0.199
Avg. Delay Cost 0.071 0.150 0.010 0.054 0.018 0.047 0.048
#(t(α) > 1.96) 0 0 0 0 0 0 0
#(t(αBidAskOnly) > 1.96) 0 0 0 0 0 0 0

C2. Large Trades
Avg. α −0.018 0.025 0.058 0.161 0.069 0.040 0.067
Avg. t(α) (−0.42) (0.12) (0.84) (0.64) (0.78) (−0.06) (0.37)
Avg. BidAsk Cost 0.208 0.206 0.074 0.100 0.085 0.132 0.123
Avg. Delay Cost 0.098 0.206 0.014 0.078 0.026 0.065 0.067
#(t(α) > 1.96) 0 0 0 0 0 0 0
#(t(αBidAskOnly) > 1.96) 2 1 0 0 0 1 4

The table reports the average bond CAPM α, the associated average t-statistic, and the number
of factors with a t-statistic greater than 1.96 before and after accounting for transaction costs,
including bid-ask spread costs and delay costs across factors associated with the six categories from
Section 5.2. Of the 341 factors that we generate, we consider the 58 factors with significant average
excess returns. We regress each factor’s excess returns on the corporate bond market factor and
estimate the intercept of the regression, α. We group the 58 factors into six categories and average
the estimates within each group. The values in parentheses are the average of the t-statistics
(Newey-West adjusted with 12 lags). In Panel B, we employ our own estimates of trade intensity
to calculate the cost of delays and present the net-of-cost alphas and the number of factors that
remain statistically significant. In Panel C, we employ the Kargar et al. (2025) delay estimates for
the trade intensity parameter and compute the cost of delays for small and large trades respectively.
All factors are formed with the PyBondLab Python package.
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Table A.10: CAPM Alphas after Accounting for Borrowing Fees

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Count 9 4 13 14 7 11 58

Panel A. Gross CAPM α
Avg. α 0.287 0.426 0.143 0.437 0.160 0.241 0.277
Avg. t(α) (2.95) (2.43) (2.54) (2.31) (1.95) (2.60) (2.48)
Avg. Turnover 142.46 136.30 29.43 47.45 35.33 83.99 69.75
#(t(α) > 1.96) 8 3 11 9 4 7 42

Panel B. CAPM α After Borrowing Cost
Avg. α 0.251 0.392 0.111 0.405 0.127 0.209 0.244
Avg. t(α) (2.54) (2.23) (1.95) (2.12) (1.53) (2.19) (2.10)
Avg. Borrowing Cost 0.036 0.034 0.033 0.032 0.032 0.032 0.033
#(t(α) > 1.96) 7 2 5 8 2 6 30

Panel C. Net CAPM α After Borrowing and Delay Costs
C1. Small Trades
Avg. α −0.129 −0.044 0.000 0.202 −0.005 −0.022 0.021
Avg. t(α) (−1.77) (−0.27) (−0.02) (0.89) (−0.21) (−1.26) (−0.35)
Avg. BidAsk Cost 0.332 0.328 0.105 0.153 0.123 0.202 0.188
Avg. Delay Cost 0.049 0.108 0.005 0.050 0.009 0.029 0.035
#(t(α) > 1.96) 0 0 0 0 0 0 0
#(t(αBidAskOnly) > 1.96) 0 0 0 0 0 0 0

C2. Large Trades
Avg. α −0.044 −0.009 0.036 0.212 0.034 0.030 0.062
Avg. t(α) (−0.77) (−0.05) (0.62) (0.98) (0.32) (−0.45) (0.21)
Avg. BidAsk Cost 0.205 0.203 0.064 0.093 0.074 0.125 0.115
Avg. Delay Cost 0.090 0.199 0.011 0.100 0.019 0.054 0.067
#(t(α) > 1.96) 0 0 0 0 0 1 1
#(t(αBidAskOnly) > 1.96) 2 1 0 2 0 1 6

