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Abstract
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1 Introduction

By considering the class of bargaining problems (feasible utility sets) with
claims that are compact and comprehensive but not necessarily convex, we
axiomatize the proportional solution in terms of solidarity.1 The aforemen-
tioned class enriches the classical Nash (1950) bargaining domain by adding
an unfeasible point representing the claims of bargainers.2 The proportional
rule assigns to bargainers payoffs proportional to their claims relative to the
disagreement point. This rule was first defined and axiomatically studied
by Kalai (1977) in convex bargaining domain (with symmetric claims) and
extended by Chun and Thomson (1992) into convex bargaining domain with
possibly asymmetric claims.
Nonconvex bargaining problems with claims are not unnatural. If agents

involved in some bargaining situation are not all expected utility maximiz-
ers, then the feasible utility set is not convexifiable by randomization. More-
over, randomization is not always reasonable or possible in all bargaining
situations. For instance, consider a principal-agent relationship with moral
hazard where preferences of the transacting parties are represented by von
Neumann-Morgenstern utility functions and their expectations (claims) have
utility values.3 The utility possibility set is not convex in general unless
random contracts are allowed [see, for example, Ross (1973)].4

The solidarity-type axioms are systematically studied by Xu and Yoshi-
hara (2008) for classical convex bargaining problems. In this paper, we pro-
pose two new axioms of solidarity for nonconvex problems with claims, by
which a new characterization of the proportional solution is provided. This
new result strengthens the characterization of Chun and Thomson (1992),
which was by means of a version of Kalai’s monotonicity axiom [Kalai (1977)].
The paper is organized as follows. First, we provide some basic notations

and definitions. Our axioms and results are laid down next. Finally, we
provide the independence of axioms.

1Noncovex bargaining problems have been considered for the three classical bargaining
solutions: Nash solution [Nash (1950)], Kalai-Smorodinsky solution [Kalai and Smorodin-
sky (1975)], and Egalitarian solution [Kalai (1977)] (see, for instance, Mariotti (1998,
1999), Xu and Yoshihara (2006), along with references cited therein).

2For an excellent and easy introduction to the axiomatic bargaining theory, see, for
instance, Thomson (1994).

3Expectations may come from their experience and/or observation of related contracts.
4The utility surface is not convex because agents’ incentive constraints are not convex

in general.
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2 Preliminaries

Let N = {1, ..., n} be the set of agents with n = 2. For all x ∈ Rn+ and
α ∈ R+, we write y = (α;x−i) ∈ Rn+ to mean that yi = α and yj = xj for
all j ∈ N\{i}.5 A positive affine transformation is a function λ : Rn →
Rn such that there exist numbers ai ∈ R++ and bi ∈ R for each i ∈ N ,
with λi (x) = aixi + bi for all x = (xi)i∈N ∈ Rn. The class of all positive
affine transformations is denoted by Λ. For all S ⊆ Rn and any λ ∈ Λ, let
λ (S) ≡ {λ (x) | x ∈ S}. Let π be a permutation of N , and Π be the set of
all permutations of N . For all x = (xi)i∈N ∈ Rn, let π (x) =

¡
xπ(i)

¢
i∈N be a

permutation of x. For all S ⊆ Rn and all π ∈ Π, let π (S) ≡ {π (x) | x ∈ S}.
For all S ⊆ Rn, S is symmetric if S = π (S) for all π ∈ Π; S is comprehensive
if for all x, y ∈ Rn, [x = y and x ∈ S]⇒ y ∈ S.6 For all x1, ..., xk ∈ Rn,
let ch({x1, ..., xk}) ≡ {y ∈ Rn|y 5 x for some x ∈ {x1, ..., xk}} denote the
comprehensive hull of x1, ..., xk ∈ Rn. For all i ∈ N , let ei ∈ Rn+ be the unit
vector with 1 in the i-th component, and 0 in all other components.
A n-person bargaining problem with claim (or simply a problem) is a triple

(S, d, c), where S is a subset of Rn+, the disagreement outcome d ∈ S, and c is
a point in Rn+ such that (i) S is compact and comprehensive, (ii) there exists
x ∈ S such that x > d, (iii) there exists p ∈ Rn++ and r ∈ R such that for all
x ∈ S : p · x ≤ r, and (iv) c /∈ S, c ≥ d, and c 5 x (S) = (x1 (S) , ..., xn (S)),
where xi (S) ≡ max{xi|x ∈ S} for all i ∈ N if this maximum exists, otherwise
xi (S) =∞.
Let Σn be the class of all n-person problems. Given a problem (S, d, c) ∈

