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Abstract: This paper proposes a simple method to estimate a nonlinear function using only coarsely 
discrete explanatory variables in panel data. The basic premise is to distinguish carefully between 
two types of discrete variables by assuming that if the variable changes between two points in time, 
it increases (decreases) marginally from near the upper (lower) bound one rank below (above). The 
dynamic pricing behavior at the boundary between two consecutive ranks is then properly 
approximated. Applying the proposed method, we estimate the nonlinear relationship between land 
prices and earthquake risk, with the latter being assessed over only five ranks. The panel datasets 
used comprise some two thousand fixed places over time in the Tokyo Metropolitan District. We 
interpret the estimated nonlinear land pricing functions using prospect theory from behavioral 
economics. 
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1. Introduction 
Nonlinearity matters in the field of behavioral economics generally and in the context of 

prospect theory more particularly. Estimating nonlinear functions, which frequently emerge from 
applications of prospect theory, requires explanatory variables to be densely continuous. However, 
the available variables are often coarsely discrete when using natural experiments. This paper 
presents a simple method to estimate the predicted nonlinear function by exploiting the panel data 
structure of the discrete measure concerned. 

Our method carefully distinguishes between the two types of coarsely discrete explanatory 
variables by assuming that if the variable changes between two points in time, it increases 
(decreases) marginally from near the upper (lower) bound of the rank below (above). We can then 
properly approximate the dynamic behavior at the boundary between two consecutive ranks about 
both the lower bound of one rank above and the upper bound of one rank below. The resulting 
econometric specification displays the features of nonlinear probability weighting, rank dependence, 
and asymmetry between gains and losses, all of which are essential ingredients in prospect theory. 
As an application, we estimate the nonlinear relationship between land prices and earthquake risk 
using the proposed method when earthquake risk is assessed only on a scale of discrete measures. 
We then interpret the estimation results in terms of various dimensions of prospect theory. 

According to the nonlinear probability weighting function (an inverted S-shaped function), 
frequently adopted as one of the major theoretical devices in prospect theory, including in Tversky 
and Kahneman (1992) and Prelec (1998), small-sized risks (measured in terms of the objective 
probability of disastrous events) tend to be overweighted in subjective risk assessment, but such 
overweighting quickly dissolves as risks approach near-zero. Conversely, medium-sized risks are 
likely to be underweighted. However, such underweighting also rapidly disappears as risks become 
large. 

Let us employ a simple setup where land pricing is linearly decreasing in the subjectively 
evaluated earthquake risk, but this subjective risk is not observable. All we can observe is the 
objectively evaluated risk. Assuming that the objective probability is distorted by nonlinear 
probability weighting, we estimate a nonlinear relationship between land prices and the objective 
risk. More concretely, land prices increase rapidly when the overweighting of the underlying risk 
dissolves as the risk approaches near-zero. Conversely, land prices are more insensitive to the 
objective risk when medium-sized risk is underweighted, and land prices decrease quickly when 
underweighting of the underlying risk disappears as the risk becomes large. As depicted by the solid 
blue line in Figure 1, a nonlinear function consequently emerges concerning the relationship 
between land prices and objective earthquake risk. 

Given the densely continuous risk measures available in cross-sectional datasets, it is quite 
possible to estimate this nonlinear relationship precisely. However, it is impossible to do this using 
only coarsely discrete risk measures at a particular point in time. Suppose that three intervals of 
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the objective earthquake risk are represented by discrete indexes, 1 (least risky and safest), 2 
(intermediate risk and safety), and 3 (most risky and least safe). We approximate the nonlinear 
function with the two thick dotted blue lines AB and BC in Figure 1, both of which connect the 
midpoints of each interval. However, this approximation is never able to capture precisely the 
nonlinear nature of the function in question. Line AB fails to approximate either the right derivative 
at point A or the left derivative at point B, while line BC fails in capturing either the right derivative 
at point B or the left derivative at point C. 

The basic premise of our proposed estimation method is quite simple. We attempt to 
compensate for the absence of continuous risk measures in cross-sectional datasets by exploiting 
changes in coarsely discrete measures between two points in time in panel datasets. Here, we 
assume that if the discrete measure concerned changes over time, then it either decreases from near 
the lower bound of the rank above or increases from near the upper bound of the rank below. More 
concretely, we can exploit this assumption to approximate the right derivative at point A (B) 
indicated by the red arrow DA (EB) using risk-improving observations from Ranks 2 to 1 (3 to 2) at 
the border, and the left derivative at point B (C) illustrated by the black arrow DB (EC) using risk-
deteriorating observations from Ranks 1 to 2 (2 to 3) at the border. 

For this purpose, we have available a perfect environment for natural experiments from the 
Tokyo Metropolitan District (TMD). The Tokyo Metropolitan Government (TMG) evaluates objective 
earthquake risks using coarsely discrete indexes from throughout the TMD every five years 
(excluding those for its western mountainous region). More specifically, it ranks earthquake risk on 
a relative scale of one (safest) to five (riskiest) for every numbered subdivision (cho-me in Japanese) 
of all wards, cities, and towns in the TMD in 1998, 2002, 2008, 2013, and 2018. For its part, the 
Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) lists land prices 
appraised every new year for many fixed points of location in urban areas throughout Japan. For 
the TMD, the land prices of about two thousand or more fixed locations are appraised every new 
year.1 

Given the above research environment, the earthquake risk measures, released publicly by the 
TMG and available for our study, are not cardinal/continuous, but ordinal/discrete. Thanks to the 
proposed econometric framework, however, we can still exploit the information associated with the 
continuous movement of unavailable, but cardinal risk measures at each border between two 
consecutive risk ranks. The current specification does not focus on how much earthquake risk differs 
among various points of location in a static context, but it considers in which direction the 
unobservable risk measure changed marginally at each boundary in a dynamic context. Combining 
the panel data of discrete earthquake risk ranks with that of land prices for each fixed place, we 
estimate a nonlinear relationship between land prices and earthquake risk. We then explore whether 

 
1 Using cross-sectional data not panel data from the same datasets, Nakagawa et al. (2009) estimate 
the linear relationship between earthquake risk and land prices. 
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the estimated nonlinear function is consistently interpretable considering prospect theory. 
As pointed out by Barberis (2013a, 2013b), O’Donoghue and Sprenger (2018), and others, 

prospect theory is characterized by three components, comprising nonlinear probability weighting, 
rank dependence (reference dependence), and asymmetry between gains and losses (loss aversion 
and diminishing sensitivity), all of which result in a nonlinear relationship between the variables 
concerned. While these components are often explored empirically by conducting laboratory 
experiments or using questionnaires, they can also be examined using data from natural 
experiments, frequently combined with field experiments or questionnaires. The latter empirical 
research into nonlinear probability weighting has been carried out intensively in the field of finance 
and insurance.2 For example, according to Barberis and Huang (2008), Boyer et al. (2010), and Bali 
et al. (2011), positively skewed securities are overpriced and earn low or even negative risk premiums 
(expected excess returns) as predicted by nonlinear probability weighting. Barseghyan et al. (2013) 
employ data on insurance deductions and reveal the overweighting of small probabilities and 
insensitivity to probability changes, both of which arise from nonlinear probability weighting. Botzen 
and van den Bergh (2009, 2012) also present evidence consistent with rank dependence and 
nonlinear probability weighting using flood insurance data. For instance, they find that the 
willingness-to-pay for flood insurance is higher than the expected loss but insensitive to changes in 
the underlying probabilities. 

In the field of natural disaster risk, the three elements associated with prospect theory are 
typically examined using natural experiment data, combined with those from field experiments or 
questionnaires. For example, Iwasaki et al. (2019) provide evidence for reference dependence and 
loss aversion using the responses of residents to the Fukushima nuclear accident in Japan. 
Employing questionnaires about health conditions for those forced to relocate after the accident, they 
set the pre-accident situation as the reference point, and find a kinked relationship between health 
conditions and household characteristics. Page et al. (2014) present findings on risk-seeking 
attitudes following a loss by studying the risk-taking behavior of those experiencing the 2011 
Australian floods, finding that flood victims would prefer a lottery to insurance. Botzen et al. (2015) 
also provide evidence consistent with nonlinear probability weighting by interviewing those residing 
in flood-prone areas in New York, revealing that those that incurred flood damage tend to 
overestimate flood risk.3 Lastly, Holden and Quiggin (2017) conclude that farmers in Malawi were 

 
2 In empirical finance, the implications of prospect theory are often examined in terms of the 
behavioral impacts of gain/loss asymmetry without any explicit consideration of nonlinear 
probability weighting. See Barberis et al. (2001) and Zhang and Semmler (2009), among others. 
3 Beron et al. (1997) find that while earthquake risk was initially overestimated, the hedonic price 
of earthquake risk fell after the 1989 Loma Prieta earthquake in central California. Gu et al. (2018), 
conclude that after a huge fault-driven earthquake (the Great Hanshin-Awaji earthquake) destroyed 
the Hanshin area in western Japan in January 1995, prices of land around the Uemachi fault line, 
which is adjacent to the fault line responsible for the 1995 earthquake, were heavily discounted. 
Naoi et al. (2009) show that homeowners and renters revised upward their subjective assessment of 
earthquake risks following large-scale earthquakes. 
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more likely to adopt drought-tolerant maize as they became more risk and loss averse through 
overestimating the risk of drought. 

