
Discussion Paper Series A  No.766

Generic Indeterminacy of Steady-State Competitive Equilibria in
 Walras-von Neumann Production Economies

Naoki Yoshihara
(Department of Economics, University of Massachusetts Amherst; 

The Institute of Economic Research, Hitotsubashi University,
and School of Management, Kochi University of Technology)

May 2025

Institute of Economic Research 

Hitotsubashi University 

Kunitachi, Tokyo, 186-8603 Japan 



Generic Indeterminacy of Steady-State Competitive

Equilibria in Walras-von Neumann Production

Economies∗

Naoki Yoshihara†

University of Massachusetts at Amherst

May 1, 2025

Abstract

This paper studies the structure of the set of steady-state competitive equilibria

defined in a quite generalized von Neumann economic model. First, it is shown

that in any von Neumann production economy, there exists an admissible domain

of non-negative interest rates such that for every interest rate within the domain,

there exists an associated steady state equilibrium. Second, for almost all interest

rates within the domain, the associated steady state equilibrium is indeterminate.

Thus, in summary, for any von Neumann production economy, there is a dense sub-

set of the admissible domain over which the set of steady state equilibria consists

of a finite number of one-dimensional continuums of those equilibria. This prop-

erty is observed regardless of whether the underlying economy is regular or not,

which contrasts sharply with the finite and discrete properties of the other types

of Walrasian equilibria in both static and intertemporal regular economies. These

main results suggest, as a new, future research agenda, the need to study an ap-

propriate equilibrium selection mechanism that should be applied prior to market

competition.
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1 Introduction

Since Adam Smith, understanding the functioning of the capitalist economy as a whole

has been a central concern of economists, and general equilibrium theory has played a

central role in economics by providing a framework for working on this issue. Indeed,

perfect competition and the traditional theory of homo economicus are seen as describing

the enduring tendencies of economic activity, or as benchmarks against which real-world

deviations can be measured.

As a benchmark theory, general equilibrium theory has been successful in providing

a coherent solution to economic resource allocation problems. In addition, contempo-

rary general equilibrium theory has extended the classical solution concept of Walrasian

competitive equilibrium to a number of more general economies, such as the perfectly fore-

sighted equilibrium in intertemporal economies with a finite set of infinitely lived agents

as well as with an infinite set of finitely lived agents, and the sequential equilibrium in

multi-stage sequential trading.

The literature on general equilibrium theory also includes work on von Neumann equi-

librium (von Neumann, 1945), which is interpreted here as the balanced growth (or steady-

state) competitive equilibrium in the generalized von Neumann production economies,

where aggregate consumption demand can vary due to changes in prices.1

The von Neumann equilibrium is a solution concept in intertemporal economies, but

it is different from the standard perfectly foresighted equilibrium as well as the sequential

equilibrium solutions. In fact, unlike these intertemporal equilibrium solutions, it can

be defined by equilibrium conditions for the resource allocations of one period, since its

stationary features appear in all periods. However, there are some specific problems in

establishing its existence that are not encountered in static production economies, as

suggested by Malinvaud (1972; ch. 10).

The von Neumann equilibrium is usually referred to in the context of the turnpike

theorem as a golden rule steady state that attracts the intertemporal competitive equilib-

rium paths starting from any initial position. Thus, as Mandler (2002) points out, it can

be recognized as a cogent representation of the long-period equilibrium that serves as a

‘center of gravity’ for economic activity under capitalist competition, to which short-run

prices would quickly return.

Nevertheless, there has been a rather limited number of studies, such as Morishima

(1960) and Bidard and Hosoda (1987), on the (refined) von Neumann equilibrium. As

a result, the properties of this solution concept remain relatively unexplored, including

the general existence problem of it. In particular, there is no full-fledged analysis of the

equilibrium manifold of von Neumann equilibria.

In this paper, we will develop a full-fledged analysis of the structure of the set of

von Neumann equilibria. Recall that general equilibrium theory has developed many

full-fledged analyses of the structure of the set of Walrasian competitive equilibria since

1That is, we discuss here a refined version of the original definition of von Neumann equilibrium

discussed in von Neumann (1945) and Gale (1960). The original definition has often been criticized as a

model of “slave economies” because it does not properly incorporate the optimal consumption choices of

individuals through market exchange. In the face of such criticism, Morishima (1960) proposed a refined

version with generalized von Neumann models, introducing specific types of Marshallian demand functions

for the capitalist and working classes, as well as an exogenously given saving rate for the capitalist class.

As discussed below, the model of generalized von Neumann production economies in this paper is much

more general than even the Morishima (1960) model.
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Debreu (1970), which were motivated to warrant the explanatory power of this theory.

Indeed, the theory of regular economies initiated by Debreu (1970) shows that for almost

all exchange economies, the set of Walrasian competitive equilibria is finite and discrete.

According to Debreu (1976), such a structure of the solution set is highly desirable because

it guarantees the generic determinacy of equilibrium allocations via market competition,

which further guarantees the predictability and stability of such an economic system.

As Mandler (1999a,b, 2002) has argued forcefully, there is another important reason to

explore the question of generic (in)determinacy of market equilibria. Given the extreme

levels of wealth and income inequality in present-day capitalist economies, as reported by

Oxfam (2024), the task of exploring the mechanisms that generate the growing inequality

would be one of the central concerns. In economics, however, there is no common view

on the mechanism that determines the functional distribution of income across different

schools of economics. For example, the classical and Marxian schools have often argued

that functional income distribution is determined by various factors, including not only

market competition but also some historical and institutional conditions of capitalist

society. In contrast, the early neoclassical school had originally argued that functional

income distribution in competitive market economies is determined by the principle of

marginal productivity, although, as Hahn (1982) pointed out, this principle is no longer

considered indispensable for this determination.

Nowadays, this fundamental debate can be discussed from the perspective of the

generic (in)determinacy of market equilibria, as emphasized by Mandler (1999a, b, 2002).

The classical and Marxian views on the functional distribution of income have been for-

mally studied by Sraffa’s (1960) system of price equations, which is conceived as a repre-

sentation of the long-period equilibrium under free competition and is known as underde-

termined: in the system, the number of unknown variables is greater than the number of

equations, which implies that one of the rates of wages and interest should be the para-

meter of the market mechanism that must be determined outside market competition in

order to close the system of equations. Such a structure of price determination under free

competition is compatible with the classical and Marxian view that the wage rate is de-

termined by historical and institutional factors, rather than by the matching mechanism

of supply and demand in labor markets.

In contrast, Debreu’s (1970) work on regular economies suggests that there is no room

for factors other than market competition in determining the functional distribution of

income, since Walrasian equilibrium prices and allocations change smoothly as a function

of parameters representing the economic environment. Although Debreu (1970) focused

only on exchange economies, Mas-Colell (1975) and Kehoe (1980, 1982, 1985) showed that

the set of Walrasian competitive equilibria is finite and discrete in (static) production

economies with constant returns to scale technologies. Thus, the generic determinacy

of Walrasian competitive equilibria casts doubt on the one-degree-of-freedom view of the

Sraffian system of price equations.2

In response to these doubts, Yoshihara and Kwak (2023, 2024) recently established

the generic indeterminacy of steady state equilibria by showing that in a simple model of

overlapping generations (OLG, hereafter) production economies with a Leontief technique,

there exists a steady state equilibrium that is regular and indeterminate in the sense that

2In fact, the Sraffian school simply defines the long-period equilibrium by the Sraffian system of price

equations, which lacks the conditions for the matching of supply and demand in the commodity and

factor markets. This point has been criticized by Mandler (1999a).
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in its neighborhood there exists a continuum of other steady state equilibria that converge

to it.

The present paper significantly generalizes the latter contribution by considering von

Neumann, rather than simple Leontief, production economies. Moreover, the main results

of this paper provide a more full-fledged characterization of the equilibrium manifold of

von Neumann equilibria than the results of Yoshihara and Kwak (2023, 2024). The model

considered in this paper is also significantly more general than the economies analyzed

by Morishima (1960) and Bidard and Hosoda (1987), in that we drop the assumptions

that the aggregate demand functions are derived from homothetic preferences over the

consumption space and that the saving rate of the capitalist class is exogenously given.

To be precise, we introduce a von Neumann production economy with a simple OLG

structure, which is represented as a profile of one-period data of production economies:

a list of von Neumann production technology, a given size of population as labor endow-

ment data, and two Marshallian demand functions. In this economy, the von Neumann

equilibrium solution is reduced to a steady-state competitive equilibrium.

We show that for each economy there is an admissible range of non-negative interest

rates such that for each interest rate in this range, there exists a von Neumann equilib-

rium associated with that interest rate. Moreover, in each economy, for almost all interest

rates within the admissible domain, the corresponding von Neumann equilibria are inde-

terminate, in the sense that within a neighborhood of each of these equilibria there exists

a continuum of other von Neumann equilibria converging to it.

More precisely, for each economy there exists a non-empty set of von Neumann equi-

libria, which is described as a closed graph of an upper hemi-continuous correspondence

between the von Neumann equilibria and their associated interest rates. Moreover, there

exists a dense subset of the admissible domain over which such a closed graph consists of

a finite number of continuous curves, each representing a one-dimensional continuum of

equilibria. These results hold whether or not the underlying economy is regular.3 Thus,

the one-dimensional indeterminacy of von Neumann equilibria is generic.

These main results do not depend on the OLG structure of the model. In fact, Ad-

dendum A of this paper analyzes an even more general version of the model, in which the

population grows at a constant, exogenous rate g = 0, and the economic environment in
any given period is specified by a list of von Neumann production technologies, the size

of the population, and a Marshallian aggregate demand function. Accordingly, a more

general solution concept is defined as a von Neumann balanced growth equilibrium asso-

ciated with g as the warranted rate of capital accumulation. For this solution concept,

essentially the same two main results as those mentioned above are obtained.

1.1 Related Literature Review

In addition to the classical contributions of Debreu (1970), Mas-Colell (1975), and Kehoe

(1980, 1982, 1985), the generic determinacy of Walrasian equilibria also holds in some

intertemporal economic models. As Kehoe and Levine (1985) argued, in intertemporal

models with a finite number of infinitely lived agents, regular economies are of full measure

and each of them has a finite number of isolated, perfectly foresighted equilibria. In

3In this paper, as discussed below, an economy is defined to be regular if all the von Neumann equilibria

in that economy are regular, and a von Neumann equilibrium is defined to be regular if its corresponding

Jacobian has full row rank.
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intertemporal exchange models with an infinite number of finitely living OLGs, the regular

economies are again generic and each of them has a finite number of steady state equilibria,

as shown by Kehoe and Levine (1984).

A number of contributions have also proved the local indeterminacy of such steady

states in some intertemporal economic models. A steady state is said to be locally inde-

terminate if there is a continuum of nearby steady state equilibrium paths, all of which

converge to the steady state. Kehoe and Levine (1984, 1985) and Calvo (1978) show that

each of the steady states in each intertemporal OLG economy with a pure exchange or

simple production technology is locally indeterminate.4

Mandler (1995, 1999a) has analyzed the generic indeterminacy of sequential equilib-

rium in intertemporal production economies with a finite number of finitely lived agents.

Using Radner’s (1972) method of decomposing an intertemporal (Arrow-Debreu) equilib-

rium into a sequential equilibrium under two-period sequential trade, it can be shown,

under some conditions, that the second-period continuation equilibrium is indeterminate

for almost any induced second-period economy.5

In summary, the existing literature on generic (in)determinacy can be summarized as

follows:

Insert Table 1 aroud here.

As argued by Debreu (1970), Mas-Colell (1975), Kehoe (1980, 1982), and Kehoe and

Levine (1985), the above-mentioned finite and discrete properties of Walrasian compet-

itive equilibria in static economies and perfectly foresighted equilibria in intertemporal

economies are no longer warranted if these underlying economies are not regular. Hence,

the verification of the full measure of regularity in these economies is crucial to establish

the generic determinacy of these equilibria. In contrast, the study of regular economies is

less important in this paper, since the generic indeterminacy of von Neumann equilibria

can be established essentially without reference to the regularity of the economies, as

discussed in detail below.

The generic indeterminacy of von Neumann equilibria also contrasts sharply with the

finite and discrete features of steady states in the standard literature on OLG economies,

such as Kehoe and Levine (1984) and Calvo (1978). Such finiteness and discreteness in

the standard literature would arise from some specific features of their OLG economic

models. For example, steady states in OLG pure exchange economies have a structure

quite similar toWalrasian equilibria in static pure exchange economies, as argued in Kehoe

and Levine (1984). In the case of OLG production economies, Calvo’s (1978) neoclassical

two-sector model is so specific that the stationary level of the capital stock and the

corresponding stationary production activities can be solved completely independently of

the price system, which is the source of the finiteness of steady states in his model.6

4Even in infinite-horizon intertemporal economies with a finite number of infinitely lived individuals,

there is some literature, such as Benhabib and Farmer (1994) and Benhabib and Nishimura (1998), on

the local indeterminacy of equilibrium paths converging to a steady state, which is shown to exist in

economies with some degree of market imperfections. See also Nishimura and Venditti (2006) for a useful

survey of this work.

