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1 Introduction

An n-person bargaining problem is a pair (S, d) where S is a non-empty subset of the n-
dimensional real space, Rn, and d is an element of S. The set S is typically interpreted as
the attainable set of utility allocations each of which can be obtained by n players through
their joint action. The element d in S is interpreted as the threat or disagreement point:
if the players fail to reach an agreement, then the bargaining problem (S, d) will be settled
at d. Depending on specific situations, bargaining problems can be different. Collect all
bargaining problems in a set Σ. A bargaining solution defined on Σ picks up an element
in a bargaining set S for each bargaining problem (S, d) contained in Σ: the picked up
element by the bargaining solution for a problem is regarded as the settlement point by
the players for that problem. There can be different bargaining solutions satisfying various
properties like efficiency, symmetry, etc. In Nash’s (1950) pioneering work on bargaining, he
takes an axiomatic approach to study what is now called the Nash solution: he shows that
there is a unique solution satisfying a list of reasonable properties (axioms) and thus obtains
an axiomatic characterization of the Nash solution. Several other solutions including the
Kalai-Smorodinsky solution (Kalai and Smorodinsky (1975)) and egalitarian solution (Kalai
(1977)) have been axiomatically studied in the literature.

The collection of bargaining problems studied by Nash (1950) and subsequently by others
is such that, for each bargaining problem (S, d), the bargaining set S is convex. However, it
has been recognized that the attainable set of utility allocations arising from many economic
contexts may not be convex. One of the earliest researchers who recognizes such non-
convexity in a bargaining problem is Bishop (1960). Bishop (1960) studies the behaviors
of duopoly and shows that the bargaining set for a duopoly bargaining problem can be
non-convex when the two firms face conventional demands but have unequal marginal costs.
He further cautions that, if side payments are prohibited, then the Nash solution to convex
bargaining problems is not applicable in this context.

Non-convexity of the attainable set of utility allocations can be removed if it is assumed
that players are expected utility maximizers and if the use of lotteries is admitted. In recent
decades, these assumptions have been under increasing scrutiny and many researchers have
questioned their validity. Non-convexity of bargaining sets thus invites questions about the
model and analysis of (classical) convex bargaining problems: How can the classical model
and analysis developed by Nash (1950) be extended to bargaining problems with nonconvex
bargaining sets? The recent literature on bargaining problems has examined this question
and has provided a foundation for applying the theories of nonconvex bargaining problems
thus developed to several economic contexts in which nonconvexity of bargaining sets arises
naturally.

The purpose of this paper is two-fold. First, we review some major theoretical results
in the recent literature on n-person non-convex bargaining problems. Secondly, we use two
resource allocation problems that give rise to nonconvex bargaining sets to illustrate potential
applications of the theories of nonconvex bargaining problems. In our review of the related
theoretical literature, we focus on a collection of bargaining problems (S, d) in which: (i) the
threat or disagreement point d = (d1, · · · , dn) is fixed, (ii) any bargaining problem (S, d) is
such that, for any point s = (s1, · · · , sn) in S, s1 ≥ d1, · · · , sn ≥ dn, and (iii) each player
has a cardinal utility function. With these assumptions, we consider normalized bargaining
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problems (S, d) where d = (0, · · · , 0), S ⊆ Rn
+ (Rn

+ being the n-fold Cartesian product of the
set of non-negative real numbers) is compact and comprehensive, but not necessarily convex.
See Section 2 for formal definitions.

As we noted earlier, the theoretical study of n-person bargaining problems is typically
axiomatic. We shall follow the axiomatic approach in our review of major theoretical results
on n-person non-convex bargaining problems. Unlike n-person convex bargaining problems
where a bargaining solution picks up a unique point in the bargaining set S, a solution in
n-person nonconvex bargaining problems can be multi-valued. For example, there can be
several points in a nonconvex bargaining set that maximize the Nash product. Depending
on how a Nash solution is defined for such bargaining problems, a Nash solution can be
set-valued or single-valued. We shall discuss both set-valued and single-valued Nash so-
lutions for nonconvex bargaining problems. In addition, we shall also discuss some other
prominent solutions (Kalai-Smorodinsky, Egalitarian) to bargaining problems and the issue
of rationalizability of bargaining solutions axiomatically.

From our discussions, we will see that many of the axioms used for studying solutions
to convex bargaining problems continue to play a major role in characterizing solutions to
nonconvex bargaining problems. These axioms include Efficiency, Weak Efficiency, Scale
Invariance, Individual Rationality, Contraction Independence (Nash’s IIA) (see Section 3 for
formal definitions). We will also see that, for the class of nonconvex bargaining problems
reviewed in this paper, the characterization results of the Kalai-Smorodinsky solution and
the Egalitarian solution can be regarded as straightforward extensions of their counterparts
for the class of convex bargaining problems. See Sections 6 and 7. On the other hand,
depending on the nature of nonconvex bargaining problems, one would need to face the
challenge of defining a Kalai-Smorodinsky solution or an egalitarian solution appropriately:
when a nonconvex bargaining problem contains only a finite number of points, the standard
Kalai-Smorodinsky solution and the standard Egalitarian solution may not be well-defined
(see Section 2)!

In the meantime, there are new axioms that are specific for studying solutions to noncon-
vex bargaining problems. Consequently, solutions to nonconvex bargaining problems exhibit
some common features to their counterparts to convex bargaining problems and, simultane-
ously, have certain new features that are unique to them so that new insights can be derived
from axiomatic studies. For example, consider first Nash’s original symmetry axiom (for
convex bargaining problems), which requires that, for any convex bargaining problem (S, d)
in which S is symmetric with respect to d, the solution point s∗ ∈ S should be such that
s∗i − di = s∗j − dj for all i, j = 1, · · · , n. Note that Nash’s symmetry property captures
an anonymity property and an equity property implicitly embedded in it, and in Nash’s
framework, these two properties cannot be disentangled. However, in nonconvex bargaining
problems, we can extend Nash’s symmetry axiom to two versions (S) and (SS) (see Section 3
for formal definitions and discussions): Consider a bargaining problem (A, d) with d = 0 such
that A is symmetric; then, the axiom (S) requires a solution be anonymous–if a ∈ A is a so-
lution candidate, so is any permutation of a, while (SS) requires a solution be equitable–any
solution candidate a ∈ A must be such that a1 = · · · = an. Consequently, for nonconvex bar-
gaining problems, we can make a distinction between Anonymity and Equity requirements
simultaneously embedded in Nash’s original symmetry axiom. An implication of making this
distinction is that the presence of multi-valued solution to nonconvex bargaining problems
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may allow the existence of anonymous but inequitable solutions. Indeed, from our character-
ization and refinement results of the Nash solution for nonconvex problems (see Section 5),
we see clearly the possibility of having anonymous and inequitable solutions to nonconvex
bargaining problems. This feature and insight of the Nash solution is inherent to nonconvex
bargaining problems. Second, consider the issue of rationalizability of a bargaining solution.
For nonconvex bargaining problems, a solution may be set-valued. Consequently, we need
certain ‘expansion’ type properties developed in rational choice theory in addition to vari-
ants of Nash’s IIA to study rationalizability of a solution to nonconvex bargaining problems.
Our results on rationalizability of a solution in Section 4 show that, (1) once we take care
of expansion type axioms, the results obtained in the context of convex bargaining problems
can be extended to the context of nonconvex bargaining problems, and (2) the rationality
requirements in rationalizing bargaining solutions to nonconvex bargaining problems are less
stringent than those in rational choice theory.

The Nash and other prominent solutions to convex bargaining problems have been fruit-
fully applied in many settings in economics. Given the recent development of theories of
nonconvex bargaining problems, one would naturally wonder how and to what extent the
developed theory can be applied in such settings. For this purpose, we shall review two
applications of theories of nonconvex bargaining problem to economics where nonconvex
bargaining problems arise naturally: one instance is when individuals are not characterized
by their utilities but by their functionings and capability sets à la Sen (1985), and the other
is when discussing distributive justice in a standard problem of resource allocations in eco-
nomic environments. We will see the reviewed theories of nonconvex bargaining problems
can be readily applied to those economic settings (see Section 8 for details).

The paper is organized as follows. Section 2 presents notation and definitions needed
for our discussion. Section 3 introduces several basic axioms used for various axiomatic
characterizations of the well-known solutions. In Section 4, we discuss rationalizability of
bargaining solutions to nonconvex bargaining problems. Section 5 is devoted to the discus-
sion of the Nash solution: characterization, refinement, and extension. Sections 6 and 7
discuss, respectively, characterizations of the Kalai-Smorodinsky solution and the Egalitar-
ian solution. In Section 8, we provide two economic applications to illustrate how nonconvex
bargaining theories can be applied to resource allocation problems and to the problem of
bargaining over opportunity sets. Section 9 contains a brief conclusion.

2 Notation and definitions

R+ is the set of all non-negative real numbers and R++ is the set of all positive numbers. Rn
+

(resp. Rn
++) is the n-fold Cartesian product of R+ (resp. R++). For any x, y ∈ Rn

+, we write
x > y to mean [xi ≥ yi for all i ∈ N and x 6= y], and x� y to mean [xi > yi for all i ∈ N ].
For any x ∈ Rn

+ and any non-negative number t, we write z = (t; x−i) ∈ Rn
+ to mean that

zi = t and zj = xj for all j ∈ N \ {i}. For any A ⊆ Rn
+ and any α ∈ Rn

+, αA denotes the set
{(α1a1, · · · , αiai, · · · , αnan) | a ∈ A}. For any subset A ⊆ Rn

+, A is said to be (i) non-trivial
if there exists a ∈ A such that a � 0, and (ii) comprehensive if for all x, y ∈ Rn

+, [x > y
and x ∈ A]⇒ y ∈ A. For all A ⊆ Rn

+, define the comprehensive hull of A, to be denoted by
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compA, as follows:
compA ≡

{
z ∈ Rn

+ | z ≤ x for some x ∈ A
}
.

As we noted in Introduction, a bargaining problem is a pair (S, d) where ∅ 6= S ∈ Rn

and d ∈ S. Recall that S is the bargaining set: the attainable set of utility allocations each
of which can be achieved by the players through their joint action, and d is interpreted as
the threat or disagreement point : if the players fail to reach an agreement through their
actions, the players will have to settle on d for the bargaining problem (S, d). Throughout
our discussion, we make the following three assumptions: for each bargaining problem (S, d)
under consideration,

(i) d is fixed,

(ii) s ≥ d for all s ∈ S, and s� d for some s ∈ S,

(iii) each player’s utility is cardinally measurable.

Since each player’s utility function is cardinal so that the origin of each player’s utility
scale is arbitrary, we may without loss of generality normalize each player’s utility function
so that (d1, · · · , dn) = (0, · · · , 0). As a consequence, we may normalize a bargaining problem
(S, d) to its ‘normalized bargaining problem’ (S − {d}, 0), where S − {d} = {s− d | s ∈ S}.
Given our assumptions above, each bargaining set S − {d} is a non-trivial, compact and
comprehensive1 subsets of Rn

+. Given this and with a slight abuse of notation, let Σ be
the set of all non-trivial, compact and comprehensive subsets of Rn

+. Elements in Σ are
interpreted as (normalized) bargaining problems. Then, a bargaining solution F on Σ assigns
a nonempty subset F (A) of A for every bargaining problem A ∈ Σ.