Our study differs from the extant literature in the following respects. First, any change in 
earthquake risk does not result from a particular large-scale earthquake event, but location-specific 
events, which have a potential impact on earthquake risk assessments. These include urban 
redevelopment, land improvement projects, deterioration of social and private structures, and newly 
revealed local damage. In the TMD, for instance, aging structures in urban and suburban areas, still 
heavily crowded by older and more fragile wooden houses, invite caution in terms of earthquake risk. 
Second, our estimation concerns not dependence on a single reference point, but on multiple ranks. 
Accordingly, the entire shape of the (inverted S-shaped) probability weighting function can be 
recovered through our estimations. Third, we employ a 20-year dataset of land prices and 
earthquake risk, not just interval datasets from a few years before and after a particular disaster. 
In the dataset compiled by the TMG, earthquake risk was assessed systematically every five years 
from 1998 through 2018. Finally, we do not rely on questionnaires of individual subjective 
assessments of earthquake risk, but instead, assume that these subjective assessments are reflected 
in land pricing. That is, we use only publicly available datasets, consisting of objective earthquake 
risks and observable land prices. 

The remainder of the paper is organized as follows. Section 2 presents the econometric 
specifications used to capture nonlinear probability weighting, rank dependence, and the asymmetry 
between gains and losses, all essential features of prospect theory. Section 3 describes the datasets 
of earthquake risk and land prices for the TMD and Section 4 reports the estimation results. Section 
5 discusses the results and provides some brief concluding remarks. 
 
 
2. Econometric specification 

Let us present a simple land pricing model in the presence of earthquake risk. In a standard 
setup, land prices are discounted by expected earthquake damage 𝑞𝑞𝑞𝑞, where 𝑞𝑞 and 𝐷𝐷 denote the 
objective event probability and the damage from an earthquake, respectively.4 However, in prospect 
theory, the subjective not the objective probability is employed. As discussed, the objective 
probability is distorted according to the nonlinear probability weighting function 𝜋𝜋(𝑞𝑞), which is 

 
4 More rigorously, in the presence of risk aversion on the consumer’s side, the expected damage 
should be further adjusted by the marginal rate of substitution between the current safe state and 
a forthcoming disastrous state. Suppose that wealth is equal to 𝑊𝑊 in the current safe state, and 𝑊𝑊 
declines by uninsured damage 𝑍𝑍  with an earthquake. Given that the utility function 𝑈𝑈  is 
increasing, concave, and differentiable, the expected damage 𝑞𝑞𝑞𝑞 should be adjusted by 𝑈𝑈

′(𝑊𝑊−𝑍𝑍)
𝑈𝑈′(𝑊𝑊) . 

Here, we assume that the curvature of 𝑈𝑈 is quite small, as for the equity premium puzzle (Mehra 
and Prescott, 1985). Accordingly, 𝑈𝑈

′(𝑊𝑊−𝑍𝑍)
𝑈𝑈′(𝑊𝑊)  is close to one. Thus, we ignore risk aversion in the current 

specification. 
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depicted as an inverted S-shape by the solid blue line in Figure 2 (Tversky and Kahneman, 1992; 
Prelec, 1998). A small objective probability is overweighted, but such overweighting dissolves as the 
probability approaches zero. In contrast, a middle-sized objective probability is underweighted, but 
such underweighting disappears as the probability becomes larger. 

We slightly modify the above setup of prospect theory. The weighting function 𝜋𝜋 is still applied 
to the event probability 𝑞𝑞. Thus, the expected damage is under or overestimated according to 𝜋𝜋(𝑞𝑞)𝐷𝐷. 
Then, ln[𝜋𝜋(𝑞𝑞)𝐷𝐷] is subtracted from the logarithmic land price ( ln𝑃𝑃 ) after adjustment by other 
important factors in land pricing. Accordingly, the nonlinear land pricing function of the objectively 
expected damage (ln(𝑞𝑞𝑞𝑞)) is depicted by the solid blue line in Figure 3, which is a mirror image of 
Figure 2 in a vertical direction. 

However, we do not have any continuous measure of earthquake risk, ln(𝑞𝑞𝑞𝑞). Instead, all we 
have is a discrete measure of earthquake risk on a scale from one (safest) to five (riskiest). We assume 
that a smaller (larger) 𝑞𝑞  accompanies a smaller (larger) 𝐷𝐷 , and that the ranks of 𝑞𝑞  and 𝐷𝐷 
correspond to that of 𝑞𝑞𝑞𝑞. 

Fortunately, we have panel datasets of this discrete risk rank for every numbered subdivision 
of all wards, cities, and towns in the TMD. We also have available land price panel data for more 
than two thousand fixed points of location in the TMD. By exploiting these panel datasets of 
earthquake risk and land prices, we propose use of the following econometric specification to 
estimate the nonlinear land pricing function. 

As assumed, the ranks of 𝑞𝑞 and ln𝐷𝐷 correspond with that of ln(𝑞𝑞𝑞𝑞). Then, −[ln[𝜋𝜋(𝑞𝑞)] + ln𝐷𝐷] 
is specified in a rank-dependent manner. To begin, we formulate a stepping function of the discrete 
risk rank ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡

𝑟𝑟𝑛𝑛,𝑡𝑡
𝑖𝑖=2 , where 𝑟𝑟𝑛𝑛,𝑡𝑡 denotes the discrete risk rank, 2, 3, 4, or 5, and 𝑎𝑎𝑖𝑖,𝑡𝑡 represents the 

risk sensitivity for each rank of earthquake risk. We then approximate the logarithmic land price of 
location 𝑛𝑛 in year 𝑡𝑡 ( ln𝑃𝑃𝑛𝑛,𝑡𝑡) using this stepping function together with other explanatory variables 
for land prices: 
 

ln𝑃𝑃𝑛𝑛,𝑡𝑡 = 𝑝𝑝𝑡𝑡�𝑟𝑟𝑛𝑛,𝑡𝑡,𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 ,𝑓𝑓𝑛𝑛 � = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡
𝑟𝑟𝑛𝑛,𝑡𝑡
𝑖𝑖=2 + ∑ 𝑏𝑏𝑗𝑗𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 + 𝑓𝑓𝑛𝑛 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡

𝐽𝐽
𝑗𝑗=1 , (1) 

 
where 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 represents a time-varying factor and 𝑓𝑓𝑛𝑛 denotes a fixed factor for location 𝑛𝑛. Along with 
the earthquake risk factor, 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 and 𝑓𝑓𝑛𝑛 play important roles in determining land prices. 

We further introduce gain/loss asymmetry into equation (1) as follows. If a land price in 
logarithm (ln𝑃𝑃𝑡𝑡) is decreasing in land risks (𝑟𝑟𝑛𝑛,𝑡𝑡), then 𝑎𝑎𝑖𝑖,𝑡𝑡 < 0 for 𝑖𝑖 = 2, 3, 4, and 5. As discussed, the 
interpretation of parameter 𝑎𝑎𝑖𝑖,𝑡𝑡 in the step function is quite subtle. For example, 𝑎𝑎2,𝑡𝑡 cannot be 
interpreted as either the right derivative for Rank 1 or the left derivative for Rank 2. This is because 
without densely continuous risk measures for 𝑟𝑟𝑛𝑛,𝑡𝑡 , it is impossible properly to estimate the 
derivatives at different points using cross-sectional data only. However, it is possible to approximate 
the two derivatives separately by distinguishing between risk-improving, -deteriorating, and -
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invariant observations when using panel data. In other words, the panel data structure allows us to 
not only eliminate fixed effects (𝑓𝑓𝑛𝑛) as is usual but also to differentiate between the two derivatives. 

For this purpose, equation (1) is further specified as 
 

𝑝𝑝𝑡𝑡+�𝑟𝑟𝑛𝑛,𝑡𝑡,𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 ,𝑓𝑓𝑛𝑛� = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡 + 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡,𝑡𝑡
+𝑟𝑟𝑛𝑛,𝑡𝑡−1

𝑖𝑖=2 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 + 𝑓𝑓𝑛𝑛 +𝐽𝐽
𝑗𝑗=1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡+, (2) 

 
for risk-deteriorating observations (from 𝑟𝑟𝑛𝑛,𝑡𝑡 − 1 to 𝑟𝑟𝑛𝑛,𝑡𝑡) that are assumed to deteriorate from near 
the upper bound of the rank below. On the other hand, equation (1) is specified as 
 

𝑝𝑝𝑡𝑡−�𝑟𝑟𝑛𝑛,𝑡𝑡,𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 ,𝑓𝑓𝑛𝑛� = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡+1,𝑡𝑡
−𝑟𝑟𝑛𝑛,𝑡𝑡+1

𝑖𝑖=2 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 + 𝑓𝑓𝑛𝑛 +𝐽𝐽
𝑗𝑗=1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−, (3) 

 
for risk-improving observations (from 𝑟𝑟𝑛𝑛,𝑡𝑡 + 1 to 𝑟𝑟𝑛𝑛,𝑡𝑡) which we assume improve from near the lower 
bound of the rank above. Using the above specifications, we can interpret 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡,𝑡𝑡

+  (𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡,𝑡𝑡
− )  as an 

approximation for the left (right) derivative. Finally, equation (1) is specified as 
 

𝑝𝑝𝑡𝑡0�𝑟𝑟𝑛𝑛,𝑡𝑡 ,𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡,𝑓𝑓𝑛𝑛� = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡 +∑ 𝑏𝑏𝑗𝑗,𝑡𝑡𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 + 𝑓𝑓𝑛𝑛 +𝐽𝐽
𝑗𝑗=1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡

