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Abstract

Given the framework introduced by Dutta and Sen (2012), this paper offers a comprehensive

analysis of (Nash) implementation with partially honest agents when there are three or more

participants. First, it establishes a condition which is necessary and sufficient for implementa-

tion. Second, it provides simple tests for checking whether or not a social choice correspondence

can be implemented. Their usefulness is shown by examining implementation in a wide variety

of environments.
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1 Introduction

The main practical aim of adopting an axiomatic approach to (Nash) implementation theory is

to draw a demarcation line between which social choice correspondences (SCC s) are or are not

implementable. Drawing from the recent literature on implementation with partially honest agents

(Matsushima, 2008a, 2008b; Dutta and Sen, 2012), this paper identifies necessary and sufficient

conditions for implementation when there are three or more agents.1 Existing results on implemen-

tation with partially honest agents identify only sufficient conditions.2

The axiomatization result is derived within the classical implementation model (Maskin, 1999),

and enriched by the following two suppositions in Matsushima (2008a, 2008b) and Dutta and Sen

(2012). Firstly, among agents involved in the mechanism, there are agents who lie to the mechanism

designer only when they prefer the outcome obtained from false-telling over the outcome obtained

from truth-telling. This paper refers to these agents as being partially honest. Secondly, the

mechanism designer knows that there are partially honest participants involved in the devised

mechanism, but does not know the identity of these participants or their exact number. These

elements modify the implementation problem in a fundamental way: The mechanism must be

designed such that, for each state of the world and set of agents that are presumed to be partially

honest, only the SCC -optimal allocations emerge as the (pure strategy) equilibrium outcomes. If

such a design is possible, we shall call an SCC implementable with partially honest agents partially

honest implementable.

The necessary and sufficient condition for implementation is derived by using the approach

developed by Moore and Repullo (1990). It is, then, stated in terms of existence of certain sets.

To overcome the difficulties related to the existential clauses, the paper provides simple procedures

for how to prove or disprove the existence of these sets. Their usefulness is illustrated by exam-

ining the partially honest implementability in marriage problems, rationing problems under single

peaked/plateaued preferences, bargaining problems, and in coalitional games. All SCC s considered

here are not implementable in the standard setting, and Dutta and Sen (2012)’s result is silent with

respect to their implementability.

The paper is organized as follows. Section 2 describes the formal environment. Section 3 reports

our characterization result, algorithms and briefly discusses its implications. Section 4 concludes

briefly. The appendix includes proofs omitted from the text.

2 Notation and general definitions

2.1 Preliminaries

The set of outcomes is denoted by X and the set of agents is N = {1, ..., n}. The cardinality of X
is #X ≥ 2, while the cardinality of N is n ≥ 3. Let R (X) be the set of all possible weak orders
on X.3 Let R` ⊆ R (X) be the (non-empty) set of all admissible weak orders for agent ` ∈ N .
Let Rn ⊆ R1 × ... ×Rn be the set of all admissible profiles of weak orders. A generic element of
Rn is denoted by R, where its `th component is R` ∈ R` for each ` ∈ N . The symmetric and
asymmetric parts of any R` ∈ R` are, in turn, denoted by I` and P`, respectively. For any R` ∈ R`
and any x ∈ Y ⊆ X, let I` (x, Y ) denote agent `’s set of outcomes in Y which are indifferent to x

according to R`, that is, I` (x, Y ) = {y ∈ Y | (y, x) ∈ I`}. For any R ∈ Rn and any ` ∈ N , let R−`
be the list of elements of R for all agents except `, i.e., R−` ≡ (R1, ..., R`−1, R`+1, ..., Rn). Given
a list R−` and R` ∈ R`, we denote by (R−`, R`) the preference profile consisting of these R` and
R−`. Let L (R`, x) denote agent `’s lower contour set at (R`, x) ∈ R` × X, that is, L (R`, x) ≡

1Two-agent case is studied in Lombardi and Yoshihara (2011).
2 In a related paper, Kartik and Tercieux (2012) observe that an intrinsic motivation towards honesty of one of

participants renders any social choice function evidence-monotonic on the extended space of outcomes-plus-evidences.
3A weak order over X is a complete and transitive binary relation over X.
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{y ∈ X| (x, y) ∈ R`}, while L(P`, x) denote the strict lower contour set at (R`, x) ∈ R` ×X, that
is, L (P`, x) ≡ {y ∈ X| (x, y) ∈ P`}. For any R` ∈ R` and Y ⊆ X, let maxR` Y be agent `’s set of

optimal outcomes in Y according to R`, that is, maxR` Y ≡ {x ∈ Y | (x, y) ∈ R` for all y ∈ Y }. For
any R` ∈ R`, any Y ⊆ X, and any y ∈ maxR` Y , let Rp` be agent `’s weak order which has the
property that y is the unique optimal outcome in Y according to R

p
` , that is, {y} = maxRp` Y .

