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Abstract

We study pillage games (Jordan in J Econ Theory 131.1:26-44, 2006,
“Pillage and property”), which model unstructured power contests. To en-
able empirical tests of pillage game theory, we relax a symmetry assumption
that agents’ intrinsic contributions to a coalition’s power is identical. We
characterise the core for all n. In the three-agent game: (i) only eight con-
figurations are possible for the core, which contains at most six allocations;
(ii) for each core configuration, the stable set is either unique or fails to
exist; (iii) the linear power function creates a tension between a stable set’s
existence and the interiority of its allocations, so that only special cases con-
tain strictly interior allocations. Our analysis suggests that non-linear power
functions may offer better empirical tests of pillage game theory.
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1 Introduction
We study allocation of resources in unstructured power contests. The underly-
ing model is that of a pillage game (Jordan, 2006) in which an aggregate wealth
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endowment is split among agents, who can form coalitions. A power function
maps every coalition and its wealth to a real number. A more powerful coalition
can non-consensually ‘pillage’ the resources of a less powerful coalition. As a
pillage game’s power function completely encodes its dominance relation, this
corresponds to the new allocation dominating the original one. The power func-
tion is assumed to be monotonic, so that coalitions become more powerful as they
gain members, or gain resources.

A typical game-theoretic solution describes allocations of wealth (analogous
to imputations in more general coalitional games) corresponding to the core (which
may be empty), or a von Neumann-Morgenstern stable set (which may not exist).
The core is appealing as the set of undominated allocations. As farsighted agents
may recognise that a pillage operation that benefits them may allow another that
does not (Harsanyi, 1974), Jordan (2006) proved that, when agents shared com-
mon expectation functions over dominance paths, stable sets are equivalent to
farsighted cores.1

The existing literature on pillage games almost exclusively considers symmet-
ric power functions, in which the identity of the agents in a coalition does not
matter. We consider the simplest generalisation of this model: each agent has an
intrinsic ‘strength’ that is added to its wealth endowment; the power of a coalition
is the sum of the wealth and the intrinsic strengthes of its members. We term such
games asymmetric majority pillage games (AMPG); they are parameterised by a
number of players, and a vector of intrinsic strengths.

In the classic majority game (in characteristic function form), one allocation
dominates another if and only if it is preferred by a strictly larger coalition. In the
majority pillage game (Jordan and Obadia, 2015), an allocation may also dominate
another if the coalitions favouring and opposing it are the same size, as long as
the former holds more resources. The AMPG studied here generalise the majority
pillage game, both by allowing asymmetric intrinsic strength and by allowing the
non-empty core case (in which resource holdings can dominate intrinsic strength).

As symmetry is the exception in practice, we relax it to aid both applications
and tests of the theory. We are particularly interested in when stable sets exist, and
when they allow interior allocations, so that no agent is left without resources.

We believe that pillage games are of interest for three reasons. First, we see
unstructured interactions, without binding game forms, as pervasive: “procedures
are not really all that relevant; that it is the possibilities for coalition forming,
promising and threatening that are decisive, rather than whose turn it is to speak”
(Aumann, 1985). Second, we believe that resources often convey both utility and
power. Third, we see the costless, predictable nature of pillage as consistent with

1This result has contributed to the deepest body of resulting theory, q.v. Ray and Vohra (2015),
Dutta and Vohra (2017), Ray and Vohra (2019), Bloch and Nouweland (2020).
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sophisticated, well-informed agents, even in the presence of strong institutions:
for example, by convention, losers of democratic elections publicly concede, sig-
nalling to their supporters not to engage in costly civil wars that they will lose.2

Pillage games’ stable sets can yield sharp predictions: they are small (Jordan,
2006; Kerber and Rowat, 2011; Saxton, 2011; Rowat and Kerber, 2014; Beardon
and Rowat, 2013) and unicity seems to be the norm (Jordan, 2006; Rowat and
Kerber, 2014).3

Section 2 introduces pillage games. Theorem 1 establishes that only two types
of allocations may belong to the core of AMPGs for any n ≥ 3, and the conditions
under which they do. For the n = 3 case, Corollary 1 identifies the corresponding
strength vector for each of the eight possible cores.

The rest of the paper focuses on the three-agent AMPG. Thorough n = 3
analyses have typically been important steps towards developing more general
analyses in the coalitional literature.4 This is partly pragmatic:

Finding stable sets involves a new tour de force of mathematical rea-
soning for each game or class of games that is considered. . . . there
is no theory, no tools, certainly no algorithm. (Aumann, 1985)

Of course, n = 3 is not just a useful stepping stone, but an appropriate model
of some situations — from the geopolitical (e.g. the Chinese Three Kingdoms
period of 220 – 280 AD) to the microeconomic (e.g. (Straffin, 1993; McDonald,
1977) on sharing communications satellites, or Hellman and Wasserman (2011)
on splitting founders’ equity).

Section 3 analyses stable sets when the core is empty. Theorem 2 presents
necessary and sufficient conditions for the existence of a unique stable set com-
prising three allocations, each splitting the resource equally between two of the
agents. Perhaps surprisingly, this is identical to the stable set in the symmetric
special case: power struggles over these 50/50 allocations pit one agent (without
resources) against another agent (with half the resources); as long as the former’s
intrinsic strength is not too much greater than the latter’s, the 50/50 split is de-

2Jackson and Morelli (2011) open their survey of the reasons for wars by asking why they,
“occur and recur, especially in cases when the decisions involved are made by careful and rational
actors?” Pillage games aid study of the cases short of war.

3MacKenzie, Kerber, and Rowat (2015) constructed examples of pillage games with multi-
ple stable sets. It is also the only paper to violate symmetry, which it did to construct counter-
examples, rather than systematically.

4For instance, von Neumann and Morgenstern (1953) for games in characteristic function form,
and Thrall and Lucas (1963) for those in partition function form. These both establish results in
the simplest non-trivial case, and build intuitions for further analyses. This partly reflects the
computational complexity of the stable set as a solution concept: even in a special case, Deng and
Papadimitriou (1994) found that “existence [of a stable set] may not even be decidable”
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fensible; otherwise, the stable set fails to exist. Thus, power asymmetries do not
distort the stable set: they strain it to the point at which it breaks.

Section 4 analyses stable sets for non-empty cores. Although the geometry is
more complicated, we may proceed algorithmically: first, if a stable set exists, the
core must belong to it; second, allocations dominated by the core cannot; third, the
remaining allocations — typically linear loci within which one agent is as power-
ful as the other two — can be analysed using techniques from the empty core case.
Corollary 4 presents a general non-existence result; the remainder of the section
presents results for stable sets under each of the eight possible cores. It finds a
tension between a stable set’s existence and the possibility of interior allocations:
as candidate interior allocations balance agents’ powers, they cannot dominate
their neighbouring allocations; domination of the other allocations on the locus
typically requires including an extremal allocation, which lies on the simplex’s
edge; when agents have positive intrinsic strength, these extremal allocations are
themselves dominated by core allocations, preventing existence.

Section 5 concludes the paper. Its overarching findings are: non-existence of
stable sets is pervasive in n = 3 AMPG; strictly interior allocations only occur
in special cases — including both new configurations and the symmetric case
already known to the literature (Jordan, 2006, Theorem 3.3); when stable sets do
exist, they are unique. The link between the linear power function used here and
the non-existence mechanism suggests that non-linear power functions may by
better candidates for empirical work.

2 Pillage games
Let I ≡ {1, . . . , n} be a finite set of agents, indexed by i. An allocation, x, is a
division of a unit resource among them, so that the feasible set of allocations is

X ≡

(xi)i∈I

∣∣∣∣∣∣∣xi ≥ 0,
∑
i∈I

xi = 1

 . (1)

Let ⊂ denote a proper set inclusion, and use ⊆ to allow the possibility of equal-
ity. Jordan (2006) defined a power function over subsets of agents and allocations,
so that π : 2I × X → R satisfies:

(WC) if C ⊂ C′ ⊆ I then π (C′,x) ≥ π (C,x)∀x ∈ X;

(WR) if yi ≥ xi for all i ∈ C ⊆ I then π (C,y) ≥ π (C,x); and

(SR) if ∅ , C ⊆ I and yi > xi for all i ∈ C then π (C,y) > π (C,x).
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Simply, the axioms imply that more is better: by axiom WC, adding agents makes
a coalition more powerful; by axiom WR, weakly adding resources makes a coali-
tion weakly more powerful; axiom SR is a strict version of axiom WR.

