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1 Introduction

In this paper we consider resource allocation problems in production economies
with possibly unequal skills, as well as with variable commodities, in which
the change in the types of produced commodities is due to the change in
production technology. Assuming that the resource allocation is determined
via bargaining among individuals, we axiomatically characterize bargaining
solutions in those economies. In contrast to the classical bargaining theory
originating with Nash (1950), we focus on allocation rules, each of which
maps each economy to a subset of feasible allocations whose utility values
are just the bargaining outcomes. In this way, we adopt the axioms which
refer explicitly to concrete data on underlying economic environments, rather
than just to the geometric data of utility possibility sets.
Such an approach is useful to make clear non-welfaristic properties of bar-

gaining solutions beyond the welfaristic discussions in the Nash-type classical
approach. For example, in our setting of production economies, this approach
may make it possible to discuss the important issues of whether and/or how
each of the following should influence the bargaining outcome; the inequal-
ity of individuals’ labor skills, the individuals’ developments of “expensive
tastes” [Dworkin (1981a,b)] for which they should be responsible, and the
effect of technological innovation. Such issues disappear in the classical ap-
proach, because of its implicit imposition of the axiom ofWelfarism [Roemer
(1988)] which requires solutions to assign the same utility allocation to all
the economies giving rise to the same utility possibility sets.
Our model is relevant to bargaining problems over the social compensa-

tion for low skills. Regarding the problem of social compensation for low
skills, Dworkin (1981b) developed the theory of equality of resources, which
says that the relatively less-preferred situation of an individual should be
compensated by the society if his/her situation is due to his/her low skill,
but not if it is caused by his/her type of utility function such as “expensive
taste.” This is because, as Dworkin (1981b) and Fluerbaey and Maniquet
(1996, 1999) discussed, an individual should be responsible for his/her less-
preferred situation if such a situation is caused by his/her free will which is
represented by his/her own utility function, while such an argument may not
be applied if his/her situation is due to his/her low skill.
Motivated by such a viewpoint of responsibility and compensation [Fluer-

baey and Maniquet (1996, 1999)], we provide new axiomatic characteriza-
tions of the Nash [Nash (1950)] solution and the Kalai-Smorodinsky [Kalai
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and Smorodinsky (1975)] solution. Through the characterizations, we may
obtain a new insight on the property of these solutions in terms of responsi-
bility and compensation. One axiom can be interpreted as being relevant to
responsibility for utility functions, and the other three axioms as being rele-
vant to compensation for low skills. The responsibility axiom is Independence
of Utility Intensities (IUI), while the compensation axioms we are interested
in here are Skill Monotonicity (SM) and its weaker versions, α-Weak Skill
Monotonicity (αWSM) and β-Weak Skill Monotonicity (βWSM).
In the bargaining problem over compensation for low skills, the most de-

sirable solution would satisfy both the responsibility axiom IUI and the com-
pensation axiom SM. Unfortunately, this was proven impossible by Yoshi-
hara (2003), thus, we should pursue the second best solution instead. This
paper will discuss the Nash solution as a plausible second best solution,
in the sense that it is the unique Efficient and Symmetric bargaining so-
lution satisfying both IUI and αWSM. Moreover, αWSM together with
the Pareto Efficiency axiom have an appealing content as a solidarity con-
dition w.r.t. someones’ worsening of labor skills. We also show that the
Kalai-Smorodinsky solution is the unique Efficient and Symmetric bargain-
ing solution satisfying both IUI and βWSM. Since βWSM seems to be
not as ethically appealing as αWSM, our main results may indicate that
the Nash solution is most appropriate for the bargaining problem over com-
pensation for low skills, whenever we take into account responsibility and
compensation as essential principles.
In the following discussion, section 2 defines a basic model of economies,

allocation rules, and bargaining solutions. Section 3 introduces the axioms
on allocation rules. Section 4 provides our main results. For the sake of
expositional convenience, all the involved proofs are relegated into Section 5.

2 Model

As explained in section 1, we look at resource allocations in production
economies with possibly unequal skills, and with variable commodities. To
treat the case of variable commodities, we start from introducing (possibly)
infinitely many types of commodities. The universe of such “potential com-
modities” is denoted by C, and the class of non-empty and finite subsets of
C is designated byM, with generic elements, K, L, M ,. . .,. The cardinality
of M ∈ M is denoted by #M . Given M ∈ M, let Rm+ , where m = #M ,

3



designate the Cartesian product of #M copies of R+ indexed by the numbers
of M , where R+ denotes the set of non-negative real numbers. There is also
one type of labor input, which is denoted by x ∈ R+, to be used to produce
any potential commodity.
Each production technology is represented by a set of the input-output

vectors of labor and some finite types of commodities. Thus, for any finite
types of commodities M ∈M, one technology that can produce up to M-
goods is described by a production possibility set Y ⊆ R+ × Rm+ , where it is
assumed that:

A.1 0 ∈ Y .
A.2 Y is closed, convex, and comprehensive.
A.3 ∃t = (x, y) ∈ Y such that ∃ a commodity f ∈M s.t. yf > 0.

