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LINEAR REGRESSIONS, SHORTS TO LONG1

Toru Kitagawaab and Masayuki Sawadab

We study the identification problem of the linear long regression coefficients

by data combination. Unlike the usual data combination problem, we consider

combining multiple short regressions of the same outcome with different regres-

sors. For this conceptually novel problem, we provide partial identification results

for the long regression coefficients under a restriction on the unknown correlation

structure. Specifically, we employ an elliptic constraint from the relations among

the explained variations of the regressions to induce the bounds.

Keywords: Data combination, Linear regression, Elliptic constraint.

1. INTRODUCTION

Suppose that there are two studies on the same outcome y sampled from the same

population and each study sample contains different key variables x1 and x2 that are

unavailable jointly. Namely, we obtain the summary statistics from two studies of (y, x1)

and (y, x2) separately, but not of (y, x1, x2). In this study, we consider the identification

problem of the long regression E[y|x1, x2] when the short regressions from two separate

studies E[y|x1] and E[y|x2] are available.

This problem is similar to but different from the existing identification problem under

data combination. Cross and Manski (2002) study nonparametric identification of the

long regression E[y|x1, x2] from the short conditional distributions P [y|x1] and P [x1|x2].

Ichimura and Martinez-Sanchis (2009) consider a semiparametric estimation problem of

a related data combination problem. Molinari and Peski (2006) generalized the result of

Cross and Manski (2002) for the infinitely supported y. Pacini (2019) further studies the

relation in long linear projections and short linear projections. We focus on a different

problem of different short regressions of E[y|x1] and E[y|x2]. Such a problem appears

in a frequent context but little has been done in the literature.

This identification problem appears frequently as an empirical challenge. For example,

a study of y on x2 suggests that x2 is a key confounder for the causal relation between
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y and x1. However, the confounder (x2) is unobserved in the study sample of y on x1.

This unobserved variable (x2) may also be a candidate for the mediation analysis in

the relation between y and x1. For the example below, we illustrate the problem of

combining two short regressions that suffer from the omitted variable bias.

Example 1.1 Suppose that one is interested in the impact of the years of schooling

(x0) on the earnings (y). The leading concern is the ability bias: the unobserved ability is

correlated with both education level and earnings. Certain survey data contain a usually

unavailable confounding variable such as the IQ test score (x1); however, another key

confounder of the birth location (x2) may be limited because of confidentiality reasons.

Nevertheless, the geographical information (x2) with the earnings data (y) may be

publicly available in a different data source. One may run two separate regressions of

earnings (y) on schooling (x0) and IQ score (x1), and earnings (y) on schooling (x0) and

a location variable (x2). Both regressions suffer from omitted variable biases; hence, we

aim to recover the coefficient on x0 in the long-regression of earnings (y) on schooling

(x0), and both IQ score (x1) as well as the location variable (x2).

Objectives in these examples require the coefficients of the long regression E[y|x1, x2];

however, only the short regressions E[y|x1] and E[y|x2] may be available.

In this study, we propose partial identification strategies for the linear long regression

coefficients. First, we consider the case when all the variables in the long regression

appear in some of the study samples. If the correlation structure of x1 and x2 is known,

then the short regression coefficients point identify the long regression coefficients. If the

correlation structure is unknown, then the target parameter is only partially identified.

We consider the bounds as a tool for the sensitivity analysis of the target parameter in

the worst-case correlation coefficients.

Second, we consider an additional omitted variable that is never observed in any stud-

ies. In Example 1.1 above, we consider the IQ test score as a proxy for the unobserved

ability. However, the residual ability net of the IQ score may still plague the identifica-

tion. With such an omitted variable that is never observed, the target parameter is not

point identified from the known correlation structure. Nevertheless, we show that the

elliptic constraint on the explained variation of the long regression induces the bounds
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that are the intersection of bounds from each study. The use of the elliptic constraint is

related to the seminal work of Leamer (1978) and its followers. This use of the elliptic

constraint is conceptually new in the literature of data combination.

We also contribute to the literature of sensitivity analysis against omitted variables.

The sensitivity of regression estimates are studied in a wide range of literature including

Mauro (1990), Murphy and Topel (1990), Frank (2000), Imbens (2003), Altonji et al.