The class of power functions considered here is

π (C,x) =
∑
i∈C

(xi + vi) ; (2)

where C ⊆ N is a non-empty coalition of agents, x ∈ X and vi ∈ R+ allows agents’
intrinsic strengths to differ. Power function (2) provides one of the simplest possi-
ble specifications of an asymmetric pillage game, introducing one parameter per
agent. Jordan’s wealth is power function is a symmetric special case of this in
which vi = 0 for all i; the majority pillage game analysed in Jordan and Obadia
(2015) sets vi > 1 for all i.

We index agents in two different ways. First, to merely label them, we use the
generic i, j, k, . . . or 1, 2, 3, . . .. Second, to order agents by their intrinsic contribu-
tions to their coalitions’ power, we use a, b and c such that

va ≥ vb · · · vn ≥ 0. (3)

If we display an allocation’s constituent coordinates, we do so in the natural order
implied by our choice of index, whether x = (x1, x2, x3) or x = (xa, xb, xc). This
does not imply that, for example, xa = x1.

An allocation y dominates an allocation x, written y K x, iff

π (W,x) > π (L,x) ;

where W ≡ {i |yi > xi } and L ≡ {i |xi > yi } are called the win set and lose set,
respectively. Thus, allocation y dominates allocation x if and only if the set of
agents who benefit in a re-allocation from x to y are more powerful at the original
allocation x than is the set of agents who lose from that re-allocation.5

By the strict inequality, domination is irreflexive; by axiom SR, it is asymmet-
ric; as in the general case (von Neumann and Morgenstern, 1953), dominance is
not generally transitive.

For Y ⊂ X, let
D (Y) ≡ {x ∈ X |∃y ∈ Y s.t. y K x } (4)

be the dominion of Y , the set of allocations dominated by an allocation in Y .
This paper studies asymmetric majority pillage games:

5When referring to two allocations in the following, we may use W and L as a shorthand to
indicate the agents benefiting and losing, respectively, from a move between them, even if we do
not explicitly define them as such.
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Definition 1. An asymmetric majority pillage game (AMPG) is a profile 〈I, X, (vi)i∈I , π〉,
where I = {1, 2, . . . , n}, X is defined by equation (1), (vi)i∈I are non-negative reals,
and the power function π is defined by (2).

For tractability’s sake, it concentrates on the n = 3 case.

2.1 The core
The core is the set of undominated allocations, K ≡ X\D (X). To characterise it,
define two types of allocation:

Definition 2. (Jordan, 2006) Let ti ∈ X be a tyrannical allocation such that ti
i = 1

and ti
j = 0 for all j , i ∈ I.

Let bi j bilaterally balance power, so that π
(
{i} , bi j

)
= π

(
{ j} , bi j

)
with bi j

i , b
i j
j >

0 for distinct i, j and bi j
k = 0 for any other agents k.

Thus, the tyrannical allocations may be limit points of the bilaterally balanced
allocations, but the two cannot coincide.

Thus, given power function (2), we have:

bi j
i =

1
2

(
1 − vi + v j

)
. (5)

Then:

Theorem 1. In the AMPG with n ≥ 3, the core can contain no allocations other
than the tyrannical ti and the bilaterally balanced bi j, for all distinct i and j:

1. ti belongs to the core iff vi ≥
∑

j∈N\{i} v j − 1; and

2. bi j belongs to the core iff vk = 0 for all k distinct from i, j, and vi − v j ∈

(−1, 1).

Proof. First, consider the allocations that assign the resource exclusively to a sin-
gle agent. These are, by definition, the tyrannical ti. The theorem’s first condition
is equivalent to the non-existence of x ∈ X\

{
ti
}

such that x K ti.
Now consider the allocations that split the resource between two agents, say

i and j, so that xk = 0 for all other agents k. For these agents to defend their
holdings against the other two, the following inequalities must be satisfied:

xi + vi ≥ x j + v j +
∑

k∈N\{i, j}

vk;

x j + v j ≥ xi + vi +
∑

k∈N\{i, j}

vk.
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Combining these requires

x j + v j + 2
∑

k∈N\{i, j}

vk ≤ xi + vi +
∑

k∈N\{i, j}

vk ≤ x j + v j.

As xi, x j, vi and v j are non-negative, this forces
∑

k∈N\{ j,k} vk = 0, forcing all indi-
vidual vk = 0. Thus, xi + vi = x j + v j which, with the unit endowment constraint,
yields the bi j. Constraining bi j

i and bi j
j to lie in (0, 1) yields the interval condition

for v j in the statement of the theorem.
Finally consider allocations that split the resource between three agents, so

that xi, x j, xk > 0. By the above reasoning, one of the necessary conditions is

x j + v j + 2xk + 2vk + 2
∑

l<{i, j,k}

vl ≤ xi + vi + xk + vk +
∑

l<{i, j,k}

≤ x j + v j.

This requires xk = 0, a contradiction. The possibility of core allocations with
more than three agents holding resources is similarly ruled out. �

As a bi j can belong to the core only if both ti and t j do, the following corre-
spondences between cores and parameters holds for n = 3:

Corollary 1. 1. K = ∅:
−va + vb + vc > 1. (6)

2. K = {ta}:
−va + vb + vc ≤ 1,−va + vb − vc < −1. (7)

3. K =
{
ta, tb

}
:

(−va + vb − vc ≥ −1) , (0 < vc < va + vb − 1) ; or (8)
vc = 0 < vb = va − 1. (9)

4. K =
{
ta, tb, bab

}
:

vc = 0, vb ≥ va − 1, vb > 1 − va. (10)

5. K =
{
ta, tb, tc

}
:

vc ≥ va + vb − 1, vc > 0; or (11)
va = 1 > vb = vc = 0. (12)

6. K =
{
ta, tb, tc, bab

}
:

vc = 0 < vb ≤ 1 − va. (13)
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7. K =
{
ta, tb, tc, bab, bac

}
:

0 = vc = vb < va < 1. (14)

8. K =
{
ta, tb, tc, bab, bac, bbc

}
:

vc = vb = va = 0. (15)

The corollary follows from the theorem’s requirement that each agent hold-
ing resources must be at least as powerful as the other two combined: the cases
instantiate the theorem’s conditions for the inclusion or exclusion of the ti and bi j.

Empty core condition (6) thus generalises the symmetric condition in Jordan
(2006, Proposition 4.2), which was restricted to v > 1.

2.2 Stable sets
The stable set is the original von Neumann and Morgenstern (1953) solution con-
cept, initially just called the ‘solution’. Unlike the core, which is defined point-
wise, it is defined setwise, making it harder to compute. Intuitively, a set of al-
locations is stable if they satisfy internal stability (no allocation in a stable set
dominates another) and external stability (every allocation outside a stable set is
dominated by at least one allocation in a stable set).

A set of allocations, S ⊆ X, is a stable set iff it satisfies internal stability,

S ∩ D (S ) = ∅; (IS)

and external stability,
S ∪ D (S ) = X. (ES)

The conditions combine to yield S ≡ X\D (S ).
While stable sets may not exist, or may be non-unique, the core necessarily

belongs to any stable set; when the core also satisfies external stability, it is the
unique stable set. Jordan (2006) proved that a pillage game’s stable set has the
property of being the set of allocations that are undominated given a consistent set
of expectations about what subsequent domination operation would be attempted
following the initial one.

The rest of this paper analyses stable sets in the n = 3 AMPG, seeking to
decide existence and — when they do exist — to derive them.

3 The empty core
The analysis in this section extends that in Jordan and Obadia (2015, §3) to the
asymmetric case. The core is empty when inequality (6) holds.
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The following lemma generalises Jordan and Obadia (2015, Lemma 3.4) be-
yond its symmetric case of v1 = v2 = v3 > 1:

Lemma 1. Suppose that S is internally stable in an n = 3 AMPG with an empty
core. If x and x′ belong to S , then there exists an i ∈ I such that xi = x′i . Further,
xk + vk ≤ x j + v j and x′j + v j ≤ x′k + vk.