The above A.1, A.2, and A.3 are standard assumptions for production pos-
sibility sets in economics. The universal set of such production possibility
sets which produce up toM-goods is denoted by YM . Let Y ≡ ∪

M∈M
YM . Let

∂Y ≡ {(x, y) ∈ Y | @(x0, y0) ∈ Y s.t. (−x0, y0)À (−x, y)}.1
By assuming one type of labor, it follows that every individual’s labor is

homogeneous, although their labor skills are possibly unequal. The popula-
tion in the economy is given by the set N = {1, · · · , n}, where 2 ≤ n < +∞.
Assume that all individuals have the same upper bound of labor time x,
0 < x < +∞. Each individual i is characterized by a labor skill which is rep-
resented by a non-negative real number, si ∈ R+. The number si indicates
i’s labor supply per hour measured in efficiency units. Thus, if xi is the labor
time expended by i, then his labor supply in efficiency units is sixi. Let us
denote the universal set of labor skills for all individuals by S ⊆ R+.
Each individual is also characterized by his own utility function defined

over a consumption space. The consumption space is given by [0, x] × Rm+
whenever there exist m types of commodities that are able to be produced
in the society. Let UM be the set of all (real-valued) concave and continu-
ous utility functions defined on [0, x] × Rm+ , such that any u ∈ UM is non-
increasing in [0, x], non-decreasing in Rm+ , u(0,0) = u(x,0) = 0, and for all
(x, y) ∈ [0, x] × Rm+ , lim

t→∞
(1/t) · u(x, ty) = 0. Those assumptions on utility

1For any two vectors a = (a1, . . . , ap) and b = (b1, . . . , bp), a ≥ b if and only if ai ≥ bi
(i = 1, . . . , p), a > b if and only if a ≥ b and not (b ≥ a), and aÀ b if and only if ai > bi
(i = 1, . . . , p).
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functions are also standard in economics. Note that each utility function
is defined dependent on the type of commodities, which the society has the
technology to produce.
Given M ∈ M, an economy with M-commodities is described by a list

e = (M,u, s, Y ) = (M, (ui)i∈N , (si)i∈N , Y ), whereM ∈M, u ∈ UMn, s ∈ Sn,
Y ∈ YM , and UMn and Sn stand, respectively, for the n-fold Cartesian prod-
uct of UM and that of S.2 Let EM be the class of all such economies withM-
goods. Let E ≡ ∪

M∈M
EM . Note that this definition of economies implies that

the change in the dimension of consumption space is caused by the change
in production technology, while it may also induce the change of individu-
als’ utility functions as discussed above. For instance, if a new commodity
is “invented” or “discovered” through a technological innovation, then the
dimension of consumption spaces of all individuals becomes higher, which
may also drastically change the profile of all individuals’ utility functions
in the society. This kind of situation is worth discussing when we consider
bargaining problems. For instance, the issue of how the changes in economic
environments due to the technological innovation should or should not influ-
ence the consequences of bargaining between employees and employers might
be interesting, and our model of economies can treat such an issue.
Given e = (M,u, s, Y ) ∈ EM , a vector z = (zi)i∈N ∈ ([0, x] × Rm+ )n con-

stitutes a feasible allocation for e ∈ EM if for all i ∈ N , zi = (xi, yi), and
(
P
sixi,

P
yi) ∈ Y . Since the profiles of labor time and of skills are respec-

tively (xi)i∈N and (si)i∈N , the aggregate amount of labor input in efficiency
units is

P
sixi, which is transformed into M-commodities through the pro-

duction possibility set Y . We denote by Z(e) the set of feasible allocations
for e ∈ EM . Let Z(E) ≡ ∪

e∈E
Z(e).

Given e = (M,u, s, Y ) ∈ E and z ∈ Z(e), z is a Pareto efficient (resp.
weakly Pareto efficient) allocation for e if there is no z0 ∈ Z(e) such that
ui(z

0
i) ≥ ui(zi) for all i ∈ N , and uj(z0j) > uj(zj) for some j ∈ N (resp.

ui(z
0
i) > ui(zi) for all i ∈ N). Denote the set of Pareto efficient (resp.

weakly Pareto efficient) allocations for e by PE(e) (resp. WPE(e)). Given
e = (M,u, s, Y ) ∈ E , the utility possibility set of e ∈ E is:

S(e) ≡ {u = (ui)i∈N ∈ Rn+ | ∃ z = (zi)i∈N ∈ Z(e),∀i ∈ N,ui = ui(zi)}.

Note that the utility possibility set S(e) is a compact, comprehensive, convex

2Such a definition of economic environments is originated from Roemer (1986).
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set in Rn+ containing the origin. Let Σ ≡ {S ⊆ Rn+ | ∃ e ∈ E , S = S(e)} be
the class of all such utility possibility sets.
Let d = 0 ∈ Rn+ denote the disagreement point in this society. We identify

a pair of the utility possibility set, S, and the disagreement point d as a
bargaining game. Then, a bargaining solution is a function F : Σ×{d}→ Rn+
such that for every S ∈ Σ, F (S, d) ∈ S. Since d = 0 by the assumption
of ui(0,0) = 0 for all i ∈ N , we write only F (S) instead of F (S, d). The
universal set of bargaining solutions is denoted by F .
To discuss explicitly the performances of bargaining solutions in resource