A social choice correspondence (SCC ) F onRn is a correspondence F : Rn ³ X with F (R) 6= ∅
for all R ∈ Rn. For each R ∈ Rn, the subset F (R) ⊆ X is the set of F -optimal outcomes associated

with the configuration R. Denote the class of admissible SCC s by F .
A mechanism or game form is a pair γ ≡ (M,g), where M ≡ M1 × ... ×Mn, with each M`

being a (non-empty) set, and g : M → X is a function; then, γ consists of a message space M ,

where M` is the message space for agent ` ∈ N , and an outcome function g. Let m` ∈M` denote a

generic message (or strategy) for agent `. A message profile is denoted by m ≡ (m1, ...,mn) ∈M .
For any m ∈M and ` ∈ N , let m−` ≡ (m1, ...,m`−1,m`+1, ...,mn). Let M−` ≡ ×i∈N\{`}Mi. Given

an m−` ∈ M−` and an m` ∈ M`, denote by (m`,m−`) the message profile consisting of these m`

and m−`.
A mechanism γ induces a class of (non-cooperative) games {(γ, R) |R ∈ Rn}. Given a game

(γ, R), we say that m ∈M is a (pure strategy) Nash equilibrium at R if and only if, for all ` ∈ N ,
(m, (m0`,m−`)) ∈ R` for all m0

` ∈ M`. Given a game (γ, R), let NE (γ, R) denote the set of Nash
equilibrium message profiles of (γ, R), whereas NA (γ, R) represents the corresponding set of Nash
equilibrium outcomes.

A mechanism γ ∈ Γ implements F in Nash equilibria, or simply implements F , if and only if

F (R) = NA (γ, R) for all R ∈ Rn. If such a mechanism exists, then F is (Nash-)implementable.

2.2 Partially honest participants

For any mechanism γ and any agent ` ∈ N , a truth-telling correspondence T γ
` on Rn × F is a

correspondence T
γ
` : Rn×F ³M` with T

γ
` (R,F ) 6= ∅ for all (R,F ) ∈ Rn×F . An interpretation

of the set T
γ
` (R,F ) is that, given a mechanism γ and a pair (R,F ), participant ` behaves truthfully

at the message profile m ∈M if and only if m` ∈ T γ
` (R,F ). Note that the type of elements of M`

constituting T
γ
` (R,F ) depends on the type of mechanism γ that one may consider.

For any ` ∈ N and any R ∈ Rn, let <R` be agent `’s weak order over M under the profile R.

The asymmetric part of <R` is denoted ÂR` , while the symmetric part is denoted ∼R` .

Definition 1. An agent h ∈ N is a partially honest agent if, for any mechanism γ, any R ∈ Rn,
and any m ≡ (mh,m−h) ,m0 ≡ (m0

h,m−h) ∈M , the following properties hold:
(i) if mh ∈ T γ

h (R,F ), m
0
h /∈ T γ

h (R,F ), and (g (m) , g (m
0)) ∈ Rh, then (m,m0) ∈ÂRh ;

(ii) otherwise, (m,m0) ∈<Rh if and only if (g (m) , g (m0)) ∈ Rh.

Definition 2. If agent ` ∈ N is not partially honest, i.e., ` 6= h, then for any mechanism γ,

any R ∈ Rn, and any m,m0 ∈ M , the following property holds: (m,m0) ∈<R` if and only if

(g (m) , g (m0)) ∈ R`.

For any R ∈ Rn, let <R denote the profile of weak orders over M under the profile R, that is,

<R≡ ¡<R` ¢`∈N .
2.3 Partially honest implementation

Throughout the paper, the following informational assumption holds.

Assumption 1. There are partially honest agents in N . The mechanism designer knows that there

are partially honest agents in N , though she does not know their identities or their exact number.
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Let ∅ 6= H ⊆ 2N\ {∅} be a class of non-empty subsets of N . The family H is viewed as the

class of potential groups of partially honest agents. Each H ∈ H then, represents a conceivable set

of partially honest agents in N . By Assumption 1, the mechanism designer simply knows that H
is non-empty, but she may not know what subsets of N belong to H and she never knows which

element of H is the true set of partially honest agents in the society. Given this interpretation,

throughout the paper, we assume that H = 2N\ {∅} holds from the point of view of the mechanism
designer.