Proof. Assume, contrary to the lemma, that there exist x,x′ ∈ S such that xi , x′i
for all i ∈ I. Then, without loss of generality, we generically have that xi > x′i , x j <
x′j and xk < x′k. This yields a contradiction:

1. the empty core property requires that xi + vi < 1 − xi + v j + vk for all x ∈ X
and distinct i, j, k ∈ I;

2. internal stability requires that x′ 6K x, so that xi + vi ≥ 1 − xi + v j + vk.

Thus, for two internally stable allocations there must exist at least one agent
for whom xi = x′i . When these allocations are distinct, x j−x′j = −

(
xk − x′k

)
, 0, so

that W ≡
{
i ∈ I

∣∣∣xi > x′i
}

and L ≡
{
i ∈ I

∣∣∣xi < x′i
}

are singletons that exclude i. �

Intuitively, the empty core ensures that the loci of allocations at which one
agent is just as powerful as the other two lie outside the set of feasible allocations,
X. In internally stable sets all pairs of allocations must lie on opposite sides of
such balance of power loci. Thus, given an empty core, an internally stable set
cannot contain two allocations that pit a given agent against the other two. Along
the relevant balance of power loci, then, at least one agent must be indifferent.

Now extend Jordan and Obadia’s Lemma 3.5 to the asymmetric case:

Lemma 2. Suppose that S is internally stable in an n = 3 AMPG with an empty
core. Then S has no more than three elements

The proof establishes that, under the lemma’s conditions, an internally stable
set cannot contain four allocations, which also precludes it having more than four:

x y z

π ({2} ,y) = π ({3} ,y)

Figure 1: Collinear, internally stable x,y and z with x1 = y1 = z1

9



Proof. Consider three points, x,y, z, in an internally stable set S . By Lemma
1, the line running between any two of these must be parallel to the edge of the
simplex X. Without loss of generality, there are two possible configurations:

1. x,y, and z, are collinear, as depicted in Figure 1, with (wlog) x1 = y1 = z1,
x2 > y2 > z2, and x3 < y3 < z3.

In this case, as π ({2} ,x) > π ({2} ,y) > π ({2} , z) and π ({3} ,x) < π ({3} ,y) <
π ({3} , z) hold, internal stability requires that π ({2} ,y) = π ({3} ,y). As-
sume, on the contrary, there is another distinct w ∈ S . Then there are two
cases to consider:

(a) w1 = x1. Then we have the following four possibilities, each leading
to a contradiction: i. w2 > x2, so that w K x holds by v2+ x2 > v3+ x3;
ii. x2 > w2 > y2, so that x K w; iii. y2 > w2 > z2, so that z K w; and
iv. z2 > w2, so that w K z. Thus, the requirement that S is internally
stable forces w1 , x1 for w ∈ S .

(b) w1 , x1. By Lemma 1, w and x share a coordinate other than i = 1,
say w2 = x2, without loss of generality. Likewise, w and y share a
coordinate other than i = 1, 2, which implies w3 = y3. Then, to share
a coordinate between w and z, either w2 = z2 or w3 = z3 must hold, as
w1 = z1 is impossible by x1 = z1. However, w2 = z2 implies x2 = z2,
which together with x1 = z1 imply that x = z, a contradiction. The
same reasoning is applied for w3 = z3. Thus, there is no distinct w in
S whenever x,y, and z, are collinear.

2. x, y, and z, are triangular, as depicted in Figure 2, with x1 = y1, y2 = z2,
and z3 = x3.

Again, assume that there is another distinct w ∈ S . Then:

(a) w cannot lie on any of the three lines passing through any two of x, y,
and z. Assume, wlog, that w was collinear with y and z; this returns
us to the collinear case, above, but with x as the fourth allocation that
necessarily violates internal stability.

(b) it remains only to consider (wlog) w2 = x2, the dotted line passing
through x in Figure 2. By Lemma 1, there must be an agent i , 2
such that wi = yi. It cannot be i = 1 as that would force, by x1 = y1,
w = x . This leaves w3 = y3, the dotted line through y in Figure 2.
Finally, Lemma 1 forces w1 = z1. The equalities imply

w1 + w2 = z1 + x2 = 1 − w3 = 1 − y3 = y1 + y2 = x1 + z2.
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w2 = x2 w3 = y3

t1

t2 t3

x
y

z

Figure 2: Triangular, internally stable x,y and z with x1 = y1, y2 = z2 and z3 = x3

By the second and final terms in the above, we may define

k ≡ x1 − x2 = z1 − z2.

As x and z are feasible,

x1 + x2 + x3 − k = z1 + z2 + z3 − k ⇒ 2x1 + x3 = 2z1 + z3.

Since z3 = x3, the last equation implies that x1 = z1, which further
implies x = z holds, a contradiction.

Having eliminated the possibility of four internally stable allocations, we may
conclude that more than four are also impossible, proving the result. �

Definition 3. Let si j be the allocation that splits the resource equally between
agents i and j, so that si j

i = si j
j =

1
2 .

Thus, unlike the bi j previously defined, the si j need not balance power.
Then:

Lemma 3. Suppose that S is stable in an n = 3 AMPG with an empty core. Then
S =

{
s12, s13, s23

}
.
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Proof. The largest possible S contains, by Lemma 2, three elements, {x,y, z}.
Consider that possibility first.

By Lemma 1, there are again two possible configurations of three internally
stable allocations:

1. linear: Without loss of generality, let x̄ ≡ x1 = y1 = z1, x2 > y2 > z2, and
x3 < y3 < z3, as depicted in Figure 1. We resolve this case in two steps:

(a) x = (x̄, 1 − x̄, 0) and z = (x̄, 0, 1 − x̄). We first show that x =
(x̄, 1 − x̄, 0). Suppose, on the contrary, that x3 > 0. Then, there ex-
ists x′ with x2 > x′2, x′3 < x3, and x′1 = x̄. By external stability, this
x′ must be dominated by one of x,y, z. All three possibilities require
the same conditions:

π
(
{3} ,x′

)
> π

(
{2} ,x′

)
⇔ x′3 + v3 > x′2 + v2.

However, by internal stability, y 6K x, which implies π ({3} ,x) ≤
π ({2} ,x) ⇔ x3 + v3 ≤ x2 + v2, contradicting x K x′. Thus, x3 = 0;
identical reasoning obtains z2 = 0.

(b) {x,y, z} cannot satisfy external stability. Consider x′′ ≡ 1
2 (y + z) +

(ε, 0,−ε) ∈ X for sufficiently small ε > 0. None of x,y, z dominate
x′′: i. z 6K x′′: dominance would require π ({3} ,x′′) > π ({1, 2} ,x′′),
but Theorem 1’s empty core property implies that 1 + v3 < v1 + v2,
a contradiction by axiom SR. ii. x 6K x′′ and y 6K x′′: in either
case, domination would require π ({2} ,x′′) > π ({1, 3} ,x′′). However,
again, by Theorem 1’s empty core property with , 1 + v2 < v1 + v3

holds, contradicting dominance.

2. triangular: We resolve this case in three steps:

(a) each of x,y and z must set one component to zero. Suppose not.
Then x > 0 must hold with x1 = y1, y2 = z2, and z3 = x3, as in Figure
2. Then, consider x′′′ ≡ x + (ε,−2ε, ε) ∈ X for sufficiently small
ε > 0. None of x,y, z can dominate x′′′: i. x 6K x′′′: dominance
would require π ({2} ,x′′′) > π ({1, 3} ,x′′′). Again, this contradicts
Theorem 1’s empty core property, 1 + v2 < v1 + v3. ii. y 6K x′′′

and z 6K x′′′: in either case, domination would require W = {2} and
L = {1, 3} if x2 < y2 = z2. Thus, again by the empty core property
with Theorem 1, neither y nor z can dominate x′′′ in this case. Now
consider the remaining case, x2 > y2 = z2. It implies x′′′2 > y2 = z2

by choosing ε > 0 sufficiently small. Then, y K x′′′ is equivalent
to π ({3} ,x′′′) > π ({1, 2} ,x′′′) with W = {3} and L = {1, 2}, while
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z K x′′′ is equivalent to π ({1} ,x′′′) > π ({2, 3} ,x′′′) with W = {1}
and L = {2, 3}. Either case is impossible by the empty core property
with Theorem 1. In summary, there exists x′′′ ∈ X, undominated by
any of x,y, z, which contradicts the external stability of S .