allocation problems from a non-welfaristic point of view, we are not inter-
ested in the above defined, classical bargaining solution, but in its underlying
resource allocation mechanism defined over the set of underlying economies.
An allocation rule is a correspondence ϕ : E ³ Z(E) which associates to each
e = (M,u, s, Y ) ∈ E , a non-empty subset ϕ(e) of Z(e). The allocation rule ϕ
is assumed to be essentially a function; that is, for all e = (M,u, s, Y ) ∈ E ,
if z ∈ ϕ(e) and z0 ∈ ϕ(e), then u(z) = u(z0), where u(z) = (ui(zi))i∈N and
u(z0) = (ui(z0i))i∈N . Moreover, ϕ is assumed to be a full correspondence; that
is, for all e = (M,u, s, Y ) ∈ E , if z ∈ ϕ(e), z0 ∈ Z(e), and u(z) = u(z0),
then z0 ∈ ϕ(e). The allocation rule ϕ attains a bargaining solution F if for
all e = (M,u, s, Y ) ∈ E , µϕ(e) = F (S(e)), where µϕ(e) ≡ u(ϕ(e)). Thus, ϕ
is the underlying resource allocation mechanism of the classical bargaining
solution F if and only if ϕ attains F . Denote the class of all the allocation
rules, each of which attains some bargaining solution, by ΦF .
Among the various types of bargaining solutions, here we are particularly

interested in the following ones:

Definition 1: A bargaining solution Na ∈ F is the Nash solution if for any
S ∈ Σ, Na(S) is equal to the maximizer in u ∈ S of the “Nash product”Q
i∈N

ui.

Definition 2: An allocation rule ϕNa is the Nash rule if it attains the Nash
solution: for all e ∈ E, µϕNa(e) = Na(S(e)).

Given S ∈ Σ and i ∈ N , let us definemi(S) ≡ max {ui ∈ R+ | u = (uh)h∈N ∈ S}.

Definition 3: A bargaining solution K ∈ F is the Kalai-Smorodinsky so-
lution if for any S ∈ Σ, K(S) is a (weak) Pareto efficient outcome on
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S, and there exists a unique value λ ∈ (0, 1] such that K(S) = λ ·m(S),
m(S) ≡ (mi(S))i∈N .

Definition 4: An allocation rule ϕK is the Kalai-Smorodinsky rule if it
attains the Kalai-Smorodinsky solution: for all e ∈ E, µϕK (e) = K(S(e)).

3 Axioms using Economic Information

First of all, the domain assumptions on ϕ is:

AxiomDE : The allocation rule ϕ is a full correspondence which is essentially
a function and is defined on the class of economies E .

The following are well-known axioms on allocation rules:

Welfarism (W): For all e = (M,u, s, Y ), e0 = (M 0,u0, s0, Y 0) ∈ E , if S(e) =
S(e0), then µϕ(e) = µϕ(e0).

Pareto Efficiency (PE): For all e = (M,u, s, Y ) ∈ E and z ∈ ϕ(e), z is a
Pareto efficient allocation for e.

Weak Equal Treatment of Equals (WETE): For all e = (M,u, s, Y ) ∈
E, if ui = uj and si = sj for all i, j ∈ N , then for all z ∈ ϕ(e), ui(zi) =
uj(zj) for all i, j ∈ N .

Note that all allocation rules in ΦF satisfy Axiom DE andW.
The next axiom was introduced by Yoshihara (2003) to stipulate the per-

formance of allocation rules in the case of particular types of technological
changes. It requires coherent treatments of allocation problems between be-
fore and after technological innovations if such innovations only make it pos-
sible to produce new commodities which nobody wants to consume: Given
(x, y) ∈ [0, x] × Rm+ and ui ∈ UM , let there be K ( M such that for all
y0K ≡ (y0f)f∈K ∈ Rk+, ui(x, y0K , yM\K) = ui(x, yK, yM\K), where yK ≡ (yf)f∈K .
Then, we say that agent i ∈ N is indifferent to each good of K ( M at
(x, y). Given Y ∈ YM and K (M , let

PM\K(Y ) ≡
©
(x, yM\K) ∈ R+ × Rm−k+ | ∃yK ∈ Rk+ : (x, yK, yM\K) ∈ Y

ª
.
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Consistency w.r.t. Technological Innovation (CTI): Let e = (M,u, s, Y ) ∈
EM , and let bz = (bxi, byMi)i∈N ∈ ϕ(e) be weakly Pareto efficient.3 Let e0 =
(M ∪ L,u0, s, Y 0) ∈ EM∪L, where M ∩ L = ∅, be such that (1) PM(Y 0) = Y ,
(2) for any z = (xi, yMi)i∈N ∈ WPE(e), there exists (yLi(z))i∈N ∈ Rnl+ such
that

u0i(xi, yMi, yLi(z)) = ui(xi, yMi) (∀i ∈ N)and (xi, yMi, yLi(z))i∈N ∈WPE(e0),

and (3) every agent i ∈ N is indifferent to each good of L at (bxi, byMi,0).
Then, (bxi, byMi,0)i∈N ∈ ϕ(e0).