(2005), Clarke (2009), Bellows and Miguel (2006), Hosman et al. (2010), González

and Miguel (2015), Krauth (2016), Cinelli and Hazlett (2020). Recently, Masten and

Poirier (2022) study the sensitivity measure proposed by Oster (2019) that follows the

idea of Altonji et al. (2005) and show that the sign of the coefficient of interest is

sensitive to the measure when the omitted variable is relatively unimportant than the

observed control variables. Diegert et al. (2022) also consider the sensitivity analysis

without assuming that control variables are exogenous. Those recent studies approach

the omitted variable problem for a particular variable of interest in the long regression

in a single study. We approach this problem from a different perspective of combining

multiple short regressions. Specifically, we demonstrate that the combining multiple

short regressions tighten the bounds for the long regression with omitted variables.

In the remainder of this paper, we present the identification result in Section 2. In

Section 3, we introduce an omitted variable that is never observed in either of the two

studies. In Section 4, we conclude the paper with discussion of future challenges.

2. IDENTIFYING LINEAR LONG REGRESSION FROM SHORT REGRESSIONS

Consider there are two studies s ∈ {1, 2} ≡ S on each study sample drawn from a

single population. For example, the two studies may contain key omitted variables sep-

arately, the determinants of a treatment assignment separately, or a treatment variable

and a mediating variable separately. Two studies share the same outcome of interest

y ∈ R, the ideal vector of L explanatory variables z ∈ RL and a linear conditional

expectation function (CEF) of y given z, E[y|z] = z′β. However, the whole vector z is

never observed in each study. Alternatively, for each study s, we observe a sample of

(y, zs) where zs = [x′
0, x

′
s]
′ is a subvector of z such that x0 is common across studies

but xs is study specific. By construction, we have x1 ∩ x2 = ∅ and z = [x′
0, x

′
1, x

′
2]

′. Our
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target parameter is c′β for some non-zero vector c ∈ RL; namely, we aim to recover

some of the long-regression coefficients when only the short-regression coefficients are

available.

Such an evidence aggregation problem arises when a researcher ex-post realizes the

use of two different study samples jointly. Consequently, the researcher may have assess

only through the summary statistics from published studies, confidential administrative,

or proprietary data. Hence, we limit the information available to the analyst to be the

following: the short projection coefficients L(y|zs) = z′sγs, s ∈ S; the variance-covariance
matrices of zs,Σs,s′ ≡ E(zszs′) for {s, s′} ∈ S; the residual variance of linear projection
η2(zs) ≡ V ar(y −L(y|zs)) for s ∈ S; and the variance of y, V ar(y). Let Ls < L be the

length of xs for each s ∈ {0, 1, 2}.
In addition to the Example 1.1 in Introduction, we illustrate the motivation further

in the following two examples:

Example 2.1 Consider a hypothetical policy (x1,1) offering tuition waivers for eligi-

ble students. Suppose the eligibility (x1,1) is purely determined by the field of study

(x1,2) and parental income (x2). One study collects a representative sample of schools

and their students about their eligibility (x1,1), their field of study (x1,2) and earnings

after graduation (y), but missing their parental income (x2). Eligible students tend to

be from households with lower parental income and parental income is a critical con-

founder for the regression of policy and field of study x1 = {x1,1, x1,2} on y. Suppose

that another study collects another representative sample of households about their

household income (x2) and college graduates’ earnings (y), but the eligibility of the

program is unknown because their field of study is unknown. We aim to recover the

coefficient on x1,1 in the long-regression of earnings (y) on the policy eligibility (x1,1),

controlling for both students’ field of study (x1,2) and households income (x2).

Example 2.2 Consider a randomized evaluation of a policy x1 on an outcome y. A

referee suggests that another background information x2 may be the mechanism that

drives the policy impact of x1 on y. Unfortunately, such information x2 is not available

in the study at hand. Nevertheless, administrative data on the same study area contains

both y and x2, but not x1 which is the intervention introduced by the researcher. We
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aim to recover the coefficient on x1 after controlling for x2 to compare the coefficient

on x1 without controlling for x2.

We first consider identification of c′β pretending that E(x1x
′
2) is known. In other

words, the whole variance matrix W ≡ E[zz′] is known.

For every s ∈ S, the vector of linear projection coefficients of y onto zs,

γs = E[zsz
′
s]
−1E[zsy] = E[zsz

′
s]
−1E[zsz

′]β,

is identified. Consequently, we obtain Ls number of linear constraints for β ∈ RL for

each s ∈ S,

(2.1) E(zsz
′)β = E(zsz

′
s)γs

because γs is the vector of linear projection coefficients of zs, and the CEF is linear. If

the whole vector of covariates z is observed somewhere in the studies, then the linear

constraints (2.1) are sufficient for identification.