𝑟𝑟𝑛𝑛,𝑡𝑡
𝑖𝑖=2 , (4) 

 
for risk-invariant observations. Note how equations (2) and (3) are specified in the same gain/loss 
asymmetric manner as the probability weight in cumulative prospect theory (Tversky and 
Kahneman, 1992).5 

To incorporate equations (2), (3), and (4) in a panel data setup, we assume that the risk 
sensitivity 𝑎𝑎𝑖𝑖,𝑡𝑡 may change from time 𝑡𝑡0 and 𝑡𝑡1 in a restrictive manner as follows: 
 

𝑎𝑎𝑖𝑖,𝑡𝑡1 = 𝑎𝑎𝑖𝑖,𝑡𝑡0 + 𝑐𝑐. (5) 
 
That is, overall risk sensitivity may change over time for equations (2), (3), and (4).6 

Let us assume that the land pricing function at time 𝑡𝑡0 follows equation (4) for risk-improving, 
 

5 Using equations (2) and (3), the change in the land price, ∆𝑃𝑃𝑛𝑛,𝑡𝑡, from a change in the risk index is 
determined by the increment in the probability weighting −∆[ln[𝜋𝜋(𝑞𝑞)] + ln𝐷𝐷]. In turn, −∆[ln[𝜋𝜋(𝑞𝑞)] +
ln𝐷𝐷] depends on whether the underlying risk worsens or improves. For a risk deterioration from 
𝑟𝑟𝑛𝑛,𝑡𝑡 − 1  to 𝑟𝑟𝑛𝑛,𝑡𝑡 , ∆𝑃𝑃𝑛𝑛,𝑡𝑡 = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡+

𝑟𝑟𝑛𝑛,𝑡𝑡
𝑖𝑖=2 − ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡+

𝑟𝑟𝑛𝑛,𝑡𝑡−1
𝑖𝑖=2 = ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡+5

𝑖𝑖=𝑟𝑟𝑛𝑛,𝑡𝑡
− ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡+5

𝑖𝑖=𝑟𝑟𝑛𝑛,𝑡𝑡+1 = 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡,𝑡𝑡
+ , and for a risk 

improvement from 𝑟𝑟𝑛𝑛,𝑡𝑡 + 1  to 𝑟𝑟𝑛𝑛,𝑡𝑡 , ∆𝑃𝑃𝑛𝑛,𝑡𝑡 = −�∑ 𝑎𝑎𝑖𝑖,𝑡𝑡−
𝑟𝑟𝑛𝑛,𝑡𝑡+1
𝑖𝑖=2 − ∑ 𝑎𝑎𝑖𝑖,𝑡𝑡−

𝑟𝑟𝑛𝑛,𝑡𝑡
𝑖𝑖=2 � = −𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡+1,𝑡𝑡

− . By comparison, in 
cumulative prospect theory, the probability weight 𝜔𝜔𝑖𝑖 is defined by the change in the weighting 
function, ∆𝜋𝜋(𝑞𝑞) . In turn, ∆𝜋𝜋(𝑞𝑞)  depends on whether outcome 𝑥𝑥𝑖𝑖 , paired with probability 𝑞𝑞𝑖𝑖 , 
increases or decreases. Suppose 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑛𝑛� < 𝑟𝑟 < 𝑥𝑥𝑛𝑛�+1 < ⋯ < 𝑥𝑥𝑁𝑁 . For outcome gains from a 
reference point 𝑟𝑟 , 𝜔𝜔𝑛𝑛 = 𝜋𝜋+�∑ 𝑞𝑞𝑖𝑖𝑁𝑁

𝑖𝑖=𝑛𝑛 � − 𝜋𝜋+�∑ 𝑞𝑞𝑖𝑖𝑁𝑁
𝑖𝑖=𝑛𝑛+1 � , and for outcome losses from 𝑟𝑟 , 𝜔𝜔𝑛𝑛 =

𝜋𝜋−(∑ 𝑞𝑞𝑖𝑖𝑛𝑛
𝑖𝑖=1 )− 𝜋𝜋−�∑ 𝑞𝑞𝑖𝑖𝑛𝑛−1

𝑖𝑖=1 �. 
6 An alternative specification is (a) 𝑎𝑎𝑖𝑖,𝑡𝑡1 = 𝑎𝑎𝑖𝑖,𝑡𝑡0 for 𝑖𝑖 = 2,3,4, and 5, or (b) 𝑎𝑎𝑖𝑖,𝑡𝑡1 = 𝑎𝑎𝑖𝑖,𝑡𝑡0 + 𝑐𝑐 for 𝑖𝑖 = 3 
and 4, and 𝑎𝑎𝑖𝑖,𝑡𝑡1 = 𝑎𝑎𝑖𝑖,𝑡𝑡0 for 𝑖𝑖 = 2 and 5. However, estimation results do not depend that much on 
which specification is adopted. 
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deteriorating, and invariant observations. Thus, for an observation whose risk rank increases from 
𝑟𝑟𝑛𝑛,𝑡𝑡0 to 𝑟𝑟𝑛𝑛,𝑡𝑡1 with one rank, the first difference in land prices is expressed as 

 

  ln𝑃𝑃𝑛𝑛,𝑡𝑡1
+ − ln𝑃𝑃𝑛𝑛,𝑡𝑡0

0 = � �𝑎𝑎𝑖𝑖,𝑡𝑡1 − 𝑎𝑎𝑖𝑖,𝑡𝑡0� + 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1
+ + ��𝑏𝑏𝑗𝑗,𝑡𝑡1𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 −�𝑏𝑏𝑗𝑗,𝑡𝑡0𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

� + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1
+ − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�

𝑟𝑟𝑛𝑛,𝑡𝑡1−1

𝑖𝑖=2

 

   = 𝑐𝑐�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2� + 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1
+ + ∑ �𝑏𝑏𝑗𝑗,𝑡𝑡1 − 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0�

𝐽𝐽
𝑗𝑗=1

𝐽𝐽
𝑗𝑗=1 + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1

+ − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�. (6) 

 
For an observation whose risk rank decreases from 𝑟𝑟𝑛𝑛,𝑡𝑡0 to 𝑟𝑟𝑛𝑛,𝑡𝑡1 with one rank, 

ln𝑃𝑃𝑛𝑛,𝑡𝑡1
− − ln𝑃𝑃𝑛𝑛,𝑡𝑡0

0 = � �𝑎𝑎𝑖𝑖,𝑡𝑡1 − 𝑎𝑎𝑖𝑖,𝑡𝑡0� − 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1+1,𝑡𝑡1
− + ��𝑏𝑏𝑗𝑗,𝑡𝑡1𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 −�𝑏𝑏𝑗𝑗,𝑡𝑡0𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

� + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1
− − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�

𝑟𝑟𝑛𝑛,𝑡𝑡1+1

𝑖𝑖=2

 

  = 𝑐𝑐𝑟𝑟𝑛𝑛,𝑡𝑡1 − 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1+1,𝑡𝑡1
− + ∑ �𝑏𝑏𝑗𝑗,𝑡𝑡1 − 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0�

𝐽𝐽
𝑗𝑗=1

𝐽𝐽
𝑗𝑗=1 + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1

− − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�. (7) 

 
Lastly, for an observation without any change in the risk rank, 

ln𝑃𝑃𝑛𝑛,𝑡𝑡1
0 − ln𝑃𝑃𝑛𝑛,𝑡𝑡0

0 = ��𝑎𝑎𝑖𝑖,𝑡𝑡1 − 𝑎𝑎𝑖𝑖,𝑡𝑡0� + ��𝑏𝑏𝑗𝑗,𝑡𝑡1𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 −�𝑏𝑏𝑗𝑗,𝑡𝑡0𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

� + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�

𝑟𝑟𝑛𝑛,𝑡𝑡1

𝑖𝑖=2

 

= 𝑐𝑐�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1� + ∑ �𝑏𝑏𝑗𝑗,𝑡𝑡1 − 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0�
𝐽𝐽
𝑗𝑗=1

𝐽𝐽
𝑗𝑗=1 + �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0�. (8) 

 
Combining equations (6), (7), and (8), the empirical specification takes the following form for 

observation 𝑛𝑛 where the risk rank changes from 𝑟𝑟𝑛𝑛,𝑡𝑡0 by one rank in year 𝑡𝑡1, or never changes. 

 
ln𝑃𝑃𝑛𝑛,𝑡𝑡1 − ln𝑃𝑃𝑛𝑛,𝑡𝑡0 = c�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2�𝐷𝐷+ + c�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1�𝐷𝐷0 + c𝑟𝑟𝑛𝑛,𝑡𝑡1𝐷𝐷

− + 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1
+ 𝐷𝐷+ − 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1+1,𝑡𝑡1

− 𝐷𝐷− 
                  +∑ �𝑏𝑏𝑗𝑗,𝑡𝑡1 − 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 + ∑ 𝑏𝑏𝑗𝑗,𝑡𝑡0�𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡0�

𝐽𝐽
𝑗𝑗=1

𝐽𝐽
𝑗𝑗=1 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (9) 

 
where 𝐷𝐷+  ( 𝐷𝐷− , 𝐷𝐷0 ) is a dummy variable denoting a deteriorating (improving, invariant) 
observation.7 Note that a negative sign appears in front of 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1+1,𝑡𝑡1