A motivation for CTI is presented as follows: let, in an economy e with
M-commodities, bz = (bxi, byMi)i∈N be a recommendation by the allocation
rule ϕ, and be a (weakly) Pareto efficient allocation. Next, let the economy
change from e ∈ EM to e0 ∈ EM∪L, where the economy e0 inherits from e
the characteristics of the agents’ utility functions and production technology
on M-commodities in the intimate way that CTI postulates. The main dif-
ference between e and e0 comes from the technological change from Y to Y 0

which makes it possible to consume the new commodities L. On the con-
trary, it is a useless innovation because everyone’s opportunity for welfare is
not enlarged. Then, it may be reasonable that, in the new economy, every
agent is guaranteed at least his/her original welfare level which is enjoyed
by consuming M-commodities in the original economy. It follows from this
view that (bxi, byMi,0)i∈N is a recommendation of ϕ in e0. In fact, by this
new recommendation, nothing is lost by individuals because of the environ-
mental change since, in the new economy, no individuals want to consume
L-commodities, and (bxi, byMi,0)i∈N is (weakly) Pareto efficient.
Remark 1: The axiom W implies CTI under Axiom DE , but not the
converse, even if ϕ obeys Axiom DE .4

Since all allocation rules in ΦF satisfy W and Axiom DE , they also
satisfy CTI by Remark 1.

3When we discuss dimensional changes in consumption spaces, we often denote indi-
vidual i0s consumption vector of M -goods by yMi ∈ Rm+ .

4For more detailed discussion, see Yoshihara (2003).
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3.1 Axioms on Responsibility and Compensation

In this section, we introduce axioms which are related to the arguments of
responsibility and compensation.

3.1.1 Axiom on Responsibility

The first axiom seems to be relevant to an individual’s responsibility for
his/her (cardinal) utility function. To define it, let us begin with introducing
a few notions: Given M ∈ M, note that for any utility function u ∈ UM ,
there is a utility-unit bu ∈ R+, by which the level of utility assigned by the
function u is measured: that is, if u(z) = bu for some z, it implies that the
level of utility u(z) is just “one.”5 Then, for each utility-unit bu, there is a
corresponding set B(u) ( [0, x] × Rm+ of base-consumption for u such that
for all z ∈ B(u), u(z) = bu.
Now, let us take any two utility functions u, u0 ∈ UM for which there is a

positive scalar λ > 0 such that u0 = λ · u. If λ = bu
0

bu
, then u0 is just obtained

by a change in utility-units from bu to bu
0
, so that u and u0 are essentially

the same utility representation. In this case, note that B(u) = B(u0). In
contrast, if bu = bu

0
, then the change from u to u0 can be explained not by

the change in utility-units, but rather by a change in utility intensity. Note
that if the change from u to u0 comes from the change in utility intensity,
then we have B(u) 6= B(u0) and B(u) ∩B(u0) = ∅.6
One typical example of the above change in utility intensity is the case of

individual development of “expensive taste,” which was discussed by Dworkin
(1981a). Consider a case in which an individual develops his/her expensive
taste, so that even if his/her underlying preference ordering and his/her risk
attitude are invariant, he/she can no longer enjoy the same level of welfare
as he/she did before developing his/her expensive taste, without receiving a
larger consumption vector than before.7 This case is simply formulated as a

5The author owes the introduction of utility-units in defining the following two axioms
to one of the referees of Yoshihara (2003).

6We can start from listing B(u) instead of bu as primitive data. Then, by comparing
B(u) with B(u0), we can see which type of change occurs when u and u0 are correlated by
a linear transformation: if B(u) = B(u0), it is a change in utility-units, while otherwise,
it involves a change in utility intensity.

7In this explanation, it is not necessary to assume interpersonal comparability of utili-
ties. The notion of change in utility intensity only presumes intrapersonal comparison of
utilities.
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process of a linear transformation of a utility function via a change in utility
intensity.
Let us now define the first axiom. Given M ∈ M and u ∈ UMn, let

bu ≡ (bui)i∈N . Then:
Independence of Utility Intensities (IUI)8: For all e = (M,u, s, Y ), e0 =
(M,u0, s, Y ) ∈ E with bu = bu0, if there exists a vector a = (ai)i∈N ∈ Rn++
such that u0i = ai · ui for all i ∈ N , then ϕ(e) = ϕ(e0).

Our motivation for this responsibility-related axiom is presented as fol-
lows: in production economies with differences in production skills, but with-
out differences in consumption abilities among agents, it seems to be that
the change in utility intensity of any agent is not a subject for social compen-
sation, but a matter of personal responsiblity. So, the allocation rule should
not take into account such an environmental change in determining resource
allocations.9

Note that Roemer (1988) introduced a similar axiom to IUI, say, Car-
dinal Non-comparability, which expresses exactly what Nash intended with
his axiom of Scale Invariance [Nash (1950)]. The motivation of Cardinal
Non-comparability can be formulated in our model as follows:

Utility-units Invariance (UUI): For all e = (M,u, s, Y ), e0 = (M,u0, s, Y ) ∈
E with bu 6= bu0, if u0i = bu

0
i

bui
· ui for all i ∈ N , then ϕ(e) = ϕ(e0).

Although both IUI and UUI are respectively implied by Nash’s Scale In-
variance axiom, their motivations are completely different from each other.