However, this line of research will not be discussed further in this paper, as we focus on Walrasian

equilibria under perfectly competitive economies.
5However, this indeterminacy arises only in economies with linear, non-differentiable production tech-

nology, see Mandler (1997).
6See Yoshihara and Kwak (2024) for more detailed comments on the source of Calvo’s (1978) steady
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Finally, it may be worth noting that Kehoe (1985; Section VI; Theorem 7) considered

the class of production technologies as that of alternative Leontief production techniques,

and then showed that each of such economies is regular and has a unique (steady-state)

equilibrium by applying the nonsubstitution theorem.7 This result may seem incompatible

with the main result (the generic indeterminacy of von Neumann equilibria) of this paper,

but it is not. For what Kehoe (1985; section VI) focused on is the case of steady state

equilibrium associated with zero interest rate alone, while we also consider the cases of

steady state equilibria associated with positive interest rates.

The remainder of the paper is organized as follows. Section 2 presents a von Neumann

production economic model with a simple OLG structure. Given this class of economies,

Section 3 discusses the general existence of von Neumann steady-state equilibria. In ad-

dition, Section 4 verifies the general indeterminacy of such equilibria. Section 5 contains

some concluding remarks. All the proofs of the main theorems in Sections 3 and 4 are rel-

egated to Appendix. Addendum A contains another variant of von Neumann production

economies and its corresponding solution concept, as mentioned above.

2 An overlapping generation economy with von Neu-

mann production technology

Consider an OLG model in which each generation t = 1, 2, . . . , is a single individual living
in two periods, working only in her young age and retiring in her old age to purchase con-

sumption goods from her wealth due to her past savings. Let ωl be the labor endowment

of a generation, which is assumed to be fixed over time.8

There are n = 2 goods produced in this economy that are used as consumption goods
and/or capital goods. There are m (= n) alternative production processes that can be
used. Consider a von Neumann production technology (A,B,L), where A is an n ×m
nonnegative matrix of material input coefficients, B is an n ×m nonnegative matrix of

gross output coefficients, and L is a 1×m positive vector of direct labor coefficients. At

the end of each period t, let pt ∈ Rn+ be a vector of prevailing prices of n commodities;
wt ∈ R+ be a prevailing wage rate; and rt ∈ R be a prevailing interest rate.
Let zb : Rn+×R+×Rn+×R+×R+ → Rn+ (resp. za : Rn+×R+×Rn+×R+×R+ → Rn+)

be a Marshallian demand function of each generation t in their youth (resp. in their old

age) such that, for any commodity price vectors pt, pt+1 ∈ Rn+, wage rates wt, wt+1 ∈ R+,
and an interest factor 1+rt+1 ∈ R+, zk (pt, wt, pt+1, wt+1, 1 + rt+1) ∈ Rn+ is a consumption
vector purchasable by each generation at age k = b, a. As is standard in OLG models

with production, at least since Calvo (1978), the Marshallian demand of each agent t is

assumed to satisfy the following budget constraint:

ptz
t
b +

pt+1z
t
a

1 + rt+1
= wtωl,

state results.
7Note that the class of economies in Kehoe (1985; section VI) need not have the OLG structure, but

this point is not essential to the following argument.
8For any positive integer q, Rq (resp. Rq+, R

q
++ and Rq−) denotes the q-fold Cartesian product of

R = (−∞,+∞) (resp. R+ = [0,+∞), R++ = (0,+∞) and R− = (−∞, 0]). For any x, x0 ∈ Rq,
x = x0 denotes [x1 = x01, · · · , xq = x0q], x ≥ x0 denotes [x = x0 and x 6= x0], and x > x0 denotes
[x1 > x

0
1, · · · , xq > x0q].
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where agents supply inelastically all of their labor endowment ωl and, given their earnings

wtωl, they spend to purchase consumption goods z
t
b after deducting

pt+1z
t
a

1+rt+1
for saving,

which is to finance consumption during retirement. Savings are used to finance productive

investment during old age.

The demand function zk is assumed to be continuously differentiable and to satisfy

homogeneity: for k = b, a,

zk (pt, wt, pt+1, wt+1, 1 + rt+1) = zk (λpt,λwt,λpt+1,λwt+1, 1 + rt+1)

= zk (pt, wt,λpt+1,λwt+1,λ (1 + rt+1))

for every λ > 0 and every (pt, wt, pt+1, wt+1, 1 + rt+1) ∈ Rn+ × R+ × Rn+ × R+ × R+; and
Walras’ law. In addition, assume that each demand function zk is derived from a strongly

monotonic preference on the consumption space in each period. When zk is evaluated

at stationary prices, (pt, wt) = (pt+1, wt+1) = (p,w) for each t, we will use the notation
zk (p,w, r) for k = a, b. Let z (p, w, r) ≡ zb (p,w, r) + za (p,w, r) be the aggregate demand
function at each period t when the market prices are stationary.

An overlapping generation economy is given by a profile E = h(A,B,L) ;ωl; zi. As in
the literature on von Neumann production models, we are interested in studying a specific

long-period feature of economic resource allocation through market competition, where

prices are stationary and all investment activity is simply of the replacements. Thus,

a steady state of the Walrasian competitive equilibrium is defined, following Mandler

(1999a; section 6), as follows:

Definition 1: A steady-state equilibrium (SE) in the economy E = h(A,B,L) ;ωl; zi is
a pair of a price vector (p, w, r) ∈ Rn+ × R+ × [−1,∞) and a production activity vector
y ∈ Rm+ , such that:

pB 5 (1 + r) pA+ wL, (a)

By = z (p, w, r) +Ay, and (b)

Ly 5 ωl. (c)

In Definition 1, 1 + r = 0. This implies that non-negativity of equilibrium interest

rates is not necessarily required. However, steady-state equilibria with strictly negative

interest rates would be a fluke and would not be of interest. Therefore, in the following

argument we will legitimately focus on a specific case of SE in which equilibrium interest

rates are non-negative.9 Such a refined SE is defined as follows.

Definition 2: A steady-state equilibrium ((p, w, r) , y) for the economyE = h(A,B,L) ;ωl; zi
is called Walras-von Neumann (in short,W-N SE) if and only if (p,w, 1 + r) > 0 with
r = 0 and condition (c) in Definition 1 holds as an equality.

Note that in Definition 2, y ≥ 0 is implied by Ly = ωl. Thus, aW-N SE satisfies the

nonzero condition of equilibrium production activities, which is a necessary condition for

the von Neumann equilibrium in the standard literature such as Morishima (1960).

9In fact, as argued in Yoshihara and Kwak (2024, p. 384), there is a reasonable microeconomic model

of an individual optimization program to rationalize the aggregate demand function z of an economy E,
which makes SE with strictly negative interest rates impossible whenever the production activity vector

is required to be nonzero, y ≥ 0, in equilibrium. See also Addendum B of this paper for details.
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In any economy E = h(A,B,L) ;ωl; zi, Walras’ law at any stationary price vector

(p0, w0, r0) is given by:
p0 [zb + za]− r0W − w0ωl = 0 (∗),

where W ≡ w0ωl − p0zb. Note that (∗) is simply the aggregate of the young genera-
tion’s budget equation, p0zb +W − w0ωl = 0, and the old generation’s budget equation,
p0za − (1 + r0)W = 0. Since W is used to finance productive investment, there exists a

productive activity vector y0 ∈ Rm+ that satisfies p0Ay0 = W . Therefore, (∗) is replaced
by:10

p0 [zb + za]− r0p0Ay0 − w0ωl = 0 (∗)0.
Furthermore, if the price vector (p0, w0, r0) satisfies condition (a) of Definition 1 and the
vector y0 is a profit-maximizing activity at those prices, then (∗)0 can be reduced to:

w0 [Ly0 − ωl] + p
0 [zb + za +Ay0 −By0] = 0 (∗)00.

Here, ((p0, w0, r0) , y0) is not necessarily an equilibrium in (∗)00 since it does not necessarily
satisfy condition (b) of Definition 1.

3 Existence

In this section, we will study the existence ofW-N SE. As a preliminary step, let ei ∈ Rn+
be a unit row vector such that its i-th component is unity and its any other components

are zero, where i = 1, . . . , n. Likewise, let ej ∈ Rm+ be a unit column vector such that
its j-th component is unity and its any other components are zero, where j = 1, . . . ,m.
Then, we introduce the following assumptions.

Assumption 1 (A1): For any non-negative vector d ∈ Rn+, there exists x ∈ Rm+ such
that [B −A]x = d.

Assumption 2 (A2): Every commodity needs to be produced in some production

process: eiB ≥ 0 for every commodity i ∈ {1, 2, . . . , n}. Every process needs to use
some commodity inputs: Aej ≥ 0 for every process j ∈ {1, 2, . . . ,m}.

Assumption 3 (A3): For every process that produces commodity i ∈ {1, 2, . . . , n}
jointly with commodity i∗ ∈ {1, 2, . . . , n} (i∗ 6= i), there is another process with the same
outputs and the same inputs and labor, except that commodity i is not produced.

Assumption 4 (A4): If a sequence of prices {(pq, wq, rq)} ⊆ Rn++×R++×R+ converges
to (p,w, r) ∈ Rn+ × R++ × R+ with p ∈ Rn+\

¡
Rn++ ∪ {0}

¢
, then kz (pq, wq, rq)k converges

to infinity.

These four assumptions are standard. A4 is imposed in the literature on regular

economies, and it is a natural requirement for economies with strictly monotonic pref-

erences over consumption. From A4, if a W-N SE exists, then its corresponding equi-

librium commodity price vector should be positive. A2 is a natural requirement in the

10Even if a part ofW can be used to finance some non-productive investment, as specified in Addendum

B, we can verify that Walras’ law for any given stationary price vector is still given by (∗)0, as shown in
Yoshihara and Kwak (2024; Proof of Theorem 1) and in Addendum B of this paper.
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literature on von Neumann production models. A1 is a natural condition ensuring pro-

ductiveness. Finally, A3 is a condition of free disposal.

By A2 it follows from the generalized Perron-Frobenius Theorem (Mangasarian, 1971,

Theorem 4.1, p. 91) that there exists a semi-positive vector pR ∈ Rn+\ {0} with a positive
(1 +R) > 0 such that pRB = (1 +R) pRA holds. This positive eigenvalue 1

1+R
is maximal,

in the sense that there is no λ > 1
1+R

such that λpB = pA for some p ∈ Rn\ {0}, according
to Mangasarian (1971, Theorem 4.1-(i), p. 91). In addition, by A1, R > 0 holds from
Fujimoto and Krause (1988, Theorem 2, p. 192).

The existence of R > 0 in our model ensures the existence of the maximum interest

rate associated with the zero wage rate. Then, for any r ∈ [0, R), while there is no
pr ∈ Rn\ {0} such that pr [B − (1 + r)A] = 0, as argued above, it also follows from
L > 0 that there exists pr ∈ Rn+\ {0} such that pr [B − (1 + r)A] 5 L. Therefore, [0, R)
should serve as the domain of interest rates over which the existence of the associated

W-N SE can be examined. Indeed, by setting w = 1 (using labor as the numeraire), the
existence of aW-N SE is established for each and every interest rate in [0, R), as shown
in the following theorem:

Theorem 1: For any E = h(A,B,L) ;ωl; zi and each interest rate r ∈ [0, R), there exists
a Walras-von Neumann steady state equilibrium ((p∗, 1, r) , y∗).

The proof of Theorem 1 is relegated to Appendix. Here, we discuss the basic scenario

of the proof. Let ((p∗, 1, r) , y∗) be aW-N SE forE = h(A,B,L) ;ωl; zi. Then, conditions
(a) and (b) of Definition 1 are satisfied by ((p∗, 1, r) , y∗).
First, post-multiplying condition (a) of Definition 1 by y∗, we obtain:

p∗By∗ = (1 + r) p∗Ay∗ + Ly∗.

Pre-multiplying condition (b) of Definition 1 by p∗, we obtain:

p∗By∗ = p∗z (p∗, 1, r) + p∗Ay∗.

Therefore, in equilibrium, we have:

p∗z (p∗, 1, r) = p∗ (B −A) y∗ = (rp∗A+ L) y∗. (d)

Second, consider the following linear programming problems: given r and p∗ of the
equilibrium ((p∗, 1, r) , y∗),

(MP ∗1 ) max
p0∈Rn+

p0 · z (p∗, 1, r) subject to p0 [B −A] 5 rp∗A+ L.

and

(MP ∗2 ) min
y∈Rm+

(rp∗A+ L) y subject to [B −A] y = z (p∗, 1, r) .

Then, since p∗ ∈ Rn+ is feasible in (MP ∗1 ) while y∗ ∈ Rm+\ {0} is feasible in (MP ∗2 ), it
follows from condition (d) and the duality theorem that p∗ is an optimal solution for
(MP ∗1 ) while y

∗ is an optimal solution for (MP ∗2 ).
In other words, a crucial step in proving the existence of a W-N SE is to find an

appropriate price vector p∗ that is an optimal solution to a linear programming maxi-
mization problem, such as (MP ∗1 ), defined by that price vector itself. Denote the set of

9



solutions to a linear programming maximization problem defined by means of each price

vector p ∈ Rn+ by ψr (p). Then, p ∈ ψr (p) holds if and only if this p is an optimal solution
to the problem. Thus, the crucial step is to formulate a fixed point problem of such a

mapping ψr.