− 𝐷𝐷−. We exclude observations 

whose risk index changes by more than one rank from the estimation.  
The above econometric specification shares the features of nonlinear probability weighting, 

rank dependence, and gain/loss asymmetry, all of which are essential parts of prospect theory. The 
specification can be described graphically using Figure 3, where the nonlinear land pricing function 
at time 𝑡𝑡1 is depicted by the solid blue line. Equation (6) for risk-deteriorating observations is then 

 
7  It is assumed that 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1

+ − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0  in equation (6), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1
− − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0  in equation (7), and 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡0  in equation (8) are equal to one another. Once a difference among the three 
constant terms is admitted, some of 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1

+  and 𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1
−  are unidentifiable because of strong multi-

collinearity of 𝐷𝐷+, 𝐷𝐷−, or 𝐷𝐷0 with these constant terms. 
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represented by the black arrow, while equation (7) for risk-improving observations is depicted by the 
red arrow. From this, we anticipate the following findings: 
 

i. If strong nonlinearity exists at Ranks 2 and 4, then 𝑎𝑎2,𝑡𝑡1
− < 𝑎𝑎2,𝑡𝑡1

+ , and 𝑎𝑎5,𝑡𝑡1
− > 𝑎𝑎5,𝑡𝑡1

+  are 

predicted. If nonlinearity is weak except between Ranks 1 and 2 and between Ranks 4 and 
5, then 𝑎𝑎3,𝑡𝑡1

− ≈ 𝑎𝑎3,𝑡𝑡1
+  and 𝑎𝑎4,𝑡𝑡1

− ≈ 𝑎𝑎4,𝑡𝑡1
+ are likely to hold. 

ii. If strong nonlinearity exists at Ranks 3 and 4, then the result changes to 𝑎𝑎3,𝑡𝑡1
− < 𝑎𝑎3,𝑡𝑡1

+  and 
𝑎𝑎5,𝑡𝑡1
− > 𝑎𝑎5,𝑡𝑡1

+ . In addition, 𝑎𝑎2,𝑡𝑡1
− ≈ 𝑎𝑎2,𝑡𝑡1

+  and 𝑎𝑎4,𝑡𝑡1
− ≈ 𝑎𝑎4,𝑡𝑡1

+  tend to hold for weakly nonlinear 

sections. 
iii. If strong nonlinearity exists at Ranks 2 and 3, then the result is revised as 𝑎𝑎2,𝑡𝑡1

− < 𝑎𝑎2,𝑡𝑡1
+  and 

𝑎𝑎4,𝑡𝑡1
− > 𝑎𝑎4,𝑡𝑡1

+ . In addition, 𝑎𝑎3,𝑡𝑡1
− ≈ 𝑎𝑎3,𝑡𝑡1

+  and 𝑎𝑎5,𝑡𝑡1
− ≈ 𝑎𝑎5,𝑡𝑡1

+  tend to hold for weakly nonlinear 

sections. 
 

We impose 𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

− , 𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

− , and 𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−  as additional restrictions. These 
restrictions imply that within the same rank (𝑟𝑟𝑛𝑛,𝑡𝑡1), the marginal effect from the lower bound (𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1 ,𝑡𝑡1

+ ) 
is the same as that from the upper bound (𝑎𝑎𝑟𝑟𝑛𝑛,𝑡𝑡1+1,𝑡𝑡1

− ). Thanks to these restrictions, the black and red 

arrows connect at the boundaries between Ranks 1 and 2, Ranks 2 and 3, Ranks 3 and 4, and Ranks 
4 and 5. 

We make a final remark on the above econometric framework. As explained in Section 3, the 
earthquake risk rank, which is released publicly by the TMG, is not cardinal/continuous, but 
ordinal/discrete. But we still exploit the information associated with the continuous movement of 
the cardinal risk measure, unavailable for researchers, at each border between the two consecutive 
risk ranks. That is, the current specification does not focus on how much earthquake risk differs 
among various points of location in a static context, but it considers in which direction the 
unobservable measure changes marginally at the risk boundary in a dynamic context. For this 
reason, we can identify the estimates of 𝑎𝑎𝑖𝑖,𝑡𝑡−  and 𝑎𝑎𝑖𝑖,𝑡𝑡+ , or two-way risk sensitivities from the identical 
boundary between Ranks 𝑖𝑖 − 1 and 𝑖𝑖 (𝑖𝑖 = 2, 3, 4, and 5). 
 
 
3. Data 
3.1. On the Community Earthquake Risk Assessment Study conducted by the TMG 

In this section, we describe the two major datasets employed, that is, the Community 
Earthquake Risk Assessment Study (CERAS) released by the TMG, and the land prices listed by the 
MLIT. The TMG initiated the CERAS in 1975 and releases it about every five years. In the first 
three editions, the areas covered and how subdivisions are defined differ substantially,8 but the most 

 
8 In the 1st and 2nd editions, the Tokyo 23 wards (the eastern urban areas) and the Tama area (the 
western suburban areas) were assessed separately. In the 1st (2nd) edition, the former was assessed 
in 1975 (1984) and the latter in 1980 (1987). Up until the 3rd edition (the 1993 CERAS), each division 
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recent five editions starting from 1998 are more consistent, systematically expanding coverage to 
every numbered subdivision (cho-me in Japanese) of all wards, cities, and towns in the TMD, except 
in its western mountainous region. We thus employ the five most recent editions of the CERAS in 
this study (Bureau of Urban Development, TMG, 1998, 2002,9 2008, 2013, and 2018). 

The CERAS evaluates earthquake risk for each numbered subdivision in terms of building 
collapse (BC) risk and fire risk. We choose the former measure for this analysis because it is a more 
direct measure of geological and construction vulnerability to earthquake hazards. The CERAS does 
not assume any earthquake occurring at any specific location. It instead assesses earthquake risk 
on the assumption that a hypothetical earthquake occurs at the same seismic intensity throughout 
the TMD. 

The BC risk is evaluated for each numbered subdivision as follows. First, the number of 
buildings (not the number of housing units) are tallied according to structural type, building date, 
and the number of floors. Second, the topographical and geological conditions are assessed across 12 
categories. Third, the CERAS computes how many buildings would collapse because of the 
occurrence of the hypothetical earthquake. For this purpose, shaking at the ground surface, the 
impacts of liquefaction, and differences between filling and cutting sites are particularly taken into 
consideration. Fourth, the number of buildings that would collapse is standardized per hectare for 
each subdivision. Fifth, the number of collapsed buildings per hectare for each subdivision is ordered 
from high to low. Finally, the ranking is determined by rating the first 1.6% of all subdivisions as 
Rank 5, the next 5.6% as Rank 4, the next 15.8% as Rank 3, the next 31.8% as Rank 2, and the final 
45.2% as Rank 1. 

For land prices, the MLIT lists the land prices appraised each new year for many fixed points 
of location in mostly urban areas throughout Japan. For the TMD, the land prices of more than two 
thousand fixed places are appraised each year, with 2,917 location points in 1999, 3,254 in 2004, 
2,853 in 2009, 2,162 in 2014, and 2,602 in 2019. 

We combine the assessed land prices with the earthquake risk rank reported by the CERAS by 
assuming that the earthquake risk rank compiled by the CERAS is reflected in land prices listed 
one year after its release. That is, the 1998 (2003, 2008, 2013, and 2018) editions of the CERAS are 
paired with the land prices listed in 1999 (2004, 2009, 2014, and 2019), respectively. We use only 
fixed points of location, in which (1) the land prices were listed at both ends of the interval 1999–
2004, 2004–2009, 2009–2014, and 2014–2019,10 and (2) the risk rank changed by only one rank. 
Under these conditions, we obtain 2,586, 2,653, 1,835, and 1,962 fixed places across the four intervals 

 
was defined in terms of a 500-meter mesh unit not the numbered subdivision. 
9 The 4th, 5th, 6th, 7th, and 8th editions were released in March 1998, December 2002, February 2008, 
September 2013, and February 2018, respectively. In the main text, however, the 5th edition is 
referred to as the 2003 CERAS to maintain a five-year interval among the five editions. 
10 Because the panel of the fixed points of location rotated irregularly, the number of fixed places for 
which listed land prices are available at both ends of the interval is less than for all points of location 
in which land prices are listed each year. 
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1999–2004, 2004–2009, 2009–2014, and 2014–2019, respectively. 11  As shown in Table 1, the 
earthquake risk rank improved or deteriorated for 32.3% of the fixed places in the interval 1999–
2004, 24.3% in 2004–2009, 15.1% in 2009–2014, and 10.8% in 2014–2019. Given the nature of 
relative ranking with a fixed share of each rank, the number of fixed points exhibiting a risk 
improvement is almost equal to that of those showing a risk deterioration. 

Any change in the CERAS earthquake risk rank is driven by three main factors. First, the BC 
risk reduced because of an improvement in the urban environment. For example, in the urban parts 
of the TMD, many urban reconstruction plans were implemented in the 2000s. In 2002, the Japanese 
Government enacted its Act on Special Measures concerning Urban Reconstruction (Urban 
Reconstruction Act). This allowed the TMG to deregulate restrictions in terms of urban 
reconstruction, including relaxed floor area ratios together with strict building coverage ratios, 
private initiatives for urban planning, financial aid, and tax reductions for private urban 
reconstruction projects. Under the large-scale private projects supported by this act, older more 
fragile buildings and houses were replaced by newer more resilient buildings in both commercial 
and residential areas in central and western parts of the Tokyo 23 wards (the eastern urban area in 
the TMD). Consequently, the BC risk diminished in these areas during the 2000s and 2010s. While 
the cardinal BC risk measures are not released publicly, a change in the measure, driven by the 
above factor, is expected to be not discontinuous, but continuous, when only a part of a numbered 
subdivision is reconstructed by such private projects. 