Proposition 2.1 If z1 ∪ z2 = z and W = E[zz′] is a known positive-definite matrix,

then β is point-identified.

Proof: By stacking the matrices of (2.1) over studies, we have
E[x0z

′]

E[x1z
′]

E[x0z
′]

E[x2z
′]

 β =


E[x0z

′
1]γ1

E[x1z
′
1]γ1

E[x0z
′
2]γ2

E[x2z
′
2]γ2

 .

Let

J =


IL0 OL1 OL0 OL2

OL0 IL1 OL0 OL2

OL0 OL1 OL0 IL2
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where Ik is k× k identity matrix and Ok is k× k zero matrix. Multiplying J from left,

we obtain

J


E[x0z

′]

E[x1z
′]

E[x0z
′]

E[x2z
′]

 β = E[zz′]β = J


E[x0z

′
1]γ1

E[x1z
′
1]γ1

E[x0z
′
2]γ2

E[x2z
′
2]γ2

 .

Hence

β = W−1J


E[x0z

′
1]γ1

E[x1z
′
1]γ1

E[x0z
′
2]γ2

E[x2z
′
2]γ2

 .

Q.E.D.

Remark 2.1 The choice of J matrix is not unique and β is over-identified. For exam-

ple, taking

J̃ =


OL0 OL1 IL0 OL2

OL0 IL1 OL0 OL2

OL0 OL1 OL0 IL2


obtains another identification formula of

β = W−1J̃


E[x0z

′
1]γ1

E[x1z
′
1]γ1

E[x0z
′
2]γ2

E[x2z
′
2]γ2

 .

Hence, the underlying model has a testable restriction.

The above proposition assumes the knowledge of W but the cross moment between

x1 and x2 is usually unknown because x1 and x2 are not observed for the same unit.
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When the covariance of x1 and x2 are unknown, c
′β becomes a set-identified object. Let

b ≡ J


E[x0z

′
1]γ1

E[x1z
′
1]γ1

E[x0z
′
2]γ2

E[x2z
′
2]γ2

 .

Specifically, the upper and lower bounds for c′β is attained from the maximum and

minimum of the following objective function:

c′W−1b

subject to

W =


Ã B C

B′ R11 R12

C ′ R′
12 R22


where Ã = E[x1x

′
1], R11 = E[x0x

′
0], R12 = E[x0x

′
2], R22 = E[x2x

′
2], B = E[x0x

′
1] and

C = E[x1x
′
2] and C is the only unknown matrix, c, b ̸= 0 are known vector of length L.

Note that

(c− b)′W−1(c− b) = c′W−1c+ b′W−1b− b′W−1c− c′W−1b

and hence

c′W−1b =
[
(c− b)′W−1(c− b)− (c′W−1c+ b′W−1b)

]
/2.

As in the following lemma, c′W−1c is a convex function with respect to C.
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Lemma 2.1 For any non-zero vector a and a positive definite matrix

W =


Ã B C

B′ R11 R12

C ′ R′
12 R22

 ,

a′W−1a is a convex function with respect to C.

Proof: Proof is in the Appendix. Q.E.D.

Consequently, (c− b)′W−1(c− b), c′W−1c and b′W−1b are convex function of C, the

objective function is difference in convex functions. Consequently, the objective function

is not necessarily convex.

For an illustrative example, consider a scalar x1 and x2 case with empty x0. Let

W =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2


where σ2

1 and σ2
2 are the variances of x1 and x2, and ρ is the correlation coefficient, which

is the only unknown parameter. Figure 2.1 illustrate the objective function as a function

of ρ in three different signs of β = (β0, β1, β2). As shown in the figure, the objective

function can be either concave (Panel A), convex (Panel B), or non-convex (Panel C) in

the value of ρ. An important remark of the illustration is that the objective function can

have an informative upper or lower bound without restricting the unknown correlation

coefficient ρ. Nevertheless, such an informative bound is not available in general.

As demonstrated in Figure 2.1, the objective function is not necessarily bounded.

If ρ is not bounded, then the objective function c′W−1b is not necessarily bounded as

W becomes singular when ρ = 1. As a result, the bounds are not informative without

restricting W . Hence, we may use ρ as the sensitivity parameter to assess the sensitivity

of the bounds against unknown correlation structure of two separate dataset.