3.1.2 Axioms on Compensation

The next two axioms are relevant to compensation for low sklls:

Skill Monotonicity (SM)10: For all e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈ E
such that s ≤ s0, and all z ∈ ϕ(e) and z0 ∈ ϕ(e0), ui(zi) ≤ ui(z

0
i) for all

i ∈ N .
8This axiom was first introduced by Yoshihara (2003).
9As discussed above, we may connect the situation that someone’s utility intensity de-

creases with the development of an “expensive taste.” Then, IUI requires that this person
should not be compensated by the allocation rule for his decrease of utility-productivity
due to his developed expensive taste.
10This axiom was originated by Fleurbaey and Maniquet (1999).
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Independence of Skill Endowments (ISE)11: Let e = (M,u, s, Y ), e0 =
(M,u, s0, Y ) ∈ E be such that Z(e) = Z(e0). Then, ϕ(e) = ϕ(e0).

Among these two axioms, SM is strong enough to keep the implication
of compensation for low skill, while ISE is a rather weak requirement as
an axiom of compensation. In fact, sinceW implies ISE, every bargaining
allocation rule in ΦF satisfies ISE. This implies, first, that all symmetric bar-
gaining solutions are happy to have the property of compensating low skill
agents, at least in the sense of ISE. It implies, secondly, that ISE is not such
a powerful criterion for classifying bargaining solutions from the viewpoint of
compensation for low skill. As we see below, there is no bargaining solution
satisfying the responsibility axiom, IUI, and the stronger compensation ax-
iom SM. Moreover, once we weaken the compensation requirement from SM
to ISE, then the Nash [Nash (1950)] and the Kalai-Smorodinsky [Kalai and
Smorodinsky (1975)] solutions satisfy both the requirements of responsibil-
ity and compensation [Yoshihara (2003)]. The last statement might not be
so appealing, because ISE is a rather weak requirement as discussed above.
So, we may need a new axiom of compensation, which may be stronger than
ISE, but must be weaker than SM.
Thus, we now introduce a weaker version of SM, which is defined as

follows:

α-Weak Skill Monotonicity (αWSM): Let e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈
E be such that s ≤ s0. Then, for all z0 ∈ ϕ(e0), if z0 ∈ PE(e), then, for all
z ∈ ϕ(e), we have ui(zi) ≤ ui(z0i) for all i ∈ N .

This axiom has two important implications. First, it is surely a weaker
version of SM. Secondly, the axiom together with PE imply a solidarity
condition for cases where someone happens to have a lower skill than the
individual had before. This is because if z0 ∈ PE(e0), then ui(zi) = ui(z

0
i)

must follow for all z ∈ ϕ(e) and for all i ∈ N . This implies the following
situation: someone happens to have a lower skill, so that the environment
changes from e0 to e, but this worsening is not so serious that the allocation
z0 ∈ ϕ(e0) ⊆ PE(e0) does not remain to be Pareto efficient for e. Then, there
is no reason to make someones’ welfare worse off in the new recommenda-
tion ϕ(e), since, by PE of ϕ, such worsening of someone only implies that
another’s welfare increases.
11This axiom was first introduced by Yoshihara (2003).
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Note that in axiomatic theories of the Nash bargaining solution [Nash
(1950)], one of the most debatable issues has been the justification of Nash’s
independence of irrelevant alternatives (Nash IIA) axiom. Although Nash
himself considered Nash IIA as a consistency condition which is an “insti-
tutional assumption” about the convention the players are to use in resolving
bargaining games, it still remains unclear why Nash IIA is an appropriate
consistency condition. Binmore (1987) replaced Nash IIA with his new ax-
iom, Convention Consistency (CC), so that an asymmetric Nash bargaining
solution was derived, although this new axiom entails essentially the same
implication as Nash IIA. In contrast, αWSM does not include the impli-
cation of convention consistency entailed in Nash IIA and CC.
We also introduce another weaker version of SM, which is logically inde-

pendent of αWSM and defined as follows: Given e = (M,u, s, Y ) ∈ E and
i ∈ N , let

mi(Z(e)) ≡
(
z0i ∈ [0, x]×Rm+ | z0i = argmax

z∈Z(e), zi is i-th component of z
ui(zi)

)
.

Then:

β-Weak Skill Monotonicity (βWSM): Let e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈
E be such that s ≤ s0, and mi(Z(e)) ∩mi(Z(e0)) 6= ∅ for all i ∈ N . Then,
for all z ∈ ϕ(e) and all z0 ∈ ϕ(e0), we have ui(zi) ≤ ui(z0i) for all i ∈ N .

This axiom requires that if the profile of skills happens to be improved,
so that everyone’s potential for welfare increases, but everyone’s ideal utility
point remains the same as before, then no individual should be made worse
off by this environmental improvement. In what situations does everyone’s
ideal utility point remain the same as before, when the profile of skills is
improved? Let zi and z0i be i

0s consumption vectors which belong tomi(Z(e))
and mi(Z(e0)) respectively. Without loss of generality, we can assume that
yi ≤ y0i and xi = x0i, because s ≤ s0 for e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈ E .
However, if everyone’s preference is satiated at zi, then it could be that
mi(Z(e))∩mi(Z(e0)) 6= ∅ for all i ∈ N . Note that such a situation does not
necessarily remove the possibility of S(e) ( S(e0).
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4 Main Result

First of all, we should mention that there is no bargaining solution which
satisfies both the responsibility and the stronger compensation requirements:

Proposition 1 [Yoshihara (2003)]: There is no allocation rule in ΦF which
satisfies PE,WETE, IUI, and SM.