A mechanism γ induces a class of (non-cooperative) games with partially honest agents {¡γ,<R,H¢ |R ∈
Rn,H ∈ H}. Given a game ¡γ,<R,H¢, we say that m∗ ∈M is a (pure strategy) Nash equilibrium

with partially honest agents at (R,H) if and only if, for all ` ∈ N , ¡m∗, ¡m`,m∗−`¢¢ ∈<R,H` for all

m` ∈ M`. Given a game
¡
γ,<R,H

¢
, let NE

¡
γ,<R,H

¢
denote the set of Nash equilibrium message

profiles of
¡
γ,<R,H

¢
, whereas NA

¡
γ,<R,H

¢
represents the corresponding set of Nash equilibrium

outcomes.

Since by Assumption 1 the mechanism designer knows that there are partially honest agents in

N but does not know who these agents are, this raises the question of what is an appropriate notion

of implementation in such a setting. To enable the mechanism designer to implement SCC s with

partially honest agents, this paper amends the standard definition of implementation as follows.

Definition 3. An SCC F ∈ F is partially honest (Nash) implementable if there exists a mechanism
γ = (M,g) such that:

for all R ∈ Rn and all H ∈ H, F (R) = NA ¡γ,<R,H¢ .
In contrast to the standard definition of implementation, to achieve the partially honest imple-

mentability of F , the mechanism designer must design a mechanism in which the equivalence

between the set of equilibrium outcomes and the set of F -optimal outcomes holds not only for each

admissible state R, but also for each set H ∈ H. Note that the gap between the two definitions
becomes closed when no agent in N is partially honest.

3 Partially Honest Implementation

3.1 Characterization result

When there are three or more agents, Moore and Repullo (1990) established that an SCC F is

implementable if and only if it satisfies Condition μ defined below.4

Condition μ: For each F ∈ F , there is a non-empty set Y F ⊆ X; furthermore, for all R ∈ Rn
and all x ∈ F (R), there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y F
for each ` ∈ N ; finally, for all R∗ ∈ Rn, the following conditions (i)-(iii) are satisfied:
(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and Y F ⊆ L (R∗` , y) for all ` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ maxR∗` Y F for all ` ∈ N , then y ∈ F (R∗).

Condition μ(i) is equivalent to (Maskin) monotonicity,5 while Condition μ(ii) and Condition μ(iii)

are weaker versions of no veto-power.6 If F is implementable by a mechanism γ ≡ (M,g), the set
4Moore and Repullo (1990), Dutta and Sen (1991), Lombardi and Yoshihara (2012), and Sjöström (1991) refined

Maskin’s characterization result by providing necessary and sufficient conditions for an SCC to be implementable.

For respected introductions to the theory of implementation, see Jackson (2001) and Maskin and Sjöström (2002).
5An SCC F on Rn is monotonic if, for all R,R0 ∈ Rn, with x ∈ F (R), x ∈ F (R0) holds whenever L (R`, x) ⊆

L (R0`, x) for all ` ∈ N .
6An SCC F on Rn satisfies no veto-power if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for at least

n− 1 agents.
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Y F is simply the range of the outcome function g, while Ci (R, x) represents the set of outcomes
that agent i can attain by varying her own strategy, keeping the other agents’ strategy choices

fixed.

The task of finding necessary and sufficient conditions for an SCC to be partially honest imple-

mentable is particularly complicated for two reasons: First, the presence of partially honest agents

breaks down the equivalent relationship between agents’ preferences over outcomes and their prefer-

ences over message profiles. Second, conditions on F are to be formulated only in terms of agents’

outcome-preferences. Taking these difficulties into account, we obtain the following condition,

Condition μ∗, which must be applied to any set H ∈ H.

Condition μ∗: For each F ∈ F , there is a non-empty set Y F ⊆ X; furthermore, for all R ∈ Rn
and all x ∈ F (R), there is a profile of sets (C` (R, x))`∈N such that x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y F
for each ` ∈ N ; finally, for all R∗ ∈ Rn and all ` ∈ N , there exists a non-empty set S` (R∗;x,R) ⊆
C` (R, x) such that for all H ∈ H, the following conditions (i)-(iii) are satisfied:
(i) if R∗ = R and x /∈ Si (R;x,R), then (x, z) ∈ Pi for all z ∈ Si (R;x,R);
(ii) for all i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y), y ∈ maxR∗` Y F for all ` ∈ N\ {i}, and:
(ii.a) if H = {i} and either y ∈ Si (R∗;x,R) or Si (R∗;x,R) ⊆ L (P ∗i , y), then y ∈ F (R∗);
(ii.b) if i /∈ H, H = {h}, R∗ = R, and x ∈ Sh (R;x,R), then y ∈ F (R);
(iii) if y ∈ maxR∗` Y