In the earlier examples, we often have a particular few covariates that are relevant

and not in common across two studies. If the number of non-common covariates is small,

the non-convex optimization is straightforward with a brute-force search. For a larger
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(A) β1 = −0.6, β2 = −0.2 (B) β1 = 0.6, β2 = 0.2 (C) β1 = 0.6, β2 = −1.2

Figure 2.1.— Plot of the objective function value as the function of ρ in illustrative
numerical examples of different specifications over −0.95 ≤ ρ ≤ 0.95. All specifications
are common in the distribution of covariates and the intercept β0 = 0.1.

dimensional problem, we may resort to an optimization algorithm for a non-convex

optimization. In particular, the objective function is a difference in convex functions

and a DC (Difference of Convex functions) algorithm (Le Thi and Pham Dinh, 2018,

for example) may be applicable.

3. ROBUSTNESS AGAINST COMMON OMITTED VARIABLES

In the aforementioned examples, all the relevant variables are observed somewhere

in the study samples. Nevertheless, we may concern about omitted variables that are

never observed in any of the study samples. For example, in Example 1.1, IQ score

is not a perfect proxy of the unobserved ability and the residual ability net of the IQ

score may still cause the omitted variable bias. The eligibility in Example 2.1 may be

determined by an additional unobserved variable. In Example 2.2, x1 is randomized,

but x2 may be correlated with an unobserved confounder.

An important example is the interaction term x1x2 which is the unobserved omitted

variable. For the purpose of mediation analysis, the interaction term plays a critical

role in decomposing the direct and indirect effect of the randomized policy x1, and the

interaction term is not observed in any of the study samples.

Hence, we consider a vector of omitted variables from both studies. Now, the vector

of L explanatory variables z is composed of the vector that is observed in some study

and the other vector of the omitted variables w such that z = [x′
0, x

′
1, x

′
2, w

′]′. Each

study has its own vector of omitted variables w1 = [x′
2, w

′]′ and w2 = [x′
1, w

′]′.

With omitted variables w, the above point identification does not hold. Nevertheless,
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in addition to the linear constraints (2.1), there is a set of quadratic constraints for the

variance of y in each study. For σ2
y = V ar(y), we have

(3.1) γ′
sE(zsz

′
s)γs ≤ β′E(zz′)β ≤ σ2

y.

Below, we exploit both equations (2.1) and (3.1) given the knowledge about γs and

E(xsx
′
s). The unknown objects are β, E(xsw

′
s) and E(wsw

′
s). We consider constructing

the bounds for the parameter of interest θ = c′β given the knowledge of E(zsw
′
s)

and E(wsw
′
s) that are partially identified. Later, we aggregate the bounds for c′β by

intersecting them across s = 1 and s = 2. In the last step, we construct the bounds of

c′β by incorporating partial identification of E(xsw
′
s) and E(wsw

′
s).

The upper and lower bounds for θ are obtained by optimizing c′β subject to (2.1) and

(3.1). This optimization can be viewed as a series of linear optimizations with linear

and quadratic constraints of the following form: for each s ∈ {1, 2},

max / min
β∈RL

c′β,(3.2)

s.t. E(xsz
′)β = E(zsz

′
s)γs,

γ′
sE(zsz

′
s)γs ≤ β′Wβ ≤ σ2

y .

We illustrate the constraints in an illustration of scalar x1, x2 and w. Figure 3.2

illustrate the constraints as a cross section view along with the coefficient of x2 that

satisfies the linear constraint (2.1). As illustrated in the figure, we can ignore the lower

bound of the quadratic inequality constraint because the optimum is attained when the

upper bound of the elliptic inequality is binding.
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Figure 3.2.— A numerical illustration of two observed variables with coefficients
(β1, β2) and an omitted variable with a coefficient β3. The figure represents the two-
dimensional (β1, β2) plot of the cross section view of the three dimensional space
(β1, β2, β3) along the linear constraint that is solved for β2. Given c (black arrows),
the maximum and minimum of c′β (red dots) are the intersections of the linear con-
straint (blue straight line) and the upper bound of the quadratic constraint (the outside
orange ellipse). The identified set (bold orange line) is the interval between the red dots.

This problem (3.2) is abstracted into the following canonical form

max / min
β∈RL

c′β,(3.3)

s.t. Aβ = b,

ℓ ≤ β′Wβ ≤ u.

where A is a (L̄, L) matrix, b is a vector of length L̄ and W is a symmetric and positive

semidefinite (L,L) matrix. The problem (3.3) has a closed-form solution as in the next
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lemma.