Let π be a permutation of N . The set of all permutations of N is denoted by Π. For
all x = (xi)i∈N ∈ Rn

+, let π(x) = (xπ(i))i∈N . For all A ∈ Σ and any permutation π ∈ Π, let
π(A) = {π(a) | a ∈ A}. For any A ∈ Σ, we say that A is symmetric if A = π(A) for all
π ∈ Π.

For all A ∈ Σ and all i ∈ N , let mi(A) = max{ai | (a1, · · · , ai, · · · , an) ∈ A}. Therefore,
m(A) ≡ (mi(A))i∈N is the ideal point of A.

We now introduce the following classical solutions to bargaining problems in our context.

Definition 1: A bargaining solution F over Σ is

(1.1) the (symmetric) Nash solution, to be denoted as FN , if for all A ∈ Σ, F (A) = {a ∈
A |
∏

i∈N ai ≥
∏

i∈N xi for all x ∈ A},

(1.2) the egalitarian solution, to be denoted as FE, if for all A ∈ Σ, F (A) = {a ∈ A | ai = aj
for all i, j ∈ N and there is no x ∈ A such that x� a},

(1.3) the Kalai-Smorodinsky solution, to be denoted as FKS, if for all A ∈ Σ, F (A) = {a ∈
A | ai/mi(A) = aj/mj(A) for all i, j ∈ N and there is no x ∈ A such that x� a},

1Given our above assumptions on bargaining problems, our notion of comprehensiveness of a bargaining
set is equivalent to the notion of comprehensiveness of the bargaining set with respecc to the threat point d.
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(1.4) an asymmetric Nash solution, to be denoted as FAN , if there exist t1 > 0, · · · , tn > 0
such that, for all A ∈ Σ, F (A) = {a ∈ A |

∏
i∈N a

ti
i ≥

∏
i∈N x

ti
i for all x ∈ A},

(1.5) a single-valued (symmetric) Nash solution, to be denoted as F SV N , if F is single-valued
and for all A ∈ Σ, F (A) ⊆ FN(A),

(1.6) a single-valued (asymmetric) Nash solution, to be denoted as F SV AN , if F is single-
valued and for all A ∈ Σ, F (A) ⊆ FAN(A).

It may be helpful to relate the above definitions to the corresponding ones for a general
bargaining problem (S, d): (1) an asymmetric Nash solution for (S, d) is defined as {s∗ ∈ S |
s∗ ∈ arg maxs∈S

∏n
i=1(si− di)ti}, (2) the egalitarian solution for (S, d) is defined as the point

se ∈ S such that sei − di = sej − dj for all i, j ∈ N and there is no s ∈ S such that s � se,
and (3) the Kalai-Smorodinsky solution for (S, d) is defined as the point sKS ∈ S such that
sKS
i −di

mi(S)−di =
sKS
j −dj

mj(S)−dj for all i, j ∈ N and there is no s ∈ S such that s� sKS.

The (symmetric) Nash solution for nonconvex bargaining problems introduced above is
identical to the one proposed by Kaneko (1980) and by Xu and Yoshihara (2006). It should
be noted that, given that Σ contains all non-trivial, compact and comprehensive bargaining
problems, for any A ∈ Σ, the Nash solution, both symmetric and asymmetric, F (A) can
contain more than one alternative, while both the egalitarian and the Kalai-Smorodinsky
solutions are singletons.

It may also be noted that, if the domain of bargaining problems, Σ, is enlarged to
include bargaining problems each of which containing only a finite number of alternatives,
then the egalitarian solution defined in Definition 1.2 as well as the Kalai-Smorodinsky
solution defined in Definition 1.3 are no longer well-defined. For such larger domains, one
would have to reformulate the solutions corresponding to the egalitarian and the Kalai-
Smorodinsky solutions. See Nagahisa and Tanaka (2002) for an alternative formulation of
the Kalai-Smorodinsky solution for such a domain.

3 Basic axioms

As we noted in Introduction, the theoretical literature on bargaining problems is mainly
axiomatic in that a solution satisfying a list of several reasonable axioms is shown to be unique
so that this list of the axioms characterizes the solution. For this purpose, in this section,
we present some of the axioms that are straightforward extensions of their counterparts in
convex bargaining problems and that have been used for characterizing the classical solutions
to nonconvex bargaining problems in the literature. We start with two efficiency type axioms
that have been used in both convex and nonconvex bargaining problems (see, for example,
Nash (1950), Kaneko (1980), Xu and Yoshihara (2006)).

Efficiency (E): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such that x > a.

Weak Efficiency (WE): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such that
x� a.
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The next axiom is another familiar property often imposed on solutions to both con-
vex and nonconvex bargaining problems (see, for example, Roth (1977a) and Zhou(1997)).
It essentially requires that a solution should give players more utility than the threat or
disagreement point. Formally, it can be stated as follows:

Strict Individual Rationality (SIR): For all A ∈ Σ, x ∈ F (A)⇒ x� 0.

The next axiom is a variant of the familiar scale invariance property introduced in Nash
(1950) for bargaining problems (S, d) (see Roth (1977a) for the exact variant introduced for
normalized bargaining problems).

Scale Invariance (SI): For all A ∈ Σ and all α ∈ Rn
++, if αA = {(αiai)i∈N | a ∈ A} then

F (αA) = {(αiai)i∈N | a ∈ F (A)}.

Note that, since we study normalized bargaining problems (the disagreement point is 0 ∈
Rn

+), appropriate positive linear transformations for a player can be confined to αiui+βi with
βi = 0. See also Roth (1977a). (SI) is uncontroversial for convex bargaining problems. In
the context of nonconvex bargaining problems, (SI) has its attractiveness as well whenever
the underlying individuals’ utilities are cardinally measurable, an implicit assumption for the
standard bargaining problems. This is because, in many economic contexts of resource allo-
cations, nonconvex problems may be derived from the nonconvexity of the underlying set of
feasible allocations where the introduction of ‘lottery’ over feasible allocations is unavailable
as in the deterministic framework of the classical resource allocation problems. In such con-
texts, (SI) has at least two interpretations; one is “utility-unit invariance,” and the other is
“independence of utility intensities” as discussed in Yoshihara (2003). Both interpretations
are compatible with the nonconvexity of bargaining problems.

The next two axioms are natural generalizations of Nash’s (1950) original symmetry
axiom in the context of nonconvex bargaining problems.

Symmetry (S): For any A ∈ Σ, if A is symmetric, then [a ∈ F (A) ⇒ π(a) ∈ F (A) for all
π ∈ Π].

Strong Symmetry (SS): For any A ∈ Σ and all a ∈ A, if A is symmetric and a ∈ F (A),
then a1 = · · · = an.

Symmetry is a natural generalization of Nash’s original symmetry axiom to nonconvex
problems. Strong Symmetry is a stronger requirement than Symmetry in that (SS) demands
a1 = · · · = an whenever A is symmetric and a ∈ F (A), while (S) requires any permutation
of a be in F (A) whenever A is symmetric and a ∈ F (A). It may be noted that, when
restricted to convex bargaining problems, and bargaining solutions are required to be single-
valued mappings, the two symmetry axioms coincide with and are identical to Nash’s original
Symmetry axiom.

The last two axioms in this section are extensions of Nash’s original Independence of
Irrelevant Alternatives (IIA).

Contraction Independence (CI): For any A,B ∈ Σ, if B ⊆ A and B ∩ F (A) 6= ∅, then
F (B) = B ∩ F (A).
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Weak Contraction Independence (WCI): For any A,B ∈ Σ, if m(A) = m(B), B ⊆ A
and B ∩ F (A) 6= ∅, then F (B) = B ∩ F (A).

The axiom (CI) has been widely used in the literature of nonconvex bargaining problems
(see, for example, Kaneko (1980), Xu and Yoshihara (2006)), and is the usual (IIA) for
correspondence. (WCI) extends Roth’s (1977b) axiom of “IIA other than ideal point” to
correspondence, and is formally weaker than (CI): it restricts contractions to those problems
that have the same ideal point. Various contraction type axioms used in bargaining theory are
often motivated from rational choice perspectives (Chernoff (1954)). However, as discussed
in Xu and Yoshihara (2008), they can also be interpreted on the basis of solidarity : when
bargaining problems change from A to B, the “utility gains” by any two players should not
be in opposite directions–if one player gains from moving A to B, then no player should
become worse off from such a move; and if one player loses from moving A to B, then no
player should gain from such a move.

4 Rationalizability of bargaining solutions

Bargaining solutions can be interpreted differently. A solution can be viewed as representing
the majority preferences of the committee whose charge is to come up with a fair arbitration
scheme (see Mariotti, 1999, Xu and Yoshihara, 2013). Secondly, a solution to bargaining
problems may be thought to reveal the preferences of the players involved as a group, and
thus, the behavior of a solution may be linked to ‘revealed group preference’ (Peters and
Wakker, 1991, Xu and Yoshihara, 2013). Finally, a bargaining solution can be viewed as
choices or recommendations made by a rational benevolent designer or social planner who
“is able to correctly observe the player’ utility levels, who is without own interest” (Trockel
(1999)) on behalf of the players. In these interpretations, it is sensible to ask and examine
the question whether a solution can be rationalized by a well-behaved preference relation. In
the theory of rational choice concerning a single individual, there is a huge literature study-
ing rationalizability of an individual’s choices. In the literature on bargaining problems, the
rationalizability of solutions to convex bargaining problems has been fruitfully studied by
several authors including Peters and Wakker (1991), Bossert (1994), Sänchez (2000), and
Trockel (1999). As for research on the rationalizability of solutions to nonconvex bargaining
problems, there are recent contributions by Denicolò and Mariotti (2000), and Xu and Yoshi-
hara (2013). In what follows and before we study classical solutions to nonconvex bargaining
problems, we study rationalizability of solutions to nonconvex bargaining problems.

The rationalizability of a solution is formally defined as follows:

Definition 2: A bargaining solution F over Σ is rationalizable if there exists a reflexive,
complete and transitive binary relation R over Rn

+ such that, for all A ∈ Σ, F (A) = {x ∈
A | xRy for all y ∈ A}.

In rational choice theory, various consistency in terms of expansion and contraction ax-
ioms have been introduced and used for discussions of rationalizability of individual choices.
(CI) introduced in Section 3 is one of such axioms. In what follows, we introduce two fairly
weak consistency axioms for our purpose (Xu and Yoshihara (2013)).
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Binary Contraction Independence (BCI): For all A ∈ Σ and all x, y ∈ A, if {x, y} ∩
F (A) 6= ∅ then F (A) ∩ {x, y} ⊆ F (comp{x, y}).

Binary Expansion Independence (BEI): For all A ∈ Σ and all x, y ∈ A, if {x, y} =
F (comp{x, y}), then [x ∈ F (A)⇔ y ∈ F (A)].

The idea behind a contraction consistency axiom in the context of rationalizability of
bargaining solutions is the following: given two bargaining problems, A and B, in which A
is a subset of B, and suppose that a point x chosen from B as a solution to B continues to
be available in A, then x should continue to be a solution to A provided certain restrictions
are satisfied. (BCI) stipulates that, for any two points x and y in a bargaining problem A, if
either x or y is part of the solution to A, then the common points in {x, y} and the solution
to A must be contained in the solution to the problem given by the comprehensive hull of
x and y. (BCI) is clearly weaker than (CI) and is introduced in Xu and Yoshihara (2013),
though its origin goes back to Herzberger (1973) and Sen (1971).