As one second best resolution, Yoshihara (2003) showed that we can re-
move the responsibility axiom IUI, while keeping the compensation axiom
SM, which results in the egalitarian solution [Kalai (1977)]. As another sec-
ond best resolution, we can replace the stronger compensation axiom SM
with either (1) αWSM or (2) βWSM, while keeping the responsibility ax-
iom IUI. In the way of (1), we can obtain the following result:

Theorem 1: The allocation rule ϕ satisfies DE , PE,WETE, ISE, αWSM,
IUI, and CTI if and only if ϕ = ϕNa.

Remark 2: It is also easy to see that the Nash rule ϕNa is the unique
allocation rule satisfying UUI and all the axioms in Theorem 1 except
IUI.

Here, in contrast to the result of Yoshihara (2003), the Nash solution
is characterized without the help of an informational efficiency axiom such
as Independence of Technological Contraction (ITC) [Moulin (1990)].1213 In-
stead, it is just characterized by the requirement of responsibility and a weak
version of Skill Monotonicity. Moreover, since DE , ISE, and CTI are neces-
sary conditions for all allocation rules in ΦF , the above theorem implies the
following proposition:

Corollary 1: The Nash rule ϕNa is the unique allocation rule in ΦF which
satisfies PE,WETE, IUI, and αWSM.
12Moulin (1990) introduced this axiom with the name of Nash IIA.
13Binmore (1987a) showed that in two-person exchange economies, the only solution

satisfying all the Nash-like economic axioms he defined is the Walrasian solution. Since
his result depends on a stronger domain restriction and a stronger economic version of
Nash IIA than ITC, we cannot obtain the same relationship between the Nash and the
Walrasian solutions in our economic domain.
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Thus, Corollary 1 implies that the Nash solution is one type of second best,
efficient, and symmetric solution, which satisfies both the responsibility and
compensation requirements.
Next, we will discuss the replacement of (2). Let EM∗ ⊆ EM be the

class of economies with M-goods, whose utility possibility sets are strictly
comprehensive. Let E∗ ≡ ∪

M∈M
EM∗. Then:

Axiom DE∗: The allocation rule ϕ is a full correspondence which is essen-
tially a function and is defined on the class of economies E∗.
Theorem 2: The allocation rule ϕ satisfies DE∗ ,PE,WETE, ISE, βWSM,
IUI, and CTI if and only if ϕ = ϕK .

Corollary 2: The Kalai-Smorodinsky rule ϕK is the unique allocation rule
in ΦF which satisfies PE,WETE, IUI, and βWSM.

Since both αWSM and βWSM are weaker versions of SM, and they
are logically independent from each other, ranking the Nash and the Kalai-
Smorodinsky solutions on the basis of the responsibility and compensation
view is not a trivial exercise. However, βWSM seems not to be very appeal-
ing as a compensation axiom, since the premise of βWSM has no particular
ethical implication.

5 Proof of Theorem

Given Y (m) ∈ YM and Y (l) ∈ YL with M ∩ L = ∅, let
Y (m)⊕Y (l) ≡ {(x, yM , yL) ∈ R+×Rm+ ×Rl+ | (x, yM) ∈ Y (m), (x, yL) ∈ Y (l)}.
The following four lemmas are used in Yoshihara (2003), all of which are

also essential in this paper:

Lemma 1: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM , e2 =
(L,u2, s, Y (l)) ∈ EL, and S(e1) = S(e2). Then, the allocation rule ϕ which
satisfies DE , PE, and CTI has the following property: µϕ(e1) = µϕ(e2).

Lemma 2: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM and e2 =
(L,u2, s, Y (l)) ∈ EL with bu1 = bu2. Moreover, there exists a = (ai)i∈N ∈ Rn+
such that

u = (ui)i∈N ∈ S(e1)⇔ a · u = (ai · ui)i∈N ∈ S(e2).

14



Then, if the allocation rule ϕ satisfies DE , PE, IUI, and CTI, then µϕ(e2) =
a · µϕ(e1).
Lemma 3: Let e = (M,u, s, Y (m)) ∈ E be such that S(e) is a symmet-
ric utility possibility set. Then, if the allocation rule ϕ satisfies DE , PE,
WETE, ISE, and CTI, then µϕi(e) = µϕj(e) for all i, j ∈ N .
Lemma 4: If ϕ satisfies DE , PE, ISE, and CTI, then ϕ satisfies W.

The next lemma is essential to derive the Nash solution:

Lemma 5: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM and
e2 = (L,u2, s, Y (l)) ∈ EL. Moreover, S(e1) ⊇ S(e2) with µϕ(e1) ∈ S(e2)
holds. Then, if the allocation rule ϕ satisfies DE , PE, αWSM, and CTI,
then µϕ(e1) = µϕ(e2).