F for all ` ∈ N , and y /∈ F (R∗), then for some h ∈ H, R∗h 6= R
∗p
h ,

y /∈ Sh
¡
R∗; y,

¡
R∗−h, R

∗p
h

¢¢
, and there exists y0 ∈ Y F\ {y} such that y0 ∈ Sh

¡
R∗; y,

¡
R∗−h, R

∗p
h

¢¢ ∩
I∗h
¡
y, Y F

¢
.7

Note that in the above Condition μ∗, the set Y F coincides with the set X if F is unanimous

(Sjöström, 1991).8

The novelty of Condition μ∗ is the introduction of the set Si (R∗;x,R) ⊆ Ci (R, x). Whilst
traditionally the set Ci (R, x) represents the set of outcomes that agent i can generate by varying
her own strategy, keeping the other agents’ strategy choices fixed, the set Si (R

∗;x,R) represents
the set of outcomes that this agent can attain by reporting the agents’ true preferences when those

preferences change from R to R∗.
Our characterization result hinges upon a condition on the class of admissible preferences, which

basically requires that the class of available profiles of agents’ preferences is sufficiently rich. To

introduce such a condition, for each F ∈ F , let XF ⊆ X be defined by:

XF =

½
X if F is unanimous

F (Rn) otherwise.

The condition can be stated as follows.

Rich Domain (RD). For all i ∈ N , all F ∈ F , all R ∈ Rn, and all y ∈ X, if y ∈ maxR` XF for all

` ∈ N , then there exists Rpi ∈ Ri such that L (Rpi , y) = L (Ri, y), with {y} = maxRpi L (R
p
i , y), and

(Rpi , R−i) ∈ Rn holds.

Examples of preference domains satisfying such a condition would be the set of all profiles of weak

orders, linear orders, and single peaked/plateaued non-private preferences on X. Finally, condition

7We shall refer to the condition that requires only one of the conditions (i)-(iii) in Condition μ∗ as Conditions
μ∗(i)-μ∗(iii) each.

8An SCC satisfies unanimity if, for all R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxRi X for all i ∈ N .
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RD is vacuously satisfied in those classical economic environments with strong monotonic pref-

erences.9 From the perspective of the applications of implementation theory, therefore, condition

RD basically represents a mild requirement.

The following theorem states that Condition μ∗ is necessary and sufficient for partially hon-
est implementation when the domain of preferences is sufficiently rich (its proof is deferred to

Appendix).

Theorem. Let n ≥ 3; let Rn satisfy RD; and, let Assumption 1 hold. An SCC F ∈ F is partially
honest implementable if and only if F satisfies Condition μ∗.

We remark that condition RD is relevant only for the case that F is not unanimous, since RD

is applied only to the necessity and sufficiency of Condition μ∗(iii) as shown in Appendix. Hence,
the above theorem has following formulation for unanimous SCCs.

Corollary 1. Let n ≥ 3; and, let Assumption 1 hold. Any unanimous SCC F ∈ F is partially

honest implementable if and only if it satisfies Conditions μ∗(i)-μ∗(ii).

The Theorem established above does not impose any restriction on mechanisms. However, in

implementation theory, the following types of mechansims are usually considered and sometimes

useful.

Definition 4. A mechanism γ = (M,g) for implementing an SCC F ∈ F is forthright if the

following property holds: M` ≡ Rn × Y F ×N for all ` ∈ N , and for all R ∈ Rn and all x ∈ F (R),
if m` ∈ {R} × {x} ×N for all ` ∈ N , then m ∈ NE (γ, R) and g (m) = x.10

That is, a forthright mechanism has the property that, if x is F -optimal at the state R, and each

agent announces truthfully the state R and an F -optimal outcome x, then such a message profile

constitutes a Nash equilibrium, and its corresponding equilibrium outcome should be the announced

F -optimal outcome. Because of this simple structure, the canonical mechanisms constructed in the

sufficiency proofs of Nash implementation are usually forthright. There is no loss of generality in

relying on such mechanisms in the standard setting since Nash implementation and Nash imple-

mentation by forthright mechanisms are equivalent (Lombardi and Yoshihara, 2012). We shall now

remark that this restriction is not innocuous in our set-up.

Corollary 2. Let n ≥ 3; let Rn satisfy RD; and, let Assumption 1 hold. An SCC F ∈ F is

partially honest implementable by a forthright mechanism if and only if F satisfies Condition μ∗

such that for all R ∈ Rn, all x ∈ F (R), and all i ∈ N , x ∈ Si (R;x,R).

The additional requirement that x ∈ Si (R;x,R) for all agents i ∈ N restricts the class of

SCCs that are partially honest implementable. We shall discuss this point further at the end of

sub-section 3.3.