One difficulty is that the linear programming maximization problem, like (MP ∗1 ), is
defined over the universal domain Rn+, whereas the fixed point problem requires that the
domain and the range of ψr be identical and a proper subset of Rn+. In the proof of
Theorem 1 developed in Appendix, we solve this problem by appropriately defining the

domain and the range of ψr in such a way that the fixed point of such a mapping is indeed

optimal over the universal domain Rn+.
Unlike the existence theorems in the main literature on von Neumann equilibrium,

Theorem 1 explicitly highlights the parametric nature of interest rates in the determina-

tion of W-N SEs: it shows the existence of equilibria corresponding to each and every
interest rate, and there is no condition for determining an equilibrium interest rate, even

though it is a variable that determines the aggregate demand of all goods and the optimal

production plans.

Recall that in the Sraffian literature, degree one freedom is often emphasized in the

determination of a steady state equilibrium, in the sense that a steady state equilibrium

can be determined only after either an interest rate or a wage rate has been fixed outside

of market competition.11 In such arguments, however, neither the Marshallian demand

function nor the labor market equilibrium condition is seriously discussed in the deter-

mination of equilibria.12 Therefore, it is not obvious whether the Sraffian view of degree

one freedom can be robust if these factors are introduced into the model and the ex-

cess demand conditions for all markets are explicitly examined. Theorem 1 shows that

the answer to this question is yes in von Neumann production economies with the OLG

structure. Indeed, as discussed below, Theorem 1 implies the existence of a closed graph

relationship betweenW-N SEs and interest rates in any economy.13

Let 4 ≡ ©(p,w) ∈ Rn+1+ |Pn

i=1 pi + w = 1
ª
be the set of vectors of commodity prices

and wage rates. For the sake of analytical tractability, let us change the normalization

rule to represent equilibrium price vectors. For the equilibrium ((p∗, 1, r) , y∗), consider
normalization of (p∗, 1) asÃ

p∗1
1 +

Pn

j=1 p
∗
j

, . . . ,
p∗n

1 +
Pn

j=1 p
∗
j

,
1

1 +
Pn

j=1 p
∗
j

!
.

Then, this normalized price vector belongs to 4. Thus, each equilibrium price vector is

also represented within 4× [0, R).
Note that, based on Therorem 1, for each economy E = h(A,B,L) ;ωl; zi, we can

construct a mapping ΨE : [0, R)³ 4× [0, R)×Rm+ as follows: for any r ∈ [0, R), ΨE (r)
is the set ofW-N SEs associated with r in the economy E. That is, for every r ∈ [0, R),
11For instance, see Kurz and Salvadori (1995, Chapter 8) and Bidard (2004, Chapter 11).
12An exception may be found in Bidard (2004, Chapter 22, Theorem 1, p. 256), which introduces a

Marshallian aggregate demand function and then shows the existence of a balanced growth equilibrium

for any given profit rate. However, the latter result is based on an inappropriate formulation of Walras’

law: the form of Walras’ law (A2) in Bidard (2004, p. 256) represents an equilibrium condition rather

than the Walras identity.
13This property cannot be highlighted by the existence theorems of contributions such as Morishima

(1960) and Bidard and Hosoda (1987). For a detailed discussion, see Addendum A.
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every (p (r) , w (r) , r; y (r)) ∈ ΨE (r) is aW-N SE in the economy E. Let this mapping

ΨE be called the equilibrium correspondence of the economy E. This mapping ΨE is

non-empty, according to Theorem 1. Furthermore, it can be shown that ΨE is upper
hemi-continuous at every r ∈ [0, R).
Proposition 1: For any economy E = h(A,B,L) ;ωl; zi, the equilibrium correspondence
ΨE of that economy is upper hemi-continuous.

The proof of Proposition 1 is relegated to Appendix.

Thus, according to Proposition 1, the set ofW-N SEs for the economy E is described
as a closed graph in [0, R)× ¡4× [0, R)×Rm+¢ of ΨE.

However, this result per se does not warrant the indeterminacy of the equilibria,

because the lower hemi-continuity of ΨE is not yet warranted. Indeed, if ΨE were not to

be lower hemi-continuous, there could be a W-N SE (p (r0) , w (r0) , r0; y (r0)) ∈ ΨE (r0)
which is locally unique in the sense that for a sufficiently small open neighborhoodO (r0) ⊆
(0, R)×ΨE ([0, R)) of (p (r

0) , w (r0) , r0; y (r0)),

O (r0) \ {(p (r0) , w (r0) , r0; y (r0))} = ∅
holds. In other words, the upper hemi-continuity alone does not generally exclude the

possibility of the existence of a locally isolated equilibrium within ΨE ([0, R)). Therefore,
Proposition 1 per se cannot exclude the possibility of determinate equilibria.14

4 Generic Indeterminacy

In this section, we will show that eachW-N SE is indeterminate whenever it is regular,

where the concept of regular equilibrium is defined in Definition 4 below. Moreover, we will

also show that for every economy and for almost all positive interest rates, the associated

W-N SEs are regular : for every economy, any non-regular equilibrium is non-generic.

Let us first introduce the definition of indeterminacy, which we owe toMandler (1999a).

Definition 3: For an economy E = h(A,B,L) ;ωl; zi, a Walras-von Neumann steady
state equilibrium ((p, w, r) ; y) is indeterminate if for any ε > 0, there exists another
Walras-von Neumann steady state equilibrium ((p0, w0, r0) ; y0) in this economy such that
(p0, w0, r0) 6= (p,w, r) and k(p0, w0, r0)− (p,w, r)k < ε.

For anyW-N SE ((p, w, r) ; y), we should have By > 0, since z (p,w, r) > 0 holds by
A4. In this case, the corresponding system of equilibrium inequalities is given by:

z (p,w, r)− [B −A] y = 0; (1)

p [B − (1 + r)A]− wL 5 0, (2)

where there are n+m inequalities while there are n+1+m unknown variables, assuming

that one commodity is used as the numeraire.15

14In this paper, the determinacy of equilibria is defined as the complement of the cases of indetermiancy

given in Definition 3 below.
15There is no equation here that satisfies condition (c) of Definition 1. This is because if there is a

solution to the system of inequalities (1) and (2), then it also satisfies condition (c), given that Walras’
law (∗) holds.
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To analyze generic indeterminacy, we may need to reduce the inequalities (2) to a

system of equations. Let B (p,w, r) and A (p,w, r) be n× k matrices, and L (p, w, r) be a
1× k row vector, where k (5 m) is the number of processes actually operated at prices
(p,w, r). Each of the processes actually operated at (p, w, r) achieves profit maximization
at the prices. Then, by definition, (2) can be reduced to:

p [B (p, w, r)− (1 + r)A (p, w, r)]− wL (p, w, r) = 0. (2)*
Now, we can get a mapping F as follows:

F (p,w, r, y) ≡
½

z (p,w, r)− [B −A] y
(pB (p,w, r)− (1 + r) pA (p, w, r)− wL (p, w, r))T ,

where the superscript T stands for transpose. The map F has a regular value if F (p, w, r, y) =
0 for some (p,w, r; y) ∈ Rn++ ×R++ × (0, R)× Rm+ .
Without loss of generality, we assume in the following that whenever F (p,w, r, y) = 0

holds and k is the number of actually operated processes in y ≥ 0 at prices (p, w, r), then
for each process j = 1, . . . ,m, yj = 0 if and only if [p (B − (1 + r)A)− wL]ej < 0, and
the number k is minimal, in the sense that no other vector y0 ≥ 0 with less than k positive
components can be an equilibrium activity vector at prices (p,w, r).
The system of equations F (p,w, r, y) = 0 reduces to F (p̄, w, r, y) = 0, where p̄ ≡

( p1
pn
, ...,

pn−1
pn
, 1) and y ∈ Rk++ is obtained by removing the m − k zero components of the

vector y ∈ Rm+ . In this reduced system there are n+k equations, while there are n+1+k
unknowns.

Formally:

F (p̄, w, r, y) ≡
∙

z(p̄, w, r)− [B (p̄, w, r)−A (p̄, w, r)] y
(p̄B (p̄, w, r)− (1 + r)p̄A (p̄, w, r)− wL (p̄, w, r))T

¸
,

which is continuously differentiable at least in a small neighborhood of each equilibrium

(p,w, r, y). Here, the continuous differentiability of the excess demand functions

z (p, w, r)− [B (p, w, r)−A (p,w, r)] y
is guaranteed at least in a small neighborhood of each equilibrium (p, w, r, y), as argued in
Kehoe (1980, 1982). Indeed, the matrix [B (p,w, r)−A (p, w, r)] is invariant with respect
to a small change of (p,w, r) at each equilibrium, since a sufficiently small change of each
of p,w, r induces a sufficiently small change of y such that all of the k positive components

in y are still positive, while the remaining m − k processes are still inactive, since any
process that has not reached the zero-profit condition will not do so after such a small

change in prices. Therefore, for such a small change in prices, the k processes actually

operating remain constant, which implies that [B (p, w, r)−A (p, w, r)] is invariant with
respect to a small change in prices. Then, the derivatives of the functions z (p,w, r) −
[B (p, w, r)−A (p,w, r)] y with respect to prices are identical to those of the demand
functions z (p, w, r) with respect to each of p, w, r.
By the definition ofW-N SE, F (p̄, w, r, y) = 0 holds if and only if ((p,w, r) ; y) is a

W-N SE. We then introduce the notion of regular equilibria.

Definition 4: A Walras-von Neumann steady state equilibrium ((p,w, r) , y) for an econ-
omy E = h(A,B,L) ;ωl; zi is regular if the Jacobian of F (p̄, w, r, y) = 0 has full row
rank.

12



Now, we are ready to argue the indeterminacy ofW-N SEs:

Theorem 2: For any economy E = h(A,B,L) ;ωl; zi, and for almost all r ∈ (0, R),
the associated Walras-von Neumann steady state equilibrium ((p,w, r) , y) is regular and
indeterminate.

The proof of Theorem 2 is relegated to Appendix.

The next numerical example illustrates the indeterminacy of W-N SEs proved by
Theorem 2.

Example 1 Assume that n = 2, m = 3, ωl = 1, and the aggregate Marshallian demand
function is derived from the following form of the utility function: for any (zb, za) ∈
R2+ × R2+,

u (zb, za) ≡
£
(zb1)

α · (zb2)1−α
¤ · £(za1)α · (za2)1−α¤

where α ∈ (0, 1). Let a von Neumann production technology be given by:

A =

∙
1 1 1
1 1 1

¸
, B =

∙
3 5 0
3 0 5

¸
, and L = (1, 1, 1) .

Thus, an economy is specified by E = h(A,B,L) ; 1;αi, where α represents the aggre-

gate Marshallian demand function derived from the utility function associated with this

parameter value.

In this economy, the von Neumann production technology (A,B,L) has the maxi-
mum eigenvalue 1

1+R
= 1

3
, and thus R = 2 is the maximum interest rate. The aggregate

Marshallian demand function is given by:

z (p,w, r) =

Ã
α
w+r(p1+p2)(y1+y2+y3)

p1

(1− α) w+r(p1+p2)(y1+y2+y3)
p2

!
.

Then, fixing w = 1, the equilibrium system of inequalities (1) and (2) in this economy is

specified as follows: for each r < R = 2,∙
2 4 −1
2 −1 4

¸⎛⎝ y1
y2
y3

⎞⎠ =

Ã
α
1+r(p1+p2)(y1+y2+y3)

p1

(1− α) 1+r(p1+p2)(y1+y2+y3)
p2

!
; (1)

(p1, p2)

∙
2− r 4− r − (1 + r)
2− r − (1 + r) 4− r

¸
5 (1, 1, 1) . (2)

By computing the solutions to this system, the set ofW-N SEs is specified as follows:

(I) for any economy E with α ∈ ¡0, 2
5

¢
,(

((p, w, r) , y) ∈ 4× [0, 2)×R3+ | (p,w) =
µµ

0.4

3− r ,
0.6

3− r
¶
,
2− r
3− r

¶
, y =

µ
1 + 5α

3
, 0,
2− 5α
3

¶T)
;

(II) for any economy E with α ∈ £2
5
, 3
5

¤
,½

((p, w, r) , y) ∈ 4× [0, 2)×R3+ | (p,w) =
µµ

α

3− r ,
1− α

3− r
¶
,
2− r
3− r

¶
, y = (1, 0, 0)T

¾
; and
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(III) for any economy E with α ∈ ¡3
5
, 1
¢
,(

((p, w, r) , y) ∈ 4× [0, 2)×R3+ | (p,w) =
µµ

0.6

3− r ,
0.4

3− r
¶
,
2− r
3− r

¶
, y =

µ
6− 5α
3

,
5α− 3
3

, 0

¶T)
.

In this example, each W-N SE is a continuous function of interest rates within [0, 2),
and thus the set ofW-N SEs in each economy constitutes a one-dimensional continuum.
Theorem 2 is quite appealing because it claims that for each and every economy, almost

all W-N SEs are indeterminate and each of them can be represented as the image of

a single-valued continuous mapping of interest rates. This indeterminacy is observed

generically without imposing any stringent assumption on the class of economies.