Similarly, the idea behind an expansion consistency axiom in the present context can be
explained as follows: given two bargaining problems, A and B, in which A is a subset of
B, and suppose that two points x and y chosen from A as solutions to A continue to be
available in B, then, if one is a solution to B then the other must be a solution to B as well
(and if one is no longer a solution to B then the other cannot be a solution to B either).
(BEI) requires that, whenever the solution to the problem comp{x, y} consists of both x
and y, then, for any problem A containing both x and y, either [x and y are both chosen as
solutions to A] or [neither x nor y is chosen as a solution to A]. (BEI) is formally weaker
than the corresponding property β in the rational choice literature (see Sen, 1971).

With the help of the above two consistency axioms, we have the following result which
is due to Xu and Yoshihara (2013).

Theorem 1. Let a solution F over Σ satisfy (E) and (SIR). Then, F satisfies (BCI) and
(BEI) if and only if F is rationalizable.

Sketch of the proof. Rather than giving a formal proof of Theorem 1, we present a sketch
of the proof here. For a formal proof, see Xu and Yoshihara (2013). Let a solution F over
Σ satisfy (E), (SIR), (BCI) and (BEI). Define a binary relation R over Rn

+ as follows: for all
x, y ∈ Rn

+,

if x = y, then xRx; if x 6= y, then xRy ⇔ [x ∈ F (comp{x, y})] or
[y 6∈ F (A) for all A ∈ Σ with x, y ∈ A].

It can be checked that the binary relation R defined above is well-defined, and is reflexive,
transitive and complete. To show that R rationalizes F , we need to check if the following
statement is true:

for all A ∈ Σ : F (A) = {a ∈ A|aRx for all x ∈ A}

Take A ∈ Σ and let a ∈ F (A). (SIR) implies that, for any x ∈ A with xi = 0 for some
i ∈ N , we have x 6∈ F (A) and therefore aRx in this case. For any x ∈ A with x� 0, noting
that a ∈ F (A), by (BCI), it follows that a ∈ F (comp{a, x}) implying that aRx. Therefore,
F (A) ⊆ {a ∈ A | aRx for all x ∈ A}.

9



On the other hand, if, for some a ∈ A such that aRx for all x ∈ A but a 6∈ F (A), then,
noting that F (A) 6= ∅, there must be some z ∈ F (A). By (BCI), z ∈ F (comp{a, z}). Since
aRz, equivalently a ∈ F (comp{a, z}), we then have {a, z} = F (comp{a, z}). By (BEI), it
follows that a ∈ F (A), a contradiction. Therefore, for all a ∈ A with aRx for all x ∈ A, we
must have a ∈ F (A); that is, {a ∈ A | aRx for all x ∈ A} ⊆ F (A).

Therefore, F (A) = {a ∈ A | aRx for all x ∈ A}. �

Remark 1. It may be noted that when a solution F is restricted to be single-valued, (BEI)
is vacuous, and consequently, the following result holds:

Theorem 2. Let a solution F over Σ be single-valued and satisfy (E) and (SIR). Then, F

satisfies (BCI) if and only if F is rationalizable.

Denicolò and Mariotti (2000) obtain a similar result to Theorem 2 by using (CI) and with
a larger domain of bargaining problems, some of which may contain finitely many points.

5 Nash solution: refinement and extension

In this section, we discuss various axiomatic characterizations of the Nash solution and its
refinement and extension in the context of nonconvex bargaining problems. For ease of
presentation, we divide this section into three subsections: we first present results on the
Nash solution, then the results relating to its refinements and extensions, and finally we
discuss results of single-valued solution.

5.1 Nash solution

We begin with a characterization of the (symmetric) Nash solution obtained in Xu and
Yoshihara (2006).

Theorem 3: A bargaining solution F over Σ is the Nash solution if and only if it satisfies
(E), (S), (SI) and (CI).

Sketch of the proof. We illustrate the main idea of the proof by focusing on n = 2. For
a formal proof, see Xu and Yoshihara (2006). A crucial step in establishing the result is to
show that,

Step 1: for all x, y ∈ R2
+, x1x2 = y1y2 > 0⇒ F (comp{x, y}) = {x, y}

Take x, y ∈ R2
+ with x1x2 = y1y2 > 0. Define α ∈ R2

+ by: α1 = 1, α2 = x1
y2
. Then, α{x} =

(x1, x2
x1
y2

) = (x1,
y1y2
y2

) = (x1, y1) and α{y} = (y1, y2
x1
y2

) = (y1, x1). Note that α{x} is a per-

mutation of α{y}. Consider the bargaining problem A = comp{(α1x1, α2x2), (α1y1, α2y2)} =
comp{(x1, y1), (y1, x1)}. Note that (x1, y1) and (y1, x1) are the only two efficient point in A
and that A is symmetric. By (E) and (S), we then must have F (A) = {(x1, y1), (y1, x1)}. By
(SI), it then follows that {x, y} = F (comp{x, y}).

With the help of Step 1, we can show the following step:
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Step 2: for all x, z ∈ R2
+, x1x2 > z1z2 ⇒ {x} = F (comp{x, z})

Take x, z ∈ R2
+ with x1x2 > z1z2. Note that there exists (t1, t2) with t1 > 0, t2 > 0 such

that (z1+t1)(z2+t2) = x1x2. From Step 1, {x, (z1+t1, z2+t2)} = F (comp{x, (z1+t1, z2+t2)}).
On the other hand, it must be true that comp{x, z} ⊆ (comp{x, (z1 + t1, z2 + t2)}. By (CI),
it then follows that {x} = F (comp{x, z}).

Consider A ∈ Σ. Since A is compact, there must be a ∈ A with a1a2 ≥ x1x2 for all
x ∈ A. Consider b ∈ A with b1b2 < a1a2. If b ∈ F (A), then by (CI), b ∈ F (comp{a, b}),
which would contradict Step 2. Using a similar argument, it must be the case that, for any
x ∈ A, if x1x2 = a1a2, then x ∈ F (A). Consequently, F (A) = {x ∈ R2

+ | x1x2 ≥ z1z2 for all
z ∈ A}. �

The axioms used in characterizing the Nash solution in Theorem 3 are straightforward
extensions of the original axioms used by Nash (1950) for convex problems to nonconvex
problems. Maintaining (E), (SI) and (CI), Zambrano (2016) extends the original symmetry
axiom to the following axiom and uses it together with (E), (SI) and (CI) to characterize
the Nash solution. Before introducing the modified symmetry, a definition is needed.

Let A ∈ Σ and let x, y ∈ A with x 6= y. We say that y is comparably more symmetric
than x if y = λx+ (1− λ)π(x) for λ ∈ (0, 1) and π is a permutation of N .

Preference for Symmetry (Sy): For all symmetric A ∈ Σ, if x, y ∈ A are such that y is
comparably more symmetric than x, then x 6∈ F (A).

Note that if y is comparably more symmetric than x, then y lies on the line segment
linking x and a permutation of x. This observation suggests the following: If a solution
to a bargaining problem A is viewed as consisting of those utility allocations each of which
maximizes a ‘selection function’ of utility allocations over A, then the axiom (Sy) requires
a certain degree of quasiconcavity on the selection function and that the selection function
exhibits inequality aversion.

The following result is due to Zambrano (2016)2:

Theorem 4. A bargaining solution F over Σ is the Nash solution if and only if it satisfies
(E), (Sy), (SI) and (CI).

It may be noted that, in view of our remark concerning the property of inequality aversion
exhibited by (Sy), there is a certain amount of inequality aversion embedded in the Nash
solution.

Kaneko (1980) uses the following continuity property to characterize the symmetric Nash
solution.

Continuity (CON): Let {AK} be a sequence of sets in Σ which converges to A0 ∈ Σ (in the
sense of the Hausdorf metric for subsets). Let {ak} be any sequence such that limk→∞ a

k = a0

and ak ∈ F (Ak) for all k = 1, 2, · · · ,. Then a0 ∈ F (A0).

2To be exact, Zambrano (2016) considers a larger domain of bargaining problems than Σ–his domain may
contain bargaining problems with a finitely many points.
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The following characterization result is due to Kaneko (1980).

Theorem 5. A solution F over Σ satisfies (E), (SI), (S), (CI) and (CON) if and only if
F = FN .

It may be of interest to note that the axiom (CON) in Theorem 5 is redundant as shown
in Theorem 2 that the (symmetric) Nash solution is characterized by (E), (SI), (S) and (CI).

In a related contribution, Xu and Yoshihara (2013) introduce the following continuity
property of a bargaining solution and characterize an asymmetric Nash solution (Theorem
6 below).

Weak Continuity (WCON): For any x, y ∈ Rn
+ with x 6= y, if {x} = F (comp{x, y}), then

there exists ε > 0 such that, for all z � 0 and all z′ ∈ Rn
+,

||z − x|| < ε⇒ [{z} = F (comp{y, z})]

and
||z′ − y|| < ε⇒ {x} = F (comp{x, z′})

Note that (WCON) is weaker than (CON). With the help of (WCON), Xu and Yoshihara
(2013) obtain the following result:

Theorem 6. A solution F over Σ satisfies (E), (SIR), (BCI), (BEI), (SI) and (WCON) if
and only if it is an asymmetric Nash solution.

Outline of the proof. Let a solution F over Σ satisfy (E), (SIR), (BEI), (SI) and (WCON).
From Theorem 1, F is rationalizable by a reflexive, transitive and complete binary relation
R over Rn

+. (WCON) implies that R is continuous. Then, from (SI), R satisfies the following
property: for all x, y ∈ Rn

++ and all λ ∈ Rn
++, xRy ⇔ (λ1x1, · · · , λnxn)R(λ1y1, · · · , λnyn).

Following Tsui and Weymark (1997) and Xu (2002), there exist t1, · · · , tn such that, for all
x, y ∈ Rn

++, xRy ⇔
∏n

i=1 x
ti
i ≥

∏n
i=1 y

ti
i . (E) implies that t1 > 0, · · · , tn > 0. Note that

if yi = 0 for some i ∈ N , then xRy. Therefore, R can be represented by a Cobb-Douglas
function, and F is thus an asymmetric Nash solution. �

The (symmetric) Nash solution can be characterized by requiring (S) for a solution.
Indeed, as reported in Xu and Yoshihara (2013), the following result holds.

Theorem 7. A solution F over Σ satisfies (WE), (SI), (S), (BCI), and (BEI) if and only if
F is the Nash solution.

To conclude the discussion of this subsection, it may be noted that, Herrero (1989) con-
siders solutions to two-person ‘smooth’ bargaining problems and characterizes the Nash solu-
tion by (SIR), (E), (SI), (CI), Nash’s original symmetry axiom (applied to symmetric convex
bargaining problems only), and a lower semi-continuity property of a solution. Moreover,
Mariotti (2000) studies an alternative characterization of the Nash solution in the domain
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Σ. He introduces an axiom called Maximal Symmetry requiring that whenever a solution
selects a point, say x, from a bargaining problem, it must also select any permutation of
x if the permutation is in the bargaining problem. In two other papers, Mariotti (1998,
1999) studies characterizations of the Nash solution with a larger domain that also includes
finite bargaining problems. Mariotti (1999) introduces a new axiom called Suppes-Sen
Proofness requiring that if a bargaining problem contains a point x and a permutation of
x such that either x or the permutation of x is weakly dominated by another point in the
problem, then the solution should never pick either x or its permutation as solutions, and
axiomatically characterizes the Nash solution by this new axiom together with (SI).