3.2 Algorithms for testing (non-)implementability

In this sub-section we shall derive from the complete algorithm of Lombardi and Yoshihara (2013b)

three conditions for checking partially honest implementation. The first two conditions consist of

simple tests for non-implementability of SCC s. The third condition yields a test for implementabil-

ity and says that F is implementable if the constructed sets Si (R
∗;x,R) are non-empty. Hence, in

9Note that any SCC in the classical economic environments with strong monotonic preferences is vacuously

unanimous, in that there is no R ∈ Rn such that ∩i∈N maxRi X 6= ∅.
10The set N can be replaced by any arbitrary set.
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order to check for implementation, it is sufficient to construct the set Si (R
∗;x,R) and to check it

for non-emptiness.

We shall use the following definitions in the formulation of the conditions: For any F ∈ F , and
any R ∈ Rn,

Ȳ F ≡ X\ {x ∈ X\F (Rn) | for some R ∈ Rn : X ⊆ L (R`, x) for all ` ∈ N} ; (1)

and for any i ∈ N , and any R, R∗ ∈ Rn, with x ∈ F (R),

Ōi (x,R,R
∗) ≡

½
z ∈ Ȳ F\F (R∗) | z ∈ L (Ri, x) ∩ Ȳ F ⊆ L (R∗i , z) , z ∈ max

R∗`
Ȳ F for all ` ∈ N\ {i}

¾
,

(2)

Q̄i (x,R,R
∗) ≡

½
z ∈ F (R∗) | z ∈ L (Ri, x) ∩ Ȳ F ⊆ L (R∗i , z) , z ∈ max

R∗`
Ȳ F for all ` ∈ N\ {i}

¾
,

and

V̄i (x,R,R
∗) ≡

½
z ∈ Ȳ F | z ∈ L (Ri, x) ∩ Ȳ F ⊆ L (R∗i , z) , z /∈ max

R∗`
Ȳ F for some ` ∈ N\ {i}

¾
.

The first condition is useful as a first step in checking for non-implementability and concerns

the violation of Condition μ∗(iii). This condition can be formulated as follows.

Lemma 1. Let Rn satisfy RD. If F ∈ F satisfies Condition μ∗, then
(i) Y F ⊆ Ȳ F ;
(ii) for all R ∈ Rn, and all x ∈ Ȳ F , if x ∈ maxR` Ȳ F for all ` ∈ N , then x ∈ F (Rpi , R−i) for all
i ∈ N .

If an SCC has the properties of Lemma 1(i) and Lemma 1(ii), then either implementability or

non-implementability may take place. In these cases, it is convenient to have a more powerful test

for non-implementability. Here is one that is frequently useful.

Lemma 2. Let Rn satisfy RD. For all F ∈ F, all R,R∗ ∈ Rn, with x ∈ F (R), and all i ∈ N , if
F satisfies Condition μ∗, then there exists y ∈ L (Ri, x), with (y, x) ∈ R∗, such that y ∈ F (R∗) or
y /∈ maxR∗` Ȳ F for some ` ∈ N\ {i}.

Let us now discuss this result: The contrapositive of the above lemma gives us the following easy

way for checking non-implementability. If the set union of the sets Q̄i (x,R,R
∗) and V̄i (x,R,R∗)

is empty, then F violates Condition μ∗(ii.a). We shall exploit this result in the next sub-section.
Let us devise an auxiliary result to guide us in the formulation of our last condition. Before

stating this auxiliary result a little more notation is needed: For any i ∈ N , and any R ∈ Rn, with
x ∈ F (R), define the set Oi (x,R,R) as follows.

Oi (x,R,R) ≡
½
z ∈ X\F (R) | Ci (R,x) ⊆ L (Ri, z) , z ∈ max

R`
Y F for all ` ∈ N\ {i}

¾
.

Lemma 3. For all F ∈ F, all R ∈ Rn, with x ∈ F (R), and all i ∈ N , if F satisfies Condition

μ∗ and the set Oi (x,R,R) is non-empty, then x ∈ Si (R;x,R) and for all ` ∈ N\ {i}, x /∈
S` (R;x,R) ⊆ L (P`, x) and the set O` (x,R,R) is empty.

The usefulness of this result is twofold. First, it partially characterizes the structure of the set

Si (R;x,R) by showing under what conditions this set contains the F -optimal outcome x. Second,
when read in combination with Corollary 2, it says that F is not partially honest implementable

by any forthright mechanisms when the set Oi (x,R,R) is not empty for some agent i.
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We shall now present a deeper, more useful, and more interesting method for checking imple-

mentability based on information derived from the above lemmata. We construct the sets Y F ,

Ci (R, x) and Si (R
∗;x,R) of Condition μ∗ explicitly in the following way.