(b) S ⊆
{
s12, s13, s23

}
. By the previous step and Lemma 1, we only need

to consider the following two possibilities:

i. x = (a, 0, 1 − a), y = (a, 1 − a, 0), and z = (0, a, 1 − a).
ii. x = t1, y = t2, and z = t3.

The second case violates external stability: for any feasible w > 0 to
be dominated by one of t1, t2, and t3, it must be that #W = 1, #L = 2,
and π (W,w) > π (L,w). However, by axiom SR, the last inequality is
impossible by the empty core property.
For the first case, the resource constraint requires a = 1

2 , so that
{x,y, z} =

{
s12, s13, s23

}
.

(c) S ⊇
{
s12, s13, s23

}
. Suppose, without loss of generality, s23 < S . Then,

consider w ≡ 1
2

(
s12 + s13

)
+(ε, 0,−ε) ∈ X for sufficiently small ε > 0.

By the reasoning developed in the external stability step of the linear
case above, neither s12 nor s13 can dominate w due to Theorem 1’s
empty core property.

�

Intuitively, Lemma 1 allowed only linear or triangular three-element stable
sets. Linear sets do not dominate some non-collinear allocations, violating exter-
nal stability. In triangular sets, each allocation sets at least one term to zero: if not,
they leave undominated more extremal allocations; the equal split configuration
then also ensures that the allocations between stable elements are dominated.

The main result of this section generalises Jordan and Obadia (2015, Theorem
3.7) beyond the symmetric case:

Theorem 2. For an n = 3 AMPG with an empty core, va − vc ≤
1
2 is necessary

and sufficient for internal stability of S =
{
s12, s13, s23

}
. Empty core condition (6)

suffices for the external stability of S , leaving it the unique stable set when it is
internally stable.

Proof. By Lemma 3, the only candidate stable set is S =
{
s12, s13, s23

}
.

Internal stability implies vi ≤
1
2 + v j for all i and j. By inequality (3)’s order-

ing, this is equivalent to va ≤
1
2 + vc, the lemma’s stated inequality. Now establish

the other direction, that this inequality implies internal stability. By the resource
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monotonicity axioms, it must be that sab 6K sbc: the agent with the greatest intrin-
sic strength (but no resources) cannot defeat that with the least intrinsic strength
(but with half the resources); this is equivalent to the lemma’s inequality.

By external stability, each x ∈ X\S that is undominated by an s ∈ S implies
that there are distinct j and k such that x j, xk <

1
2 . By inequality (3), empty core

inequality (6) implies that 1 + vi < v j + vk for agents j and k. As xi ≤ 1 and
x j, xk ≥ 0, it follows that xi + vi < x j + v j + xk + vk, so that s jk K x, establishing
external stability. �

Perhaps surprisingly, the allocations in the stable set do not vary with vi un-
til the set ceases to exist. Intuitively, the empty core condition limits the relative
strength of the intrinsically strongest agent. This prevents any single agent over-
powering the other two for any allocation. As a result, the only power contests
that must be considered are those between singleton coalitions. The theorem’s
bound on relative power ensures that the intrinsically least powerful agent with
half of the resource can defend itself against the most powerful with none of the
resource. Thus, power need not be equally balanced at the si j allocations: while
va increases relative to vc, there is no distortion in S until the asymmetry becomes
too large, and internal stability fails completely.

4 The non-empty core
This section derives the stable sets (if any) corresponding to each of the possible
non-empty cores identified in Corollary 1.

As the core must be included in any stable set, the proofs follow a similar
pattern: the core seeds a candidate stable set; the allocations dominated by the
core are excluded from consideration; over the remaining allocations (often just
linear loci) it is as if the core is empty, allowing the use of techniques from the
previous section. Of particular importance is the locus of allocations along which
the most intrinsically powerful agent, a, is just as powerful as the other two, b, c;
we prove that the existence of a stable set on X requires the existence of a stable
set along that locus. When non-existence arises, it is for the same reason identified
in the symmetric case in Rowat and Kerber (2014): allocations on these loci are
only dominated by more extreme ones; thus, external stability requires including
the most extreme allocations in a stable set; when these extreme allocations are
themselves dominated by a core allocation, existence fails.

Define the balance of power locus for agent i to be:

B (i) ≡ {x ∈ X |π ({i} ,x) = π ({ j, k} ,x) } (16)

The following lemma helps establish the result that existence of a stable set on
X requires the existence of a stable set on non-empty balance of power loci:

14



Lemma 4. Consider an n = 3 AMPG with non-empty core. Then, for each i ∈ I
such that B (i) , ∅, x ∈ B (i)⇒ @y ∈ X\B (i) such that yi < xi and y K x.

Proof. As yi < xi, agent i would oppose y K x. By definition, x ∈ B (i) implies
that agent i on its own is as strong as agents j and k together. By axiom WC, this
is the most powerful coalition that can oppose i, concluding the proof. �

This helps us decompose the search for stable sets: for all non-empty B (i), if
a stable set exists, its intersection with B (i) must be a stable set on B (i):

Corollary 2. In an n = 3 AMPG with a non-empty core, if a stable set S exists
in X, then S ∩ B (i) , ∅ and D (S ∩ B (i)) ⊇ B (i) \S hold for each i ∈ I with
B (i) , ∅.

Proof. For external stability to hold, each x ∈ B (i) must either belong to a stable
set S or be dominated by an allocation in S . We will show that if the latter case
applies, then that allocation in S also belongs to B (i).

If xi = 1 for x ∈ B (i), this implies x = ti. As x = ti ∈ B (i), vi + 1 = v j + vk

holds, which implies by Theorem 1, ti ∈ K. Thus, x ∈ S holds.
If xi ∈ [0, 1) for x ∈ B (i), then consider the following three subcases:

1. Let z ∈ X be such that zi > xi. By x ∈ B (i) and axiom SR, π ({i} , z) >
π ({ j, k} , z), which implies that ti K z. Moreover, the last strict inequality
implies that 1 + vi > v j + vk, and thus ti ∈ K ⊆ S by Theorem 1. Therefore,
by the internal stability condition, z < S holds. Therefore, z cannot be used
to show that x < S .

2. Let y ∈ X be such that yi < xi. By Lemma 4, y 6K x. Again, y cannot be
used to show that x < S .

3. By the previous two subcases, if x < S , then there must exist x′ ∈ S such
that both x′i = xi and x′ K x hold. By definition, x′ ∈ B (i).

Thus, for each i ∈ I with B (i) , ∅, S ∩ B (i) , ∅ and D (S ∩ B (i)) ⊇ B (i) \S
hold. �

Some elements in the B (i) play an important role in determining whether sta-
ble sets exist. First:

βi
i ≡

v j + vk − vi + 1
2

; (17)

ea
b ≡

(
βa

a, 1 − β
a
a, 0

)
; eb

a ≡
(
1 − βb

b, β
b
b, 0

)
; and ec

a ≡
(
1 − βc

c, 0, β
c
c
)
.
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Define β̄i as the allocation on B (i) that balances the power of j and k, so that
β̄i

j + v j = β̄
i
k + vk:

β̄i ≡
(
βi

i, β̄
i
j, β̄

i
k

)
,

where
β̄i

j ≡
1 + vi + vk − 3v j

4
; and β̄i

k ≡
1 + vi + v j − 3vk

4
.

Assuming v j ≥ vk without loss of generality, it follows that

β̄i ∈ X ⇔ βi
i ∈ [0, 1] ; and

(
1 − βi

i

)
≥

∣∣∣vk − v j

∣∣∣ .
By definition,

B (i) , ∅ if and only if βi
i ∈ [0, 1] .

Corollary 3. In an n = 3 AMPG with a non-empty core, let a stable set S exist in
X. Then,

B (a) , ∅⇒ ea
b ∈ S ; B (b) , ∅⇒ eb

a ∈ S ; and B (c) , ∅⇒ ec
a ∈ S .