5.2 Refinement and extension

From the results of the last subsection, it is clear that, in general, the solution F (A) to
a bargaining problem A is multi-valued–F (A) may contain more than one element due to
the possibility that A can be nonconvex. In this subsection, we discuss possible refinements
and extensions of the Nash solution proposed in the literature. We start with a procedural
method of eliminating certain elements from the original Nash solution set proposed in Xu
and Yoshihara (2019).

First, we introduce two definitions. A problem A ∈ Σ is called simple if there are
x, y ∈ A such that A = comp{x, y}. For all x ∈ Rn

+, let x̄ = max{xi ∈ Rn
+ | i = 1, · · · , n}

and x = min{xi ∈ Rn
+ | i = 1, · · · , n}.

Definition 3: A bargaining solution over Σ is the equitable Nash solution, to be denoted by

FEN , if for all A ∈ Σ, FEN(A) = {a ∈ FN(A) | mini∈N

{
ai

mi(A)

}
≥ mini∈N

{
xi

mi(A)

}
for all

x ∈ FN(A)}.

According to the solution FEN , for any given problem A, we first find out the Nash solution,
FN(A), to the bargaining problem A, and then, from the Nash solution set FN(A), we select
all the points lying on the highest indifference surface given by min{a1/m1(A), · · · , an/mn(A)}.
Viewed differently, in the process of finding out the solution to a bargaining problem A, it
applies two ‘maximizers’, maxx∈A x1 · · · xn, and maxx∈A min{x1/min1(A), · · · , xn/minn(A)},
sequentially. FEN can thus be viewed as a procedural refinement of the Nash solution.

To see that FEN refines the Nash solution to nonconvex bargaining problems, consider
the bargaining problem A = comp{(3, 12), (6, 6), (9, 4)}. Note that the Nash solution to A is
given by {(3, 12), (6, 6), (9, 4)}. Note that m1(A) = 9 and m2(A) = 12. Then, (3

9
, 12
12

) = (1
3
, 1),

(6
9
, 6
12

) = (2
3
, 1
2
), and (9

9
, 4
12

) = (1, 1
3
). Note that min{2

3
, 1
2
} = 1

2
> min{1

3
, 1}. Therefore,

FEN(A) = {(6, 6)}. The intuitive idea here is that, the three outcomes lie on the same
‘indifference curve’ given by x1x2 = 36, and, for both players, the outcome (6, 6) lies ‘in-
between’ (3, 12) and (9, 4), suggesting that the outcome (6, 6) is ‘more equitable’ than the
two ‘more extreme’ outcomes (3, 12) and (9, 4).

To characterize FEN , we consider the following two axioms that are weaker versions of
the Weak Axiom of Revealed Preference (WARP) proposed in the literature on rational
choice (Samuelson, 1938, 1947).
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Binary Weak Axiom of Revealed Preference 1 (BWARP1): For all x, y, z ∈ Rn
+ with

y > z, if {x, y} = F (comp {x, y}), then z /∈ F (A) for any A ∈ Σ with x, z ∈ A.

Binary Weak Axiom of Revealed Preference 2 (BWARP2): For all x, z ∈ Rn
+, if

{x} = F (comp {x, z}), then z /∈ F (A) for any A ∈ Σ with x, z ∈ A.

The two axioms above are simple as they each involve the information about the solution
to simple bargaining problems and are proposed in Xu and Yoshihara (2019). In particular,
(BWARP1) requires that, if an alternative z is “revealed to be worse” than another alter-
native x through a “pairwise comparison” involving x and y where y vectorially dominates
z, then z should not be chosen as a solution as long as x is available. (BWARP2) requires
that, if an alternative z is “revealed to be worse” than another alternative x directly, then
z should not be chosen as a solution as long as x is available. Both are weaker versions of
(WARP).

The next axiom reflects an equity concern in making a solution recommendation for bar-
gaining problems and essentially requires that, if two points are “informationally equivalent”,
that is, if both are chosen part of the solutions to the simple bargaining problem formed
by the comprehensive hull of them, but one is ‘more equitable’ than the other in the spirit
of the Hammond equity principle (Hammond, 1976) in a symmetric bargaining problem,
then the less equitable point should not be a part of the solution of this symmetric problem.
Formally, it may be stated as follows:

Equity Principle (EP): For all non-simple and symmetric A ∈ Σ and for all x ∈ A, if
there exists y ∈ A such that {x, y} = F (comp{x, y}) and (x, · · · , x) < y < (x̄, · · · , x̄), then
x /∈ F (A).

It may be noted that the axiom (EP) appeals to ‘inequality aversion’ regarding how a
solution selects solution candidates for a non-simple and symmetric bargaining problem. As
we remarked earlier, the axiom (Sy) can be viewed as exhibiting an inequality aversion also.
However, the ways in which the two axioms, (EP) and (Sy), are applied for this purpose are
very different: (EP) is applied to two points that are deemed as ‘informationally equivalent’
(in a pairwise comparison, they both are solution candidates), while (Sy) is applied to two
points in which one is comparably more symmetric than the other. Consequently, the bite
of (EP) is more about how to refine a solution and the gist of (Sy) is more about how to
select a solution candidate to begin with.

With the help of the three new axioms, we can now state the following result (Xu and
Yoshihara, 2019).

Theorem 8. A solution F satisfies (E), (S), (SI), (BWARP1), (BWARP2), (WCI), and
(EP) if and only if F = FEN .

Intuitive idea behind the proof. Instead of giving a proof of this theorem, we illustrate,
using our earlier example, why the solution to the problem comp{(3, 12), (6, 6), (9, 4)} is
given by {(6, 6)}. For a formal proof of Theorem 8, see Xu and Yoshihara (2019).

We first use (SI) to transform the problem A = comp{(3, 12), (6, 6), (9, 4)} to αA =
comp{(12, 36), (24, 18), (36, 12)}, where α = (4, 3). Consider the problem
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B = comp{(12, 36), (24, 18), (18, 24), (36, 12)}. Note that B is symmetric and non-simple.
Following a similar intuition behind the characterization of the Nash solution, it can be
checked that, for any x, y ∈ {(12, 36), (24, 18), (18, 24), (36, 12)}, F (comp{x, y}) = {x, y}.
Note that (24, 18) and (18, 24) are such that 12 < 18 < 24 < 36, 12 = min{12, 36} and 36 =
max{12, 36}. Therefore, by (EP), (12, 36) 6∈ F (B), and (36, 12) 6∈ F (B). Then, by (E), either
(24, 18) ∈ F (B) or (18, 24) ∈ F (B). By (S), F (B) = {(24, 18), (18, 24)}. (WCI) then implies
that {(24, 18)} = F ({(12, 36), (24, 18), (36, 12)}). {(6, 6)} = F (comp{(3, 12), (6, 6), (9, 4)})
then follows from (SI). �

The above argument on the bargaining problem A = comp{(3, 12), (6, 6), (9, 4)} also sug-
gests the possibility of an anonymous and inequitable bargaining solution F ′ which satisfies
all of the axioms in Theorem 8 except (EP), such that F ′(comp{(3, 12), (6, 6), (9, 4)}) =
{(3, 12), (9, 4)}.

In a contribution by Peters and Vermeulen (2012), they show that any bargaining solution
F satisfying (WE), (SI) and (CI) must be a refinement of certain asymmetric Nash bargaining
solution.

Theorem 9. A solution F satisfies (WE), (SI) and (CI) if and only if, for some α ∈ Rn
+, α 6=

0:
for all A ∈ Σ, F (A) ⊆ {a ∈ A |

∏
i∈N

aαi
i ≥

∏
i∈N

xαi
i , x ∈ A}.

Therefore, (WE), (SI) and (CI) together give us a set of basic axioms for a particular
way of refining Nash solution for nonconvex bargaining problems. Note that FEN does not
satisfy (CI) in general suggesting that the refining method embedded in FEN is different
from the one embedded in a solution F satisfying (WE), (SI) and (CI).

Points selected by a solution F satisfying (WE), (SI) and (CI) can be further par-
titioned into three different groups, L, D, and R, by considering F (comp{x, e}) where
e = (1, · · · , 1) (Peters and Vermeulen, 2012): the L group consists of those x such that
{x} = F (comp{x, e}), the D group consists of those x such that {x, e} = F (comp{x, e}),
and the R group consists of those x such that {e} = F (comp{x, e}). Further refinement of
a solution satisfying (WE), (SI) and (CI) can be done by applying specific groupings of L,
D, or R. See Peters and Vermeulen (2012) for further results along these lines.

To conclude this subsection, we discuss an extension of the Nash solution proposed by
Conley and Wilkie (1996). We first introduce a notation. For a set A ⊆ Rn

+, the convex hull
of A, to be denoted by con(A), is defined as the smallest convex set containing A.

Definition 4: A bargaining solution F over Σ is an extension of the Nash solution, to be
denoted by FN∗, if, for any A ∈ Σ, F (A) consists of unique weakly efficient point that is in
A and that lies on the line segment linking the disagreement point 0 and the unique point
in FN(comp(con(FN(A)) ∪ {0})).

For their characterization, Conley and Wilkie (1996) introduce the following monotonicity
type axiom:

15



Ethical Monotonicity (EM): For all A,A′ ∈ Σ with {a} = F (A) and {a′} = F (A′), if
A′ ⊆ A and a ∈ con(A′), then a ≥ a′.

They then obtain the following result (Conley and Wilkie, 1996):

Theorem 10. Suppose F is single-valued. Then, F over Σ satisfies (WE), (S), (SI), (EM),
(CON) if and only if F = FN∗.

Instead of giving a proof, we illustrate how the solution can be obtained and how this
solution is different from Nash solution. We first note that, if con(FN(A)) is convex,
comp(con(FN(A)) ∪ {0}) is convex as well. Consequently, FN(comp(con(FN(A)) ∪ {0}))
is single-valued. Therefore, FN∗ is single-valued. Note also that, if A is convex, then
FN(A) = FN∗. When A is nonconvex, it is possible that FN∗(A) is not a subset of FN(A).
Consider the following example. Let A = comp({(1, 36), (36, 1), (2, 18)}). Then, FN(A) =
{(1, 36), (36, 1), (2, 18)}, and comp(con(FN(A)) ∪ {(0, 0)}) = {x ∈ R2

+ | x1 + x2 ≤ 37,
x1 ≤ 36, x2 ≤ 36}. Consequently, FN(comp(con(FN(A)) ∪ {(0, 0)})) = {(18.5, 18.5)}, and
FN∗(A) = {(2, 2)}.

5.3 Single-valued Nash solution

In this subsection, we briefly discuss the issue of single-valued symmetric and asymmetric
Nash solution. We start by discussing a result obtained in Zhou (1997). He uses the following
version of (SI) to obtain the result:

Restricted Scale Invariance (RSI): For all A ∈ Σ with A being convex and all α ∈ Rn
++,

if αA = {(αiai)i∈N | a ∈ A} then F (αA) = {(αiai)i∈N : a ∈ F (A)}.

Note that in (RSI), ‘scale invariance’ is applicable to convex bargaining problems only.
This is faithful to Nash’s (1951) original idea about individual utility functions. With (RSI)
in hand, Zhou (1997) obtains the following result.