Σn and λ ∈ Λ, let λ (S, d, c) ≡ (λ (S) ,λ (d) ,λ (c)). Similarly, given a prob-
lem (S, d, c) ∈ Σn and π ∈ Π, let π (S, d, c) ≡ (π (S) ,π (d) ,π (c)). Let
WPO (S) ≡ {x ∈ S| ∀y ∈ Rn, y > x ⇒ y /∈ S} be the set of weakly
Pareto optimal points of S. Similarly, let PO (S) ≡ {x ∈ S| ∀y ∈ Rn,
y ≥ x⇒ y /∈ S} be the set of Pareto optimal points of S.
A (bargaining) solution with claims is a correspondence F : Σn ³ Rn+

such that, for every (S, d, c) ∈ Σn, F (S, d, c) ⊆ S and x ≤ c for all x ∈
F (S, d, c).

Definition 1 A solution F over Σn is the proportional (bargaining) solution,
5Note that R is the set of all real numbers; R+ (respectively, R++) is the set of all non-

negative (respectively, positive) real numbers; Rn is the n-fold Cartesian product of R;
whilst Rn+ (respectively, Rn++) is the n-fold Cartesian product of R+ (respectively, R++).

6Given x, y ∈ Rn, we write x = y to mean [xi = yi for all i ∈ N ], x > y to mean [x = y
and x 6= y], and x > y to mean [xi > yi for all i ∈ N ].
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denoted by FP , if for all (S, d, c) ∈ Σn, F (S, d, c) consists of all maximal
points of S on the segment connecting d and c.

3 Axioms and Results

We are interested in a solution F that satisfies the following axioms, in the
statement of which (S, d, c) and (T, d, c) are arbitrary feasible elements of its
domain Σn:

Single Valuedness (SV). |F (S, d, c)| = 1.

Weak Pareto Optimality (WPO). For all x ∈ F (S, d, c), y > x⇒ y /∈ S.

Anonymity (AN). For all π ∈ Π, F (π (S, d, c)) = π (F (S, d, c)).

Symmetry (S). (S, d, c) = π (S, d, c) for all π ∈ Π ⇒[x ∈ F (S, d, c) ⇒
xi = xj for all i, j ∈ N ].

Scale Invariance (SINV). For all λ ∈ Λ, F (λ (S, d, c)) = λ (F (S, d, c)).

StrongMonotonicity (SMON). S ⊆ T ⇒[∀y ∈ F (S, d, c), ∃x ∈ F (T, d, c)
s.t. x = y; and ∀x ∈ F (T, d, c), ∃y ∈ F (S, d, c) s.t. x = y].

Contraction Independence other than Disagreement and Claims
(CIDC). S ⊆ T , F (T, d, c) ∩ S 6= ∅⇒ F (S, d, c) = S ∩ F (T, d, c).

Weak Contraction Independence other than Disagreement and
Claims (WCIDC). S ⊆ T , F (T, d, c) ∩ S 6= ∅, and F (T, d, c) ∩ S ⊆
PO (S)⇒ F (S, d, c) = S ∩ F (T, d, c).

Expansion Independence other than Disagreement and Claims
(EIDC). S ⊆ T and F (S, d, c) ⊆ PO (T )⇒ F (S, d, c) = F (T, d, c).

The first seven axioms are standard. Note that (SMON) is a version
applied to possibly multi-valued bargaining solutions. If we restrict our at-
tention to single-valued solutions, then (SMON) is reduced to the standard
monotonicity axiom discussed by Chun and Thomson (1992).7

7For all (S, d, c),(T, d, c) ∈ Σn with S ⊆ T , F (S, d, c) 5 F (T, d, c).
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Note that (WCIDC) is a solidarity axiom, which requires that whenever
a problem (T, d, c) shrinks to another problem (S, d, c), and there are so-
lutions to the problem (T, d, c) which are also Pareto optimal on (S, d, c),
then F (T, d, c) ∩ S should continue to be the only solution set of (S, d, c).
The solidarity idea embedded in this axiom is that, given that F (T, d, c)∩S
is Pareto optimal on (S, d, c), any movement away from F (T, d, c) ∩ S will
make at least one player worse off, and as a consequence, to keep the spirit
of solidarity, F (T, d, c)∩ S should continue to be the solution set of (S, d, c).
(WCIDC) is slightly weaker than Nash’s original contraction independence
in that F (T, d, c) is required to be Pareto optimal on S.
Note that (EIDC) is another type of solidarity axiom, which requires