Moreover,

B (a) , ∅, β̄a ∈ X ⇒ ea
c , β̄

a ∈ S ;

B (b) , ∅, β̄b ∈ X ⇒ eb
c , β̄

b ∈ S ; and

B (c) , ∅, β̄c ∈ X ⇒ ec
b, β̄

b ∈ S .

Before proving the Corollary, we provide some background for the non-existence
mechanism (q.v. also Rowat and Kerber (2014)):

Definition 4. The dominance operator, K , is a strict total order on a set of allo-
cations, A, iff, for any x,y, z ∈ A the following hold:

1. trichotomy: exactly one of x = y, x K y and y K x holds; and

2. transitivity: x K y K z implies that x K z.

This is also called a complete ordering (von Neumann and Morgenstern, 1953,
§65.3.1). For concision’s sake, we adopt their terminology.

Before applying these concepts, first define:

Definition 5. Given B (i) , ∅ with i, j, k ∈ I such that v j ≥ vk, let[
ei

j, β̄
i
]
≡

{
x =

(
βi

i, x j, xk

)
∈ B (i) | β̄i

j ≤ x j ≤ 1 − βi
i, β̄

i
k ≥ xk ≥ 0, x j + xk = 1 − βi

i

}
;[

ei
j, e

i
k

]
≡

{
x =

(
βi

i, x j, xk

)
∈ B (i) | 0 ≤ x j ≤ 1 − βi

i, 1 − β
i
i ≥ xk ≥ 0, x j + xk = 1 − βi

i

}
.
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Thus, whether or not β̄i ∈ X, B (i) =
[
ei

j, e
i
k

]
holds whenever B (i) , ∅.

Lemma 5. In an n = 3 AMPG, the dominance operator K completely orders the
locus of allocations over the subsets of X specified below:

1. for B (a) , ∅:
[
ea

b, β̄
a
)⋃ (

β̄a, ea
c

]
if β̄a ∈ X, and

[
ea

b, e
a
c

]
otherwise;

2. for B (b) , ∅:
[
eb

a, β̄
b
)⋃ (

β̄b, eb
c

]
if β̄b ∈ X, and

[
eb

a, e
b
c

]
otherwise;

3. for B (c) , ∅:
[
ec

a, β̄
c
)⋃ (

β̄c, ec
b

]
if β̄c ∈ X, and

[
ec

a, e
c
b

]
otherwise.

Proof. Let B (a) , ∅ and suppose that β̄a ∈ X.
Consider x,y, z ∈

[
ea

b, β̄
a
)
. Then, as x,y, z ∈ B (a), xa = ya = za = β

a
a.

Thus, if xb = yb, then by the unit endowment, x = y holds. If xb > yb, then since
β̄a

b < xb, yb ≤ 1 − βa
a over

[
ea

b, β̄
a
)
, it follows that yb + vb > yc + vc, so that x K y.

This satisfies trichotomy over
[
ea

b, β̄
a
)
. As dominance on this locus is equivalent

to xb > yb, transitivity over
[
ea

b, β̄
a
)

follows from that of strict inequality.

Now consider x,y, z ∈
(
β̄a, ea

c

]
. As before, xa = ya = za = β

a
a. Again, if

xb = yb, then x = y. If xb > yb, it implies xc < yc. Then, since β̄a
c < xc, yc ≤ 1− βa

a

over
(
β̄a, ea

c

]
, it follows that xc + vc > xb + vb, so that y K x. This satisfies

trichotomy over
(
β̄a, ea

c

]
. As dominance on this locus is equivalent to yc > xc,

transitivity over
(
β̄a, ea

c

]
follows from that of strict inequality.

Finally, suppose β̄a < X. Consider x,y, z ∈
[
ea

b, e
a
c

]
. Note that β̄a < X while

B (a) , ∅ implies that
(
1 − βa

a
)
< |vc − vb|, which in turn implies β̄a

b < 0. Thus, it
implies vb >

(
1 − βa

a
)
+ vc. Hence, for any w ∈

[
ea

b, e
a
c

]
, wb + vb > wc + vc holds.

Therefore, if xb > yb, then yb+vb > yc+vc, and thus x K y holds. This shows that
K satisfies trichotomy and transitivity over

[
ea

b, e
a
c

]
in the same way as the above

two cases.
For B (b) , ∅ and B (c) , ∅, the same reasoning applies. �

Proof of Corollary 3. Consider B (a) , ∅ and β̄a < X. As a stable set S exists,
Corollary 2 implies that B (a) ∩ S , ∅. Suppose ea

b < S . Then there must exist
x ∈ B (a)∩S such that x K ea

b. In a pillage from ea
b to x, W = {c} and L = {b} hold.

However, B (a) =
[
ea

b, e
a
c

]
and Lemma 5 together imply both that the dominance

operator K completely orders over B (a), and that y K z ⇔ yb > zb holds for any
y, z ∈

[
ea

b, e
a
c

]
. Therefore, x 6K ea

b, a contradiction. Therefore, ea
b ∈ S .

Second, consider B (a) , ∅ and β̄a ∈ X. Then, via a symmetric argument
to the previous case, it can be shown that ea

b ∈ S by the proof of Corollary 2,
ea

b ∈
[
ea

b, β̄
a
)
, and

(
1 − βa

a
)
+ vb > vc. Likewise, ea

c ∈ S by the proof of Corollary

2, ea
c ∈

(
β̄a, ea

c

]
, and

(
1 − βa

a
)
+ vc > vb.
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Finally, suppose β̄a < S . Then, there must exist x ∈ B (a) ∩ S such that
x K β̄a. However, as vb + β̄

a
b = vc + β̄

a
c , x 6K β̄a holds, which is a contradiction.

Therefore, β̄a ∈ S .
For the cases of B (b) , ∅ and B (c) , ∅, the same arguments can be applied.

�

We may now present non-existence conditions directly on the parameters va, vb

and vc. In the following, the parameter conditions ensure that the maximal ele-
ments in the B (i) are dominated by a core element:

Corollary 4. In an n = 3 AMPG with a non-empty core, let v j ≥ vk, without loss
of generality. Let −vi + v j + vk ∈ [−1, 1) and one of the following two conditions
be satisfied:

1. vk > 0; or

2. v j > 0 and 1 + vi − 3v j + vk > 0.

Then, no stable set exists.

Proof. By −vi + v j + vk ∈ [−1, 1), 0 ≤ βi
i < 1 holds, hence B (i) , ∅. Assume, on

the contrary, that a stable set S exists. Note also that −vi + v j + vk < 1 implies that
ti ∈ K by Theorem 1. Then, as S , ∅ by assumption, ti ∈ S .

Consider the first inequality in the corollary’s statement. By Corollary 3, S ,
∅ and B (i) , ∅ imply that ei

j ∈ S . However, vi + β
i
i > v j +

(
1 − βi

i

)
follows from

vk > 0, which implies that ti K ei
j. This is a contradiction. Therefore, when the

first inequality holds, no stable set exists.
Now consider the second. Then, as 1 + vi − 3v j + vk > 0 implies

(
1 − βi

i

)
>∣∣∣vk − v j

∣∣∣, and so β̄i ∈ X which is also an interior allocation in X. Then, by Corol-
lary 3, S , ∅ and B (i) , ∅ imply that ei

k ∈ S . However, vi + β
i
i > vk +

(
1 − βi

i

)
follows from v j > 0. Then, by the same reasoning as in the first case, we derive a
contradiction. Thus, in this case as well, no stable set exists. �

The remainder of this section characterises stable sets for each of the non-
empty core cases identified in Corollary 1 when n = 3. While the corollary worked
directly with parameter values for v, the theorems work with geometric objects
in the simplex, X, to aid intuitions. Thus, following statement of the theorems,
Table 1 provides a mapping between corollary’s parameter ranges the theorems’
geometric objects. Proofs are in the appendix.

Theorem 3. Consider an n = 3 AMPG with K = {ta}. Then:

1. if B (a) = ∅, then there exists the unique stable set S = {ta}.
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2. if B (a) = {ta}, then no stable set exists.

3. if ta < B (a) , ∅, then ea
b , bab holds and no stable set exists.

Theorem 4. Consider an n = 3 AMPG with K =
{
ta, tb

}
. Then, B (a) , ∅, and:

1. there exists the unique stable set S = K =
{
ta, tb

}
if and only if ea

b = bab

and β̄a < X hold.