Together with Proposition 1, Theorem 2 implies that for each economy E, the as-

sociated map ΨE is not only upper hemi-continuous, but also lower hemi-continuous.

More precisely, for almost all r ∈ (0, R), ΨE (r) consists of a finite number of associ-
ated W-N SEs, each of which is locally isolated within ΨE (r). Thus, ΨE essentially
consists of a finite number of distinct single-valued continuous mappings. Moreover,

although the entire set of W-N SEs in each economy E constitutes a closed graph

ΨE ((0, R)) = {(p (r) , w (r) , r, y (r)) ∈ ΨE (r) | r ∈ (0, R)}, according to Proposition 1,
Theorem 2 implies that this closed graph of ΨE consists of a finite number of continuous
curves at almost all r in (0, R).
While the previous paragraph describes the properties of the set of equilibria of a

given economy E, let E denote the set of economies satisfying the assumptions in this
paper. Then, define a correspondence ΨWN : E ³ Rn++ × R++ × R+ × Rm++ such that
for each E ∈ E , ΨWN (E) = ΨE ((0, RE)), where RE comes from the maximum Frobenius
eigenvalue 1

1+RE
associated with E. We call this mapping the Walras-von Neumann

correspondence (W-N correspondence).

With a suitable topology on E , it can be shown that the W-N correspondence is upper
hemi-continuous, as in the case of the Walrasian correspondence in static economies.16

However, it is well known that the image of the Walrasian correspondence in any given

(regular) economy consists of a finite number of distinct and locally unique Walrasian

equilibria. In contrast, the image ΨWN (E) of the W-N correspondence at any given

economy E generically consists of a finite number of distinct curves (one-dimensional

continuums) of the W-N SEs. We say “generically” because there can be at most a
finite number of interest rates such that ΨE (r) contains non-regular W-N SEs.

Insert Figures 1a and 1b aroud here.

As in the standard literature on regular economies, we say that an economy E ∈ E is
regular if and only if its corresponding image ΨWN (E) contains only regularW-N SEs.
Then, as discussed in Section 4.1 below, we can see that the set of regular economies is

of full measure, so almost all economies are regular. Furthermore, Theorem 2 suggests

16The Walrasian correspondence is a mapping that associates with each economy the set of competitive

equilibria.

14



that even within a non-regular economy, the set of non-regular W-N SEs is of Lebesgue
measure zero.17

Finally, a special remark is worth making about the structure of ΨWN in a special case

of economies with no possibility of joint production. An economy E = h(A,B,L) ;ωl; zi
has no joint production if each and every process j = 1, . . . ,m in the associated von

Neumann production technology (A,B,L) can produce only one type of commodity as
gross output: for each production process j = 1, . . . ,m, there exists a commodity i =
1, . . . , n such that Bej = eTi holds. In an economy without joint production, the von
Neumann production technology can be reorganized as a profile of alternative Leontief

production techniques {(Aσ, Iσ, Lσ)}σ=1,...,Υ, where Aσ is an n × n non-negative square
matrix of material input coefficients; Iσ is an n × n identity matrix; and Lσ is a 1 ×
n positive vector of labor input coefficients, and σ is an index number to label each

alternative Leontief production technique. Then, assuming that each Leontief production

technique (Aσ, Iσ, Lσ), σ = 1, . . . ,Υ, is productive and indecomposable, it can be shown
that for any economy E = h(A,B,L) ;ωl; zi with no joint production, each W-N SE
is regular and ΨWN (E) consists solely of a single one-dimensional continuum of all the

W-N SEs. (See Corollary 1 in Appendix for details.) That is, the set of steady-state
equilibrium prices in an economy with no joint production is represented by a single

continuous curve.

4.1 On Genericity of Regular Economies

In this subsection, we define a parameter set of economies, and then define regular

economies within such a parameter set, and then examine the openness and genericity of

such regular economies when the solution concept is ofW-N SE.
Given the demand function of two generations za, zb, and for a vector of perturbations

h = (h1, h2, ..., hn, h
o) ∈ Rn+1, define a perturbed demand function, as in Mandler (1999a),

by

zi(h) ≡ zbi (h) + zai (h)
where

zbi (h) ≡ zbi (p,w, r) +
w

pi
hi, z

a
i (h) ≡ zai (p,w, r) +

w

pi
ho

for each i = 1, 2, ..., n. To preserve Walras’ law and homogeneity, the labor endowment
ω` is also perturbed as follows: ωl(h) ≡ ωl +

Pn

i=1 hi +
nho

1+r
.

Thus, given an economy E = h(A,B,L) ;ωl; zi, a perturbed economy can be defined
by E (h) = h(A,B,L) ;ωl(h); z(h)i for each h ∈ Rn+1. Considering that a von Neumann
17In this context, a brief remark can be made about the problem of the index theorem. Because of

the generic indeterminacy result here, it is meaningless to count the number of allW-N SEs even in a
regular economy. However, it may be relevant to count the finite number of continuous curves of these

equilibria in the regular economy. For this question, given a regular economy E, for each interest rate
r ∈ (0, RE), we may apply an ‘index theorem’ similar to Proposition 6.4.1 in Mas-Colell (1985; p.250) to
ΨE (r) to verify that the number of equilibria within ΨE (r) is odd. This may lead us to conclude that
the number of continuous curves ofW-N SEs in a regular economy is odd.
Perhaps, Bidard and Erreygers (1998) are relevant to this issue: they consider a restricted version

of the von Neumann production model, in that it has a fixed composition of final demand and a fixed

uniform rate of profit. They then show that the total number of equilibrium growth equilibria associated

with the fixed rate of profit is odd. However, since their analysis does not address the effect of consumer

behavior on the determination of market equilibria, we cannot apply the main theorem of Bidard and

Erreygers (1998) to the indexation problem discussed here.
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production technology (A,B,L) can also be perturbed, we denote a (perturbed) economy
by (A,B,L, h) without loss of generality.
Define a functionF on the space of n+1 price variables (p̄, w, r)where p̄ ≡ (p1, ...pn−1, 1),

k quantity variables y ∈ Rk++, and (perturbed) economy (A,B,L, h) into Rn+k, i.e.
F : Rn−1++ × R++ ×R+ ×Rk++ × Rnm+ ×Rnm+ ×Rm++ ×Rn+1 → Rn+k

such that

F(p̄, w, r, y,A,B, L, h) =
∙

z(h)− [B (p,w, r)−A (p, w, r)] y
(p̄B (p,w, r)− (1 + r)p̄A (p, w, r)− wL (p, w, r))T

¸
.

A (perturbed) economy (A,B,L, h) is regular if everyW-N SE ((p,w, r) , y) in that
economy is regular, i.e., the Jacobian DF has full rank at (p̄, w, r, y). Denote the set of
(perturbed) economies as P and the set of regular (perturbed) economies as PR. Then,

through some routine work, the following theorem is obtained.

Theorem 3: PR is open and has full measure in P .

The proof of Theorem 3 can be obtained in a similar way to the proof of Theorem 2 in

Yoshihara and Kwak (2024).

5 Concluding Remarks

In the above sections, we have considered a class of von Neumann production economies

with a simple OLG structure to study Walras-von Neumann steady state equilibria. We

then established the following distinctive features of the set of Walras-von Neumann

steady state equilibria. That is, for every production economy E there exists a non-

empty set of such equilibria which can be described as a closed graph of the equilibrium

correspondence ΨE defined over the admissible domain, [0, RE), of non-negative interest
rates. Moreover, for almost every interest rate in the domain [0, RE), the corresponding
Walras-von Neumann steady state equilibrium is regular and indeterminate. Therefore,

except for a negligible subset of the domain [0, RE), the closed graph of the correspondence
ΨE consists of a finite number of one-dimensional continuous curves of regular Walras-

von Neumann steady state equilibria. This property is observed regardless of whether

the economy E is regular or not, although a full measure of the regularity of economies

is also warranted. As noted in Section 1 and developed in Addendum A of this paper,

these main results hold even if the economy has population growth and/or does not have

an OLG structure.

What lessons can we learn from the generic indeterminacy of Walras-von Neumann

equilibria? Recall that Debreu (1970, 1976) argued that equilibrium indeterminacy is an

undesirable feature to warrant the explanatory power of the theory. However, such an

interpretation may be inappropriate.

Rather, it may indicate that the classical and Marxian views that the functional dis-

tribution of income is determined, at least in part, by some historical, institutional, and

socio-political schemes are indeed compatible with standard general equilibrium reason-

ing. In other words, in determining the long-period equilibrium position, it may suggest
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the need for an equilibrium selection mechanism that is non-market competitive in nature

and is applied prior to the implementation of the competitive market mechanism. That is,

a two-stage comprehensive resource allocation mechanism should be established, in which

the first stage consists of a non-market scheme to determine a functional income distri-

bution, that is, to select either an interest rate or a wage rate. Then, the second stage

is the competitive market mechanism, which determines aW-N SE associated with the

selected interest rate (or wage rate).

Although the question of what kind of non-market scheme would be relevant is beyond

the scope of this paper, it may even involve a democratic decision on an appropriate

social welfare function that can specify an optimal equilibrium selection among infinitely

manyW-N SEs. Such an equilibrium selection might be relevant to the central bank’s

choice of monetary policy to influence the long-term interest rate. Or, given that we can

choose wage rates rather than interest rates as the parameter of market competition in

Theorems 1 and 2, the centralized collective bargaining system, as in the Nordic countries,

may be considered as such an equilibrium selection mechanism. Recently, Oxfam (2024)

proposes, as prescriptions for fighting inequality, to “ensure no share dividend payments

before living wages” as well as to “limit top pay to no more than 20 times that of the

average (median) worker”, which could also serve as examples of the first-stage equilibrium

selection mechanism.

Thus, the main results of this paper would open new windows for some new research

agendas. For example, the design problem of an optimal income (re)distribution policy can

be formulated as that of the first-stage scheme within an appropriate comprehensive two-

stage resource allocation mechanism. Perhaps, the design problem of such a non-market

scheme would require an appropriate view of which of infinitely many steady-state equi-

libria the intertemporal equilibrium paths from the first-stage selection would approach.

Thus, it would be interesting to examine how the so-called turnpike theorem might be

robust or require revision given the existence of a finite number of one-dimensional contin-

uums of Walras-von Neumann steady-state equilibria. We leave this for future research.
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7 Appendix: Proofs of Main Theorems

7.1 Proof of Theorem 1

Let us fix the wage rate to unity: w = 1. Then, by condition (a) of Definition 1, any
equilibrium commodity price vector associated with an interest rate r ∈ [0, R)must belong
to the following set:

4r ≡ ©p ∈ Rn+ | p [B − (1 + r)A] 5 Lª .
Since eiB ≥ 0 (∀i) by A2 and L > 0, 4r is non-empty, compact, and convex. Then, for

each p ∈ 4r, write

4(p,r) ≡ ©p0 ∈ Rn+ | p0 [B −A] 5 rpA+ Lª .
Since p ∈ 4(p,r) follows from p ∈ 4r, 4(p,r) is not empty. It is also compact and convex.

Define 4(4r,r) ≡ ∪p∈4r4(p,r).

Define the domain of commodity price vectors by the following set:

4K ≡
(
p ∈ Rn+ |

nX
i=1

pi 5 K
)
,
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where K > 0 is sufficiently large. Let ∂4K ≡ ©
p ∈ Rn+ |

Pn

i=1 pi = K
ª
, which is the

upper boundary of 4K . Then, since K is sufficiently large, for each p ∈ 4(4r ,r) there

exists t = 1 such that tp ∈ ∂4K . This implies that 4K ⊃ 4(4r,r). It also follows that for

any p ∈ ∂4K , there exists λ ∈ (0, 1) such that λp ∈ 4(4r,r).

Given r ∈ [0, R) and for each p ∈ 4K , the Marshallian demand vectors zb (p, 1, r) and
za (p, 1, r) are uniquely identified at prices (p, 1, r). Then, given such fixed zb (p, 1, r) and
za (p, 1, r), define the following problem:

(MP1 (p)) max
p0∈4K

p0 · [zb (p, 1, r) + za (p, 1, r)] subject to p0 [B −A] 5 rpA+ L.

Let us denote the set of optimal solutions to (MP1 (p)) by ψr (p). Then:

Lemma 1: The correspondence ψr : 4K ³ 4K has a fixed point.

Proof. It is easy to see that ψr (p) is non-empty, compact, and convex for any p ∈ 4K .

Moreover, by Berge’s maximum theorem, ψr is upper hemi-continuous. Therefore, by the

Kakutani fixed point theorem, there exists p∗ ∈ 4K such that p∗ ∈ ψr (p∗).

Lemma 1 implies that there exists p∗ ∈ 4K such that

p∗ ∈ arg max
p0∈4K ; p0[B−A]5rp∗A+L

p0 · z (p∗, 1, r) .