Theorem 11. Suppose F over Σ is single-valued. Then, if F satisfies (SIR), (RSI) and
(CI), then F = F SV AN .

Denicolò and Mariotti (2000), using a slightly different set of axioms, obtain the following
result:

Theorem 12. Suppose F over Σ is single-valued. Then, if F satisfies (E), (SI) and (CI),
then F = F SV AN .

For two-player ‘star-shaped’ bargaining problems3, Qin, Tan and Wong (2017) give an
axiomatic characterization of a particular single-valued symmetric Nash solution, the ‘dicta-
torial selection’ of the Nash solution. For their result, they introduce the following property,
which is weaker than Nash’s (1951) original symmetry axioms.

Weak Symmetry (WS): For A = {x ∈ R2
+ | x1 + x2 ≤ 1}, a ∈ F (A)⇒ a1 = a2.

3A bargaining problem A is star-shaped if, for all x ∈ A and all t ∈ [0, 1], tx ∈ A.
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With (WS), Qin, Tan and Wong (2017) obtain the following result4:

Theorem 13. Suppose n = 2 and a solution F over Σ is single-valued. Then, F satisfies
(SIR), (SI), (CI) and (WS) if and only if, for some i ∈ {1, 2}, for all A ∈ Σ,

F (A) = arg max a∈FN (A) ai.

Therefore, for single-valued solutions to nonconvex bargaining problems with two players,
there are exactly two each being a dictatorial selection of Nash product maximizers. To use
our earlier example in which A = comp{(3, 12), (6, 6), (9, 4)}, we have either F (A) = {(9, 4)}
or F (A) = {(3, 12)}. And further, if F (A) = {(9.4)}, then player 1 “dictates” the selection of
the solution point in FN(S) for any bargaining problem S ∈ Σ. Likewise, if F (A) = {(3, 12)},
then the selection of the solution point in FN(S) for any bargaining problem S ∈ Σ is
exclusively based on player 2’s utility.

6 Kalai-Smorodinsky solution

The Kalai-Smorodinsky solution to nonconvex bargaining problems is single-valued. We
present a simple and straightforward characterization result due to Xu and Yoshihara (2006).

Theorem 14: A bargaining solution F over Σ is the Kalai-Smorodinsky solution if and only
if it satisfies (WE), (SS), (SI) and (WCI).

Sketch of the proof. We give an outline of the proof for n = 2. See Xu and Yoshihara
(2006) for a formal proof.

Consider A ∈ Σ. By (SI), we assume that m1(A) = m2(A) = m > 0. Let a ∈ A
be such that a1 = a2 and weakly efficient in A. Consider the bargaining problem B =
comp{(a1,m), (m, a2)}. Note that B is symmetric, A ⊆ B, and (a1, a2) ∈ B is weakly
efficient in B. By (SS) and (WE), {a} = F (B). By (WCI), {a} = F (A). �

It may be noted that, in a smaller domain that contains certain nonconvex bargaining
problems, Anant, Mukherji and Basu (1990) characterizes the Kalai-Smorodinsky solution
for two players by (E), (SS), (SI), and a monotonicity type axiom.

Conley and Wilkie (1991) consider a similar domain to Σ, and present an alternative
characterization of the Kalai-Smorodinsky solution. Instead of using a variant of (CI), they
adopt the monotonicity axiom used by Kalai and Smorodinsky (1975) in the context of
convex bargaining problems.

Weak Monotonicity (WMON): For all A,B ∈ Σ with A ⊆ B, if m(A) = m(B), then
F (B) ≥ F (A).

The following result is due to Conley and Wilkie (1991):

4The result can be easily extended from the domain of star-shaped bargaining problems to Σ.
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Theorem 15: A bargaining solution F over Σ is the Kalai-Smorodinsky solution if and only
if it satisfies (WE), (SS), (SI) and (WMON).

Sketch of the proof. Consider n = 2. Given (SI), consider A ∈ Σ with m(A) = (1, 1). Let
FKS(A) = (t, t). Note that t > 0. Consider the following bargaining problems:

S = comp{(t, 1), (t, t), (1, t)}, T = comp{(0, 1), (t, t), (1, 0)}

Note that S, T ∈ Σ, T ⊆ A ⊆ S. (SS) and (WE) imply that F (S) = F (T ) = {(t, t)}. By
(WMON), it then follows easily that F (A) = {(t, t)}. Thus, F = FKS. �

7 Egalitarian solution

Like the Kalai-Smorodinsky solution, the egalitarian solution to nonconvex bargaiging prob-
lems is also single-valued. In what follows, we summarize a characterization result obtained
in Xu and Yoshihara (2006).

Theorem 16: A bargaining solution F over Σ is the egalitarian solution if and only if it
satisfies (WE), (SS) and (CI).

Sketch of the proof. We illustrate the main idea behind a formal proof (see Xu and
Yoshihara, 2006) with n = 2.

Consider A ∈ Σ. Let a = (a1, a2) ∈ A be weakly efficient and a1 = a2. Let m =
max{m1(A),m2(A)}. Note thatm > 0. Consider the bargaining problemB = comp{(m, a2), (a1,m)}.
Note that B is symmetric and (a1, a2) is weakly efficient in B. By (WE) and (SS), it then
follows that {a} = F (B). Note that A ⊆ B. By (CI), F (A) = {a}. �

It may be noted that both the Kalai-Smorodinsky solution and the egalitarian solution
satisfy (WE) and (SS). Their differences lie in the fact that the Kalai-Smorodinsky solution
satisfies (SI) and (WCI), which is formally weaker than (CI), but fails to satisfy (CI), while
the egalitarian solution satisfies (CI) but fails to satisfy (SI).

To conclude our discussion on the egalitarian solution, we note that Conley and Wilkie
(1991) show Kalai’s (1977) characterization of the egalitarian solution continues to hold on
the domain of nonconvex bargaining problems.

8 Economic Applications

In this section, we discuss two interesting applications of nonconvex bargaining theories to
economics, in particular, welfare economics. The first application is about the debate of
distributive justice between equality of welfare and equality of resources, and the second
application is concerned with equality of opportunity sets.
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8.1 Bargaining theory and Distributive Justice

In this subsection, we consider the classical resource allocation problems in economic envi-
ronments, where economic environments (hereafter, economies) are pure exchange economies
or production economies, and define allocation rules, each of which maps an economy to a
subset of feasible resource allocations in the economy. In this context, a bargaining solution
is formulated as an allocation rule in the following way: first, from each economy, a utility
possibility set is uniquely derived and this utility possibility set is regarded as a bargaining
problem; secondly, for each economy, a set of optimal allocations is specified by an alloca-
tion rule and, corresponding to the specified optimal allocations, their counterparts of utility
allocations are regarded as the recommendation by a bargaining solution. In the standard
class of economies, the corresponding utility possibility set is compact, comprehensive, and
nonconvex, where the last property follows if the admissible class of utility functions are
quasi-concave. Therefore, the bargaining problems derived from the classical economic re-
source allocations are generally nonconvex. Thus, the nonconvex bargaining theory can be
applied to such allocation problems. In the following, we will survey the axiomatic stud-
ies of nonconvex bargaining solutions which are motivated by the contemporary theories of
distributive justice, such as Dworkin’s (1981b) theory of equality of resources.

Dworkin’s (1981b) theory of equality of resources says that an individual should be re-
sponsible for his less-preferred situation if such a situation is caused by his free will as
represented by his own utility function, but he should not be held responsible if his situation
is due to his bad luck such as handicaps and/or low skill. It then goes on to argue that an
individual should be compensated by the society if his unpleasant state is attributed to his
bad luck, but should not be compensated if it is caused by his own utility function such as
“expensive tastes.” The following subsection presents an economic model that incorporates
this argument into the classical resource allocation problems.

8.1.1 Economic environments

There are infinitely many types of goods (commodities). The universe of “potential goods”
is denoted by Ξ, and the class of non-empty and finite subsets of Ξ is designated by M,
with generic elements, K, L, M ,. . ., each is to be called a finite list of commodities. The
cardinality of M ∈ M is denoted by #M = m. For each M ∈ M, let us denote a generic
commodity bundle in R#M

+ by x. To abuse the notation slightly, we shall write R#M
+ as Rm

+ .
Given M ∈ M, one technology that can produce up to M -goods is described by a

production possibility set Y ⊆ R+ × Rm
+ , where it is assumed that:

A.1 0 ∈ Y .

A.2 Y is closed, convex, and comprehensive.

The universal set of such production possibility sets which produce up to M -goods is denoted
by YM . Let Y ≡ ∪

M∈M
YM . Let ∂Y ≡ {(x, y) ∈ Y | @(x′, y′) ∈ Y s.t. (−x′, y′) � (−x, y)}.

Note that a special case of production possibility sets is Y = R+ × {ωM}, where ωM ∈ Rm
++

is a fixed positive vector of commodities. This kind of production set corresponds to a pure
exchange economy, as the society can access to the commodities ωM regardless of the amount
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of labor being used. In the following discussion, we will use ωM to represent such a type of
specific “production set.”

By assuming one type of labor, it follows that every individual’s labor is homogeneous,
although their labor skills are possibly unequal. The population in the economy is given by
the set N = {1, · · · , n}, where 2 ≤ n < +∞. Assume that all individuals have the same
upper bound of labor time x, 0 < x < +∞. Each individual i is characterized by a labor
skill which is represented by a non-negative real number, si ∈ R+. The number si indicates
i’s labor supply per hour measured in efficiency units. Thus, if xi is the labor time expended
by i, then his labor supply in efficiency units is sixi. Let us denote the universal set of labor
skills for all individuals by S ⊆ R+.

Each individual is also characterized by his own utility function defined over a consump-
tion space. The consumption space is given by [0, x]× Rm

+ whenever there exist m types of
commodities that are able to be produced in the society. Let UM be the set of all (real-
valued) quasi-concave and continuous utility functions defined on [0, x]×Rm

+ , such that any
u ∈ UM is non-increasing in [0, x], non-decreasing in Rm

+ , u(0,0) = u(x,0) = 0, and for all
(x, y) ∈ [0, x]× Rm

+ , lim
t→∞

(1/t) · u(x, ty) = 0.

Given M ∈M, an economy with M -commodities is described by a list e = (M,u, s, Y ) =
(M, (ui)i∈N , (si)i∈N , Y ), where M ∈M, u ∈ UMn, s ∈ Sn, Y ∈ YM , and UMn and Sn stand,
respectively, for the n-fold Cartesian product of UM and that of S. Let EM be the class of
all such economies with M -goods. Let E ≡ ∪

M∈M
EM . Note that this definition of economies

implies that the change in the dimension of consumption space is caused by the change in
production technology, while it may also induce the change of individuals’ utility functions.

Given e = (M,u, s, Y ) ∈ EM , a vector z = (zi)i∈N ∈ ([0, x]× Rm
+ )n constitutes a feasible

allocation for e ∈ EM if for all i ∈ N , zi = (xi, yi), and (
∑
sixi,

∑
yi) ∈ Y . Since the profiles

of labor time and of skills are respectively (xi)i∈N and (si)i∈N , the aggregate amount of labor
input in efficiency units is

∑
sixi, which is transformed into M -commodities through the

production possibility set Y . We denote by Z(e) the set of feasible allocations for e ∈ EM .
Let Z(E) ≡ ∪

e∈E
Z(e).