Take any F ∈ F . For any R ∈ Rn, with x ∈ F (R), let us distinguish the following two cases.

Case I There exists at most one agent j ∈ N such that Ōj (x,R,R) 6= ∅.
Case II Any other case.

For any R,R∗ ∈ Rn, with x ∈ F (R), let Y F ≡ Ȳ F ; furthermore, for any i ∈ N , define the set
Ci (R, x) as follows:

Ci (R, x) ≡
½

L (Ri, x) ∩ Ȳ F if Case I;¡
L (Ri, x) ∩ Y F

¢ \Ōi (x,R,R) if Case II;

finally, for any i ∈ N , define the set Si (R∗;x,R) as follows:

1. if y ∈ Ci (R, x) ⊆ L (R∗i , y) and y ∈ maxR∗` Y F for all ` ∈ N\ {i}, then:

(a) if R = R∗, then:

i. if there exists a unique agent j ∈ N\ {i} such that Ōj (x,R,R) 6= ∅, then Si (R∗;x,R) =
L (Pi, x);

ii. otherwise, Si (R
∗;x,R) = {x} ∪Qi (x,R,R∗);

(b) if R 6= R∗, then

Si (R
∗;x,R) =

½
Qi (x,R,R

∗) if Qi (x,R,R
∗) 6= ∅;

Vi (x,R,R
∗) otherwise;

2. otherwise,

(a) if R = R∗ and there exists a unique agent j ∈ N\ {i} such that Ōj (x,R,R) 6= ∅, then
Si (R

∗;x,R) = L (Pi, x) ∩Ci (R, x);
(b) otherwise, Si (R

∗;x,R) = Ci (R,x),

where

Qi (x,R,R
∗) ≡

½
z ∈ F (R∗) | z ∈ Ci (R, x) ⊆ L (R∗i , z) , z ∈ max

R∗`
Y F for all ` ∈ N\ {i}

¾
, (3)

and

Vi (x,R,R
∗) ≡

½
z ∈ Ci (R, x) | Ci (R,x) ⊆ L (R∗i , z) , z /∈ max

R∗`
Y F for some ` ∈ N\ {i}

¾
. (4)

Now, we prove that the above construction really performs the task for which it was intended.

Lemma 4. Let Rn satisfy RD. F ∈ F satisfies Condition μ∗ if
(i) the above construction of Si (R

∗;x,R) is non-empty for all i ∈ N , all R,R∗ ∈ Rn, with
x ∈ F (R), and
(ii) for all R ∈ Rn and all x ∈ Ȳ F such that x ∈ maxR` Ȳ F for all ` ∈ N , x ∈ F (Rpi , R−i) for all
i ∈ N .

We shall remark that in the preceding lemma the requirement that the domain is sufficiently rich

and the premises in part (ii) can be dropped for unanimous SCC.
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It should be realized that if F passes the tests of Lemma 1 and Lemma 2, and if for any

two profiles R and R∗ such that x is F -optimal at R and the set Si (R
∗;x,R) constructed as

above is non-empty for each agent i, then we can be assured of implementability of F . Then, to

check for implementability, care needs to be exercised to check non-emptiness of the constructed

set Si (R
∗;x,R), in particular for cases (1.a.i), (1.b), and (2.a). For cases (1.a.i) and (2.a), non-

emptiness of Si (R
∗;x,R) is not assured only for the case that x is the worst outcome for agent

i at R. For case (1.b), non-emptiness is assured if either the set Qi (x,R,R
∗) or Vi (x,R,R∗) is

non-empty. In view of its pratical importance, we shall exploit extensively Lemma 4 in the next

sub-section.

3.3 Implications

In this subsection, we shall blend the results of sub-section 3.1 and sub-section 3.2 and derive a

number of propositions in marriage problems, rationing problems under single peaked/plateaued

preferences, bargaining problems, and in coalitional games. All positive results presented here

cannot be reaped from the conventional implementation setting (Maskin, 1999), and from Dutta

and Sen (2012)’s result. The reason is that all SCC s studied here violate monotonicity and no

veto-power.

3.3.1 Applications to marriage problems

A marriage problem is an ordered triplet (M,W,R), where M and W are two non-empty and

disjoint finite sets such that M ∪W = N , with cardinality n = |W ∪M | ≥ 3, while R is a profile
such that Rj is a linear order on W ∪ {j} if j ∈ M or on M ∪ {j} if j ∈ W .11 A matching ϕ

on W ∪M is a one-to-one correspondence from the set W ∪M onto itself of order two (that is,

ϕ2 (j) = j) having the following properties: a) for any m ∈M , ϕ (m) 6= m implies ϕ (m) ∈W , and
b) for any w ∈W , ϕ (w) 6= w implies ϕ (w) ∈M . Let us denote the set of all matchings on W ∪M
byM. In the context of marriage problems, the set of outcomes X is the set of feasible matchings

M.