Note that zb (p
∗, 1, r)+ za (p∗, 1, r) ≥ 0 follows from w = 1. Moreover, p∗ > 0 holds, since

if p∗ ≥ 0 and p∗ ≯ 0, then it cannot be a solution of (MP1 (p∗)) by A4.
Given this p∗ ∈ 4K , we define the following linear programming problems:

(MP ∗1 ) max
p0∈Rn+

p0 · z (p∗, 1, r) subject to p0 [B −A] 5 rp∗A+ L.

and

(MP ∗2 ) min
y∈Rm+ \{0}

(rp∗A+ L) y subject to [B −A] y = z (p∗, 1, r) .

Then:

Lemma 2: p∗ ∈ 4K is an optimal solution to (MP ∗1 ).

Proof. To show the claim, it suffices to verify that for any p0 ∈ Rn+, if p0 [B −A] 5
rp∗A+ L, then p0 ∈ 4K . Let

4(p∗,r) ≡ ©p ∈ Rn+ | p [B −A] 5 rp∗A+ Lª .
Then, by definition, 4(p∗,r) ⊆ 4(4r,r) ⊂ 4K . Therefore, for any p ∈ Rn+\4K , p /∈ 4(p∗,r)

holds, so p [B −A] ∙ rp∗A+L. Thus, for p ∈ Rn+\4K , p cannot be a solution of (MP ∗1 ).
Since p∗ ∈ 4K is a solution to (MP1 (p

∗)) by Lemma 1, it is also a solution to (MP ∗1 ).

Next, consider (MP ∗2 ). By A1, there exists a feasible solution y ∈ Rm+\ {0} such that
[B −A] y = z (p∗, 1, r) ≥ 0. Therefore there exists a solution y∗ ∈ Rm+\ {0} to (MP ∗2 ).
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So we have

p∗ · z (p∗, 1, r) 5 p∗ [B −A] y∗ 5 (rp∗A+ L) y∗.
Then:

Lemma 3: p∗ · z (p∗, 1, r) = p∗ [B −A] y∗ = (rp∗A+ L) y∗.

Proof. This follows from the duality theorem and Lemma 2.

Proof of Theorem 1: We can see that ((p∗, 1, r) ; y∗) satisfies conditions (a) and (b)
of Definition 1. Note that, as argued in Section 2, Walras’ law (∗) reduces to (∗)00 in
((p∗, 1, r) , y∗). Then it can be shown by means of Walras’ law (∗)00 and Lemma 3 that
((p∗, 1, r) ; y∗) also satisfies condition (c) of Definition 1 with equality. Thus, ((p∗, 1, r) ; y∗)
is a W-N SE associated with the non-negative interest rate r = 0 in the economy
E = h(A,B,L) ;ωl;ui.

7.2 Proof of Proposition 1

Proof of Proposition 1: For each economy E = h(A,B,L) ;ωl; zi, define a correspon-
dence γ : [0, R) × 4K ³ 4K such that for each (r, p) ∈ [0, R) ×4K , γ (r, p) = ψr (p),
where ψr is defined in the proof of Theorem 1 and it is non-empty, compact-valued,

and upper hemi-continuous. Therefore, γ is closed. Next, define Γ : [0, R) ³ 4K by

Γ (r) ≡ ©p∗ ∈ 4K | p∗ ∈ γ (r, p∗)
ª
for each r ∈ [0, R). Then, by Proposition 12.9 of Bor-

der (1985, p.65), Γ is upper hemi-continuous. Define η : [0, R) × Γ ([0, R)) ³ Rm+ as:

y∗ ∈ η (r, p∗) if and only if y∗ is a solution of (MP ∗2 ) at (r, p
∗) with p∗ ∈ Γ (r). Then,

by Proposition 11.23 of Border (1985, p.60), η is upper hemi-continuous. Now, define

ϕE : [0, R)³ Rm+ × Γ ([0, R)) such that for any r ∈ [0, R), (y∗, p∗) ∈ ϕE (r) if and only if
p∗ ∈ Γ (r) and y∗ ∈ η (r, p∗) hold. By the proof of Theorem 1, this (y∗, p∗) constitutes a
W-N SE associated with r. Since η is upper hemi-continuous, ϕE is also upper hemi-

continuous by definition. Finally, define ΨE : [0, R)³ 4× [0, R)×Rm+ such that for each
r ∈ [0, R), ÃÃ

p∗1
1 +

Pn

j=1 p
∗
j

, . . . ,
p∗n

1 +
Pn

j=1 p
∗
j

,
1

1 +
Pn

j=1 p
∗
j

!
, r, y∗

!
∈ ΨE (r)

if and only if (y∗, p∗) ∈ ϕE (r) holds. Since ϕE is upper hemi-continuous, ΨE is also upper

hemi-continuous by definition.

7.3 Proof of Theorem 2

Given an economy E, for each r ∈ (0, R), let ((p, w, r) , y) ∈ Rn++×R++× (0, R)×Rm+ be
an associatedW-N SE, whose existence is ensured by Theorem 1. Then F (p̄, w, r, y) = 0
holds, where p̄ ≡ ( p1

pn
, ...,

pn−1
pn
, 1) and y ∈ Rk++ is obtained by removing the m − k zero

components of the m× 1 column vector y ∈ Rm+ . In the following argument, we will show
that for any given economy E and for almost all r ∈ (0, R), the Jacobian of F at the

equilibrium associated with this r has full row rank.
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The Jacobian of F at the equilibrium ((p, w, r) , y) is given by

D(y,p,w,r)(F (p̄, w, r, y))

=

∙
[A−B] (p, w, r) Dpz (p,w, r) Dwz (p, w, r) Drz (p,w, r)

0 [b−n − (1 + r)a−n]T (p,w, r) −L (p, w, r)T − (pA (p,w, r))T
¸
,

where

[A−B] (p,w, r) ≡ [A (p, w, r)−B (p,w, r)],
[b−n − (1 + r)a−n]T (p,w, r) ≡ [b−n (p,w, r)− (1 + r)a−n (p,w, r)]T ,

and [b−n (p,w, r)− (1 + r)a−n (p, w, r)]T is the k × (n− 1) matrix obtained by delet-
ing the n-th column of the matrix [B (p,w, r)− (1 + r)A (p,w, r)]T . We will verify that
rank

£
D(y,p,w,r)(F (p̄, w, r, y))

¤
= n+ k holds for almost all r within (0, R).

First, we will verify the following claim:

Lemma 4: rank
£
[A−B] (p, w, r) Dpz (p, w, r) Dwz (p,w, r) Drz (p,w, r)

¤
= n.

Proof. The claim follows from

rank
£
Dpz (p, w, r) Dwz (p, w, r)

¤
= n,

since the n×n matrix £ Dpz (p, w, r) Dwz (p, w, r)
¤
is invertible (see 1.11 on page 6 in

Balasko (2009)).

Second, we need to check that

rank
£
0 [b−n − (1 + r)a−n]T (p,w, r) −L (p, w, r)T − (pA (p,w, r))T

¤
= k.

This statement holds whenever the row vectors in [B − (1 + r)A]T (p, w, r) are linearly
independent. To verify it, we need to do some preliminary analysis:

Lemma 5: The columns of [B (p, w, r)−A (p,w, r)] are linearly independent and k 5 n.

Proof. Suppose not. Then, there exists x ∈ Rk\ {0} such that [B (p,w, r)−A (p,w, r)]x =
0. Therefore, there exists another equilibrium activity vector y+λx ∈ Rk+ for some λ ∈ R
such that [B (p,w, r) − A (p,w, r)] (y + λx) = z(p̄, w, r) holds. Then, by a proper choice
of λ, the number of positive components of (y + λx) can be less than k. However, this
contradicts that k is the minimum number of actually operated processes at (p,w, r).
Therefore, the columns of [B (p,w, r) − A (p, w, r)] are linearly independent and k 5 n

must hold.

By Lemma 5 there exists a k × k submatrix of [B (p,w, r) − A (p,w, r)] which is
invertible. Denote this submatrix by

(B (p,w, r)−A (p, w, r))(k)
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and its determinant by

det (B (p, w, r)−A (p,w, r))(k) .
Similarly, define a k × k submatrix of [B (p,w, r)− (1 + r)A (p,w, r)] by

(B (p,w, r)− (1 + r)A (p,w, r))(k) ≡ (B (p, w, r)−A (p,w, r))(k) − rA (p,w, r)(k) ,

whereA (p,w, r)(k) is the k×k submatrix ofA (p, w, r) that appears in (B (p,w, r)−A (p, w, r))(k).
Then:

Lemma 6: det (B (p, w, r)− (1 + r)A (p, w, r))(k) 6= 0 if and only if

rank
£
0 [b−n − (1 + r)a−n]T (p,w, r) −L (p, w, r)T − (pA (p,w, r))T

¤
= k.

Proof. There are two possibilities: (i) k < n; and (ii) k = n.

Consider case (i): k < n. Then,
³
[B (p,w, r)− (1 + r)A (p,w, r)]T

´(k)
is a submatrix

of [b−n − (1 + r)a−n]T (p, w, r), so the claimed equivalence relation holds.
Consider case (ii): k = n. First, the equilibrium condition (2)* in Section 4 can be

rewritten as:

n−1X
i=1

pi
w
(bi (p, w, r)− (1 + r)ai (p, w, r))T+ 1

w
(bn (p, w, r)− (1 + r)an (p, w, r))T = L (p, w, r)T ,

where (bi (p,w, r)− (1 + r)ai (p,w, r))T (resp. (bn (p,w, r)− (1 + r)an (p, w, r))T ) is the
i-th column vector (resp. the n-th column vector) of

³
[B (p,w, r)− (1 + r)A (p, w, r)]T

´(k)
.

Therefore, we have the following property:

det

∙ ³
[b−n (p,w, r)− (1 + r)a−n (p, w, r)]T

´(k)
, −L (p,w, r)T

¸
= − 1

w
det

³
[B (p, w, r)− (1 + r)A (p, w, r)]T

´(k)
+
n−1X
i=1

det

∙³
[b−n (p,w, r)− (1 + r)a−n (p, w, r)]T

´(k)
,−pi
w
(bi (p, w, r)− (1 + r)ai (p,w, r))T

¸
= − 1

w
det

³
[B (p, w, r)− (1 + r)A (p, w, r)]T

´(k)
.

So we have:

det

∙ ³
[b−n (p,w, r)− (1 + r)a−n (p, w, r)]T

´(k)
−L (p, w, r)T

¸
6= 0

if and only if

det (B (p,w, r)− (1 + r)A (p,w, r))(k) 6= 0.
So the claimed equivalence relation holds.
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By Lemma 6, it suffices to show that det (B (p,w, r)− (1 + r)A (p,w, r))(k) 6= 0 for
almost all r in (0, R). To show this, we define

R ≡ ©r ∈ [0, R) | [B (p, w, r)− (1 + r)A (p,w, r)]T is not a full row rankª .
We will verify that the set R is of Lebesgue measure zero in [0, R). To show this, we
assume r ∈ R and then show that for a small open neighborhood N (r) ⊂ [0, R) of r,
N (r) ∩R = {r}.
As a preliminary step, let N (p,w,r,y) ⊂ Rn++×R++×(0, R)×Rk++ be a sufficiently small

open neighborhood of (p̄, w, r, y) such that for any (p̄0, w0, r0, y0) ∈ N (p,w,r,y), B (p0, w0, r0) =
B (p, w, r), A (p0, w0, r0) = A (p,w, r), and L (p0, w0, r0) = L (p, w, r). The existence of
such a small neighborhood is guaranteed since [B (p,w, r) − (1 + r)A (p,w, r)] is invari-
ant with respect to a small change in prices, as argued when discussing the continuous

differentiability of F (p, w, r, y) in Section 4. Furthermore, let N (p,w,r,y) (r) ⊂ (0, R) be
the projection of N (p,w,r,y) onto (0, R). Then, for any r0 ∈ N (p,w,r,y) (r) and any W-N
SE (p (r0) , w (r0) , r0, y (r0)) ∈ N (p,w,r,y), it follows that B (p (r0) , w (r0) , r0) = B (p,w, r),
A (p (r0) , w (r0) , r0) = A (p,w, r), and L (p (r0) , w (r0) , r0) = L (p, w, r).
Define a real-valued function Ξ(p,w,r) : N (p,w,r,y) (r)→ R by: for each r0 ∈ N (p,w,r,y) (r),

Ξ(p,w,r) (r0) ≡ det (B (p,w, r)− (1 + r0)A (p, w, r))(k) .

Then, we have

Lemma 7: Let r ∈ R, and (p̄, w, r, y) be aW-N SE associated with this r in E. Then,

Ξ(p,w,r) (r) = 0 and there exists a small open neighborhood N (r) ⊆ N (p,w,r,y) (r) of r such
that for any r0 ∈ N (r) \ {r}, Ξ(p,w,r) (r0) 6= 0.

Proof. Since r ∈ R, rank[B (p,w, r) − (1 + r)A (p, w, r)]T < k holds, so there exists a
k × k submatrix (B (p, w, r)− (1 + r)A (p,w, r))(k) of B (p,w, r)− (1 + r)A (p,w, r) such
that Ξ(p,w,r) (r) = det (B (p, w, r)− (1 + r)A (p,w, r))(k) = 0. Let

¡
Ξ(p,w,r)

¢−1
: R ³

N (p,w,r,y) (r) be the inverse mapping of Ξ(p,w,r). Since Ξ(p,w,r) is a polynomial function

defined over N (p,w,r,y) (r) with at most k degree, the set
¡
Ξ(p,w,r)

¢−1
(0) is at most finite.