Lemma 3.1 Given W , the solutions to the optimization problem with respect to β in

the canonical form (3.3) are given by

β = W−1A′(AW−1A′)−1b− µ(W−1 −H)c,(3.4)

where

µ = ±

√
u− b′(AW−1A′)−1b

c′(W−1 −H)c
,(3.5)

H = W−1A′(AW−1A′)−1AW−1(3.6)

Proof: Noting that at the optimum the upper bound of the quadratic inequality

constraint is binding, while the lower bound is not, we form the Lagrangean as

(3.7) L = c′β − λ′(Aβ − b)− 1

2µ
(u− β′Wβ),

where (λ, 1/2µ) ∈ RL̄+1 are Lagrange multipliers. The first-order conditions in β give

β = µW−1(A′λ− c).(3.8)

The constraint Aβ = b implies

(3.9) λ = (AW−1A′)

(
AW−1c+

1

µ
b

)
.

Combining (3.8) and (3.9) yields β in the lemma. To pin down µ, we plug in (3.8) and

(3.9) into β′Wβ = u. It leads to (3.5). Q.E.D.

To apply the lemma, for each A, observe that AW−1 can be seen as the coefficient

matrix of the linear projections of xs onto z, which is, for each s ∈ {0,S},

(3.10) AW−1 =
(
ILs×Ls OLs×(L−Ls)

)
.
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Hence, we have

AW−1A′ = E(xsx
′
s)(3.11)

H =

E(xsx
′
s)

−1 OLs×(L−Ls)

O(L−Ls)×Ls O(L−Ls)×(L−Ls)

 .(3.12)

Consider the linear projection of ws onto xs,

(3.13) ws = Πsxs + vs,

where Πs = E(wsx′
s)E(xsx

′
s)

−1. Then, by the inverse formula for a block matrix,

(3.14) W−1 =

E(xsx
′
s)

−1 +Πs′E(vsvs′)−1Πs −Πs′E(vsv
′
s)

−1

−E(vsv
′
s)

−1Πs E(vsv
′
s)

−1


Hence, we obtain

W−1 −H =

Πs′E(vsv
′
s)

−1Πs −Πs′E(vsv
′
s)

−1

−E(vsv
′
s)

−1Πs E(vsv
′
s)

−1

(3.15)

=

 Πs′

I(L−Ls)×(L−Ls)

E(vsv
′
s)

−1
(
Πs I(L−Ls)×(L−Ls)

)

Putting altogether, Lemma 3.1 gives the following proposition:

Proposition 3.1 Suppose that W = E(zz′) is constrained in an identified set ISzz′ ,

then the identified set for θ = c′β is the convex interval [maxs θ
s
ℓ ,mins θ

s
u] where

θsℓ = c′sγs − η(zs)
√

max
W∈ISzz′

c′(W−1 −H)c,(3.16)

θsu = c′sγs + η(zs)
√

max
W∈ISzz′

c′(W−1 −H)c,(3.17)

where W−1 −H is as shown in (3.15) and cs is the subvector of c corresponding to the

elements of xs in z,
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Proof: The first terms in the right-hand sides of (3.16) and (3.17) follow by com-

bining b = E(xsz
′)γs, (3.10), and (3.11). Note also that the numerator in (3.5) equals

to η(zs) =
√

V ar(y − L(y|xs)), which is an identified quantity in study s. From the

bounds for each s, we attain the stated bounds because

max
W∈ISzz′

min
s

θsu

= max
W∈ISzz′

min
s

(
c′sγs + η(zs)

√
c′W−1c− c′Hsc

)
=min

s
max

W∈ISzz′

(
c′sγs + η(zs)

√
c′W−1c− c′Hsc

)
=min

s

(
c′sγs + η(zs)

√
max

c′W−1c:W∈ISzz′
c′W−1c− c′Hsc

)

from η(zs) ≥ 0 for every s, and because

min
W∈ISzz′

max
s

θsl

= min
W∈ISzz′

max
s

(
c′sγs − η(zs)

√
c′W−1c− c′Hsc

)
=max

s
min

W∈ISzz′

(
c′sγs − η(zs)

√
c′W−1c− c′Hsc

)
=max

s

(
c′sγs − η(zs)

√
max

W∈ISzz′
c′W−1c− c′Hsc

)
.