Given any m ∈M and any Rm on W ∪ {m}, Rm can be extended to the setM as follows: for

all ϕ,ϕ0 ∈M, (ϕ (m) ,ϕ0 (m)) ∈ Rm if and only if (ϕ,ϕ0) ∈ Rm. Abusing notation, hereafter we use
Rm to represent both. The same can be done for each w ∈ W . Pn denotes the set of admissible
profiles of preferences for women and men. In what follows, we consider a situation in which the

mechanism designer does not know agents’ preferences. This situation is modeled by the quadruple

(M,W,M,Pn), which we refer to as a class of marriage problems.
A matching ϕ is blocked by agent i under R if (i,ϕ (i)) ∈ Pi. Furthermore, a matching ϕ is

blocked by a pair (m,w) under R if

(w,ϕ (m)) ∈ Pm and (m,ϕ (w)) ∈ Pw.

A matching ϕ is stable under R if it is not blocked by any individual or any pair. For any R ∈ Pn,
define the stable SCC St (R) as the set of all stable matchings under R. A stable matching

ϕRM ∈ St (R) under R is the man-optimal stable matching for R if

for all m ∈M :
¡
ϕRM (m) ,ϕ (m)

¢ ∈ Rm for all ϕ ∈ St (R) .
The woman-optimal stable matching for R, ϕRW , is defined similarly. StM (StW ) denotes the man-

optimal (woman-optimal) stable SCC, that is, StM (R) = ϕRM (StW (R) = ϕRW ) for all R ∈ Pn. The
optimal-man (optimal-women) stable SCC is a proper sub-correspondence of the stable SCC.12 A

11A linear order over a set Z is a complete, transitive, and anti-symmetric binary relation over Z.
12 If F and F 0 are SCC s such that F 0 (R) ⊆ F (R) for all R ∈ Rn, then we say that F 0 is a sub-correspondence of

F . If furthermore F 0 (R) 6= F (R) for some R ∈ Rn, then F 0 is a proper sub-correspondence of F .
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matching ϕ is Pareto optimal under R if there is no other matching μ0 such that (ϕ0 (i) ,ϕ (i)) ∈ Ri
for all i ∈M ∪W and (ϕ0 (i) ,ϕ (i)) ∈ Pi for some i ∈M ∪W . For any R ∈ Pn, define the Pareto
Optimal SCC PO (R) as the set of all Pareto optimal matchings under R.

Consider the class of marriage problems with singles, where being single is a feasible choice

and is not necessarily always the last choice of every agent. Within the traditional framework

of implementation theory, it is known that the man-optimal (resp. woman-optimal) stable SCC

violates monotonicity and no veto-power. Roth (1982) showed that no selection of the stable SCC

is strategy-proof, whilst Kara and Sönmez (1996) showed that no proper sub-correspondence of the

stable correspondence is implementable. In contrast with these results, however, the man-optimal

(resp. woman-optimal) stable SCC on the class of marriage problems with singles is partially honest

implementable, which is provided below.

Proposition 1. Let (M,W,M,Pn) be any class of marriage problems with singles. The StM ∈ F
satisfies Condition μ∗.

Proof. Since StM is a unanimous SCC, let M = Y StM . Since StM (R) ∈ PO (R), then
Ōi (ϕ, R,R) = ∅ for all i ∈ N . Following the algorithm of Lemma 4, let Ci (R,ϕ) ≡ L (Ri,ϕ)
for any (R,R∗,ϕ, i) ∈ Pn × Pn ×M × N , with ϕ ∈ StM (R). Moreover, by case (1.a.ii) of the
algorithm, Si (R;ϕ, R) = {ϕ} for all i ∈ N . Finally, to apply Lemma 4, we shall only confirm that

Si (R
∗;x,R) is non-empty for case (1.b).
For any (R,R∗,ϕ, i) ∈ Pn × Pn ×M × N , with R 6= R∗ and ϕ = StM (R), let us suppose

that ϕ0 ∈ Ci (R,ϕ) ⊆ L (R∗i ,ϕ
0), and M ⊆ L

³
R∗j ,ϕ

0
´
for all j ∈ N\ {i}. We show that ϕ0 ∈

Qi (ϕ, R,R
∗). Assume, to the contrary, that ϕ0 /∈ Qi (ϕ, R,R∗) which implies that ϕ0 /∈ StM (R∗).