Therefore, by choosing a sufficiently small open neighborhood N (r) ⊆ N (p,w,r,y) (r) of r,
it follows that for any r0 ∈ N (r) \ {r}, Ξ(p,w,r) (r0) 6= 0.

Then:

Lemma 8: Let r ∈ R, and (p̄, w, r, y) be aW-N SE associated with this r in E. Then,

there exists a small open neighborhood N (r) ⊆ N (p,w,r,y) (r) of r such that for any r0 ∈
N (r) \ {r} and anyW-N SE (p (r0) , w (r0) , r0, y (r0)) ∈ N (p,w,r,y), [B (p (r0) , w (r0) , r0)−
(1 + r0)A (p (r0) , w (r0) , r0)]T has full row rank.

Proof. By Lemma 7, there exists a small open neighborhood N (r) ⊆ N (p,w,r,y) (r) of r
such that, for any r0 ∈ N (r) \ {r}, Ξ(p,w,r) (r0) 6= 0. Then, by construction of N (p,w,r,y),

for any r0 ∈ N (r) \ {r} and anyW-N SE (p (r0) , w (r0) , r0, y (r0)) ∈ N (p,w,r,y),

det (B (p (r0) , w (r0) , r0)− (1 + r0)A (p (r0) , w (r0) , r0))(k) = Ξ(p,w,r) (r0) 6= 0.
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Thus [B (p (r0) , w (r0) , r0)− (1 + r0)A (p (r0) , w (r0) , r0)]T has full row rank.

With these preliminary analyses, we can conclude that:

Lemma 9: R is of Lebesgue measure zero in [0, R).

Proof. By Lemma 8, for any r ∈ R, there exists a sufficiently small open neighborhood
N (r) ⊂ (0, R) of r such that N (r) ∩ R = {r}. So the set R is discrete. Since R is a

subset of a compact set [0, R], it is at most finite. Thus, the set R is of Lebesgue measure
zero within [0, R).

Now, we can complete the proof of Theorem 2.

Proof of Theorem 2: By Lemma 9, rank[B (p,w, r) − (1 + r)A (p, w, r)]T = k holds

for almost all r ∈ [0, R). Thus, for almost all r ∈ (0, R), the corresponding W-N SE
(p̄, w, r, y) in this economy is regular.
Then, by the implicit function theorem, for almost all r ∈ (0, R), there are an open

neighborhood O (r) ⊂ (0, R) of r and also an open neighborhood O (p,w, y) ⊂ Rn++ ×
R++×Rk++ of (p, w, y) ∈ Rn++×R++×Rk++ such that there exists a continuous single-valued
mapping η : O (r) → O (p,w, y) such that, for any r0 ∈ O (r), there exists (p0, w0, y0) =
η (r0) with F (p0, w0, r0, y0) = 0.
By the definition of the mapping F , F (p0, w0, r0, y0) = 0 implies that z (p0, w0, r0) =

[B (p0, w0, r0)−A (p0, w0, r0)] y0 and p0B (p0, w0, r0) = (1 + r0) p0A (p0, w0, r0)+w0L (p0, w0, r0).
Then it follows by Walras’ law that L (p0, w0, r0) y0 = ωl. Thus, (p

0, w0, r0, y0) is a W-N
SE associated with r0 ∈ O (r).

7.4 ΨWN in the Case of No Joint Production

Consider an economy E = h(A,B,L) ;ωl; zi with no joint production. As briefly explained
in Section 4, such an economy can be represented by a profileE =

D
{(Aσ, Iσ, Lσ)}σ=1,...,Υ ;ωl; z

E
,

where {(Aσ, Iσ, Lσ)}σ=1,...,Υ is a profile of alternative Leontief production techniques de-
rived from this von Neumann production technology (A,B,L) in the following way. As
a first step, we introduce n production sectors, where sector i = 1, . . . , n is the collection
of processes that produce commodity i alone. Then each process j can be classified as a

Leontief process of sector i if and only if Bej = e
T
i holds. After such classification, let

us pick up one process from each sector i = 1, . . . , n, then we can constitute a Leontief
production technique (Aσ, Iσ, Lσ), where Aσ is an n × n non-negative square matrix of
material input coefficients, Iσ is an n×n identity matrix, and Lσ is a 1×n positive vector
of labor input coefficients. Denote the number of all such Leontief production techniques

derived from (A,B,L) by Υ.
Assume that each such Leontief production technique (Aσ, Iσ, Lσ), σ = 1, . . . ,Υ, de-

rived from (A,B,L) is productive and indecomposable. Then, each available Leontief
production technique σ ∈ {1, . . . ,Υ} has its associated maximum eigenvalue 1

1+Rσ <

1. Among them, let σ∗ ∈ {1, . . . ,Υ} be the technique whose associated maximum
eigenvalue is minimal. Then let RE ≡ Rσ∗. Obviously, for such an economy E =
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D
{(Aσ, Iσ, Lσ)}σ=1,...,Υ ;ωl; z

E
, Theorems 1 and 2 and Proposition 1 can hold. In addition,

a sharper characterization of the set ofW-N SEs can be observed:

Corollary 1: In any economy with no joint production, E =
D
{(Aσ, Iσ, Lσ)}σ=1,...,Υ ;ωl; z

E
,

ΨE (r) is a singleton for each r ∈ [0, RE).

Proof. It is known that for each r ∈ [0, RE), there exists a unique price vector (p (r) , w (r) , r)
associated with the cost-minimizing Leontief production technique (Ar, Ir, Lr) at that
prices (see Kurz and Salvadori (1995, p. 131, Theorem 5.1)): that is,

(p (r) , w (r) , r)

≡
Ã

Lr [Ir − (1 + r)Ar]−1Pn

i=1 L
r
¡
[Ir − (1 + r)Ar]−1¢

i
+ 1

,
1Pn

i=1 L
r
¡
[Ir − (1 + r)Ar]−1¢

i
+ 1

, r

!
where

¡
[Ir − (1 + r)Ar]−1¢

i
is the i-th column vector of the matrix [Ir − (1 + r)Ar]−1 .

By Theorem 1, there should be aW-N SE associated with this r. In such an equilibrium,
its equilibrium price vector must be the unique price vector (p (r) , w (r) , r) defined above.
Summarizing the above arguments, it follows that ΨE (r) is a singleton for each r ∈

[0, RE).

Thus, by Corollary 1, ΨWN (E) consists solely of a single one-dimensional continuum
of all the W-N SEs. Finally, for each r ∈ [0, RE), (p (r) , w (r) , r, y (r)) ∈ ΨE (r) is
regular, which can be shown as in Yoshihara and Kwak (2024).
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Economic Domains Generic Determinacy Generic Indeterminacy 

Static 
Pure Exchange: Debreu (1970) 

Production with CRS Technologies:  

Mas-Collel (1975), Kehoe (1980,1982). 

regular economies: full measure. 

regular equilibria: finite, locally unique 

Walrasian CEs. 

 

Intertemporal 

a finite number of infinitely lived agents:  

Kehoe and Levine (1985). 

regular economies: full measure. 

regular equilibria: finite, locally unique 

perfectly farsighted equilibria. 

 

OLG Pure Exchange: Kehoe and Levine (1985). regular economies: full measure. 

regular equilibria: finite, locally unique steady 

states. 

Local Indeterminacy:  

the existence of a continuum of nearby 

steady-state equilibrium paths converging 

to the same steady-state. 

OLG two-sector neoclassical production:  

Calvo (1978) 

a finite number of infinitely lived agents with 
market imperfection:  

Nishimura and Venditti (2016), etc. 

finite, locally unique steady states. 

a finite number of finitely lived agents:  

Mandler (1995, 1999). 

 Generic Indeterminacy of Sequential 
Equilibria:  

the second-period continuation equilibria 

are indeterminate for almost every induced 

second-period economy.  

OLG with simple Leontief production: 

Yoshihara and Kwak (2023, 2024). 

 Generic Indeterminacy of non-trivial 
steady state equilibria. 

 
Table 1: Literature on Generic (In)determinacy 



 

 

Figure 1a: the set of the standard Walrasian competitive 
equilibria in a regular economy E 
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Figure 1b: the set of W-N equilibria in a regular economy E 

Ψ𝑊𝑊𝑊𝑊(𝐸𝐸)
= {(𝑝𝑝1(𝑟𝑟′),𝑤𝑤1(𝑟𝑟′), 𝑟𝑟′), (𝑝𝑝2(𝑟𝑟′),𝑤𝑤2(𝑟𝑟′), 𝑟𝑟′), (𝑝𝑝3(𝑟𝑟′),𝑤𝑤3(𝑟𝑟′), 𝑟𝑟′)|𝑟𝑟′ ∈ (0,𝑅𝑅𝐸𝐸)} 

(𝑝𝑝1(∙),𝑤𝑤1(∙),∙) 

0 
・ ・ 

・ 

・ ・ 

・ 

𝑅𝑅𝐸𝐸 ・ 

・ 

・ 

・ 

𝑟𝑟 

𝑟𝑟∗ 

Interest rate 

(𝑝𝑝3(∙),𝑤𝑤3(∙),∙) 

(𝑝𝑝2(∙),𝑤𝑤2(∙),∙) 

(𝑝𝑝1(𝑟𝑟),𝑤𝑤1(𝑟𝑟), 𝑟𝑟) 

(𝑝𝑝2(𝑟𝑟),𝑤𝑤2(𝑟𝑟), 𝑟𝑟) 

(𝑝𝑝3(𝑟𝑟),𝑤𝑤3(𝑟𝑟), 𝑟𝑟) 

(𝑝𝑝3(𝑟𝑟∗),𝑤𝑤3(𝑟𝑟∗), 𝑟𝑟∗) 

(𝑝𝑝2(𝑟𝑟∗),𝑤𝑤2(𝑟𝑟∗), 𝑟𝑟∗) (𝑝𝑝1(𝑟𝑟∗),𝑤𝑤1(𝑟𝑟∗), 𝑟𝑟∗) 

 



Addendum for Generic Indeterminacy of

Steady-State Competitive Equilibria in Walras-von

Neumann Production Economies∗

Naoki Yoshihara†

University of Massachusetts at Amherst

May 1, 2025

Abstract

This is the addendum to the main text of the paper I wrote entitled Generic

Indeterminacy of Steady-State Competitive Equilibria in Walras-von Neumann Pro-

duction Economies. First, Addendum A shows that the main results of the paper

do not depend on the OLG structure of the model. More precisely, Addendum A

analyzes a more general version of the model in which the population grows at a

constant, exogenous rate g = 0, and the economic environment in any given pe-
riod is specified by a list of von Neumann production technologies, the size of the

population, and a Marshallian aggregate demand function. Accordingly, a more

general solution concept is defined as a von Neumann balanced growth equilibrium

associated with g as the warranted rate of capital accumulation. For this solution
concept, it is shown that essentially the same two main results as those developed

in the main text of the paper are obtained. Second, in Addendum B, it is shown

that there exists a reasonable microeconomic model of an individual optimization

program for rationalizing the aggregate demand function z of an economy E defined
in the main text of the paper. It is also shown that in such a microeconomic model,

a steady-state equilibrium with a strictly negative interest rate is impossible to exist

whenever the production activity vector is required to be nonzero in equilibrium.

JEL Classification Code: B51, D33, D50.

Keywords: generic indeterminacy of Walras-von Neumann steady state equi-

libria; von Neumann production economies; a finite number of one-dimensional

continuums of Walras-von Neumann steady state equilibria;

∗I am specially thankful to Roberto Veneziani, Minako Fujio, Kazuhiro Kurose, Junichi Itaya, Soh

Kaneko, Luca Zamparelli, Yoichi Hizen, Koji Kotani, and Se Ho Kwak for their useful feedbacks to an early

version of this paper. I am also grateful to Micheal Mandler, Nobusumi Sagara, Peter Matthew, Kazuya

Kamiya, Mamoru Kaneko, Gil Skillman, and Peter Skott for useful discussions with them regarding

research topics related to this paper. An earlier version of this paper was presented at the annual meeting

for Eastern Economic Association held in February 2024, the Spring meeting for Japanese Economic

Association held in May 2024, the 2024 Asian Meeting of Econometric Society held in August 2024, the

72nd JSPE Annual Conference held in September 2024, and workshops at Kochi University of Technology,

Chou University, and UMass Amherst. I also thank to all the audiences there.
†Corresponding author. Department of Economics, University of Massachusetts Amherst, Crotty

Hall, Amherst, MA, 01002, USA; The Institute of Economic Research, Hitotsubashi University, Naka

2-1, Kunitachi, Tokyo 186-8603, Japan; and School of Management, Kochi University of Technology,

Tosayamada, Kami-city, Kochi 782-8502, Japan, E-mail: nyoshihara@econs.umass.edu.