Given e = (M,u, s, Y ) ∈ E , the utility possibility set of e ∈ E is:

A(e) ≡ {u = (ui)i∈N ∈ Rn
+ | ∃ z = (zi)i∈N ∈ Z(e),∀i ∈ N, ui = ui(zi)}.

Note that the utility possibility set A(e) is a compact and comprehensive set in Rn
+ containing

the origin. Let Σ ≡ {A ⊆ Rn
+ | ∃ e ∈ E , A = A(e)} be the class of all such utility possibility

sets, which constitutes the available class of nonconvex (normalized) bargaining problems.
An allocation rule is a correspondence ϕ : E � Z(E) which associates to each e =

(M,u, s, Y ) ∈ E , a non-empty subset ϕ(e) of Z(e). The allocation rule ϕ is assumed to be
essentially a function; that is, for all e = (M,u, s, Y ) ∈ E , if z ∈ ϕ(e) and z′ ∈ ϕ(e), then
u(z) = u(z′), where u(z) = (ui(zi))i∈N and u(z′) = (ui(z

′
i))i∈N . Moreover, ϕ is assumed to

be a full correspondence; that is, for all e = (M,u, s, Y ) ∈ E , if z ∈ ϕ(e), z′ ∈ Z(e), and
u(z) = u(z′), then z′ ∈ ϕ(e). The allocation rule ϕ attains a bargaining solution F if for all
e = (M,u, s, Y ) ∈ E , µϕ(e) = F (S(e)), where µϕ(e) ≡ u(ϕ(e)). Denote the class of all the
allocation rules, each of which attains some bargaining solution, by ΦF .
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8.1.2 Axioms using Economic Information

First, the domain assumption on allocation rules is:

Axiom DE : The allocation rule ϕ is a full correspondence which is essentially a function
and is defined on the class of economies E .

The following are well-known axioms on allocation rules:

Welfarism (W) [Roemer (1988)]: For all e = (M,u, s, Y ), e′ = (M ′,u′, s′, Y ′) ∈ E , if
S(e) = S(e′), then µϕ(e) = µϕ(e′).

Weak Pareto Efficiency (WPE): For all e = (M,u, s, Y ) ∈ E and z ∈ ϕ(e), there is no
feasible allocation z′ ∈ Z(e) such that ui(z

′
i) > ui(zi) for all i ∈ N .

Weak Equal Treatment of Equals (WETE) [Fleurbaey and Maniquet (1999)]: For all
e = (M,u, s, Y ) ∈ E, if ui = uj and si = sj for all i, j ∈ N , then for all z ∈ ϕ(e),
ui(zi) = uj(zj) for all i, j ∈ N .

Note that all allocation rules in ΦF satisfy Axiom DE and (W).
The next axiom is to stipulate the performance of allocation rules in the case of partic-

ular types of technological changes. It requires coherent treatments of allocation problems
between before and after technological innovations if such innovations make it possible to
produce new commodities which nobody wants to consume: Given (x, y) ∈ [0, x]× Rm

+ and
ui ∈ UM , let there be K ( M such that for all y′K ≡ (y′f )f∈K ∈ Rk

+, ui(x, y
′
K , yM\K) =

ui(x, yK , yM\K), where yK ≡ (yf )f∈K . Then, we say that agent i ∈ N is indifferent to each
good of K (M at (x, y). Given Y ∈ YM and K (M , let

PM\K(Y ) ≡
{

(x, yM\K) ∈ R+ × Rm−k
+ | ∃yK ∈ Rk

+ : (x, yK , yM\K) ∈ Y
}

.

Consistency w.r.t. Technological Innovation (CTI) [Yoshihara (2003)]: Let e =
(M,u, s, Y ) ∈ EM , and let ẑ = (x̂i, ŷMi)i∈N ∈ ϕ(e) be weakly Pareto efficient.5 Let e′ =
(M ∪ L,u′, s, Y ′) ∈ EM∪L, where M ∩ L = ∅, be such that (1) PM(Y ′) = Y , (2) for any
z = (xi, yMi)i∈N ∈ WPE(e), there exists (yLi(z))i∈N ∈ Rnl

+ such that

u′i(xi, yMi, yLi(z)) = ui(xi, yMi) (∀i ∈ N) and (xi, yMi, yLi(z))i∈N ∈ WPE(e′),

and (3) every agent i ∈ N is indifferent to each good of L at (x̂i, ŷMi,0). Then, (x̂i, ŷMi,0)i∈N ∈
ϕ(e′).

A motivation for (CTI) is presented as follows. Let, in an economy e withM -commodities,
ẑ = (x̂i, ŷMi)i∈N be a recommendation by the allocation rule ϕ, and be a (weakly) Pareto
efficient allocation. Next, let the economy change from e ∈ EM to e′ ∈ EM∪L, where the
economy e′ inherits from e the features of the agents’ utility functions on M -commodities in
the intimate way that the condition (2) of (CTI) stipulates: for every weakly Pareto efficient

5When we discuss dimensional changes in consumption spaces, we often denote individual i′s consumption
vector of M -goods by yMi ∈ Rm

+ .
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allocation z in e, there exists an allocation (yLi(z))i∈N of L-commodities such that the new
allocation, (xi, yMi, yLi(z))i∈N , which is obtained by combining z and (yLi(z))i∈N , achieves
the same utility allocation in e′ as the utility allocation derived from z in e. Condition
(1) stipulates the feature of technological change from Y to Y ′ which makes the transition
from the economy e to e′ in the way that while the production ability of M -commodities is
preserved, the new commodities L can be produced in the new economy. However, all agents
are indifferent to the consumption of these commodities as condition (3) specifies. Given
such a transition, (CTI) requires that every agent in the new economy should be guaran-
teed at least his/her welfare level enjoyed in the original economy, as no individuals want to
consume L-commodities, and any other components in the economy e and the economy e′

are essentially identical.

Remark 2: The axiom (W) implies (CTI) under Axiom DE , but not the converse, even
if ϕ obeys Axiom DE .

Roemer (1986, 1988) also introduces a similar axiom to (CTI), which is defined in
the class of pure exchange economies6 and named Consistency of Resource Allocation
across Dimension (CONRAD). Like (CTI), the axiom (CONRAD) also requires co-
herent treatments of allocation problems when the dimension of commodities available in
economies changes. It considers a situation that an economy with a social endowment of
m+ l dimensional vector of commodities, (ωM , ωL) ∈ Rm+l

++ , changes to an economy with that
of m dimensional commodity vector, ωM ∈ Rm

++. Accordingly, the agents’ utility functions
in the m dimensional economy is essentially ‘inherited’ from those in the m+ l dimensional
economy, which is similar to the condition (2) of (CTI). Then, if (yMi, yLi)i∈N is ϕ-optimal
in the first economy, then (CONRAD) requires that (yMi)i∈N is ϕ-optimal in the second
economy.

Let Epe be the set of pure exchange economies with generic element e = (M,u,0, ωM).
Then, the next axiom is introduced by Roemer (1986a) to consider allocation problems in
pure exchange economies.

Resource Monotonicity (RMON) [Roemer (1986a)]: For all e = (M,u,0, ωM), e′ =
(M,u,0, ω′M) ∈ Epe such that ωM ≤ ω′M , and all z ∈ ϕ(e) and all z′ ∈ ϕ(e′), ui(zi) ≤ ui(z

′
i)

for all i ∈ N .

8.1.3 Axiom on Responsibility

Given M ∈ M, note that for any utility function u ∈ UM , there is a utility-unit bu ∈ R+,
by which the level of utility assigned by the function u is measured: that is, if u(z) = bu for
some z, it implies that the level of utility u(z) is just “one.” Then, for each utility-unit bu,
there is a corresponding set B(u) ( [0, x] × Rm

+ of base-consumption for u such that for all
z ∈ B(u), u(z) = bu.

Now, let us take any two utility functions u, u′ ∈ UM for which there is a positive scalar

λ > 0 such that u′ = λ·u. If λ = bu
′

bu
, then u′ is just obtained by a change in utility-units from

6An economy e = (M,u, s, Y ) ∈ E is called a pure exchange economy if and only if s = 0 and there exists
a social endowment vector ωM ∈ Rm

++ of commodities such that Y = R+ × {ωM}. In the following, we will
use the notation (M,u,0, ωM ) to denote a generic element of pure exchange economies.
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bu to bu
′
, so that u and u′ are essentially the same utility representation. In this case, note

that B(u) = B(u′). In contrast, if bu = bu
′
, then the change from u to u′ can be explained

not by the change in utility-units, but rather by a change in utility intensity. Note that if the
change from u to u′ comes from the change in utility intensity, then we have B(u) 6= B(u′)
and B(u) ∩B(u′) = ∅.

One typical example of the above change in utility intensity is the case of individual
development of “expensive taste,” which was discussed by Dworkin (1981a). Consider a case
in which an individual develops his expensive taste, so that even if his underlying preference
ordering and his risk attitude are invariant, he can no longer enjoy the same level of welfare as
he did before developing his expensive taste, without receiving a larger consumption vector
than before.7 This case is simply formulated as a process of a linear transformation of a
utility function via a change in utility intensity.

Given M ∈M and u ∈ UMn, let bu ≡ (bui)i∈N . Then:

Independence of Utility Intensities (IUI) [Yoshihara (2003)]: For all e = (M,u, s, Y ), e′ =
(M,u′, s, Y ) ∈ E with bu = bu′

, if there exists a vector a = (ai)i∈N ∈ Rn
++ such that

u′i = ai · ui for all i ∈ N , then ϕ(e) = ϕ(e′).

In production economies with differences in production skills among agents, according to
the Dworkinian theory of equality of resources, the change in utility intensity of any agent
is not a subject for social compensation, but a matter of personal responsibility. So, the
axiom (IUI) requires that the allocation rule should not take into account such a change to
determine resource allocations.8

8.1.4 Axioms on Compensation

The next two axioms are relevant to compensation for low skills:

Skill Monotonicity (SM) [Fleurbaey and Maniquet (1999)]: For all e = (M,u, s, Y ), e′ =
(M,u, s′, Y ) ∈ E such that s ≤ s′, and all z ∈ ϕ(e) and z′ ∈ ϕ(e′), ui(zi) ≤ ui(z

′
i) for all

i ∈ N .

Independence of Skill Endowments (ISE) [Yoshihara (2003)]: Let e = (M,u, s, Y ), e′ =
(M,u, s′, Y ) ∈ E be such that Z(e) = Z(e′). Then, ϕ(e) = ϕ(e′).

Among these two axioms, (SM) is strong enough to keep the implication of compensation
for low skill, while (ISE) is a rather weak requirement as an axiom of compensation.

A weaker version of (SM) is also introduced. Given e = (M,u, s, Y ) ∈ E and i ∈ N , let

mi(Z(e)) ≡

{
z′i ∈ [0, x]× Rm

+ | z′i = arg max
z∈Z(e), zi is i-th component of z

ui(zi)

}
.

7In this explanation, it is not necessary to assume interpersonal comparability of utilities. The notion of
change in utility intensity only presumes intrapersonal comparison of utilities.