Second, the BC risk increased in areas where many buildings and houses deteriorated, 
particularly in western parts of the Tama area (the western suburban area in the TMD) as well as 
eastern parts of the Tokyo 23 wards.12 In the former where transportation was inconvenient, aging 
houses and condominiums were seldom reconstructed. In the latter, the area was congested heavily 
by aging wooden houses, which served as rental houses for low-income earners. However, the TMG 
developed reconstruction projects for disaster prevention in them.13 Such public projects, though 
often small-scale, contributed to a decrease in the BC risk in these risky areas. 

Third, the assessment of BC risk is influenced by revisions in the information associated with 
earthquake risk. In particular, the following revisions in earthquake risk information were 

 
11 Given that the land price was listed at both ends of the interval, the risk measure changed by 
more than one rank for nine of 2,595 subdivisions in the interval 1994–2004, and for seven of 1,842 
subdivisions in the interval 2009–2014. 
12 According to the Housing and Land Survey conducted by the Statistics Bureau of Japan, average 
building/house age decreased by 1.7 years in the Tokyo 23 wards in the interval 1998–2008 and by 
4.6 years in its central part (Chiyoda, Chuo, Minato, Shinjuku, and Shibuya). In contrast, the 
average building/house age increased by 0.2 years in the Tama area during the same interval. 
However, after most areas with quite old buildings and houses were renovated under large-scale 
urban projects in the 2010s, the average ages increased by 2.3 years, even in the Tokyo 23 wards, in 
the interval 2008–2018. However, they increased by more than 4.0 years in the Tama area over the 
same interval. 
13 These public projects were established under the Act on Promotion of Improvement of Disaster 
Control in Populated Urban Districts, which was enacted in 2003, and amended majorly in 2003. 
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incorporated into the 2013 CERAS in light of information newly made available by the Great 
Hanshin-Awaji earthquake in January 1995, the Chuetsu-oki earthquake in July 2007, and 
especially the Great East Japan earthquake in March 2011. In particular, the earthquake risks 
associated with shaking at the ground surface, liquefaction, the age of buildings and houses, and 
aseismic retrofit treatments were thoroughly revised. 

However, note that changes in the urban environment and every risk revision do not 
necessarily appear as changes in the BC risk rank. For example, if such changes and revisions alter 
the order of the number of collapsed buildings per hectare only among the numbered subdivisions 
belonging to the same rank, then the change in rank never shows up in the BC risk compiled by the 
CERAS. Only if a risk improvement is around the lower bound of a particular rank (other than Rank 
1), or risk deterioration is around the upper bound of a specific rank (except Rank 5), does a rank-
down or rank-up arise in BC risk. Among the subdivisions whose BC risk is similar at the boundary 
between the two consecutive ranks, some subdivisions with a risk improvement at a higher rank 
trade ranks with other subdivisions maintaining the status quo at a lower rank. Or, some 
subdivisions with a risk deterioration at a lower rank swap ranks with other subdivisions 
maintaining the status quo at a higher rank. Consequently, subdivisions with rank-down experience 
exhibit either a decrease or no change in BC risk, while those with rank-up experience reveal either 
an increase or no change in BC risk. Here, notice that the declining tendency of BC risk between two 
points in time among the five ranks is excluded as aggregate effects. 

None of the various CERAS editions report the full dataset of BC risk, as measured for every 
numbered subdivision in terms of the number of collapsed buildings per hectare. But the 2018 
CERAS does report some useful statistics. On average, BC risk declined from 3.51 in 2013 to 2.79 in 
2018 across the TMD, from 4.97 to 3.85 in the Tokyo 23 wards, and from 1.22 to 1.15 in the Tama 
area. On this basis, earthquake risk tended to improve more in the Tokyo 23 wards than in the Tama 
area. Of the 5,128 subdivisions, BC risk changed within +0.1 and −2.0 in 4,245 subdivisions, 
increased by more than 0.1 in 362 subdivisions, and decreased by more than 2.0 in 521 subdivisions. 
Thus, after adjusted by overall improvement in BC risk, changes in ranks include both rank-down 
changes driven by risk improvement, and rank-up changes driven by risk deterioration. 

Given the nature of the CERAS, we make the following assumptions on the cardinal BC risk 
measures, which are not released publicly by the TMG. First, the BC risk measure, assessed for 
every numbered subdivision, changes only continuously and never jumps within five years partly 
because not the entire subdivision, but only its part is reconstructed by private and public urban 
development, and partly because buildings, houses, and social infrastructures deteriorate slowly. 
Second, the BC risk measure changes marginally at the same border by similar magnitudes in either 
direction of risk improvement or deterioration. 
 
3.2. How did the discrete risk index change in the CERAS? 
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Let us look more closely at how the BC risk index changed across the four intervals, 1998–2003, 
2003–2008, 2008–2013, and 2013–2018. In Figures 4–5, the borders of the Tokyo 23 wards, as 
opposed to the Tama area, are drawn using a bold black line. Numbered subdivisions where the risk 
index decreased (increased) in each 5-year interval are marked by a blue (red) polygon. Crosses (risk 
deterioration) and black circles (risk improvement) identify the points of location for which officially 
listed land prices are available at both ends of the intervals 1999–2004, 2004–2009, 2009–2014, and 
2014–2019. 

Figures 4-A–4-D depict how the BC risk index changed between Ranks 1 and 2 across the four 
intervals. In the interval 1998–2003 (Figure 4-A), the risk rank decreased from Rank 2 to Rank 1 in 
the western part of the Tokyo 23 wards (Nerima, Suginami, and Setagaya) as well as Fuchu city in 
the Tama area, primarily from private urban reconstruction in the former and residential 
development in the latter. In the interval 2003–2008 (Figure 4-B), rank change from Rank 2 to Rank 
1 took place in the central part of the Tokyo 23 wards (Chiyoda, Minato, and Shinjuku) following 
enactment of the Act on Special Measures concerning Urban Reconstruction in 2002. Conversely, the 
risk rank increased from Rank 1 to Rank 2 in the western suburban area, reflecting the increase in 
older houses and buildings. In the interval 2013–2018 (Figure 4-D), the risk rank decreased from 
Rank 2 to Rank 1 in the central and western parts of the Tokyo 23 wards because of private urban 
reconstruction. However, the numbered subdivisions with rank-downs contracted substantially, 
probably because urban reconstructions were initiated in areas that had already been classified as 
Rank 1. In this interval, suburban areas were also subject to rank-ups (risk deterioration). 

In the interval 2008–2013 (Figure 4-C), urban reconstruction and suburban deterioration 
continued as in the intervals 1996–2003, 2003–2008, and 2013–2018. Nevertheless, how the risk 
rank changed between Ranks 1 and 2 differs during this interval from the other three. That is, rank-
downs were often observed in the Tama area, whereas rank-ups were more frequent in the Tokyo 23 
wards. A major reason for this is that as mentioned, the 2013 CERAS included a revised risk 
assessment criterion given information newly available from the Great Hanshin-Awaji earthquake 
in January 1995, the Chuetsu-oki earthquake in July 2007, and the Great East Japan earthquake 
in March 2011. In particular, serious consideration of liquefaction risks acted against coastal and 
riverside urban areas in the Tokyo 23 wards but worked in favor of hilly suburban parts of the Tama 
area. 

How the risk index changed between Ranks 2 and 3 across the four intervals almost follows 
the same pattern as those for Ranks 1 and 2. Thus, we move to explore how the risk rank changed 
among Ranks 3, 4, and 5 across the four intervals. Figure 5 depicts how the BC risk changed in the 
interval 1998–2003. As shown, a change in the risk index among the lower three ranks took place in 
the eastern part of the Tokyo 23 wards. As mentioned, many blocks in these areas were heavily 
congested by aging wooden houses. Therefore, BC risk increased with further building/house 
deterioration and decreased through public reconstruction projects for disaster control. The same 
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pattern as the interval 1998–2003 is observed in the three intervals that follow. 
 
 
4. Estimation results 
4.1. Choice of dependent and explanatory variables 

For estimation purposes, we respecify equation (9) as follows: 
 

ln𝑃𝑃𝑛𝑛,𝑡𝑡1 − ln𝑃𝑃𝑛𝑛,𝑡𝑡0 = c�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2�𝐷𝐷+ + c�𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1�𝐷𝐷0 + c𝑟𝑟𝑛𝑛,𝑡𝑡1𝐷𝐷
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𝑗𝑗=1 + +𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑛𝑛, (11) 

 
where 𝐷𝐷𝑖𝑖−1,𝑖𝑖

+  takes a value of one if the risk rank increases from Rank 𝑖𝑖 − 1 by one rank, zero 
otherwise. Similarly, 𝐷𝐷𝑖𝑖,𝑖𝑖−1−  takes a value of one if the risk rank decreases from Rank 𝑖𝑖 by one rank, 
zero otherwise. 𝜀𝜀𝑛𝑛  is the error term. In addition, equation (11) is estimated under alternative 
restrictions on coefficients, including the set of 𝑎𝑎2,𝑡𝑡1

+ = 𝑎𝑎3,𝑡𝑡1
− , 𝑎𝑎3,𝑡𝑡1

+ = 𝑎𝑎4,𝑡𝑡1
− , and 𝑎𝑎4,𝑡𝑡1

+ = 𝑎𝑎5,𝑡𝑡1
− . 