2. otherwise, no stable set exists.

When ea
b = bab, ea

b = bab = tb holds.

Theorem 5. Consider an n = 3 AMPG with K =
{
ta, tb, bab

}
. Then, B (a) , ∅,

B (b) , ∅, and ea
b = bab = eb

a hold, and:

1. there exists the unique stable set S =
{
ta, tb, bab

}
if and only if β̄a < X holds.

2. otherwise, no stable set exists.

Theorem 6. Consider an n = 3 AMPG with K =
{
ta, tb, tc

}
. Then, B (a) , ∅,

B (b) , ∅, and B (c) , ∅ hold. Moreover, the following statements hold:

1. Let vc = 0. Then, ea
b = bab = tb and ea

c = bac = tc hold, and there exists the
unique stable set

S =
{
ta, tb, tc, bbc

}
=

{
ta, tb, tc, sbc

}
=

{
ta, tb, tc, β̄a

}
.

2. Let vc > 0. Then, B (a) = {ta}, B (b) =
{
tb

}
, B (c) = {tc}, and there exists the

unique stable set

S = K ∪
{
bab, bac, bbc

}
= K ∪

{
sab, sac, sbc

}
if and only if va = vb = vc = 1 holds. Otherwise, no stable set exists.

Theorem 7. Consider an n = 3 AMPG with K =
{
ta, tb, tc, bab

}
. Then, B (a) , ∅,

B (b) , ∅, B (c) , ∅, ea
b = bab = eb

a hold, and:

1. there exists the unique stable set S =
{
ta, tb, tc, bab

}
if and only if va = vb =

1
2

holds.

2. otherwise, no stable set exists.

Theorem 8. Consider an n = 3 AMPG with K =
{
ta, tb, tc, bab, bac

}
. Then, B (a) ,

∅, B (b) , ∅, B (c) , ∅, ea
b = bab = eb

a, ea
c = bac = ec

a , and va < 1 hold.
Moreover:
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1. there exists the unique stable set S = K ∪ β̄a if and only if va ≥
1
3 holds.

2. otherwise, no stable set exists.

Finally, the case in which K =
{
ta, tb, tc, bab, bac, bbc

}
, is the symmetric wealth

is power case (Jordan, 2006). In the present n = 3 case, the stable set — illustrated
in Figure 3 — reduces to:

Theorem 9. Jordan (2006, Theorem 3.3) In the n = 3 wealth is power pillage
game with vi = 0 for all i = 1, 2, 3, the unique stable set is

S =
{
ta, tb, tc, bab, bac, bbc, β̄a, β̄b, β̄c

}
.

D (ta)

D
(
sbc

)

tb tc

ta

bbc

bab bac
β̄a

Figure 3: Wealth is power: π (C,x) =
∑

i∈C xi

Table 1 maps between Corollary 1’s inequalities and the preceding theorems.

5 Discussion
This paper removes the symmetry assumption usually assumed in analysis of pil-
lage games. It is motivated by a hope of identifying a tractable class of pillage
games to allow empirical tests of this theory of unstructured power contests.
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It finds, first, that stable sets are unique — when they exist — in n = 3 AMPG.
MacKenzie, Kerber, and Rowat (2015) demonstrated that violating the symmetry
axiom could lead to multiple stable sets in majority pillage games when the num-
ber of agents was at least four. This paper therefore establishes that as a lower
bound for multiplicity in AMPG.

Second, it suggests a link between linear power functions and winner(s)-take-
all contests: the only case in which the stable set contains interior allocations,
x > 0, are the special cases of v = 0 and va ∈

[
1
3 , 1

)
, vb = vc = 0. This reflects

the tension between existence of a stable set and strictly interior allocations along
balance of power loci: when there is an interior allocation at which the two con-
testants’ power is balanced, its extremal elements must also belong to a stable set;
if, though, the relevant vi > 0, these elements may be dominated by a tyrannical
allocation, preventing existence.

Third, it finds that non-existence is pervasive. Thus, the theory fails to deliver
testable predictions for non-negligible sets of values of v1, v2 and v3.

Tantalisingly, the theory yields predictions for almost the full range of the
special cases noted above, for which vb = vc = 0 and va > 0 — so that agent a has
some source of intrinsic strength that b and c do not. This power could arise from
greater internal cohesion, a structural advantage (e.g. perhaps being located more
centrally). Figure 4 illustrates, with va increasing from 0 in the leftmost diagram
to va > 1 in the rightmost. Filled dots represent allocations in a stable set.

ta

tb tc

bab
D (ta)

(a) va = 0

bab

eb
c

D (ta)

(b) 0 < va <
1
3

ta

tb tc

bab

β̄a

eb
c

D (ta)

(c) 1
3 ≤ va < 1

ta

tb tc

β̄a

bbc

D (ta)

(d) va = 1 ta

D (ta)

(e) 1 < va

Figure 4: Stable sets when va ≥ vb = vc = 0

When va = 0, the fully symmetric case depicted in diagram 4a, a stable set
exists with interior allocations, as per Theorem 3.3 of Jordan (2006). As va in-
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creases, D (ta) reaches further into the simplex, as depicted in diagram 4b, so that
bab no longer dominates the extremal eb

c; no stable set exists, as per the second
case in Theorem 8. When va grows beyond 1

3 (q.v. diagram 4c), bab comes to
dominate all allocations to the extremal eb

c; this allows the stable set in the first
case of Theorem 8. When va = 1, D (ta) pushes further down, dominating the
whole simplex except its bottom margin (as depicted in diagram 4d); now the sta-
ble set in the second case of Theorem 6 exists. Finally, when va > 1, depicted in
diagram 4e, ta dominates the whole simplex, leaving it the singleton stable set, as
per the first case of Theorem 3.

Thus, the cardinality of the unique stable set decreases in va, with a gap at
va ∈

(
0, 1

3

)
, for which no stable set exists.

We conclude by mentioning three possible ways forward for an empirically-
testable theory of pillage games.

First, production could be considered, so that assigning an agent nothing in-
efficiently excludes its production function from society. In the terminology of
Olson (1993), production provides an incentive for bandits to be stationary rather
than roving. Production in pillage games was first considered by Jordan (2009),
which gave each agent in a pillage game a production function for converting
wealth into consumption goods. While production could be expected to favour
interior allocations, it is less obvious that they would rescue existence.

Second, the tension between existence and interior allocations arises in part
because the balance of power loci (e.g. Figure 3’s dashed lines) are linear: interior
allocations do not dominate their neighbours as the loci restrict power contests to
those pitting one agent against another. However, a power function like

π (C,x) =
∑
i∈C

(√
xi + vi

)
;

generates curved balance of power loci which allow the third agent (who would be
indifferent along a linear balance of power locus) to benefit from moves towards
the centre of the locus. Its involvement allows central allocations to dominate the
extremes of the locus, rescuing existence and yielding strictly interior solutions.
Figure 5 illustrates the symmetric special case in which vi = 0 for all agents. Its
unique stable set contains strictly interior allocations:

S =
{
ta, tb, tc, bab, bac, bbc,

(
2
3
,

1
6
,

1
6

)
,

(
1
6
,

2
3
,

1
6

)
,

(
1
6
,

1
6
,

2
3

)}
.

For n > 3, we conjecture that, in the empty core case, the results in the sym-
metric case studied by Jordan and Obadia (2015) can be extended to the asymmet-
ric case with an additional condition ensuring that any larger coalition dominates
any smaller coalition: for even n, no symmetric stable set should exist; for odd
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tb tc

ta

bac

D
(
tb

)
D (bac)

Figure 5: Strictly concave power: π (C,x) =
∑

i∈C
√

xi

n, the unique symmetric stable set should be the set of allocations that split the
allocation equally between a minimal majority of agents.

Third, solution concepts other than the stable set can be experimented with.
For example, Jordan (2009) extended the stable set to the legitimate set in produc-
tion pillage games. Chaturvedi (2016) has applied farsighted concepts from Chwe
(1994) to pillage games. Duggan (2013) discussed other farsighted concepts, such
as uncovered sets; in n = 3 AMPGs, the Gillies, Bordes and McKelvey uncovered
sets are non-empty, and any stable set is a subset of the Gillies uncovered set.6
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A Proofs
Proof of Theorem 3. 1. Together B (a) = ∅ and K = {ta} imply that vb + vc +

1 < va. Therefore, D (ta) = X\ {ta} and S = {ta}.