Proof. 1. Given e1 = (M,u1, s, Y (m)) ∈ EM and e2 = (L,u2, s, Y (l)) ∈ EL
such that S(e1) ⊇ S(e2), there exist other economies e41 = (K,v1, s, Y (#K)) ∈
EK and e42 = (K 0,v2, s, Y (#K

0)) ∈ EK0
such thatK∩K 0 = ∅, S(e41 ) = S(e1),

and S(e42 ) = S(e2), which are guaranteed by Billera and Bixby (1973).
Note that Y (#K) ≡ R+ × [0, 1]#K with generic element (x, yK) ∈ Y (#K) and
Y (#K

0) ≡ R+ × [0, 1]#K0
with generic element (x, yK0) ∈ Y (#K0). Moreover,

for each i ∈ N , the utility function v1i : [0, x]×R#K+ → R+ is defined as:

∀(x, yK) ∈ [0, x]×R#K+ , v1i (x, yK) =
½
vi(yK) if yK ∈ [0, 1]#K
vi((min{yf , 1})f∈K) otherwise ,

and the utility function v2i : [0, x]×R#K
0

+ → R+ is defined as:

∀(x, yK0) ∈ [0, x]×R#K0
+ , v2i (x, yK0) =

½
v0i(yK0) if yK0 ∈ [0, 1]#K0

v0i((min{yf 0 , 1})f 0∈K0) otherwise
,

where the existence of concave, continuous, and monotonic utility functions
vi : [0, 1]

#K → R+ and v0i : [0, 1]#K
0 → R+ with vi(0) = 0 and v0i(0) =

0 are guaranteed by Billera and Bixby (1973). Construct the convolution
e∗ = e41 ∧ e42 = (K ∪ K 0,v∗, s, Y (#K) ⊕ Y (#K0)) ∈ EK∪K0

, where for all
i ∈ N , v∗i (x, yK , yK0) = min{v1i (x, yK), v2i (x, yK0)}. In the same way as in
step 2.1. of the proof of Lemma 2 in [Yoshihara (2003)], we can show that
S(e∗) = S(e41 )∩S(e42 ) = S(e2). Thus, µϕ(e∗) = µϕ(e2) by Lemma 1 in this
paper.
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2. Construct the flat extension economy of e41 :

be41 =
³
K ∪K 0, bv1, s, Y (#K) ⊕ Y (#K0)

´
with bv1i (x, yK , yK0) = v1i (x, yK), ∀(x, yK , yK0) ∈ [0, x]× R#K+ ×R#K0

+ .

Since S(e1) = S(be41 ), µϕ(e1) = µϕ(be41 ) by Lemma 1. Compare e∗ with be41 .
By definition, bv1i ≥ v∗i for all i ∈ N .
3. By applying the Howe theorem [Howe (1987; Proposition 3., p.59)], for
each i ∈ N , there exist wi ∈ UK∪K0∪{R(i)} and byR(i) ∈ R+ such that, for all
(x, yK , yK0) ∈ [0, x]× R#K+ ×R#K0

+ ,

wi(x, yK, yK0 , byR(i)) = bv1i (x, yK , yK0) and wi(x, yK , yK0 , 0) = v∗i (x, yK, yK0).

Let s1 = (s1i )i∈N be a new profile of production skills such that for all
i ∈ N , s1i = s1 ≡ 1. Also, let s∗ = (s∗i )i∈N be a new profile of production
skills such that for all i ∈ N , s∗i = 0. Let, for each R(i),

Y R(i) ≡
½
(x, yR(i)) ∈ R2+

¯̄̄̄
yR(i) ≤ min

½byR(i)
nx

x, byR(i)¾¾ .
Now, define

ebe41 ≡ (K ∪K 0 ∪R, bw, s1, Y (#K) ⊕ Y (#K0) ⊕ Y R)ee∗ ≡ (K ∪K 0 ∪R, bw, s∗, Y (#K) ⊕ Y (#K0) ⊕ Y R)
where Y R ≡ Y R(1) ⊕ · · ·⊕ Y R(i) ⊕ · · ·⊕ Y R(n).

and, for each i ∈ N ,

bwi(x, yK, yK0 , yR) = wi(x, yK, yK0 , yR(i)) for all (x, yK , yK0 , yR) ∈ [0, x]×R#K+ ×R#K0
+ ×Rn+,

where R ≡ {R(i)}i∈N and yR = (yR(i))i∈N . By Lemma 4, µϕ(ebe41 ) = µϕ(e1)
and µϕ(ee∗) = µϕ(e2).
4. Since S(be41 ) = S(ebe41 ), there exists (bxi, byKi, byK0i)i∈N ∈ ϕ(be41 ) such that
(bv1i (bxi, byKi, byK0i))i∈N = (bwi(bxi, byKi, byK0i, byR(i),0))i∈N = µϕ(ebe41 ). Since µϕ(e1) =
µϕ(be41 ) ∈ S(e2) = S(ee∗), there exists ζ = (bx0i, by0Ki, by0K0i,0)i∈N ∈ Z(ee∗) such
that (bwi(ζi))i∈N = µϕ(e1) = µϕ(ebe41 ). But, ζ is also a feasible allocation in
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ebe41 . Moreover, ζ is Pareto efficient in ebe41 as well as in ee∗, since µϕ(ebe41 ) is a
Pareto efficient utility allocation and µϕ(ebe41 ) ∈ S(ee∗) ⊆ S(ebe41 ). Since ϕ is

a full correspondence, ζ ∈ ϕ(ebe41 ). By αWSM and PE, ζ ∈ ϕ(ee∗). Thus,
(bwi(ζi))i∈N = µϕ(ee∗) = µϕ(e2) by Lemma 4. This implies µϕ(e1) = µϕ(e2).
Given s ∈ Sn, let E(s) ( E be the class of economies with the profile of

production skills s fixed. Let {Un(bλ)}λ∈Λ be a partition of Un such that for
every λ ∈ Λ, every n-tuple utility functions in Un(bλ) has the same profile of
utility-units bλ. Given s ∈Sn, let E(s;bλ) ( E(s) be the class of economies
with the profiles of production skills s and of utility-units bλ fixed.