Q.E.D.

3.1. Implementation of the bounds

The above bounds [maxs θ
s
l ,mins θ

s
u] for c′β are subject to the identified set of the

unknown matrix W . As shown in Proposition 3.1, we need to obtain the maximum

value of c′W−1c.

Below, we consider a scalar common omitted variable w. Note that the scalar unob-

servable can be a general structure given the additive model of the conditional expec-
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tation function. Its variance matrix is

W =


Ã B C D1

B′ R11 R12 D2

C ′ R′
12 R22 D3

D′
1 D′

2 D′
3 r̃

 ,

and the matrix C, the vector D = [D1, D2, D3], and a scalar r̃ are the unknown parame-

ters. We consider a sequential optimization of the objective function c′Wc. In particular,

we fix C in the the upper-block submatrix

Ā ≡


Ã B C

B′ R11 R12

C ′ R′
12 R22


and maximizing

c′

 Ā D

D′ r̃

−1

c

over D and r̃, and search for the maximizing C by a brute-force search as in the case

of no omitted variable.

Given the submatrix Ā, c′W−1c is a convex function with respect to the elements that

correspond D and r̃ as we show in the upcoming lemma below. Finding the maximum

of a convex function over a convex constraint is known to have its solutions on the

boundary of the constraint (Kubo et al., 2012, Chapter 12, for example). Hence, the

optimization is nonetheless infeasible for a large number of the omitted variables because

we need to list all the vertex of the convex constraints. Conversely, the sequential

optimization is feasible when the first stage optimization is feasible.

Note that if Ā and the whole matrix W are non-singular and r̃ > 0, we have

W−1 =

Ā−1 + Ā−1DD′Ā−1/k −Ā−1D/k

−D′Ā−1/k 1/k

 .
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where k ≡ r̃ − D′Ā−1D. Since Ā is known, our objective is to find D and k that

maximizes c′W−1c. We parameterize the objective function by ỹ ≡ [d′, k]′ where d =

[d11, d12, . . . , d1L2 , d21, d22, . . . , dL1L2 ]
′ so that

D(d) = [dij]1≤i≤L1,1≤j≤L2

as

h(ỹ) = c′

A−1 + A−1DD′A−1/k −A−1D/k

−D′A−1/k 1/k

 c.

This function h is a weakly convex function.

Lemma 3.2 The Hessian matrix of h(ỹ) is positive semi-definite.

Note again that the convexity of the objective function implies that the optimization

problem is the minimization of a concave function. Since the constraint set is convex,

a solution exists on the boundary of the constraint set.

Hence, we propose a nested-loop optimization: We fix the correlation structure among

the observed non-common covariates and find ỹ that maximizes the objective function

value, and iterate over the restrictions on the correlation structure.

The inner loop optimization involves optimization over the boundary of the con-

straints. If all the constraints are linear, then an optimal solution exists at one of

vertices of a polyhedron generated from the linear constraints. However, the set of fea-

sible D and k is constrained by the elliptic constraint of k = R̃ −D′Ã−1D. Hence, we

may approximate the elliptic constraint with a polyhedron (Ben-Tal and Nemirovski,

2001).

Below, we illustrate the optimization procedure when there is a scalar omitted vari-

able w. To obtain an informative bound, one needs to specify three quantities: V ar(w),

Corr(x1, x2) and Corr(x′, w) where x = [x0, x1, x2]
′. Consider that one has the upper

bound of V ar(w) ≤ σ̄2
w and worst-case correlation ρ̄ such that the absolute values of

Corr(x1, x2) and Corr(x,w) fall below ρ̄.

If one consider a specific omitted variable w, then one may have its summary statistics
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from other data sources that do not contain neither y nor (x1, x2). The variance bound

for V (w) may be constructed from the support of w when w is discrete. For example, if

the omitted variable w is the cross term x1x2 and both x1 and x2 are binary, then the

correlation of x1 and x2 through the cross moment E[x1x2] characterizes the unknown

part of the variance matrix.

Note that normalization V ar(w) = 1 as in Masten and Poirier (2022) is possible and

the objective function is convex in the remaining unobserved vector D from a similar

argument as in Lemma 2.1. Given σ̄2
w, one may consider the sensitivity analysis with

respect to the value of ρ̄.