In the estimation, ln𝑃𝑃𝑛𝑛,𝑡𝑡1 and ln𝑃𝑃𝑛𝑛,𝑡𝑡0 are adjusted by the yearly average. Thus, the dependent 
variable in equation (11) denotes a relative not absolute change in land prices. The time-varying 
variable 𝑥𝑥𝑗𝑗,𝑛𝑛,𝑡𝑡 includes population density for 𝑗𝑗 = 1, the distance to the nearest railway station for 
𝑗𝑗 = 2, and the floor area ratio for 𝑗𝑗 = 3. Here, 𝑥𝑥1,𝑛𝑛,𝑡𝑡 is available as a 1-kilometer mesh from the 2000, 
2005, 2010, and 2015 digital versions of the population census,14 while both 𝑥𝑥2,𝑛𝑛,𝑡𝑡 and 𝑥𝑥3,𝑛𝑛,𝑡𝑡 are 
obtainable from the dataset of listed land prices. We assume that other potentially important 
variables are incorporated as fixed effects, an assumption requiring some qualification in Section 
4.3. 

As described in Section 3, the TMG released earthquake risk ranks for every numbered 
subdivision of all wards, cities, and towns in the TMD in 1998, 2003, 2008, 2013, and 2018. The 
appraised land prices for the approximately two thousand fixed points of location in the TMD as 
listed by the MLIT are for the new year. Thus, a change in relative land prices in the period 1999 to 
2004 is associated with a change in the BC risk rank in the period 1998 to 2003. A similar pair is 
constructed for changes in relative land prices between 2004 and 2009, 2009 and 2014, and 2014 and 
2019. 

The number of observations in which the land prices are available at both ends of the interval 
is 2,595 in 1999–2004, 2,653 in 2004–2009, 1,842 in 2009–2014, and 1,962 in 2014–2019. We exclude 
observations where the BC risk rank changes by two or more ranks (nine observations in 1999–2004 
and seven observations in 2009–2014). In addition, the number of observations employed for the 
estimation further reduces because population density data are not available for some listed points 
adjacent to the coast (five points in 1999–2004, two in 2004–2009, and one in 2009–2014). Table 1 

 
14 The 2020 digital version of the population census was unavailable at the time of this research. 
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reports descriptive statistics for the changes in relative land prices, given the changes in the BC risk 
ranks, and Table 2 provides descriptive statistics for the changes in the explanatory variables during 
each interval and at the end of each interval. 
 
4.2. Estimation results under alternative restrictions on coefficients 

Table 3-1 provides ordinary least squares estimation results for equation (11) without any 
restrictions on the coefficients. Heteroskedasticity-robust standard deviations are in parentheses. 
Let us first explore the nonlinearity predicted by prospect theory at the lower tails of the BC risk 
ranks. In the intervals 1999–2004 and 2004–2009, we detect nonlinearity between Ranks 1 and 2. 
As implied by 𝑎𝑎2,𝑡𝑡0

− < 𝑎𝑎2,𝑡𝑡0
+ , the regression slope is steeper moving from Rank 2 to 1 and less 

downward moving from Rank 1 to 2. More precisely, 𝑎𝑎2,𝑡𝑡0
−  is negative in both intervals. However, 

𝑎𝑎2,𝑡𝑡0
+  is significantly positive in the interval 1999–2004, whereas 𝑎𝑎2,𝑡𝑡0

+ = 0 cannot be rejected for the 

interval 2004–2009. In the interval 2014–2019, we identify nonlinearity between not Ranks 1 and 2 
(𝑎𝑎2,𝑡𝑡0

− ≈ 𝑎𝑎2,𝑡𝑡0
+ < 0), but Ranks 2 and 3 (𝑎𝑎3,𝑡𝑡0

− < 0 < 𝑎𝑎3,𝑡𝑡0
+ ). 

Moving to the upper tail of the BC risk ranks, we identify nonlinearity between Ranks 4 and 5 
in the intervals 1999–2004 and 2014–2019. As implied by 𝑎𝑎5,𝑡𝑡0

− > 𝑎𝑎5,𝑡𝑡0
+ , the regression slope is less 

downward from Ranks 5 to 4 and steeper from Ranks 4 to 5. More precisely, 𝑎𝑎5,𝑡𝑡0
+  is significantly 

negative in both intervals, whereas 𝑎𝑎5,𝑡𝑡0
− = 0 cannot be rejected in the interval 1999–2004, and 𝑎𝑎5,𝑡𝑡0

−  
is significantly positive in the interval 2014–2019. As implied by 𝑎𝑎4,𝑡𝑡0

− > 𝑎𝑎4,𝑡𝑡0
+ , we detect nonlinearity 

between Ranks 3 and 4 in the interval 2004–2009. In these three intervals (1999–2004, 2004–2009, 
and 2014–2019), risk sensitivity is sometimes estimated to be not negative, but positive among 
Ranks 2, 3, and 4. One interpretation is that the inverse S-shaped probability weighting function 
may be slightly downward- not slightly upward-sloping at intermediate levels of risk. 

What is puzzling is that no theoretically consistent nonlinearity is detected in the interval 
2009–2014. That is, we can identify neither 𝑎𝑎2,𝑡𝑡0

− < 𝑎𝑎2,𝑡𝑡0
+  nor 𝑎𝑎5,𝑡𝑡0

− > 𝑎𝑎5,𝑡𝑡0
+ . An obvious explanation is 

that the 2013 CERAS substantially revised the criteria for risk assessment. As discussed in Section 
3.2, BC risk increased in coastal and riverside urban parts of the Tokyo 23 wards but decreased in 
hilly suburban parts in the Tama area. However, such changes in earthquake risks might have 
already been reflected in the appraisal of the listed land prices. 

Let us then examine the estimated coefficients for the other explanatory variables. The 
significantly positive 𝑐𝑐  for the intervals 1999–2004, 2004–2009, and 2014–2019 suggests that 
overall risk sensitivity is becoming smaller over time. As shown by the estimations of 𝑏𝑏1,𝑡𝑡0 and 
𝑏𝑏1,𝑡𝑡1 − 𝑏𝑏1,𝑡𝑡0, the impact of population density on land prices is more positive in the interval 1999–

2004, remains positive in 2004–2009, and becomes negative in 2009–2014. Note that population 
density data are not available for the interval 2014–2019. As implied by the negative 𝑏𝑏2,𝑡𝑡0, although 

not necessarily significant, land prices rise as the distance to the nearest station becomes shorter. 
As the significantly negative 𝑏𝑏2,𝑡𝑡1 − 𝑏𝑏2,𝑡𝑡0 suggests, this tendency becomes stronger over time. The 
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impact of the floor area ratio (𝑏𝑏3,𝑡𝑡0) is mixed. In the interval 1999–2004, land prices increase with 

the floor area ratio, but in the remaining three intervals, land prices are fairly insensitive to the 
floor area ratio. As for the estimation of 𝑏𝑏3,𝑡𝑡1 − 𝑏𝑏3,𝑡𝑡0, 𝑏𝑏3,𝑡𝑡0 increases in the intervals 2004–2009 and 

2014–2019 but decreases in the interval 2009–2014. According to the estimated coefficient on a 
dummy variable of residential land use, land prices increase more for observations of residential use 
in all intervals except 2009–2014. 

We now impose parameter restrictions on equation (11) to make the estimation results more 
visual. First, Table 3-2 reports estimation results with parameter restrictions 𝑎𝑎2,𝑡𝑡1

+ = 𝑎𝑎3,𝑡𝑡1
− , 𝑎𝑎3,𝑡𝑡1

+ =

𝑎𝑎4,𝑡𝑡1
− , and 𝑎𝑎4,𝑡𝑡1

+ = 𝑎𝑎5,𝑡𝑡1
− . Given these restrictions, the land pricing function connects between Ranks 2 

and 3 and Ranks 3 and 4. According to Figure 6-1, nonlinearity appears between Ranks 1 and 2 and 
between Ranks 3 and 4 in the interval 1999–2004, between Ranks 1 and 2 and Ranks 3 and 4 in 
2004–2009, and between Ranks 2 and 3 and Ranks 4 and 5 in 2014–2019. However, in the interval 
2009–2014, no theoretically consistent nonlinearity appears. 

The estimation results with two sets of more severe parameter restrictions are reported except 
for the interval 2009–2014 in Table 3-3. Figure 6-2 plots the land pricing function where 
𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

− = 𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

− = 𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−  in Spec. A in Table 3-3. In this case, nonlinearity is imposed 

between Ranks 1 and 2, and between Ranks 4 and 5. In Figure 6-3 based on Spec. B in Table 3-3, 
nonlinearity is imposed between Ranks 1 and 2 and between Ranks 3 and 4 in the intervals 1999–
2004 and 2004–2009 (𝑎𝑎2,𝑡𝑡1

+ = 𝑎𝑎3,𝑡𝑡1
− = 𝑎𝑎3,𝑡𝑡1

+ = 𝑎𝑎4,𝑡𝑡1
−  and 𝑎𝑎4,𝑡𝑡1

+ = 𝑎𝑎5,𝑡𝑡1
− ), and between Ranks 2 and 3 and 

Ranks 4 and 5 in 2014–2019 (𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

−  and 𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

− = 𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

− ). 