The table reports the average bond CAPM α, the associated average t-statistic, and the number of factors
with a t-statistic greater than 1.96 before and after accounting for transaction costs, including bid-ask spread
costs, borrowing costs for short sales, and delay costs across factors associated with the six categories from
Section 5.2. Of the 341 factors that we generate, we consider the 58 factors with significant average excess
returns. We regress each factor’s returns on the corporate bond market factor and estimate the intercept of
the regression, α. We group the 58 factors into six categories and average the estimates within each group.
The values in parentheses are the average of the t-statistics (Newey-West adjusted with 12 lags). In Panel B,
we subtract the borrowing fee per month from the returns on the short positions to compute the CAPM α.
In Panel C, we employ our own estimates of trade intensity to calculate the cost of delays and present the
net-of-cost alphas and the number of factors that remain statistically significant. All factors are formed with
the PyBondLab Python package.
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Table A.11: CAPM Alphas, Long-Only Factors

Category Equity Equity Investment Spreads Value Volatility All
Momentum Reversal Profit Risk

Count 9 4 13 14 7 11 58

Panel A. Gross CAPM α
Avg. α 0.226 0.339 0.157 0.402 0.155 0.237 0.254
Avg. t(α) (3.44) (2.62) (2.68) (2.33) (2.08) (2.69) (2.64)
Avg. Turnover 142.58 150.29 30.34 45.46 32.10 82.43 69.77
#(t(α) > 1.96) 9 4 13 11 4 9 50

Panel B. Net CAPM α, Own Estimates of Delay
B1. Small Trades
Avg. α −0.052 0.041 0.082 0.294 0.076 0.077 0.108
Avg. t(α) (−1.15) (0.22) (1.38) (1.58) (0.88) (0.21) (0.67)
Avg. BidAsk Cost 0.167 0.177 0.054 0.074 0.056 0.099 0.094
Avg. Delay Cost 0.112 0.120 0.021 0.034 0.022 0.061 0.053
#(t(α) > 1.96) 1 0 1 2 0 2 6
#(t(αBidAskOnly) > 1.96) 2 0 2 2 0 2 8

B2. Large Trades
Avg. α −0.082 0.009 0.081 0.289 0.075 0.063 0.097
Avg. t(α) (−1.65) (−0.04) (1.36) (1.54) (0.87) (−0.03) (0.52)
Avg. BidAsk Cost 0.103 0.110 0.033 0.045 0.034 0.061 0.057
Avg. Delay Cost 0.205 0.220 0.043 0.069 0.046 0.113 0.100
#(t(α) > 1.96) 0 0 1 2 0 2 5
#(t(αBidAskOnly) > 1.96) 5 2 8 8 3 5 31

Panel C. Net CAPM α, Kargar et al. (2023) Estimates of Delay
C1. Small Trades
Avg. α −0.075 0.016 0.077 0.286 0.071 0.064 0.097
Avg. t(α) (−1.54) (0.02) (1.30) (1.52) (0.81) (0.00) (0.52)
Avg. BidAsk Cost 0.167 0.177 0.054 0.073 0.056 0.099 0.093
Avg. Delay Cost 0.135 0.145 0.026 0.042 0.027 0.074 0.064
#(t(α) > 1.96) 0 0 1 2 0 2 5
#(t(αBidAskOnly) > 1.96) 2 0 2 2 0 3 9

C2. Large Trades
Avg. α −0.062 0.030 0.086 0.296 0.081 0.074 0.107
Avg. t(α) (−1.33) (0.13) (1.45) (1.59) (0.95) (0.14) (0.65)
Avg. BidAsk Cost 0.103 0.110 0.033 0.045 0.035 0.061 0.058
Avg. Delay Cost 0.185 0.199 0.038 0.060 0.040 0.102 0.090
#(t(α) > 1.96) 1 0 1 2 0 2 6
#(t(αBidAskOnly) > 1.96) 5 2 8 8 3 5 31