Note that given C of the covariance of x1 and x2, the unknown parameters are D of

the covariance of x and w and a scalar k =
√
V ar(w)−D′ÃD. Hence, the restrictions

on {D, k} is characterized by the following set of constraints: for each xi ∈ x and the

corresponding correlation di of Corr(xi, w)

−ρ̄
√

V ar(xi)σ̄2
w ≤ di ≤ ρ̄

√
V ar(xi)σ̄2

w

and

√
D′ÃD ≤

√
σ̄2
w − k

where the latter elliptic constraint can be approximated by a polyhedron following Ben-

Tal and Nemirovski (2001). Once the constraint is represented by a polyhedron, we may

elicit the vertices of the polyhedron by the double description method (Motzkin et al.,

1953).

4. CONCLUSION

In this study, we propose the partial identification for the linear long regression coeffi-

cients from short regression coefficients by aggregating multiple sources. Specifically, we

consider two studies that share the same outcome y but contain different key variables

x1 and x2 separately. Our target parameter is the long regression coefficients E[y|x1, x2]

but we observe the short regressions E[y|x1] and E[y|x2] only.

We show that the target parameter is point identified when the covariance of x1
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and x2 are known and the long regression regresses only on the variables that are

observed in either of two study samples. Oftentimes, the covariance of x1 and x2 are

unknown. Hence, we propose bounds for the target parameter by specifying the worst-

case correlation coefficients.

Furthermore, we show that the target parameter is only partially identified when

the covariance of x1 and x2 are known but the long regression contains an omitted

variable that is never observed in two study samples. Specifically, we show that an

elliptic constraint is critical for the partial identification. The elliptic constraint arises

from the constraint on the explained variation of the long regression. We demonstrate

that the data combination tightens the bounds as the bounds are constructed as the

intersection bounds of each study.

There are a few problems left unresolved. First, the optimization of the objective

function for relatively many omitted variables can be challenging. There are a few

non-convex optimization problems proposed including the DC algorithm (Le Thi and

Pham Dinh, 2018), but we avoid these optimization procedures by focusing on a low-

dimensional problem that is typically concerned in Economics studies. Second, we focus

on the restrictions up to second moments for the partial identification and exclude other

higher-order moments and distributional information. It is possible that this information

tightens the bounds. Nevertheless, we limit our focus on the linear projection and the

first and second moments because they are relatively accessible than other higher-order

moments. Third, we assume that the short regressions represent the same population as

the long regression of interest. Considering data combinations from different populations

complicates the analysis, and we defer the analysis for future research.
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González, F. and E. Miguel (2015): “War and Local Collective Action in Sierra Leone: A Comment

on the Use of Coefficient Stability Approaches,” Journal of Public Economics, 128, 30–33.

Hosman, C. A., B. B. Hansen, and P. W. Holland (2010): “The Sensitivity of Linear Regression

Coefficients’ Confidence Limits to the Omission of a Confounder,” The Annals of Applied Statistics,

4, 849–870.

Ichimura, H. and E. Martinez-Sanchis (2009): “Estimation and Inference of Models with Incom-

plete Data by Combining Two Data Sets,” Working Paper.

Imbens, G. W. (2003): “Sensitivity to Exogeneity Assumptions in Program Evaluation,” American

Economic Review, 93, 126–132.

Krauth, B. (2016): “Bounding a Linear Causal Effect Using Relative Correlation Restrictions,” Jour-

nal of Econometric Methods, 5, 117–141.

Kubo, M., T. Akihisa, and T. Matsui, eds. (2012): Ouyou Suuri Keikaku Handbook (In Japanese),
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APPENDIX A: PROOFS

Proof of Lemma 2.1:

W =


A B C

B′ R11 R12

C ′ R′
12 R22

 ,

If W is positive definite, then there is an upper triangular matrix

M =


M1 M2 M3

0 M4 M5

0 0 M6


such that

W = M ′M.

Note that
M ′

1 0 0

M ′
2 M ′

4 0

M ′
3 M ′

5 M ′
6



M1 M2 M3

0 M4 M5

0 0 M6

 =


M ′

1M1 M ′
1M2 M ′

1M3

M ′
2M1 M ′

2M2 +M ′
4M4 M ′

2M3 +M ′
4M5

M ′
3M1 M ′

3M2 +M ′
5M4 M ′

3M3 +M ′
5M5 +M ′

6M6.


or

W =


A B M ′

1M3

B′ R11 R12

M ′
3M1 R′

12 R22


where M1 is known as Cholesky decomposition of A matrix: A = M ′

1M1. Consequently,
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M3 is the only free parameter to optimize and the elements of C maps the elements of