 
4.3. On the potential correlation between the BC risk measure and economic activity 

One potential problem associated with the above econometric exercise is that the BC risk 
measure may be correlated with economic activity and that the estimations of risk sensitivity 𝑎𝑎𝑖𝑖,𝑡𝑡1

−  
and 𝑎𝑎𝑖𝑖,𝑡𝑡1

+  are then likely to be biased, depending on whether proxies for economic activity are 

included as explanatory variables. For example, people and firms may move into (out of) earthquake 
risk-improved (-deteriorated) areas. Accordingly, the BC risk measure is correlated negatively with 
regional population density and community income in terms of both levels at a particular point in 
time and changes between two points in time. 

However, the current estimation results are almost free from possible missing-variable bias. 
Here, population density as an explanatory variable 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 is expected to be correlated with the 

cardinal BC risk measure, although the latter is never fully disclosed in any edition of the CERAS. 
However, the estimation of risk sensitivity 𝑎𝑎𝑖𝑖,𝑡𝑡1

−  and 𝑎𝑎𝑖𝑖,𝑡𝑡1
+  scarcely changes, even if both 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 and 

𝑥𝑥1,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥1,𝑛𝑛,𝑡𝑡0 are omitted from the explanatory variables in the three intervals. For example, Figure 

6-4 compares estimation results between with and without population density following the 
econometric specification used in Table 3-2. According to this figure, excluding population density 
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has no impact on the basic pattern of risk sensitivity in the intervals 1999–2004, 2004–2009 and 
2009–2014. 

Two reasons may be responsible for the absence of missing-variable bias. First, the current 
estimation focuses on not all, but some of the listed points of location, for which the BC risk measure 
changes over time at the border between the two consecutive ranks. In only 32.3% (24.3%, 15.1%, 
and 10.8%) of all points was the BC risk rank revised at the border in the interval 1999–2004 (2004–
2009, 2009–2014, and 2014–2019). The correlation between the BC risk measure and population 
density may then be strong among observations in the same rank, but weak among observations at 
the border between the two consecutive ranks. Second, the BC risk measure may be correlated with 
population density strongly at levels, but weakly in changes. Population increases (decreases) may 
not immediately follow risk improvement (deterioration). Overall, because of our focus on dynamic 
not static behavior, the estimation results appear free from missing-variable bias. 
 
 
5. Conclusion 

Using the newly proposed econometric framework, this paper addresses land pricing behavior 
at the border between the two consecutive risk ranks over a five-year interval and reveals a 
nonlinear relationship in the changes between land prices and earthquake risk. This framework 
employs only the available ordinal risk measure in panel data, but it allows us to exploit the 
information associated with the continuous movement of the unavailable cardinal risk measure at 
the border between the two consecutive risk ranks. The empirical findings, in particular the risk 
improvement/deterioration asymmetry, are consistent with the implications of prospect theory. In 
all intervals except for 2009–2014, risk improvement was reflected in a substantial increase in land 
prices at the border between Ranks 1 and 2 and Ranks 2 and 3, but risk deterioration was less 
evident in a decrease in land prices at the same borders. In contrast, risk deterioration appeared as 
a noticeable decrease in land prices at the borders between Ranks 4 and 5 and Ranks 3 and 4, but 
risk improvement did not result in a considerable increase in land prices at the same borders. 

The finding of the improvement/deterioration asymmetry suggests several policy implications. 
First, earthquake risk is improved by urban/suburban development and reconstruction in safer areas 
(those in Ranks 1 and 2), and this manifests itself as marked increases in land prices. For this reason, 
private projects drive regional development in safer areas. Thus, even large-scale property projects 
in the central part of the Tokyo 23 wards and transportation-convenient parts of the Tama area could 
be left to private initiatives or market mechanisms. 

Second, earthquake risk deterioration through aging buildings, houses, and social 
infrastructure is reflected in only minor decreases in land prices in safer areas, but quite substantial 
decreases in riskier areas (those in Ranks 5 and 4). For these riskier areas, private developers would 
not expect any benefits from reconstruction-induced increases in land prices. Consequently, without 
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public intervention, risky areas, particularly those heavily congested with aging wooden houses in 
the eastern part of the Tokyo 23 wards, could suffer from a serious decline in land prices. In extreme 
cases, these areas could become slums. The reconstruction projects for disaster control initiated by 
the TMG, though often small-scale, indeed prevented land prices from slumping sharply in these 
areas. 

Finally, a proper combination of private development projects in safer areas and public 
reconstruction projects in riskier areas could contribute to both promoting urban/suburban 
intensification and preventing more fragile urban areas from collapsing into slums and being 
severely segregated. In the gentrification process in risky areas, however, the central and local 
governments need to provide largish housing allowances for low-income earners who cannot live in 
expensive rental houses.15 
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Table 1: Descriptive statistics of changes in relative land prices dependent on changes in risk rank 
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Table 2: Basic statistics of time-varying explanatory variables 

 
Note 
1. The floor area ratio is set at zero in urbanization control areas. 
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Table 3-1: Estimation results without parameter restrictions 
 
 1999 to 2004 2004 to 2009 2009 to 2014 2014 to 2019 
Coefficient on risk rank at the end 
year, 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2, 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1, or 𝑟𝑟𝑛𝑛,𝑡𝑡1 (𝑐𝑐) 

0.017*** 0.011*** -0.001 0.013*** 
(0.004) (0.002) (0.001) (0.002) 

Risk sensitivity, 𝑎𝑎2,𝑡𝑡1
−  -0.010 -0.095*** 0.008 -0.022** 

(0.007) (0.014) (0.007) (0.009) 

  𝑎𝑎3,𝑡𝑡1
−  0.020* -0.023** -0.004 -0.031** 

(0.011) (0.011) (0.004) (0.013) 

  𝑎𝑎4,𝑡𝑡1
−  0.082*** 0.033** 0.016*** 0.045*** 

(0.020) (0.013) (0.006) (0.010) 

  𝑎𝑎5,𝑡𝑡1
−  0.034 0.084*** 0.064*** 0.042*** 

(0.036) (0.015) (0.005) (0.012) 

Risk sensitivity, 𝑎𝑎2,𝑡𝑡1
+  0.048*** 0.003 0.001 -0.026*** 

(0.010) (0.005) (0.004) (0.009) 

  𝑎𝑎3,𝑡𝑡1
+  0.037*** 0.004 -0.022*** 0.023** 

(0.009) (0.007) (0.005) (0.010) 

  𝑎𝑎4,𝑡𝑡1
+  -0.033** -0.035*** 0.032*** 0.001 

(0.014) (0.012) (0.011) (0.013) 

  𝑎𝑎5,𝑡𝑡1
+  -0.065** -0.024 0.021** -0.036** 

(0.028) (0.023) (0.009) (0.018) 
Coefficient on a change in logarithmic 
population density, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥1,𝑛𝑛,𝑡𝑡0  (𝑏𝑏1,𝑡𝑡0) 

0.035 0.051 -0.099***   
(0.043) (0.039) (0.020)   

Coefficient on logarithmic population density 
at the end year, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 (𝑏𝑏1,𝑡𝑡1 − 𝑏𝑏1,𝑡𝑡0) 

0.065*** 0.003 0.026***   
(0.011) (0.005) (0.003)   

Coefficient on a change in distance to the 
nearest station, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥2,𝑛𝑛,𝑡𝑡0 (𝑏𝑏2,𝑡𝑡0) 

-0.006 -0.045** 0.000 -0.011 
(0.023) (0.018) (0.004) (0.027) 

Coefficient on distance to the nearest station at 
the end year, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1 (𝑏𝑏2,𝑡𝑡1 − 𝑏𝑏2,𝑡𝑡0) 

-0.065*** -0.033*** -0.005*** -0.026*** 
(0.004) (0.002) (0.001) (0.002) 

Coefficient on a change in a floor area 
ratio, 𝑥𝑥3,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥3,𝑛𝑛,𝑡𝑡0 (𝑏𝑏3,𝑡𝑡0) 

0.118*** -0.020* -0.005 -0.002 
(0.028) (0.012) (0.005) (0.021) 

Coefficient on a floor area ratio at the end 
year, 𝑥𝑥3,𝑛𝑛,𝑡𝑡1 (𝑏𝑏3,𝑡𝑡1 − 𝑏𝑏3,𝑡𝑡0) 

0.003 0.044*** -0.014*** 0.040*** 
(0.003) (0.002) (0.001) (0.002) 

Coefficient on a dummy of residential 
use, 𝑥𝑥4,𝑛𝑛 

0.100*** 0.057*** 0.000 0.017*** 
(0.009) (0.007) (0.003) (0.006) 

Constant term (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
-0.912*** -0.365*** -0.231*** -0.235*** 

(0.103) (0.046) (0.025) (0.009) 
Number of observations 2,581 2,651 1,834 1,962 
R-squared 0.394 0.531 0.391 0.626 

Notes: 
1. Heteroskedasticity-robust standard errors in parentheses. 
2. ***, **, and * denote p-values less than .01, .05, and .10, respectively. 
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Table 3-2: Estimation results with parameter restrictions (𝒂𝒂𝟐𝟐,𝒕𝒕𝟏𝟏
+ = 𝒂𝒂𝟑𝟑,𝒕𝒕𝟏𝟏