The table reports the average bond CAPM α, the associated average t-statistic, and the number of factors
with a t-statistic greater than 1.96 before and after accounting for transaction costs, including bid-ask spread
costs and delay costs across factors associated with the six categories from Section 5.2. Of the 341 factors
that we generate, we consider the 58 factors with significant average excess returns. We regress each factor’s
excess returns on the corporate bond market factor and estimate the intercept of the regression, α. We group
the 58 factors into six categories and average the estimates within each group. The values in parentheses are
the average of the t-statistics (Newey-West adjusted with 12 lags). In Panel B, we employ our own estimates
of trade intensity to calculate the cost of delays and present the net-of-cost alphas and the number of factors
that remain statistically significant. In Panel C, we use the Kargar et al. (2025) delay estimates for the trade
intensity parameter and compute the cost of delays for small and large trades respectively. All factors are
formed with the PyBondLab Python package.
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Table A.12: Forecasting Regressions of Corporate Bond Transactions: Liquid
Bonds (Customer Buy)

Bonds with High Turnover Large Bonds

$100,000 $2M $100,000 $2M

Panel A. Regression Estimates
log InvComp 0.014 (12.93) 0.022 (11.30) 0.018 (12.32) 0.031 (11.77)

∆Inventory 0.007 (13.50) 0.040 (34.31) 0.010 (19.65) 0.047 (38.19)
CAP −0.001 (−0.72) 0.011 (3.88) −0.010 (−3.43) −0.005 (−1.68)
Rating 0.040 (19.98) 0.077 (34.98) 0.052 (23.47) 0.107 (41.01)
Maturity −0.020 (−9.98) −0.003 (−1.84) −0.016 (−7.35) 0.005 (2.61)
logFaceV alue 0.092 (50.65) 0.175 (104.61)
Coupon −0.026 (−13.09) 0.009 (3.23) −0.054 (−21.08) −0.048 (−16.92)
Age −0.028 (−15.25) −0.059 (−34.82) −0.034 (−16.54) −0.074 (−33.36)
HighTurnover 0.091 (26.66) 0.209 (67.32)
LargeFaceV alue 0.165 (44.81) 0.326 (92.74)
Intercept 0.823 (264.79) 0.472 (143.08) 0.791 (190.05) 0.424 (114.70)

Adj. R2 0.166 0.284 0.127 0.207
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.914 0.681 0.956 0.750

ProbLB 0.972 0.773 - 0.882

λ λData 0.117 0.054 0.149 0.066

λLB 0.170 0.071 - 0.102

Exp. Delay 1/λData 8.573 18.373 6.716 15.143

(days) 1/λLB 5.876 14.162 - 9.811

The table reports the coefficient estimates for the regressions of the bond trading dummy for the customer
buy side on characteristics as in Eq. (11). The variable InvComp is the investor composition of Li and Yu
(2025), which measures the activeness of bond investors at the end of the previous quarter. The variable
∆Inventory is the difference between customer buys and customer sells in the preceding 28 days, while
CAP is the intermediary capital ratio of He et al. (2017) in the previous month. HighTurnover is a dummy
which is one if the bond is above the median in terms of bond turnover rate in month t and zero otherwise.
LargeFaceV alue is a dummy which is one if the bond is above the median in terms of amount outstanding
in month t and zero otherwise. Except for the two dummy variables, the right-hand-side variables are
standardized for ease of interpretation. Values in parentheses are t-statistics clustered at the bond and
month levels. The sample is monthly, spanning August 2002 to November 2022.
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Table A.13: Short-Selling Summary Statistics – Markit Indicative Fees

Category Mean Std. Percentiles

p1 p10 p25 p50 p75 p90 p99

All 3.63 5.27 1.32 2.06 2.37 3.12 3.32 4.15 20.29
AAA to AA− 3.14 2.71 1.43 2.10 2.68 3.12 3.17 3.67 7.27
A+ to A 3.15 3.15 1.35 2.08 2.33 3.12 3.15 3.72 9.09
A− to BBB+ 3.14 4.04 1.26 1.97 2.29 3.12 3.15 3.74 9.50
BBB to BBB− 3.21 3.79 1.25 1.95 2.29 3.12 3.20 3.85 11.50
BB+ to B− 4.36 5.56 1.49 2.16 3.08 3.27 4.15 4.77 30.00
CCC+ to D 12.55 18.42 2.08 3.12 3.55 9.75 11.50 25.00 85.22