M3 uniquely given the other parts of the matrix W . Let m3 = vec(M3) with its length

K. For each element m3j of m3, the derivative of c′W−1c is

∂c′W−1c

∂m3j

= −c′W−1


0 0 M ′

1M3j

0 0 0

M ′
3jM1 0 0

W−1c

where M3j is the matrix M3 replacing m3j element with 1 and all the other with 0. The

cross-derivative with m3j and m3i is

∂2c′W−1c

∂m3j∂m3i

=c′W−1


0 0 M ′

1M3i

0 0 0

M ′
3iM1 0 0

W−1


0 0 M ′

1M3j

0 0 0

M ′
3jM1 0 0

W−1c

+ c′W−1


0 0 M ′

1M3j

0 0 0

M ′
3jM1 0 0

W−1


0 0 M ′

1M3i

0 0 0

M ′
3iM1 0 0

W−1c.

Let H be the Hessian matrix of c′W−1c with respect to m3. For any non-zero vector c̃

of length K,

c̃′Hc̃ =
K∑
i=1

K∑
j=1

c̃ic̃j
∂2c′W−1c

∂m3j∂m3i

= 2c′W−1


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1c

where M̃3 =
∑K

i=1 c̃iM3i. Consequently, the matrix

W−1


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1
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is symmetric and has the Cholesky decomposition ofW−1


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1/2


W−1/2


0 0 M ′

1M̃3

0 0 0

M̃ ′
3M1 0 0

W−1


from the positive-definiteness of W . This proves that c̃′Hc̃ ≥ 0; hence, c′W−1c is a

(weakly) convex function with respect to the elements of C. Q.E.D.

Proof of Lemma 3.2: Consider taking derivatives with respect toD = {d1, . . . , dL̄}
and k. For each i ∈ {1, . . . , D̄},

∂h

∂di
= c′

A−1(DiD
′ +DD′

i)A
−1/k −A−1Di/k

−D′
iA

−1/k 0

 c.

where Di is a (L̄× 1) vector with ith element being 1 and 0 otherwise, and

∂h

∂k
= c′

−A−1DD′/k2 A−1D/k2

D′A−1/k2 −1/k2

 c.

Taking second derivatives, we obtain

∂2h

∂di∂dj
= c′

A−1(DiD
′
j +DjD

′
i)A

−1/k 0

0 0

 c,

∂2h

∂di∂k
= c′

−A−1(DiD
′ +DD′

i)A
−1/k2 A−1Di/k

2

D′
iA

−1/k2 0

 c,

and

∂2h

∂k2
= c′

2A−1DD′A−1/k3 −2A−1D/k3

−2D′A−1/k3 2/k3

 c.

To check the definiteness of the Hessian,∇2h, take a quadratic form with an arbitrary
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non-zero vector ỹ of the same shape as y,

ỹ′∇2hỹ =
∑
i

∑
j

d̃id̃j
∂2h

∂di∂dj
+ k̃2∂

2h

∂k2
+ 2

∑
i

d̃ik̃
∂2h

∂di∂k

=2c′

A−1(k−1(D̃D̃′)− k̃k−2(D̃D′ +DD̃′) + k̃2k−3(DD′))A−1 A−1(D̃k̃/k2 −Dk̃2/k3)

(D̃′k̃/k2 −D′k̃2/k3)A−1 k̃2/k3

 c

=2c′

A−1k−1((D̃D̃′)− k̃k−1(D̃D′ +DD̃′) + k̃2k−2(DD′))A−1 A−1k−1(k̃/k)(D̃ −Dk̃/k)

k−1(k̃/k)(D̃′ −D′k̃/k)A−1 k−1(k̃/k)2

 c

=2c′

A−1k−1(D̃ − k̃k−1D)(D̃′ − k̃k−1D′)A−1 A−1k−1(k̃/k)(D̃ −Dk̃/k)

k−1(k̃/k)(D̃′ −D′k̃/k)A−1 k−1(k̃/k)2

 c

=2c′

k−1/2A−1(D̃ − k̃k−1D) 0

k−1/2(k̃/k) 0

k−1/2(D̃′ − k̃k−1D′)A−1 k−1/2(k̃/k)

0 0

 c ≥ 0.

because the matrix inside is Cholesky decomposed and therefore is positive semi-

definite. Consequently, the Hessian matrix is positive semi-definite. Q.E.D.
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