that whenever a problem (S, d, c) expands to another problem (T, d, c), and
all solutions to the problem (S, d, c) are Pareto optimal on (T, d, c), then
F (T, d, c) should coincide with F (S, d, c). The solidarity idea embedded
in this axiom is that, given that any element in F (S, d, c) is still Pareto
optimal on (T, d, c), any movement away from it will hurt at least one player,
and so the solution set of this enlarged problem (T, d, c) should continue
to be F (S, d, c) by the spirit of solidarity. (EIDC) is a weaker formulation
of Independence of Undominating Alternatives suggested by Thomson and
Myerson (1980), which requires that F (S) to be weakly Pareto optimal on
T . However, (EIDC), combined with (SV), is stronger than Independence of
Irrelevant Expansions suggested by Thomson (1981).

Theorem 1. A solution F over Σn is the proportional solution FP if and
only if it satisfies (SV), (WPO), (AN), (WCIDC), (EIDC), and (SINV).

Proof. It can be easily checked that if F = FP over Σn then it satisfies
(SV), (WPO), (AN), (WCIDC), (EIDC), and (SINV). Thus, we need only to
show that if a solution F over Σn satisfies (SV), (WPO), (AN), (WCIDC),
(EIDC), and (SINV), then it must be the proportional solution.
Let F satisfy (SV), (WPO), (AN), (WCIDC), (EIDC), and (SINV). Let

(S, d, c) ∈ Σn. Assume that {x} = FP (S, d, c). We will show that F (S, d, c) =
{x} holds. By (SINV), let {λ (x)} = FP (λ (S) ,0,1), with λ (d) ≡ 0 and
λ (c) ≡ 1, for some λ ∈ Λ. Clearly, λ (x) ∈ WPO (λ (S)) and λ (x) ≡
(α, ...,α) ≤ 1. Assume, to the contrary, that λ (x) /∈ F (λ (S) ,0,1). Let
{y} = F (λ (S) ,0,1) by (SV). Let π (λ (S) ,0,1) be a permutation of (λ (S) ,0,1).
It follows from (AN) that F (π (λ (S) ,0,1)) = {π (y)} holds for all π ∈ Π. By
(WPO), y ∈ WPO (λ (S)) and π (y) ∈ WPO (π (λ (S))) for all π ∈ Π. Let
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us consider T ≡ ch ({y, e1, . . . , en}). Then, (T,0,1) ∈ Σn and by (WCIDC),
{y} = F (T,0,1). Then, by (AN), {π (y)} = F (π (T,0,1)) for all π ∈ Π.
Now, define V ≡ ∪π∈Ππ (T ). Then, for all π ∈ Π, π (y) ∈ PO (V ). Thus,
by (EIDC), F (V,0,1) = {π (y) |π ∈ Π}. However, since y is not a sym-
metric outcome, there exist π,π0 ∈ Π such that π (y) 6= π0 (y), which is a
contradiction by (SV). Hence, {λ (x)} = F (λ (S) ,0,1), and (SINV) implies
{x} = F (S, d, c).

Defining F as a single-valued solution, Chun and Thomson (1992) pro-
vided a characterization of the proportional solution in the domain of convex
problems by means of (WPO), (S), (SINV), and (SMON) formulated for
single-valued solutions. Note that this characterization still holds even if the
domain of problems is extended to nonconvex problems. By replacing the
monotonicity axiom discussed by Chun and Thomson (1992) with (CIDC),
we obtain an alternative characterization of the proportional solution.

Theorem 2. A solution F over Σn is the proportional solution FP if and
only if it satisfies (WPO), (S), (SINV), and (CIDC).