The table presents the pooled summary statistics for the Markit IndicativeFee variable. The

number of pooled bond-month observations is 1,102,569. The statistics are monthly and presented

in basis points. The IndicativeFee variable is the net buy side fee paid to borrow the underlying

bond. Specifically, it is defined as the interest rate on cash funds minus the rebate rate (that

is paid for collateral) and is directly provided by Markit. This fee (cost) is used to adjust the

short-leg of the bond factors. The data spans the sample period August 2002 to November 2022.

IndicativeFee data are unavailable for all bonds prior to September 2006. Therefore, we impute

these missing values using the average IndicativeFee within each rating category, enabling the

sample to begin in August 2002 and align with the sample used for the main results.
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Table A.14: Summary Statistics for the Corporate Bond Market Factor.

Panel A: Corporate Bond Market Factor Statistics

MKTBNet MKTBGross MKTB

Mean 0.316 0.367 0.364
(2.14) (2.36) (2.32)

SD 2.06 1.95 1.91
SR 0.53 0.65 0.66

Panel B: Pairwise Correlations

MKTBNet MKTBGross MKTB

MKTBNet 1
MKTBGross 0.982 1
MKTB 0.973 0.992 1

Panel A reports the monthly factor means (Mean), the monthly factor standard deviations (SD),

and the annualized Sharpe ratios (SR). The MKTBNet factor is constructed as the weighted-

average of the BlackRock iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker:

HYG) ETF net returns from the CRSP Mutual Funds database. The MKTBGross factor is con-

structed as the weighted-average of the Bloomberg-Barclays Investment Grade and High Yield index

gross returns. The MKTB factor is the value-weighted bond market factor publicly available from

openbondassetpricing.com. Panels A and B are based on the sample period 2002:08 to 2022:12

(245 months). t-statistics are in round brackets computed with the Newey-West adjustment with

12-lags.
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Table A.15: Hyperparameters across the Machine Learning Models.

Panel A: Linear Models with Penalties: LASSO, RIDGE & ENET

Parameter sklearn mnemonic Value

Intercept fit intercept=True True
ℓ1 penalty alphas Variable
ℓ2 penalty alphas ∈ [0.0001, . . . , 1]
Num. Penalties n alphas 100
ℓ1 ratio l1 ratio ∈ [0.001, 0.01,0.99,0.999]

Panel B: Tree-Based Ensembles: RF and XT

Parameter sklearn mnemonic Value

Num. Trees n estimators 100
Max depth max depth ∈ [2,4,6]
Split features max features ∈ [5,10,20]
Min leaf samples min samples leaf ∈ [1,10,50]

Panel C: Feed Forward Neural Network: NN

Parameter tensorflow mnemonic Value

Layers Dense 1
Neurons Dense 32
Activation activation=‘relu’ ReLu
Epochs epochs 100
Batch size batch size 1024
Batch normalization BatchNormalization True
Optimizer optimizers.Adam Adam
Patience patience 5
Learning rate learning rate ∈ [0.001, 0.01]
ℓ1 penalty regularizers.l1 ∈ [0.001, 0.01]
Ensemble - 10
Grand Ensemble - 10

The table reports the relevant hyperparameters that are chosen via a cross-validation scheme with

a 70:30 train-validate split that maintains the temporal ordering of the data. The cross-validation

is conducted every 5years commencing on 2002:07 using an expanding window. The set of hyper-

parameters is chosen such that it yields the smallest mean squared error (MSE) in the validation

sample. Panel A reports the hyperparameters for the linear models that include Lasso (LASSO),

Ridge (RIDGE) and Elastic Net (ENET), respectively. Panel B reports the hyperparameters for

the set of tree-based ensembling nonlinear models that include the random forest (RF) and ex-

tremely randomized trees (XT). Panel C reports the hyperparameters for the feed forward neural

network (NN). All models except for the NN are estimated with sklearn. The NN is estimated

with tensorflow.
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