1



1 Addendum A: An Extension: Generic Indetermi-

nacy of Balanced Growth Equilibria

In this section, we consider a general von Neumann economic model with an exogenous

population growth rate. Because of the growing population, a von Neumann equilibrium

must be defined as a balanced growth equilibrium associated with an equilibrium rate

of capital accumulation being equal to the population growth rate. Here, an economic

environment is specified by a list E = h(A,B,L) ;ωl, g; zi, where g = 0 represents a
population growth rate, ωl the current population size, and z the aggregate Marshal-

lian demand function. Since ωl is the population size of the present period, it becomes

(1 + g)ωl in the next period of production.
Unlike the model in Section 2 of the main text of the paper, we will leave the underlying

microeconomic structure of consumers’ behavior unspecified, except that z must satisfy

the aggregate budget constraint. However, as discussed below, the latter point invites more

complexity in the analysis of von Neumann equilibria under such a general economic model

than under the model with an OLG structure.

1.1 Walras-von Neumann Balanced Growth Equilibria with a

General Aggregate Demand Function

Let the Marshallian demand function z (p, w, r, I) represent the aggregate demand of
the whole population, where I represents the aggregate income distributed to the whole

population after firms deduct the investment funds for capital accumulation, so that the

aggregate budget constraint p · z (p,w, r, I) = I must hold.1 Note that the aggregate

income I is a continuous function of the price system (p,w, r), the aggregate production
plan y ∈ Rm+ , and the aggregate labor endowment ωl : I = I (p,w, r, y,ωl). Thus, the
Marshallian demand function is reduced to:

z (p, w, r, I) = z (p,w, r, I (p,w, r, y,ωl))

= z (p,w, r, I (p,w, r, y)) , since ωl is fixed throughout the analysis,

= z (p,w, r, y) .

In the following, we will denote the Marshallian demand function by z (p,w, r, y). Note
that p · z (p,w, r, y) = (r − g) pAy + ωl holds by the definition of this function.

This definition differs from that of the Marshallian demand function in Section 2 of

the main text of the paper, because z in Section 2 is a function of prices only. Recall that

the underlying budget constraint in Section 2 was given by the wage income wωl, apart

from the price information (p, w, r). Therefore, Since ωl is fixed throughout the entire

periods, the Marshallian aggregate demand in Section 2 of the main text of the paper can

be defined as a function of price information only. Such treatment is no longer possible

in this addendum section, so the Marshallian aggregate demand should also depend on

the information of the production plan y.

1A typical example of the aggregate income function is I (p,w, r, y) = (r − g) pAy + wωl. Here,

(r − g) pAy represents the aggregate net profit income distributed to all households, which is equal to the
residual of aggregate profit income rpAy after firms deduct investment funds for capital accumulation
gpAx, given that a production plan y ∈ Rm+ is activated in a present period.
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In this case, for each r ∈ (0, R), a Walras-von Neumann balanced growth equilibrium
(in short,W-N BGE) is a profile ((p,w, r) ; y) that is a solution to the following system
of inequalities:

pB 5 (1 + r) pA+ wL; (a)

By = (1 + g)Ay + z (p,w, r, y) , (b)

Ly 5 ωl. (c)

Here, Walras’ law is represented correspondingly by:

p · [By − (1 + g)Ay − z (p, w, r, y)] + w (ωl − Ly) = 0.

Multiplying y from the right in (a), we have:

pBy = (1 + r) pAy + wLy. (a*)

Then, Walras’ law together with (a*) can be reduced to:

pz (p,w, r, y)− (r − g) pAy − wωl = 0.

Next, by multiplying p from the left in (b), we have:

pBy = (1 + g) pAy + pz (p,w, r, y) . (b*)

From (a*) and (b*), we have pz (p, w, r, y) = wLy+(r − g) pAy. Then, together with the
reduced form of Walras’ law, we get

Ly = ωl.

Thus we can get rid of condition (c).

1.2 Existence of a Closed Graph Relationship between Balanced

Growth Equilibria and Interest Rates

As discussed above, a Marshallian aggregate demand vector cannot be determined by

price information alone, but also by the information of the (ex ante) production plan.

However, as observed below, an equilibrium production plan will be determined corre-

sponding to the given aggregate demand vector. This equilibrium production plan should

also stipulate a balanced growth equilibrium path of capital accumulation. Therefore,

under a balanced growth equilibrium, the Marshallian aggregate demand vector must be

fixed by the information of the balanced growth equilibrium production plan, but the

latter is a variable determined corresponding to the former. Thus, the existence problem

of a balanced growth equilibrium in this section should involve an additional complica-

tion in that the ‘ex-ante’ production plan must coincide with the ‘ex-post’ equilibrium

production plan.

With this last point in mind, consider the existence of a balanced growth equilibrium

for each r ∈ [0, R). Assume again that w = 1. Define X ≡ ©x ∈ Rm+ | Lx = ωl
ª
. Let

pmAxm ≡ arg max
pm∈4K ; x∈X

pAx,
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and then let

Im ≡ rpmAxm + ωl.

Finally, define

Xm ≡ ©x ∈ Rm+ | ∃p ∈ 4K : rpAx+ Lx 5 Im
ª
.

Note that Xm is compact and convex. The latter property holds because 4K is convex.

Choose any x ∈ Xm to represent an ax ante plan for capital accumulation. In other

words, gAx represents an ax ante demand for capital goods for new investment.

For each r ∈ [0, R) and each p ∈ 4K, the aggregate demand vector is determined by

z (p, 1, r, x). Then, for such fixed z (p, 1, r, x) and x ∈ Xm, define the following program:

(MP1) max
p0∈4K

p0 · [z (p, 1, r, x) + gAx] subject to p0 [B −A] 5 rpA+ L.

As already shown in the proof of Theorem 1, there exists p∗ (x) ∈ 4K such that

p∗ (x) ∈ arg max
p0∈4K ; p0[B−A]5rp∗(x)A+L

p0 · [z (p∗ (x) , 1, r, x) + gAx] .

Then, given this datum p∗ (x) > 0, define the following problems:

(MP ∗1 ) max
p0∈Rn+

p0 · [z (p∗ (x) , 1, r, x) + gAx] subject to p0 [B −A] 5 rp∗ (x)A+ L,

and

(MP2) min
y∈Rm+ \{0}

[rp∗ (x)A+ L] y subject to [B −A] y = z (p∗ (x) , 1, r, x) + gAx.

As we already observed above, p∗ (x) > 0 is a solution to (MP ∗1 ). Let y
∗ (x) ∈ Rm+\ {0}

be a solution to this (MP2). Note that the existence of such a solution is guaranteed by
A1.

In this case we have

p∗ (x) · [z (p∗ (x) , 1, r, x) + gAx] 5 p∗ (x) [B −A] y∗ (x) 5 [rp∗ (x)A+ L] y∗ (x) .
By the duality theorem, it follows that

p∗ (x) · [z (p∗ (x) , 1, r, x) + gAx] = p∗ (x) [B −A] y∗ (x) = [rp∗ (x)A+ L] y∗ (x) . (**)
By the way, the definition of z (p∗ (x) , 1, r, x) implies that

p∗ (x) [z (p∗ (x) , 1, r, x) + gAx] = gp∗ (x)Ax+ I (p∗ (x) , 1, r, x)

= rp∗ (x)Ax+ ωl 5 max
p”∈4K

rp”Ax+ ωl 5 Im.

Thus, since p∗ (x) · [z (p∗ (x) , 1, r, x) + gAx] = [rp∗ (x)A+ L] y∗ (x), we have
[rp∗ (x)A+ L] y∗ (x) 5 Im,

which implies y∗ (x) ∈ Xm.

Define a correspondence φ : Xm ³ Xm such that

φ (x) ≡
½
y∗ (x) ∈ Xm | y∗ (x) ∈ arg min

[B−A]y=z(p∗(x),1,r,x)+gAx
[rp∗ (x)A+ L] y

¾
.
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Note that this correspondence is upper hemi-continuous and convex-valued. Since Xm

is compact and convex, by the Kakutani fixed point theorem there exists a fixed point

y∗ ∈ Xm such that y∗ ∈ φ (y∗). Then let p∗ ≡ p∗ (y∗). By definition,
p∗ ∈ arg max

p0∈Rn+; p0[B−A]5rp∗A+L
p0 · [z (p∗, 1, r, y∗) + gAy∗] ;

y∗ ∈ arg min
y∈Rm+ \{0}; [B−A]y=z(p∗,1,r,y∗)+gAy∗

[rp∗A+ L] y .

As argued above, it follows that

p∗ · [z (p∗, 1, r, y∗) + gAy∗] = p∗ [B −A] y∗ = [rp∗A+ L] y∗ (***)
by the duality theorem. Finally, since p∗ · [z (p∗, 1, r, y∗) + gAy∗] = rp∗Ay∗ + ωl holds by

definition of the demand function, we have Ly∗ = ωl from (***). Similarly, by Walras’

law, it follows that

(p∗ · [z (p∗, 1, r, y∗) + gAy∗]− p∗ [B −A] y∗) + (Ly∗ − ωl) = 0.

Thus, again by (***), we have Ly∗ = ωl.

Therefore, we have a W-N BGE ((p∗, 1, r) , y∗) associated with r ∈ [0, R) for the
economy h(A,B,L) ;ωl; g; zi.
Theorem 4: Let E = h(A,B,L) ;ωl; g; zi be an economy as defined above. Then, for each
interest rate r ∈ [0, R), there exists a Walras-von Neumann balanced growth equilibrium
((p∗, 1, r) , y∗) under this economy.

1.3 Generic Indeterminacy of Balanced Growth Equilibria

The generic indeterminacy of balanced growth equilibria can be shown as argued in Section

4 of the main text of the paper. First, a continuously differentiable mapping F is given

in this section, as follows:2

F (p,w, r, y) ≡
½
[B (p,w, r)− (1 + g)A (p,w, r)] y − z (p,w, r, y)
p [B (p, w, r)− (1 + r)A (p, w, r)]− wL (p, w, r) .

Here, the definitions of p and y are the same as in Section 4 of the main text of the

paper. Thus, y ∈ Rk++ is obtained by subtracting the m−k zero components of the m×1
column vector y ∈ Rm+ , where k is the minimum number of processes that can satisfy the
equilibrium condition (b) in equality.

Then, the corresponding Jacobian of F (p, w, r, y) = 0 in aW-N BGE (p,w, r, y) is
given by:

D(y,p,w,r)(F (p̄, w, r, y))

=

∙
JFn×k Dpz (p, w, r, y) Dwz (p,w, r, y) Drz (p, w, r, y)

0 [b−n − (1 + r)a−n]T (p,w, r) −L (p,w, r)T − (pA (p,w, r))T
¸
,

2As in the case of steady state equilibria discussed in Section 4, the continuous differentiability of the

excess demand functions

[B (p,w, r)− (1 + g)A (p,w, r)] y − z (p,w, r, y)
is guaranteed at least in a small neighborhood of each equilibrium (p,w, r, y).
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where

JFn×k ≡ [(1 + g)A−B] (p, w, r) +Dyz (p, w, r, y) .

As shown in the proof of Theorem 2 of the main text of the paper, the first n-row vectors£
[(1 + g)A−B] (p,w, r) +Dyz (p,w, r, y) Dpz (p,w, r, y) Dwz (p, w, r, y) Drz (p,w, r, y)

¤
are linearly independent since

£
Dpz (p,w, r, y) Dwz (p,w, r, y)

¤
is invertible. Further-

more, the next k row vectors£
0 [b−n − (1 + r)a−n]T (p, w, r) −L (p,w, r)T − (pA (p, w, r))T

¤
are shown to be linearly independent for almost all r ∈ (0, R). First, as shown in the
proof of Theorem 2 of the main text of the paper, we can see that

rank[B − (1 + g)A]T (p,w, r) = k.
Then, as shown in the proof of Theorem 2 of the main text of the paper, we can see that

for almost all r ∈ (0, R),
rank

£
[b−n − (1 + r)a−n]T (p,w, r) −L (p, w, r)T

¤
= k.

In summary, we get the following result:

Theorem 5: Let E = h(A,B,L) ;ωl; g; zi be a general von Neumann production economy
specified as above. Then, for almost all r ∈ (0, R), the associated Walras-von Neumann
balanced growth equilibrium ((p,w, r) , y) under this economy is indeterminate.

1.4 Remark on the existence theorems of the balanced growth

equilibrium in the present literature

Morishima (1960, 1969) also considered von Neumann production economies with Mashal-

lian demand functions, and then Salvadori (1980) and Bidard and Hosoda (1988) examined

the existence of a balanced growth equilibrium in that model. While assuming that wages

are paid in advance of production, Morishima (1960) introduced the exogenous saving

rate of the capitalist class as sc with 0 < sc < 1. Then, a balanced growth equilibrium is

defined by the following system of equilibrium inequalities:

pB 5 (1 + r) [pA+ wL] ; (a)

By = (1 + g) [Ay + wLy · dw (p,w, r)] + r [pAy + wLy] · dc (p, w, r) , (b)
g = rsc, (c)

where dc (p, w, r) represents the Marshallian consumption demand of the capitalist class
per 1 − sc unit of expenditure: For any p ∈ Rn+, p · dc (p, w, r) = 1 − sc. Likewise,
dw (p,w, r) represents the Marshallian consumption demand of the working class per unit
of expenditure: for any p ∈ Rn+, p · dw (p, w, r) = 1.3

3Morishima (1969) also provided a more generalized von Neumann model than Morishima (1960) by

introducing an exogenous saving rate for the working class. Since then, Salvadori (1980) and Bidard and

Hosoda (1988) have investigated the existence of a balanced growth equilibrium in the Morishima (1969)

model.