Proof. It is clear that if F = FP over Σn, then it satisfies (WPO), (S),
(SINV), and (CIDC). Next, we show that if F over Σn satisfies (WPO), (S),
(SINV), and (CIDC), then it must be the proportional solution.
Let F satisfy (WPO), (S), (SINV), and (CIDC). Let (S, d, c) ∈ Σn, and

assume that {x} = FP (S, d, c). We show that {x} = F (S, d, c). By (SINV),
let {λ (x)} = FP (λ (S) ,0,1) with λ (d) ≡ 0 and λ (c) ≡ 1 for some λ ∈ Λ.
Clearly, λ (x) ∈ WPO (λ (S)), and it is a symmetric outcome, i.e. λ (x) ≡
(α, ...,α) ≤ 1. Define the real number β as β ≡ max{xi (λ (S)) |i ∈ N},
and the vectors yi = (β;α−i) for all i ∈ N . Let T ≡ ch({y1, ..., yn}), and
observe that λ (S) ⊆ T . By definition of Σn, (T,0,1) ∈ Σn. Since T is
symmetric, (T,0,1) is a symmetric problem. Thus, by (WPO) and (S),
F (T,0,1) = {λ (x)}. It follows from (CIDC) that F (λ (S) ,0,1) = {λ (x)},
so that F (S, d, c) = {x} by (SINV).

Remark: In the above theorem, the axiom (CIDC) is indispensable, and
the weaker axiom (WCIDC) is insufficient to characterize FP together with
(WPO), (S), and (SINV). In fact, as the following figure indicates, the situ-
ation that F (T,0,1) = {x} and F (S,0,1) = {y}, where S ⊆ T , and T is
symmetric, is consistent with (WCIDC), but inconsistent with (CIDC).

Insert Figure around here.
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Thus, there exists a solution F 6= FP satisfying (WPO), (S), (SINV), and
(WCIDC), but not in case of (WPO), (S), (SINV), and (CIDC).

An interesting aspect of Theorem 2 is that it is obtained without imposing
(SV) on F . This property does no longer hold if (S) is replaced with (AN).
Thus, with respect to the aforementioned characterization offered by Chun
and Thomson (1992), another alternative characterization of the proportional
solution is obtained by replacing (S) with (AN) and by adding (SV).

Theorem 3. A solution F over Σn is the proportional solution FP if and
only if it satisfies (SV), (WPO), (AN), (SINV), and (SMON).

Proof. It is clear that if F = FP over Σn, then it satisfies (SV), (WPO),
(AN), (SINV), and (SMON). Next we show that if F over Σn satisfies (SV),
(WPO), (AN), (SINV), and (SMON), then it must be the proportional solu-
tion.
Let F satisfy (SV), (WPO), (AN), (SINV), and (SMON). Let (S, d, c) ∈

Σn. Assume that {x} = FP (S, d, c). We show that F (S, d, c) = {x}. By
(SINV), let {λ (x)} = FP (λ (S) ,0,1) with λ (d) ≡ 0 and λ (c) ≡ 1 for some
λ ∈ Λ. Clearly, λ (x) ∈WPO (λ (S)) and λ (x) ≡ (α, ...,α) ≤ 1. Assume, to
the contrary, that λ (x) /∈ F (λ (S) ,0,1). Let {y} = F (λ (S) ,0,1), by (SV).
(AN) implies that F (π (λ (S) ,0,1)) = {π (y)} for all π ∈ Π. Moreover, it
follows from (WPO) that y ∈WPO (λ (S)) and π (y) ∈WPO (π (λ (S))) for
all π ∈ Π. Thus, we consider the following cases: (i) λ (x) ∈ PO (λ (S)) and
y ≤ λ (x), (ii) λ (x) ∈ PO (λ (S)) and y £ λ (x), (iii) λ (x) ∈ WPO (λ (S))
and y ≤ λ (x), and (iv) λ (x) ∈WPO (λ (S)) and y £ λ (x).
Consider (i) or (iii). Then, for all π ∈ Π, π (y) ≤ λ (x). Let T ≡

∩π∈Ππ (λ (S)). Obviously, (T,0,1) ∈ Σn. Let F (T,0,1) = {z} by (SV).
By (SMON) and (SV), z 5 (∧π∈Ππ (y)).8 By the property of permutation,
(∧π∈Ππ (y)) is a symmetric outcome. By the way, (∨π∈Ππ (y)) 5 λ (x). Since
(∧π∈Ππ (y)) and (∨π∈Ππ (y)) are symmetric outcomes, but y is not a sym-
metric outcome, it follows that (∧π∈Ππ (y)) < (∨π∈Ππ (y)). Thus, z < λ (x),
and (WPO) implies that λ (x) /∈ T , a contradiction.
Consider (ii) or (iv). We proceed according to whether y ≥ λ (x) or