8As discussed above, the situation that someone’s utility intensity decreases can be interpreted as the
development of an “expensive taste.” Then, IUI requires that this person should not be compensated by
the allocation rule for his decrease of utility-productivity due to his developed expensive taste.
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Then:

Weak Skill Monotonicity (WSM) [Yoshihara (2006)]: Let e = (M,u, s, Y ), e′ = (M,u, s′, Y ) ∈
E be such that s ≤ s′, and mi(Z(e)) ∩mi(Z(e′)) 6= ∅ for all i ∈ N . Then, for all z ∈ ϕ(e)
and all z′ ∈ ϕ(e′), we have ui(zi) ≤ ui(z

′
i) for all i ∈ N .

This axiom requires that if the profile of skills is improved from s to s′, but everyone’s
ideal utility point remains invariant, then no individual should be made worse off by this
environmental improvement. The presumption of this axiom is non-vacuous. To see it, let
z ∈ Z(e) and z′ ∈ Z(e′) be such that zi ∈ mi(Z(e)), z′i ∈ mi(Z(e′)), yi ≤ y′i and xi = x′i for
each i ∈ N , due to s ≤ s′. Then, if ui is satiated at zi, then zi ∈ mi(Z(e)) ∩mi(Z(e′)) can
hold for each i ∈ N .

8.1.5 Bargaining Allocation Rules and their Characterizations

Here, the following two bargaining allocation rules will be discussed in terms of the theory
of equality of resources:

Definition 5: An allocation rule ϕE is the egalitarian rule if it attains the egalitarian
solution: for all e ∈ E, µϕE(e) = FE(A(e)).

Definition 6: An allocation rule ϕKS is the Kalai-Smorodinsky rule if it attains the Kalai-
Smorodinsky solution: for all e ∈ E, µϕKS(e) = FKS(A(e)).

In the literature of bargaining theory on economic environments, an allocation rule which
satisfies Axiom DE and attains the Nash bargaining solution is also defined as the Nash
allocation rule. Such an allocation rule is well-defined whenever all available utility functions
are restricted to be concave, and so all bargaining problems derived from such economies are
convex. However, here we allow that utility functions are quasi-concave but not necessarily
concave, and so the derived bargaining problems could be nonconvex. In such a case, the
allocation rule which attains the Nash solution (Definition 1 of this paper) does not satisfy
Axiom DE , as the Nash allocation rule is not essentially a function.

First, let us consider allocation problems in pure exchange economies. Then, according to
Roemer (1986), the theory of equality of resources could be formulated by means of (WPE),
(WETE), (RMON), and (CONRAD). Moreover, it can be shown that an allocation rule
is egalitarian if and only if it satisfies Axiom DE , (WPE), (WETE), (RMON), and
(CONRAD). From this analysis, Roemer (1986) concludes that equality of resources logi-
cally implies equality of welfare, since the egalitarian rule is the mathematical representation
of the theory of equality of welfare. This implies a criticism against Dworkin’s (1981b) theory
of equality of resources.

However, it was questioned whether equality of resources is properly characterized by the
axioms mentioned above. Indeed, these axioms do not reflect any claim on responsibility
and compensation that Dworkin (1981b) regards as the core principles of the theory of
equality of resources. Therefore, the logical relationship between equality of welfare and
equality of resources claimed by Roemer (1986) would not be valid if equality of resources is
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characterized by the principles of responsibility and compensation, rather than by the above
four axioms.

Given this conceptual debate, Yoshihara (2003, 2006) examines allocation problems in
production economies with different skills by using the axiom of responsibility, (IUI), and
the axioms of compensation for low skills, (SM) and its weaker variants.

In this case, an allocation rule would be the first best from the viewpoint of Dworkin’s
(1981b) theory of equality of resources if it satisfies (IUI) and (SM) together with weaker
requirements of efficiency and fairness. However, there is no efficient bargaining allocation
rule which satisfies both the axiom of responsibility and the stronger axiom of compensation:

Theorem 17 [Yoshihara (2003)]: There is no allocation rule in ΦF which satisfies (WPE),
(WETE), (IUI), and (SM).

Given the impossibility of the first best solution of equality of resources, one second best
resolution shown by Yoshihara (2003) is to remove the responsibility axiom (IUI), while
keeping the compensation axiom (SM), which results in the egalitarian solution.

Theorem 18 [Yoshihara (2003)]: The allocation rule ϕ satisfies DE , (WPE), (WETE),
(SM), (ISE), and (CTI) if and only if ϕ = ϕE.

Within the list of axioms used in the above characterization, the axioms DE , (ISE), and
(CTI) are logically necessary for all bargaining allocation rules in ΦF . Moreover, (WPE)
and (WETE) are minimally necessary for ethically acceptable bargaining allocation rules.
Therefore, it is the axiom (SM) which uniquely characterizes the egalitarian rule among any
ethically acceptable bargaining allocation rules.

Another second best resolution is to weaken the compensation axiom from (SM) to
(WSM), while preserving (IUI), which results in the KS allocation rule:

Theorem 19 [Yoshihara (2006)]: The allocation rule ϕ satisfies DE , (WPE), (WETE),
(WSM), (IUI), ISE, and (CTI) if and only if ϕ = ϕKS.

As in the discussion after the presentation of Theorem 18, we can say that the axioms (IUI)
and (WSM) uniquely characterize the KS allocation rule within the class of all ethically
acceptable bargaining allocation rules.

In this way, the well-known solutions to nonconvex bargaining problems can be charac-
terized from the viewpoint of equality of resources à la Dworkin (1981b) by reformulating
the classical bargaining problems as the standard resource allocation problems in economic
environments. In addition to Roemer (1986, 1988) and Yoshihara (2003, 2006) introduced in
this subsection, Ginés and Marhuenda (2000) and Chen and Maskin (1999) also respectively
provide an axiomatic characterization of the egalitarian solution by considering the economic
models with finite dimensional commodity spaces. In these works, the egalitarian solution is
characterized by means of Pareto efficiency, weak symmetry, and payoff monotonicity. Weak
symmetry is essentially the same as the (WETE) axiom, while payoff monotonicity can be
summarized as follows: if everyone’s utility-productivity is improved, then everyone’s util-
ity in the bargaining outcome should be improved. Obviously, payoff monotonicity cannot
be justified by either Roemer’s (1986) axiomatic formulation of equality of resources or the
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principles of responsibility and compensation. Thus, though the characterization result by
Ginés and Marhuenda (2000) and Chen and Maskin (1999) is elegant, it has no implication
of the equality of resources, unlike Roemer (1986, 1988) and Yoshihara (2003, 2006).

8.2 Bargaining over opportunity sets

In this subsection, we again consider economic resource allocation problems in pure exchange
economies, but we also introduce each agent’s opportunity set, which is interpreted as a set
of feasible options or alternatives available to the individual for living by using commodities
allocated to him. Those alternatives can be interpreted broadly as commodity bundles,
or bundles of characteristics à la Lancaster and Gorman, or bundles of functionings à la
Sen (1980, 1985), and Nussbaum (1988, 1993, 2000). A resource allocation of commodities
in a pure exchange economy then identifies a collection of opportunity sets, one for each
individual in the economy.

In this context, we define a bargaining problem on assignments of opportunity sets, in
which a bargaining problem is the set of all available assignments of opportunity sets among
agents. Correspondingly, a bargaining solution maps each of such bargaining problems to
an assignment of individual opportunity sets.

There are actual examples of bargaining problems in which each recommendation by the
“fair arbitrator” is made not based on utilities of the individuals involved, but on opportunity
sets that the recommended resource allocation of commodities may give rise to the involved
individuals. For example, when educational resources are to be allocated among local public
schools, the local government’s board of education, as the “fair arbitrator,” may propose an
allocation that “equalizes” school children’s opportunity sets for future jobs, skills, college
admissions, lives, etc. A bargaining theory addressing such an example is well in line with
the recent literature on opportunities and equality of opportunities, such as Sen (1980, 1985),
Arneson (1989), and Cohen (1993) in political philosophy, and Sen (2002), Pattanaik and
Xu (1990), Kranich (1996), and Herrero (1996) in welfare economics.

In this subsection, following Xu and Yoshihara (2019a), we will introduce the egalitarian
solution to bargaining problems on assignments of opportunity sets as a recommendation
based on the equality of opportunity principle. Then, we will discuss the axiomatic char-
acterization of such a solution. In particular, we will see how the bargaining problems on
assignments of opportunity sets can be interpreted as an interesting example of the standard
nonconvex bargaining problems.

8.2.1 Economic environments

As discussed in section 8.1, a pure exchange economy has the following profile e = (M,u,0, ωM).
In addition, let us assume that there are k basic living conditions in the economy, which are
relevant for all individuals for the purpose of describing their objective well-beings attain-
able by means of their consumption vectors. These basic living conditions can be interpreted
broadly. For example, they can be skills that individuals can develop through education,
or they can be occupations which individuals can engage in after the graduation at school.
Or they can be characteristics of commodities in the sense of Gorman (1980) and Lancaster
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(1966), or they can be various functionings according to Sen (1980, 1985) and Nussbaum
(1988, 1993, 2000).

An achievement of living condition f , where f = 1, 2, · · · , k, by individual i is denoted
by bif ∈ R+. Individual i’s achievement of basic living conditions is then given by listing
bif : bi = (bi1, · · · , bik) ∈ Rk

+. Two crucial factors determine the achievement of individual’s
basic living conditions: one is the amount of resources or commodities she can access for
attaining these living conditions, and the other is the individual’s ability to realize these living
conditions by utilizing commodities. Given M ∈ M and each individual i ∈ N , the latter
is formulated as i’s opportunity correspondence cmi : Rm

+ � Rk
+ which associates to every

commodity vector yi ∈ Rm
+ a non-empty subset cmi (yi) of Rk

+. The intended interpretation
is that i is able to have access to each living-condition vector bi ∈ cmi (yi) by means of his
commodity vector yi. Each opportunity correspondence satisfies the following requirements:

(a) For all yi, y
′
i ∈ Rm

+ such that yi ≤ y′i, c
m
i (yi) ⊆ cmi (y′i) holds;

(b) For some yi ∈ Rm
+\{0}, cmi (yi) ∩ Rk

++ 6= ∅ holds, and cmi (0) = {0};
(c) For all yi ∈ Rm

+ , cmi (yi) is compact and comprehensive in Rk
+; and

(d) cmi is continuous on Rm
+ with respect to the Hausdorff topology.

Requirement (a) is a monotonicity property: more commodities generate “larger” opportu-
nity sets. Requirement (b) essentially says that commodities are “desirable”: they can help
individuals in achieving positive levels of basic living conditions. Requirement (c) stipulates
that any given commodity bundle generates a bounded opportunity set. Finally, requirement
(d) says that “small” changes in commodity bundles lead to “small” changes in opportunity
sets.

Let CM be the set of all possible opportunity correspondences defined on Rm
+ , which

satisfy the above (a), (b),(c) and (d). A pure exchange economy e = (M,u,0, ωM) is
now extended with a profile cm ≡ (cmi )i∈N ∈ CMn of opportunity correspondences. In the
following, without loss of generality, let us denote a pure exchange economy with a profile
of opportunity correspondences (an economy, hereafter) by a list e = (M,u, cm, ωM). Then,
given an economy e = (M,u, cm, ωM) ∈ E , a vector y = (yi)i∈N ∈ Rmn

+ is feasible for e ∈ E
if for all i ∈ N , yi ∈ Rm

+ , and
∑
yi ≤ ωM . We denote by Z(e) the set of feasible allocations

for e ∈ E . Let Z(E) ≡ ∪
e∈E

Z(e).