2. Note that B (a) = {ta} implies va + 1 = vb + vc and ta = ea
b. Moreover,

B (i) =
{
ti
}

if vi = va, and B (i) = ∅ otherwise, for i = b, c. As ti < K
for i = b, c, it follows that vi + 1 < v j + vk for i = b, c, thus B (i) = ∅ for

i = b, c. Let
◦

X ≡
{
x ∈ X | x > 0

}
. Then, for any x ∈

◦

X, x K ti for i = b, c.

Moreover, for any x ∈
◦

X, it follows that vi + xi < v j + vk + (1 − xi) for any
i, j, k ∈ I, which implies that there exists wx ∈ X such that wx

i = 0 and
wx

j /w
x
k = x j/xk. Then, it follows that wx K x.

Let X̄ jk ≡ {x ∈ X | xi = 0} for any i, j, k ∈ I. If vc + 1 < vb, then for any
w ∈ X̄bc\

{
tb

}
, tb K w. If vc + 1 ≥ vb, then there exists wbc ∈ X̄bc such

that vb + wbc
b = vc + wbc

c . Then, for any w ∈ X̄bc, tb K w if and only if

wb > wbc
b ; tc K w if and only if wc > wbc

c ; and there exists xw ∈
◦

X such that
xw K w for w = wbc. In sum, cyclic relations of the dominance operator

K are observed over
◦

X and X̄bc, which implies that none of allocations in
◦

X ∪ X̄bc can constitute a stable set. Applying the same argument to X̄ab\ {t
a}

and X̄ac\ {t
a} proves that no stable set intersects with X\ {ta}.

Hence, if a stable set exists, it must be that S = {ta}. However, D (ta) ,
X\ {ta}, as va + xa < vb + vc + (1 − xa) for any x ∈

◦

X, which implies ta 6K x.
Therefore, S , {ta}, a contradiction. Hence, no stable set exists.

3. This implies that −1 ≤ −va + vb + vc < 1, and so ea
b ∈ X. Suppose ea

b = bab.
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Then, vc = 0. Then, tb < K implies vb + 1 < va and vb + vc + 1 < va, which
contradicts −1 ≤ −va + vb + vc. Thus, ea

b , bab, which implies vc > 0. Then,
by Corollary 4, no stable set exists.

�

Proof of Theorem 4. By K =
{
ta, tb

}
, Theorem 1 implies that va + 1 ≥ vb + vc and

vb + 1 ≥ va + vc, where the former implies βa
a ≤ 1. Moreover, the latter inequality

implies vb + vc + 1 ≥ va, which implies βa
a ≥ 0. Therefore, B (a) , ∅.

Consider ea
b = ta. Then, as vb + 1 ≥ va + vc by tb ∈ K and va + 1 = vb + vc by

ea
b = ta, it follows that va = vb = vc = 1. Then, vc + 1 = va + vb, which contradicts

tc < K by Theorem 1. Thus, ea
b , ta must hold, and βa

a < 1.
Consider ea

b , bab, which implies vc > 0: by Corollary 4, no stable set exists.
Consider ea

b = bab , tb, which implies vc = 0. Then, it follows from ea
b =

bab , tb and vc = 0 that βa
a =

1
2 (1 + vb − va) ∈ (0, 1), which implies bab ∈ K by

Theorem 1. This contradicts K =
{
ta, tb

}
. Therefore, if ea

b = bab, then ea
b = bab =

tb.
Consider ea

b = bab = tb. Then, as βa
a = 0 when vc = 0, B (a) = X̄bc ≡

{x ∈ X | xa = 0}. Further, for any x ∈ X\B (a), va + xa > vb + vc + (1 − xa) holds,
which implies ta K x.

As va = 1 + vb by ea
b = bab = tb, either va = 1 and vb = 0, or va > 1. The

first case also implies that va + vb = 1 + vc, so that tc ∈ K from Theorem 1; this
contradicts K =

{
ta, tb

}
, which leaves only the second case, va > 1. This further

implies ta K tc = ea
c = (0, 0, 1). Then, by Corollary 3 and Lemma 5, we can

conclude: S =
{
ta, tb

}
if and only if β̄a < X.

Note that β̄a ∈ X if and only if vb ≤ 1, since β̄a
b =

1−vb
2 . Thus, β̄a < X if and

only if vb > 1 (or equivalently, va > 2). When, β̄a < X, Lemma 5 ensures that any
allocation in B (a) \

{
tb

}
is dominated by ea

b = tb. Thus, D
(
ta, tb

)
= X\

{
ta, tb

}
.

Finally,
{
ta, tb

}
= K satisfies internal stability, so that S =

{
ta, tb

}
. In contrast,

when β̄a ∈ X, then Corollary 3 implies that whenever S exists, tc = ea
c ∈ S holds.

However, in this case, ta ∈ S also holds by ta ∈ K, yielding a contradiction with
ta K tc = ea

c . Thus, S does not exist when β̄a ∈ X. �

Proof of Theorem 5. By Theorem 1, K =
{
ta, tb, bab

}
implies that vc = 0, so

that bab = ea
b = eb

a. Therefore, B (a) , ∅ and B (b) , ∅, where B (a) ={
x ∈ X | xa = β̄

a
a

}
with β̄a

a =
vb−va+1

2 and B (b) =
{
x ∈ X | xb = β̄

b
b

}
with β̄b

b =
va−vb+1

2 .
Then, for any x ∈ X with xa > β̄

a
a, va + xa > vb + vc + (1 − xa), which implies

ta K x. Likewise, for any y ∈ X with yb > β̄
b
b we have vb + yb > va + vc + (1 − yb),

which implies tb K y. Consider
{
x ∈ X | xa < β̄

a
a, xb < β̄

b
b

}
. Then, for any z ∈
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{
x ∈ X | xa < β̄

a
a, xb < β̄

b
b

}
,

va + za + vb + zb > vc + (1 − za − zb)

follows from tc < K with Theorem 1. Thus, bab K z.
Let β̄a ∈ X, so that 1 + va − 3vb > 0. In the case of vb > 0, no stable set exists

(by Corollary 4). Otherwise, when vb = 0, tb ∈ K implies that 1 ≥ va. However,
tc < K implies that 1 < va, a contradiction. Therefore, β̄a ∈ X with vb = 0 is
impossible.

Let β̄a < X. Then, 1+ va−3vb ≤ 0, so that 1+ vb−3va ≤ 0, and β̄b < X. Then,
by Lemma 5, for any w ∈ B (a), ea

b K w holds. Likewise, for any w ∈ B (b),
eb

a K w holds. As bab = ea
b = eb

a, B (a) ∪ B (b) ⊆ D
(
bab

)
holds. In summary,

D (K) = X\K holds for K =
{
ta, tb, bab

}
. Thus, S = K =

{
ta, tb, bab

}
. �

Proof of Theorem 6. As K =
{
ta, tb, tc

}
, Theorem 1 implies that 1 + va ≥ vb + vc,

1 + vb ≥ va + vc, and 1 + vc ≥ va + vb. Therefore, βi
i ≤ 1 holds for all i ∈ {a, b, c}.

Moreover, 1 + vc ≥ va + vb implies 1 + vb + vc ≥ va, and so βi
i ≥ 0 holds for all

i ∈ {a, b, c}. Thus, B (a) , ∅, B (b) , ∅, and B (c) , ∅. Consider two cases:

1. vc = 0. Then, tb ∈ K implies implies 1 ≥ va − vb. As bab < K, Theorem 1
implies that 1 = va − vb. Thus, 1 + vb = va and 1 ≥ va + vb together imply
that vb = 0 and va = 1. Then, ea

b = bab = tb so that B (a) = {x ∈ X | xa = 0}.
Moreover, β̄a =

(
0, 1

2 ,
1
2

)
= bbc = sbc. Then, by Lemma 5, for any w ∈

B (a), if w ∈
(
tb, β̄a

)
, tb K w; if w ∈

(
β̄a, tc

)
, tc K w holds, as tc = ea

c .