Proof of Theorem 1: (1) It is easy to see that ϕNa satisfies DE , PE,
WETE, ISE, αWSM, IUI, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE , PE, WETE, ISE,
αWSM, IUI, and CTI. Then, for any s ∈Snand any bλ, µϕ satisfies, on
E(s;bλ), all four axioms which together characterize the Nash solution Na
[Nash (1950)], which is followed by Lemmas 2, 3, and 5. Thus, for any s ∈Sn
and any bλ, µϕ on E(s;bλ) is always the outcome of the Nash solution Na.
This implies that ϕ attains Na, so that ϕ = ϕNa.

Lemma 6: Let e1, e2 ∈ E∗ be such that e1 = (M,u1, s, Y (m)) ∈ EM∗ and
e2 = (L,u2, s, Y (l)) ∈ EL∗. Moreover, S(e1) ⊇ S(e2), and for all i ∈ N ,
mi(S(e1)) = mi(S(e2)). Then, if the allocation rule ϕ satisfies DE∗, PE,
βWSM, and CTI, then µϕ(e1) ≥ µϕ(e2).

Proof. 1. Given e1 = (M,u1, s, Y (m)) ∈ EM∗ and e2 = (L,u2, s, Y (l)) ∈ EL∗
such that S(e1) ⊇ S(e2), let us construct e41 = (K,v1, s, Y (#K)) ∈ EK∗ and
e42 = (K

0,v2, s, Y (#K
0)) ∈ EK0∗ such that K ∩K 0 = ∅, S(e41 ) = S(e1), and

S(e42 ) = S(e2), as in step 5.1. of the proof of Lemma 5. In the same way
as in step 2.1. of the proof of Lemma 2 in [Yoshihara (2003)], we can show
that S(e∗) = S(e41 ) ∩ S(e42 ) = S(e2). Thus, µϕ(e∗) = µϕ(e2) by Lemma 1
in this paper.
2. Construct the flat extension economy of e41 :

be41 =
³
K ∪K 0, bv1, s, Y (#K) ⊕ Y (#K0)

´
with bv1i (x, yK , yK0) = v1i (x, yK), ∀(x, yK , yK0) ∈ [0, x]× R#K+ ×R#K0

+ .
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Since S(e1) = S(be41 ), µϕ(e1) = µϕ(be41 ) by Lemma 1. Compare e∗ with be41 .
By definition, bv1i ≥ v∗i for all i ∈ N . Since mi(S(e1)) = m

i(S(e2)) for all i ∈
N and S(e1) = S(be41 ) ⊇ S(e∗) = S(e2), we obtain mi(S(be41 )) = mi(S(e∗))
for all i ∈ N .
3. By applying the Howe theorem [Howe (1987; Proposition 3., p.59)], for
each i ∈ N , there exist wi ∈ UK∪K0∪{R(i)} and byR(i) ∈ R+ such that, for all
(x, yK , yK0) ∈ [0, x]× R#K+ ×R#K0

+ ,

wi(x, yK, yK0 , byR(i)) = bv1i (x, yK , yK0) and wi(x, yK , yK0 , 0) = v∗i (x, yK, yK0).

Let s1 = (s1i )i∈N and s∗ = (s∗i )i∈N be respectively new profiles of production
skills, which are defined exactly as in step 5.3. of the proof of Lemma 5.
Let, for each R(i), define Y R(i) exactly as in step 5.3. of the proof of Lemma

5. Now, define ebe41 , ee∗ ∈ EK∪K0∪R∗ exactly as in step 5.3. of the proof of

Lemma 5. Then, S(be41 ) = S(ebe41 ) ⊇ S(ee∗) = S(e∗).
4. Since mi(S(be41 )) = mi(S(ebe41 )) and mi(S(ee∗)) = mi(S(e∗)) for all i ∈ N ,
we havemi(S(ebe41 )) = mi(S(ee∗)) for all i ∈ N . This implies thatmi(Z(ebe41 ))∩
mi(Z(ee∗)) 6= ∅ for all i ∈ N , since s1 ≥ s∗. Then, by βWSM, µϕ(ebe41 ) ≥
µϕ(ee∗). Thus, by Lemma 4, µϕ(e1) = µϕ(be41 ) = µϕ(ebe41 ) ≥ µϕ(ee∗) =
µϕ(e

∗) = µϕ(e2) holds.

Proof of Theorem 2: (1) It is easy to see that ϕK satisfies DE∗, PE,
WETE, ISE, βWSM, IUI, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE∗ , PE, WETE, ISE,
βWSM, IUI, and CTI. Then, for any s ∈ Sn and any bλ, µϕ satisfies, on
E∗(s;bλ), all four axioms which together characterize the Kalai-Smorodinsky
solutionK [Thomson (1980)], which is followed by Lemmas 2, 3, and 6. Thus,
for any s ∈ Sn and any bλ, µϕ on E∗(s;bλ) is always the outcome of the Kalai-
Smorodinsky solution K. This implies that ϕ attains K, so that ϕ = ϕK .
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