[y ¤ λ (x) and y £ λ (x)].
Suppose y ≥ λ (x). Then, for all π ∈ Π, π (y) ≥ λ (x). Observe that

(∧π∈Ππ (y)) = λ (x) < (∨π∈Ππ (y)). Let T ≡ ∪π∈Ππ (λ (S)), and observe
8For all a, b ∈ Rn+, a ∧ b = (min {ai, bi})i={1,...,n}, a ∨ b = (max {ai, bi})i={1,...,n}.
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that (T,0,1) ∈ Σn. Let F (T,0,1) = {z}, by (SV). By (SMON) and (SV),
π (y) 5 z for all π ∈ Π. This implies (∨π∈Ππ (y)) 5 z. Since (∨π∈Ππ (y)) is
a symmetric outcome and λ (x) ∈ WPO (π (λ (S))) for all π ∈ Π, it follows
that z /∈ π (λ (S)) for all π ∈ Π, so that z /∈ T , a contradiction.
Otherwise, consider y ¤ λ (x) and y £ λ (x). Then, there is at least

one player i ∈ N such that yi < λi (x). Thus, (∧π∈Ππ (y)) < λ (x). Let
T ≡ ∩π∈Ππ (λ (S)), and observe that (T,0,1) ∈ Σn. Moreover, let {z} =
F (T,0,1), by (SV). (SMON) and (SV) imply that z 5 (∧π∈Ππ (y)) < λ (x),
so that λ (x) /∈ T by (WPO), a contradiction.
Hence, {λ (x)} = F (λ (S) ,0,1), and so {x} = F (S, d, c) by (SINV).

4 Independence of Axioms

The axioms used in Theorems 1-3 are independent. To do this, let FLP :
Σn → Rn+ be the lexicographic proportional solution defined as usual. Given
λ ∈ [0, 1], define the solution F λLP as F λLP (S, d, c) ≡ λ·FP (S, d, c)+(1− λ)·
FLP (S, d, c) for all (S, d, c) ∈ Σn. Note that F λLP (S, d, c) = FP (S, d, c) if
and only if FP (S, d, c) is efficient on S ∈ Σn. LetΣnsc be the set of all problems
in Σn each of which is also strictly comprehensive.9 Given λ ∈ (0, 1), define
F as follows: for all (S, d, c) ∈ Σn,
(1) if (S, d, c) ∈ Σnsc or S ≡ ch ({x} ∪ {(ci;0−i) i ∈ N}) for some x ∈ Rn+,
then F (S, d, c) = FP (S, d, c);
(2) otherwise, F (S, d, c) = F λLP (S, d, c).
Then, (WCIDC) and (CIDC) are indispensable, since F satisfies (SV),

(WPO), (S), (AN), (EIDC), and (SINV), but violates (WCIDC) and (CIDC);
(EIDC) is indispensable, since FLP satisfies (SV), (WPO), (AN), (WCIDC),
and (SINV), but violates (EIDC); (SMON) is indispensable, since FLP sat-
isfies (SV), (WPO), (AN), and (SINV), but violates (SMON); (SINV) is in-
dispensable, since the egalitarian solution FE satisfies (SV), (WPO), (AN),
(WCIDC), (EIDC), (S), (CIDC), and (SMON), but violates (SINV); (AN)
and (S) are indispensable, since the dictatorial solution satisfies (SV), (WPO),
(SINV), (CIDC), (WCIDC), (EIDC), and (SMON), but violates (AN) and
(S); (WPO) is indispensable, since a solution which always chooses d as
the solution outcome satisfies (SV), (AN), (S), (SINV), (WCIDC), (CIDC),
(EIDC), and (SMON), but violates (WPO).

9S ⊆ Rn is strictly comprehensive if and only if for all x ∈ S, y ∈ Rn: x ≥ y ⇒[y ∈ S
and ∃z ∈ S such that z > y].
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Finally, for an example violating (SV), let F : Σn ³ Rn+ be defined for
all (S, d, c) ∈ Σn by:
(1) if PO (S)∩ {x ∈ S|d < x ≤ c} is non-empty, then F (S, d, c) = PO (S)∩
{x ∈ S|d < x ≤ c};
(2) otherwise, F (S, d, c) = maxs∈S{WPO (S) ∩ {x ∈ S|d < x ≤ c}}.
It can be shown that F satisfies (WPO), (SINV), (SMON), (WCIDC), (EIDC),
and (AN), but it violates (SV). Thus, (SV) is indispensable.
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