Finally, for any x ∈ X\B (a), ta K x holds. Thus, X\
(
K ∪

{
β̄a

})
⊆ D (K).

Moreover, it can be seen that ti 6K β̄a and β̄a 6K ti for all i ∈ {a, b, c}. Thus,
the stable set must be given by S =

{
ta, tb, tc, β̄a

}
. As β̄a = bbc = sbc,

S =
{
ta, tb, tc, bbc

}
=

{
ta, tb, tc, sbc

}
holds.

2. vc > 0. First consider vc < va. Then, 1 + va > vb + vc follows from
1 + vc ≥ va + vb. Then, by Corollary 4, no stable set exists. Now consider
vc = va, the symmetric case. Satisfying 1+ va ≥ vb+ vc, 1+ vb ≥ va+ vc, and
1+vc ≥ va+vb therefore forces va = vb = vc = 1. Then, ea

b = ta, eb
a = tb, and

ec
a = tc, so that B (a) = {ta}, B (b) =

{
tb

}
, and B (c) = {tc}. Then, for each

interval
[
ti, t j

]
, any w ∈

(
ti, si j

)
implies ti K w, while any w ∈

(
si j, t j

)
implies t j K w, for any i, j ∈ {a, b, c}. Thus, X̄ jk\

{
s jk

}
⊆ D

(
t j, tk

)
holds

for any j, k ∈ {a, b, c}.

Moreover, we can show that
◦

X ⊆ D
(
sab, sac, sbc

)
. Let x ∈

◦

X with xi ≥
1
2 ,

so that x j, xk <
1
2 . Then, a pillage from x to s jk implies that W = { j, k} and
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L = {i}. Then, we have 3
2 ≤ vi + xi < 2 while v j + x j + vk + xk > 2, which

implies v j + x j + vk + xk > vi + xi. Thus, s jk K x holds. Now let x ∈
◦

X with
xi <

1
2 , which implies there exists, say k such that xk <

1
2 . Then, a pillage

from x to sik implies that W = {i, k} and L = { j}. Again sik K x holds. This

implies that
◦

X ⊆ D
(
sab, sac, sbc

)
.

In summary, X\
(
K ∪

{
sab, sac, sbc

})
⊆ D

(
K ∪

{
sab, sac, sbc

})
. Moreover,

no allocation in K ∪
{
sab, sac, sbc

}
dominates another, satisfying internal

stability. Therefore, S = K ∪
{
bab, bac, bbc

}
= K ∪

{
sab, sac, sbc

}
.

�

Proof of Theorem 7. By Theorem 1, K =
{
ta, tb, tc, bab

}
implies that vc = 0,

1 + va > vb, 1 + vb > va, and 1 ≥ va + vb. Then, bab = ea
b = eb

a. More-
over, B (a) , ∅, B (b) , ∅ and B (c) , ∅, where B (a) =

{
x ∈ X | xa = β̄

a
a

}
with

β̄a
a =

vb−va+1
2 ∈ (0, 1), B (b) =

{
x ∈ X | xb = β̄

b
b

}
with β̄b

b =
va−vb+1

2 ∈ (0, 1), and

B (c) =
{
x ∈ X | xc = β̄

c
c

}
with β̄c

c =
va+vb+1

2 ∈ (0, 1].
Let 1 > va + vb. Then, by Corollary 4, no stable set exists whenever vb > 0.

Assume vb = 0. Then, va < 1, which implies that va − vc < 1, and so bac ∈ K by
Theorem 1, a contradiction. Therefore, vb > 0 must hold.

Let 1 = va + vb. If vb = 0, then 1 = va + vb implies 1 = va while 1 + vb > va

implies 1 > va, a contradiction. Thus, vb > 0. Thus, va < 1. Assume va >
1
2 > vb.

Then, 1 + va > 3vb holds, so by Corollary 4(ii), no stable set exists.
Thus, let va =

1
2 = vb. Then, β̄a

a =
1
2 = β̄

b
b and β̄c

c = 1. Thus, B (a) ={
x ∈ X | xa =

1
2

}
, B (b) =

{
x ∈ X | xb =

1
2

}
, and B (c) = {tc}. As usual, for any

x ∈ X with xa >
1
2 , va + xa > vb + vc + (1 − xa) holds, which implies ta K x.

Likewise, for any y ∈ X with yb >
1
2 , vb + yb > va + vc + (1 − yb) holds, which

implies tb K y. Consider
{
x ∈ X | xa <

1
2 , xb <

1
2 , xc < 1

}
. Then, for any z ∈{

x ∈ X | xa <
1
2 , xb <

1
2 , xc < 1

}
,

va + za + vb + zb > vc + zc

follows from B (c) = {tc}. Thus, bab K z. In summary, X\K ⊆ D
(
ta, tb, bab

)
,

which implies S =
{
ta, tb, tc, bab

}
. �

Proof of Theorem 8. By Theorem 1, bab, bac ∈ K implies vb = 0 = vc; ta, tb, tc ∈

K then implies 1 > va. If va = 0, then bbc =
(
0, 1

2 ,
1
2

)
∈ K follows from Theorem

1, which is a contradiction. Therefore, va > 0. Moreover, bab = ea
b = eb

a, ea
c =

bac = ec
a, B (a) , ∅, B (b) , ∅ and B (c) , ∅, where B (a) =

{
x ∈ X | xa = β̄

a
a

}
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with β̄a
a =

−va+1
2 ∈ (0, 1), B (b) =

{
x ∈ X | xb = β̄

b
b

}
with β̄b

b =
va+1

2 ∈ (0, 1), and

B (c) =
{
x ∈ X | xc = β̄

c
c

}
with β̄c

c =
va+1

2 ∈ (0, 1).
Let va <

1
3 . Then, by Corollary 4(ii), no stable set exists.

Let va ∈
[

1
3 , 1

)
. Then, as usual, for any x ∈ X with xa >

−va+1
2 , ta K x.

Likewise, for any y ∈ X with yb >
va+1

2 , tb K y, and for any z ∈ X with zc >
va+1

2 ,
tc K z. Consider

{
x ∈ X | xa <

−va+1
2 , xb <

va+1
2 , xc <

va+1
2

}
. Then, for any w ∈{

x ∈ X | xa <
−va+1

2 , xb <
va+1

2 , xc <
va+1

2

}
,

va + za + vb + zb > vc + zc.

Thus, bab K w.
Note that va ≥

1
3 implies that β̄i ∈ X if and only if va =

1
3 for i = b, c.

Moreover, in this case, β̄a =
(

1
3 ,

1
3 ,

1
3

)
, β̄b =

(
0, 2

3 ,
1
3

)
= eb

c , and β̄c =
(
0, 1

3 ,
2
3

)
= ec

b

hold when va =
1
3 .

Let va =
1
3 . Then, for any y ∈

(
eb

a, e
b
c

)
, bab K y follows from Lemma 5. Like-

wise, for any z ∈
(
ec

a, e
c
b

)
, bac K z holds, as do tb K eb

c and tc K ec
b. In contrast,

for any x ∈
(
ea

b, β̄
a
)
, bab K x holds, while for any x ∈

(
β̄a, ea

c

)
, bac K x holds,

by Lemma 5. Thus, we have X\
(
K ∪ β̄a

)
⊆ D (K). As β̄a neither dominates nor

is dominated by any allocation in K, K ∪ β̄a satisfies internal stability. Therefore,
S = K ∪ β̄a.

Let va ∈
(

1
3 , 1

)
. Then, for any y ∈

(
eb

a, e
b
c

]
, bab K y holds, while, for any

z ∈
(
ec

a, e
c
b

]
, bac K z holds by Lemma 5. Moreover, for any x ∈

(
ea

b, β̄
a
)
,

bab K x holds, while for any x ∈
(
β̄a, ea

c

)
, bac K x holds, by Lemma 5, where

β̄a =
(

1−va
2 ,

1+va
4 ,

1+va
4

)
.

To conclude, X\
(
K ∪ β̄a

)
⊆ D (K) holds. As β̄a neither dominates nor is

dominated by any allocation in K, K ∪ β̄a satisfies internal stability. Therefore,
S = K ∪ β̄a. �
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