− , 𝒂𝒂𝟑𝟑,𝒕𝒕𝟏𝟏
+ = 𝒂𝒂𝟒𝟒,𝒕𝒕𝟏𝟏

− , and 𝒂𝒂𝟒𝟒,𝒕𝒕𝟏𝟏
+ = 𝒂𝒂𝟓𝟓,𝒕𝒕𝟏𝟏

− ) 
 
 1999 to 2004 2004 to 2009 2009 to 2014 2014 to 2019 
Coefficient on risk rank at the end 
year, 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2, 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1, or 𝑟𝑟𝑛𝑛,𝑡𝑡1 (𝑐𝑐) 

0.014*** 0.007*** -0.002 0.013*** 
(0.004) (0.002) (0.001) (0.002) 

Risk sensitivity, 𝑎𝑎2,𝑡𝑡1
−  -0.010 -0.096*** 0.007 -0.022** 

(0.007) (0.014) (0.007) (0.009) 

  𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

−  0.034*** -0.011* -0.002 -0.028*** 
(0.008) (0.006) (0.003) (0.007) 

  𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

−  0.046*** 0.010 -0.011** 0.029*** 
(0.009) (0.006) (0.005) (0.008) 

  𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−  -0.023* -0.009 0.035*** 0.013 
(0.013) (0.012) (0.010) (0.010) 

  𝑎𝑎5,𝑡𝑡1
+  -0.059** -0.018 0.024*** -0.035* 

(0.028) (0.023) (0.009) (0.018) 
Coefficient on a change in logarithmic 
population density, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥1,𝑛𝑛,𝑡𝑡0  (𝑏𝑏1,𝑡𝑡0) 

0.036 0.048 -0.100***  
(0.043) (0.039) (0.019)  

Coefficient on logarithmic population density 
at the end year, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 (𝑏𝑏1,𝑡𝑡1 − 𝑏𝑏1,𝑡𝑡0) 

0.067*** 0.004 0.026***  
(0.011) (0.005) (0.003)  

Coefficient on a change in distance to the 
nearest station, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥2,𝑛𝑛,𝑡𝑡0 (𝑏𝑏2,𝑡𝑡0) 

-0.004 -0.045** -0.000 -0.012 
(0.023) (0.018) (0.004) (0.026) 

Coefficient on distance to the nearest station at 
the end year, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1 (𝑏𝑏2,𝑡𝑡1 − 𝑏𝑏2,𝑡𝑡0) 

-0.065*** -0.034*** -0.005*** -0.026*** 
(0.004) (0.002) (0.001) (0.002) 

Coefficient on a change in a floor area 
ratio, 𝑥𝑥3,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥3,𝑛𝑛,𝑡𝑡0 (𝑏𝑏3,𝑡𝑡0) 

0.117*** -0.020* -0.003 -0.001 
(0.028) (0.012) (0.005) (0.022) 

Coefficient on a floor area ratio at the end 
year, 𝑥𝑥3,𝑛𝑛,𝑡𝑡1 (𝑏𝑏3,𝑡𝑡1 − 𝑏𝑏3,𝑡𝑡0) 

0.004 0.044*** -0.014*** 0.040*** 
(0.003) (0.002) (0.001) (0.002) 

Coefficient on a dummy of residential 
use, 𝑥𝑥4,𝑛𝑛 

0.101*** 0.057*** 0.000 0.017*** 
(0.009) (0.007) (0.003) (0.006) 

Constant term (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
-0.922*** -0.373*** -0.231*** -0.234*** 

(0.103) (0.046) (0.025) (0.009) 
Number of observations 2,581 2,651 1,834 1,962 

 
Notes: 
1. Heteroskedasticity-robust standard errors in parentheses. 
2. ***, **, and * denote p-values less than .01, .05, and .10, respectively. 
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Table 3-3: Estimation results for alternative parameter restrictions 
 
 1999 to 2004 2004 to 2009 2014 to 2019 
 Spec. A Spec. B Spec. A Spec. B Spec. A Spec. B 
Coefficient on risk rank at the end 
year, 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 2 , 𝑟𝑟𝑛𝑛,𝑡𝑡1 − 1 , or 
𝑟𝑟𝑛𝑛,𝑡𝑡1 (𝑐𝑐) 

0.012*** 0.015*** 0.008*** 0.008*** 0.013*** 0.013*** 

(0.004) (0.004) (0.002) (0.002) (0.002) (0.002) 

Risk sensitivity, 𝑎𝑎2,𝑡𝑡1
−  -0.011 -0.010 -0.095*** -0.095*** -0.022** -0.022** 

(0.007) (0.007) (0.014) (0.014) (0.009) (0.009) 
 𝑎𝑎2,𝑡𝑡1

+ = 𝑎𝑎3,𝑡𝑡1
− = 𝑎𝑎3,𝑡𝑡1

+ = 𝑎𝑎4,𝑡𝑡1
− =

𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−  
0.030***  -0.004  -0.008  
(0.006)  (0.004)  (0.006)  

𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

− = 𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

−   
0.038*** 

 
-0.003 

 
 

(0.006) (0.004) 

𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−   
-0.023* 

 
-0.010 

 
 

(0.013) (0.012) 

𝑎𝑎2,𝑡𝑡1
+ = 𝑎𝑎3,𝑡𝑡1

−       -0.028*** 
(0.007) 

𝑎𝑎3,𝑡𝑡1
+ = 𝑎𝑎4,𝑡𝑡1

− = 𝑎𝑎4,𝑡𝑡1
+ = 𝑎𝑎5,𝑡𝑡1

−       0.023*** 
(0.006) 

𝑎𝑎5,𝑡𝑡1
+  -0.054** -0.060** -0.018 -0.019 -0.036** -0.034* 

(0.028) (0.028) (0.023) (0.023) (0.018) (0.018) 
On a change in logarithmic population 

density, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥1,𝑛𝑛,𝑡𝑡0 (𝑏𝑏1,𝑡𝑡0) 
0.037 0.036 0.050 0.050   

(0.043) (0.043) (0.039) (0.039)   
On logarithmic population density at 

the end year, 𝑥𝑥1,𝑛𝑛,𝑡𝑡1 (𝑏𝑏1,𝑡𝑡1 − 𝑏𝑏1,𝑡𝑡0) 
0.067*** 0.067*** 0.004 0.004   
(0.011) (0.011) (0.005) (0.005)   

On a change in distance to the nearest 

station, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥2,𝑛𝑛,𝑡𝑡0  (𝑏𝑏2,𝑡𝑡0) 
-0.005 -0.004 -0.046*** -0.046** -0.017 -0.012 
(0.023) (0.023) (0.018) (0.018) (0.026) (0.026) 

On a distance to the nearest station at 

the end year, 𝑥𝑥2,𝑛𝑛,𝑡𝑡1  (𝑏𝑏2,𝑡𝑡1 − 𝑏𝑏2,𝑡𝑡0) 
-0.065*** -0.065*** -0.033*** -0.033*** -0.027*** -0.026*** 

(0.004) (0.004) (0.002) (0.002) (0.002) (0.002) 
On a change in a floor area ratio, 

𝑥𝑥3,𝑛𝑛,𝑡𝑡1 − 𝑥𝑥3,𝑛𝑛,𝑡𝑡0 (𝑏𝑏3,𝑡𝑡0) 
0.117*** 0.118*** -0.020 -0.020 -0.002 -0.001 
(0.028) (0.028) (0.012) (0.012) (0.022) (0.022) 

On a floor area ratio at the end year, 

𝑥𝑥3,𝑛𝑛,𝑡𝑡1 (𝑏𝑏3,𝑡𝑡1 − 𝑏𝑏3,𝑡𝑡0) 
0.004 0.003 0.045*** 0.045*** 0.040*** 0.040*** 

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) 

On a dummy of residential use, 𝑥𝑥4,𝑛𝑛 
0.101*** 0.101*** 0.057*** 0.057*** 0.016*** 0.017*** 
(0.009) (0.009) (0.007) (0.007) (0.006) (0.006) 

Constant term (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
-0.927*** -0.925*** -0.376*** -0.376*** -0.234*** -0.234*** 

(0.103) (0.103) (0.045) (0.045) (0.009) (0.009) 
Number of observations 2,581 2,651 1,962 

Notes: 
1. Heteroskedasticity-robust standard errors in parentheses. 
2. ***, **, and * denote p-values less than .01, .05, and .10, respectively. 
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Figure 2: An inverted S-shape of the probability weighting function 
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Figure 4-A: Numbered subdivisions and officially appraised points of location, where the risk rank changed 
between Rank 1 and Rank 2 in the period 1998–2003 

 
 
 
 
Figure 4-B: Numbered subdivisions and officially appraised points of location, where the risk rank changed 
between Rank 1 and Rank 2 in the period 2003–2008 
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Figure 4-C: Numbered subdivisions and officially appraised points of location, where the risk rank changed 
between Rank 1 and Rank 2 in the period 2008–2013 

 
 
 
Figure 4-D: Numbered subdivisions and officially appraised points of location, where the risk rank changed 
between Rank 1 and Rank 2 in the period 2013–2018
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Figure 5: Numbered subdivisions and officially appraised points of location, where the risk rank changed 
between Rank 4 and Rank 5 or Rank 3 and Rank 4 in the period 1998–2003 
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