For each individual i ∈ N , given M ∈ M and given i’s consumption vector yi, c
m
i (yi)

generates an opportunity set Ci = cmi (yi) for i. An opportunity assignment is a list of n
opportunity sets one for each individual in the society. Given e = (M,u, cm, ωM) ∈ E , the
set of possible opportunity assignments for e ∈ E is:

C(e) ≡ {C = (Ci)i∈N ⊆ Rkn
+ | ∃ y = (yi)i∈N ∈ Z(e) : Ci = cmi (yi) (∀i ∈ N)}.

Note that for any e = (M,u, cm, ωM) ∈ E , any C = (Ci)i∈N ∈ C(e), and any i ∈ N ,
the opportunity Ci is a compact, comprehensive set in Rk

+ containing the origin. Let Σ ≡
{C | ∃e ∈ E : C = C(e)} be the class of all such possible sets of opportunity assignments.

8.2.2 Opportunity sets and their ranking

Let K be the universal class of compact, comprehensive subsets in Rk
+ containing the origin.

Thus, C ∈ K implies that for any M ∈M, there exists cm ∈ CM such that for some y ∈ Rm
+ ,
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cm (y) = C. Then, an objective measure of alternative opportunity sets is formalized as
a binary relation R ⊆ K × K, which is assumed to satisfy (i) reflexivity: [for all C ∈ K,
(C,C) ∈ R], (ii) completeness: [for all C,C ′ ∈ K, (C,C ′) ∈ R or (C ′, C) ∈ R], and (iii)
transitivity: [for all C,C ′, C ′′ ∈ K, if (C,C ′) ∈ R & (C ′, C ′′) ∈ R, then (C,C ′′) ∈ R]. Thus,
R is an ordering over K. Note P and I are respectively the asymmetric and symmetric parts
of R.

For all C,C ′ ∈ K, we write C > C ′ if for all b′ ∈ C ′, there exists b ∈ C such that b� b′.
Given the comprehensiveness of opportunity sets in K, when C > C ′, then C ′ is necessarily
a proper subset of C.

As in the literature on ranking opportunity sets such as Gaertner and Xu (2006), Pat-
tanaik and Xu (2000, 2007), and Xu (2002, 2004), the ordering R on K is assumed to satisfy
the following property:

Monotonicity: For all C,C ′ ∈ K, if C ⊇ C ′ then (C,C ′) ∈ R, and if C > C ′, then
(C,C ′) ∈ P .

Representability: There exists a real-valued, continuous function G : K → R+ such that
for all C,C ′ ∈ K,

G (C) ≥ G(C ′)⇔ (C,C ′) ∈ R.

8.2.3 Bargaining problems on opportunity assignments

Analogous to the standard bargaining model, here each C ∈ Σ is a bargaining problem on
opportunity assignments, and Σ is the domain of such bargaining problems. Moreover, a
solution to such a problem is to pick up a subset of opportunity assignments {C = (Ci)i∈N}
from C. Therefore, a bargaining solution in this context is a correspondence F which asso-
ciates to every C ∈ Σ, a non-empty subset F (C) ⊆ C.

Given a social evaluation of opportunity sets R satisfying Monotonicity and Repre-
sentability and its representation G, a well-known solution concept in the standard bargain-
ing theory can be applied to the bargaining problems on opportunity assignments, which is
defined as follows:

Egalitarian Solution [Xu and Yoshihara (2019a)]: A bargaining solution F E is the egali-
tarian solution if and only if : for every C ∈ Σ, F E(C) = {C = (C1, · · · , Cn) ∈ C | (Ci, Cj) ∈
I holds for any i ,j ∈ N and there is no other C′ ∈ C such that (C ′i, Ci) ∈ P for all i ∈ N}.

Thus, the solution F E selects all the undominated assignments, such that in each of these
assignments, everyone’s opportunity is indifferent with any other’s in terms of R.

8.2.4 Axioms on bargaining solutions

In this subsection, axioms on bargaining solutions over opportunity assignments are pre-
sented. The first axiom is the corresponding weak efficiency axiom in standard bargaining
models.

Weak EfficiencyOB (WEOB): For each C ∈ Σ and each C = (Ci)i∈N ∈ F (C), there is no
C′ = (C ′i)i∈N ∈ C such that for every i ∈ N , C ′i > Ci.
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Therefore, the axiom (WEOB) requires that the solution should not select an opportunity
assignment that is strictly dominated by another feasible opportunity assignment.

To introduce our next axiom, we first define a symmetric problem. We say that C ∈ Σ
is symmetric if for every permutation π : N → N , and for every C = (Ci)i∈N ∈ C, π (C) ≡(
Cπ(i)

)
i∈N ∈ C holds.

SymmetryOB (SOB): For each C ∈ Σ, if (i) C is symmetric, and (ii) there exists a C ∈ C
such that it is weakly efficient in C and Ci = Cj for all i, j ∈ N , then C ∈ F (C) holds, and
there is no C′ ∈ F (C) such that C ′i > C ′j for some i, j ∈ N .

The axiom (SOB) stipulates that, for each symmetric problem, if this problem contains a
weakly efficient opportunity assignment such that all agents’ opportunity sets are identical,
then such an opportunity assignment becomes F -optimal and no other F -optimal oppor-
tunity assignment is unequal, in that someone’s opportunity set strictly dominates another
individual’s opportunity set.

The following axiom is analogous to the axiom of contraction independence in standard
bargaining models:

Contraction IndependenceOB (CIOB): For each C, C ′ ∈ Σ with C ⊇ C ′, if F (C)∩C ′ 6= ∅,
then F (C ′) = F (C) ∩ C ′.

The axiom (CIOB) corresponds to Nash’s Independence of Irrelevant Alternatives in standard
bargaining models.

Our final axiom is an informational requirement on a solution to a problem and is stated
below:

Informational InvarianceOB (IIOB) : For each C ∈ Σ and each C = (Ci)i∈N ,C
′ =

(C ′i)i∈N ∈ C, if C ∈ F (C) and (C ′i, Ci) ∈ I for all i ∈ N , then C′ ∈ F (C).

According to the axiom (IIOB), if two opportunity assignments are “equivalent” in the sense
that the two opportunity sets for each and every individual specified by the corresponding
opportunity assignments are ranked equally, then whenever one opportunity assignment is
F -optimal, the other opportunity assignment should be F -optimal as well.

8.2.5 A characterization of the egalitarian solution

By means of the above four axioms, the egalitarian solution to bargaining problems on
opportunity assignments can be characterized:

Theorem 20 [Xu and Yoshihara (2019a)]: The egalitarian solution F E is the unique solution
satisfying (WEOB), (SOB), (CIOB) and (IIOB).

Intuitive idea behind the proof. Instead of giving a proof of this theorem, we discuss
the basic intuition about why this theorem holds.9

9For a formal proof of Theorem 20, see Xu and Yoshihara (2019a; Theorem 1).
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First, it would be helpful to see that the solution F E is well-defined in the sense that for
each C ∈ Σ, F E (C) is non-empty. Let G be the real-valued, ordinal representation of the
social ordering R. For each bargaining problem C ∈ Σ, let us define

G (C) ≡
{
G (C) = (G (Ci))i∈N ∈ Rn

+ | C ∈ C
}

.

Let ∂G (C) be the upper boundary of G (C). Since C is derived from an underlying economic
environment e = (M,u, cm, ωM) ∈ E , where cm is a profile of opportunity correspondences
satisfying the requirements (a), (b), (c), and (d), and G is continuous on K, ∂G (C) con-
stitutes a connected set in Rn

+. Moreover, since C is comprehensive10 by the requirements
(a), (b), and (d) of opportunity correspondences, G (C) must be comprehensive. Finally, by
choosing G ({0}) = 0 for the zero vector 0 ∈ Rk

+, G (C) has 0 ∈ Rn
+ as its element, since

({0} , . . . , {0})︸ ︷︷ ︸
n-times

∈ C. Therefore, G (C) corresponds to a standard normalized, non-convex,

and comprehensive bargaining problem. Given these observations, we can easily see that
the solution F E is well-defined. This is because, for each C ∈ Σ, its corresponding ∂G (C)
always contains the vector of equal real numbers (r, . . . , r), and the inverse image of this
vector constitutes the set F E (C). That is, G−1 (r, . . . , r) = F E (C).

Then, if a solution F satisfies (WEOB), (SOB), (CIOB) and (IIOB), it can be shown
that a composite mapping G◦ F satisfies the axioms (WE), (SS), and (CI) introduced in
Section 3 for the standard nonconvex bargaining solutions. Therefore, the map G◦ F selects
the weakly efficient and egalitarian utility allocation (r, . . . , r) ∈ ∂G (C) for every C ∈ Σ,
according to Theorem 16. In conclusion, G◦ F = G ◦ F E follows. �

9 Conclusion

We have reviewed several developments of the recent literature on nonconvex bargaining
problems and their applications. From our analysis, it is fair to say that both the Kalai-
Smorodinsky solution and the egalitarian solution to nonconvex bargaining problems are
straightforward extensions of their counterparts in convex bargaining problems due to the
single-valuedness of these two solutions and comprehensiveness of bargaining sets. The
Nash solution, both symmetric and asymmetric, to nonconvex bargaining problems is, on
the other hand, more complex than the Kalai-Smorodinsky and the egalitarian solutions
since the Nash solution is in general multi-valued in the context of nonconvex bargaining
problems. Faced with a multi-valued Nash solution (a Nash set) to a nonconvex bargaining
problem, the issue of narrowing down a ‘Nash set’ by eliminating some candidates in the Nash
set that are deemed to be ‘unattractive’ may arise. For this purpose, we have touched on
one particular selection procedure that tries to incorporate the information about ‘equity’
aspects of the candidates in a (symmetric) Nash set (see the equitable Nash solution as
characterized in Theorem 8): the equity aspect of the equitable Nash solution is concerned
about the “normalized dispersion” in a candidate and the invoked procedure is to eliminate
those that have larger normalized dispersions than the rest in the Nash set. Admittedly, this

10C is comprehensive if, for each C ∈ C and each i ∈ N with Ci 6= {0}, there exists C′ ∈ C such that
C ′

i < Ci and C ′
j ⊆ Cj for all j ∈ N\ {i}.
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is just one possibility and there seem to have other ways of eliminating certain ‘unattractive’
candidate(s) in a Nash set. It would be interesting to examine the possibilities along this
line of thinking. Alternatively, one could go along a path suggested by the work of Peters
and Vermeulen (2012) to explicitly impose certain appealing axioms on a solution to narrow
down the Nash set and to select some final candidates. Notice that, in this case, one would
take the axioms, (WE), (SI) and (CI), as the three basic axioms to be satisfied by a solution
in this endeavor. The focus here is not on selecting a candidate from a (symmetric) Nash set.
Rather, its focus is on selecting a candidate from an asymmetric Nash set of a nonconvex
bargaining problem. This seems another promising line of research.

We have also discussed two applications of nonconvex bargaining theories in the prob-
lem of resource allocations. As shown in those two applications, the theories of nonconvex
bargaining can be fruitfully applied in those contexts since nonconvex bargaining problems
arise naturally there. It would be interesting to explore many other applications in those
contexts and perhaps beyond.
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