However, to highlight the determinacy of the equilibrium in von Neumann models of the Morishima

type, it is sufficient to examine the original model of Morishima (1960).
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Here, condition (c) represents the Cambridge equation, where Morishima (1960) as-

sumed that population growth g > 0 is exogenously given. Then, the system of inequalities
consists of n+k+1+1 equations (n equations of excess demand conditions for commod-
ity markets (b); k equations of zero profit conditions for the operated processes (a); the

Cambridge equation (c); and the commodity price normalization equation,
Pn

i=1 pi = 1.
In contrast, the unknowns are p, y, w, and r. Here, Walras’ law is represented by:

pBy = (1 + g) p [Ay + wLy · dw (p, w, r)] + r [pAy + wLy] · pdc (p,w, r)
= (1 + g) [pAy + wLy] + r [pAy + wLy] (1− sc) .

Then, by multiplying y in (a) from the right, we have:

pBy = (1 + r) [pA+ wL] y. (a*)

Then, by means of Walras’ law and (a*), the Cambridge equation (c) is derived. So we can

get rid of (c). However, r can also be removed from the list of the unknowns by the derived

Cambridge equation, since the population growth rate g is given. So there are n+ k + 1
independent equations while there are n + k + 1 unknowns. Thus, we cannot observe
the degree one freedom feature in Morishima’s (1960) system of equilibrium inequalities.

Thus, a balanced growth equilibrium in the Morishima (1960) model is determinate. In

fact, while r can be determined by the derived Cambridge equation, the equilibrium wage

rate w is determined by the intersection of the growth rate curves of labor demand and

of labor supply, where the former is derived from the wage-interest-rate frontier of this

economy and is downward sloping with respect to wage rates, and the latter is a flat curve

drawn at point g.

In contrast, the model discussed in this Addendum A of this paper also introduces an

exogenous population growth rate, but does not have a fixed saving rate as a parameter.

However, the model in this Addendum A introduces the labor market equilibrium condi-

tion, which does not appear in Morishima’s (1960) system of equilibrium inequalities. As

we have observed, the labor equilibrium condition is also removed by the application of

Walras’ law, so that there are also n + k independent equations in Addendum A, while

the n+ k + 1 unknown variables cannot be further reduced. As a consequence, given the
population growth rate, the system of equilibrium inequalities in Addendum A cannot

determine the equilibrium interest rate, and thus the continuum of Neumann equilibria

can be observed for the exogenously given population growth rate.

2 Addendum B: A Simple Microeconomic Model of

OLG Economies

This appendix presents a simple microeconomic model of OLG economies, where an indi-

vidual optimization problem for their economic decisions is specified to provide an under-

lying structure of economic data E, as developed in Yoshihara and Kwak (2023, 2024).

Given the basic information about the OLG structure of each generation with a labor

endowment ωl and a profile of von Neumann production technology (A,B,L) specified in
Section 2 of the main text of the paper, let u : Rn+ × Rn+ → R be a welfare function of
lifetime consumption activities common to all generations. As usual, u is assumed to be

continuous and strongly monotonic. Thus, an overlapping generation economy is given

by a profile E = h(A,B,L) ;ωl;ui.
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Assume also that for each generation t, lt ∈ R+ represents the labor supplied by t at
the beginning of the young age; ωt+1 ∈ Rn+ represents a bundle of goods for the purpose
of saving money ptω

t+1, chosen by generation t at the end of the young age and used in

the old age; δt+1 ∈ Rn+ represents a commodity bundle purchased by generation t at the
beginning of the old age for the purpose of speculative activities; yt+1 ∈ Rm+ represents a
production activity vector chosen by generation t at the beginning of the old age; ztb is the

consumption bundle consumed by generation t at young age; and zta is the consumption

bundle consumed by generation t at old age.

Each generation t at young age is confronted with the following optimization program

MP t: for a given sequence of price vectors {(pt, wt, rt) , (pt+1, wt+1, rt+1)},

max
lt,ωt+1,δt+1,yt+1,ztb,z

t
a

u
¡
ztb, z

t
a

¢
subject to

ptz
t
b + ptω

t+1 5 wtl
t,

lt 5 ωtl,

ptδ
t+1 + ptAy

t+1 = ptω
t+1, and

pt+1z
t
a 5 pt+1δ

t+1 + pt+1By
t+1 − wt+1Lyt+1.

That is, each generation t can supply lt amount of labor at young age as a worker employed

by generation t− 1. From the wage income wtl
t earned at the end of the young age, she

can save ptω
t+1 amount of money and purchase a consumption bundle ztb. With the

saved money ptω
t+1, the generation t at the beginning of the old age can purchase δt+1

for the speculative purpose and can purchase a vector of capital goods Ayt+1 for the

productive investment. As an industrial capitalist, she can employ Lyt+1 amount of labor

of generation t+ 1. Then, at the end of the old age, she can earn pt+1δ
t+1 as the income

of the speculative investment and pt+1By
t+1−wt+1Lyt+1 as the income of the productive

investment. With this income she can purchase a consumption bundle zta.

Let
¡
lt,ωt+1, δt+1, yt+1, ztb, z

t
a

¢
be a solution of the optimization programMP t for each

generation t. In the optimum, all weak inequalities in the above constraints should be

equal, given the assumption of u. That is,

ptz
t
b + ptω

t+1 = wtl
t,

lt = ωtl , and

pt+1z
t
a = pt+1δ

t+1 + pt+1By
t+1 − wt+1Lyt+1.

Note that the production activity vector yt planned by generation t− 1 at the beginning
of the old age should satisfy the profit maximization condition. Since market prices in

equilibrium should satisfy the zero profit condition, the following condition holds for each

period t:

ptB 5 (1 + rt) pt−1A+ wtL.
Therefore, the equilibrium profit maximization condition for each period t is given by:

ptBy
t = (1 + rt) pt−1Ayt + wtLyt.
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Thus, the revenue constraint pt+1z
t
a = pt+1δ

t+1 + pt+1By
t+1 − wt+1Lyt+1 of generation t

at the end of the old age can be reduced to

pt+1z
t
a = pt+1δ

t+1 + (1 + rt+1) ptAy
t+1.

Given a pair of sequence of price vectors (p,w, r) ≡ {(pt, wt, rt)}t≥0, let (ztb (p,w, r) , zta (p,w, r))
be a solution of the generation t = 1, 2, . . . , to the aboveMP t utility maximization prob-
lem under budget constraint. Then, a competitive equilibrium can be formulated as

follows.

Definition A1: A competitive equilibrium under the overlapping generation economy

E = h(A,B,L) ;ωl;ui is a pair of sequence of price vectors (p,w, r) ≡ {(pt, wt, rt)}t≥0
and sequence of optimal actions of each generation©¡

ωt+1, yt+1, δt+1, ztb (p,w, r) , z
t
a (p,w, r)

¢ª
t≥0

satisfying the following conditions:

ptB 5 (1 + rt) pt−1A+ wtL (∀t) ; (A1.1)

δt +Byt = zt (p,w, r) + ωt+1 (∀t) ; (A1.2)

where zt (p,w, r) ≡ ztb (p,w, r) + z
t−1
a (p,w, r) is the aggregate consumption demand at each t;

δt +Ayt 5 ωt (∀t) ; (A1.3)

and Lyt 5 ωtl (∀t) . (A1.4)

In the above definition, the excess demand condition in commodity markets is given

by (A1.2). In each period t, the aggregate consumption demand vector is given by

zt (p,w, r) = ztb (p,w, r) + z
t−1
a (p,w, r). It may contain some zero components. For

a commodity i such that zti (p,w, r) = 0, it follows that in equilibrium, δ
t
i + y

t
i = ωt+1i .

In the above inequality of excess demand condition (A1.2), yt is the gross output vector

which is planned by generation t− 1 at the beginning of period t and is harvested at the
end of this period, while δt is the commodity bundle purchased by generation t− 1 at the
beginning of period t and is sold by generation t− 1 at the end of period t.
In each period t, the capital market equilibrium condition is given by (A1.3) of De-

finition A1. Note that the choice between speculative investment δt and productive in-

vestment Ayt is given by generation t− 1 at the beginning of the old age. Moreover, the
saving of the commodity bundle ωt is given by generation t − 1 at the end of the young
age.

In each period t, the labor market equilibrium condition is given by (A1.4) of Definition

A1. Note that the aggregate labor demand Lyt is chosen by generation t − 1 at the old
age, while the aggregate labor supply ωtl is given by generation t at the young age.

A specific long-period feature of competitive equilibrium is given as a steady state

equilibrium, in which all investment activities are simply of the replacement type. In

such a case, given a pair of sequence of price vectors (p,w, r) ≡ {(pt, wt, rt)}t≥0 such
that (pt, wt, rt) = (p,w, r) for every period t, the solution (ztb (p,w, r) , z

t
a (p,w, r)) of

the generation t = 1, 2, . . . , to the optimization problem MP t can be represented by

ztb (p,w, r) = zb (p, w, r) and z
t
a (p,w, r) = za (p, w, r) for each generation t. Correspond-

ingly, the aggregate demand function zt (p,w, r) = ztb (p,w, r) + z
t−1
a (p,w, r) for each

period t can be represented by zt (p,w, r) = z (p, w, r). Such an equilibrium is given as

follows.
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Definition A2: A steady state equilibrium under the overlapping economyE = h(A,B,L) ;ωl;ui
is a competitive equilibrium (p,w, r) associated with©¡

ωt+1, yt+1, δt+1, ztb (p,w, r) , z
t
a (p,w, r)

¢ª
t≥0 ,

such that there exists a profile of a stationary price vector (p,w, r), a gross output vector
y ≥ 0, and a speculative activity vector δ = 0, satisfying (pt, wt, rt) = (p,w, r), yt+1 = y,
δt+1 = δ, ωt+1 = Ay + δ, ztb (p,w, r) = zb (p, w, r), and z

t
a (p,w, r) = za (p, w, r) for each

t, and the following conditions hold:

pB 5 (1 + r) pA+ wL; (A.a)

By + δ = z (p,w, r) + ω, (A.b)

where z (p, w, r) = zb (p, w, r) + za (p, w, r) ; and

Ly 5 ωl, (A.c)

Ay + δ = ω, (A.d).

In the above definitions of two types of equilibria, the choice between speculative

investment δt+1 and productive investment Ayt+1 is the consequence of each generation’s

optimal action in the program MP t. Therefore, δ = 0 can be optimal under the steady
state equilibrium whenever the equilibrium interest rate r is non-negative.

To see the last point, let us consider under what conditions the market equilibrium

without speculative activity, δt = 0 (∀t), holds in general. Note that if the entire mon-
etary wealth pt−1ωt of generation t − 1 is used for the productive investment, it would
earn (1 + rt) pt−1ωt, while if it is used for the speculative investment, it would earn ptωt.
Therefore, the productive investment of all monetary wealth is an optimal action for gen-

eration t− 1 at the beginning of old age if and only if (1 + rt) pt−1ωt = ptωt. In general,
if

(1 + rt) pt−1 = pt
holds for each period t = 1, . . ., then δt = 0 is an optimal action for each generation t− 1
at the beginning of old age. Thus, under the steady state equilibrium, this inequality

condition holds automatically, since (1 + r) p = p holds whenever r = 0.
In contrast, under a stationary price system associated with r < 0, each generation

would devote all of their wealth to speculative investment. Then, no production takes

place in any period, and therefore no consumption good can be supplied in any period.

Thus, if a steady state equilibrium is associated with r < 0, it would only be a trivial
one. Since we are interested in the non-trivial case of equilibria, we focus on the case with

r = 0 as well as δ = 0 throughout the analysis of this paper.
Thus, we can introduce a special case of a steady state equilibrium, which is defined

as follows.

Definition A3: A steady state equilibrium ((p,w, r) , y,ω) under the overlapping economy
E = h(A,B,L) ;ωl;ui is calledWalras-von Neumann (W-N) if and only if (p, w, 1 + r) >
0 with r = 0 and condition (A.c) in Definition A2 holds in equality.

Thus, given a steady state price vector (p,w, r) ∈ Rn+ × R++ × R+, each and every
generation t at young age is faced with the following optimization program MP :

max
ω,zb,za

u (zb, za)

10



subject to

pzb + pω = wωl, and

pza = (1 + r) pω.

Let zb (p,w, r) and za (p, w, r) be the Marshallian demand functions defined as optimal
solutions to the above problem MP at the price system (p,w, r).
Finally, Definition A3 can be reduced to Definition 2 in Section 2 of the main

text of the paper by removing ω from the list of optimal actions at the steady-state price

vector, since the equilibrium choice of ω is automatically fixed whenever the equilibrium

activity vector y is determined, according to condition (A.d) of Definition A2.
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