Since ϕ0 cannot be blocked by any individual or any pair, that is, ϕ0 ∈ St (R∗), we have that for some
ϕ00 ∈ St (R∗) and some k ∈M , (ϕ00 (k) ,ϕ0 (k)) ∈ P ∗k . By our suppositions, i is the unique man such
that (ϕ00 (i) ,ϕ0 (i)) ∈ P ∗i , otherwise we fall into a contradiction. We also have that ϕ00 (i) ∈ W ,
otherwise, ϕ0 /∈ St (R∗), which is a contradiction. Since ϕ00 (i) = q ∈ W and ϕ00 (i) 6= ϕ0 (i),
(ϕ0 (q) ,ϕ00 (q)) ∈ P ∗q , otherwise, either ϕ0 (i) = ϕ00 (i) = q or ϕ0 /∈ maxR∗q M, and so we fall into

a contradiction in either case. Given that (ϕ0 (q) ,ϕ00 (q)) ∈ P ∗q and ϕ00 ∈ St (R∗), it follows that
ϕ0 (q) = k0 ∈M\ {i}, and so (k0,ϕ00 (q)) ∈ P ∗q and ϕ0 (k0) = q. Given thatM ⊆ L ¡R∗k0 ,ϕ0¢, we have
also that (q,ϕ00 (k0)) ∈ P ∗k0 . Therefore, (q,ϕ00 (k0)) ∈ P ∗k0 and (k0,ϕ00 (q)) ∈ P ∗q , and so the matching
ϕ00 is blocked by the pair (k0, q), which gives us a contradiction. Thus, ϕ0 ∈ Qi (ϕ, R,R∗). The
statement follows from lemma 4.

Since by symmetry the parallel result holds for the woman-optimal stable SCC, StW , the fol-

lowing corollary is readily obtained from Proposition 1 and Corollary 1.

Corollary 3. Let (M,W,M,Pn) be any class of marriage problems with singles; suppose that
Assumption 1 holds. The man-optimal (resp. woman-optimal) stable SCC is partially honest

implementable.

On the class of pure marriage problems, where being single is not a feasible choice or it is always

the last choice of every agent, Tadenuma and Toda (1998) established the impossibility theorem

that there exists no single-valued sub-correspondence of the stable SCC that is implementable

whenever there are at least three men and three women. Their impossibility result no longer holds

when agents have intrinsic preferences towards honesty, since the man-optimal (resp. woman-

optimal) stable SCC on pure marriage problems satisfies Condition μ∗, which is shown analogously
to the proof of Proposition 1. Therefore:

Corollary 4. Let (M,W,M,Pn) be any class of pure marriage problems, with |M | = |W | ≥ 2;
suppose that Assumption 1 holds. There exists a single-valued sub-correspondence of St that is

partially honest implementable.
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3.3.2 Applications to rationing problems under single peaked/plateaued preferences

The following model can be regarded as a model of rationing problems (Sprumont, 1991; Thomson,

1994). A social endowment M ∈ R++ of an infinitely divisible commodity has to be allocated

among a set of agents N , which has cardinality n ≥ 3. Each agent i ∈ N is equipped with a

continuous and single peaked preference defined over the interval [0,M ]: This means that there is a
real number in [0,M ], denoted p (Ri), and called peak amount, such that for each pair xi, x

0
i ∈ [0,M ],

if x0i < xi ≤ p (Ri) or p (Ri) ≤ xi < x0i, then (xi, x
0
i) ∈ Pi. Given xi ∈ [0,M ], let ri (xi) be the

consumption bundle on the other side of agent i’s peak amount that she finds indifferent to xi if

such consumption exists; otherwise, it gives the endpoint of [0,M ] on the other side of her peak
amount. For each agent i, Rspi denotes the class of all preference relations on [0,M ] that satisfy
continuity and single peakedness. Whenever the social endowment is kept fixed, we simply refer

to an economy as a list R ≡ (Ri)i∈N ∈ Rnsp. p (R) denotes the profile of peak amounts of R,
(p (Ri))i∈N . A feasible allocation is a list x ≡ (xi)i∈N ∈ Rn+ such that

P
xi = M .

13 Note that we

do not assume that the commodity can be disposed of. Let X ≡ ©x ∈ Rn+|Pxi =M
ª
be the set

of feasible allocations.14 Note that the set of feasible allocation X is the n-fold product of [0,M ].
Note that each Ri is private in that whose domain is not X but [0,M ]. Hence, without loss of
generality, when we say L (Ri, x) = X, it implies that L (Ri, xi) = [0,M ].

In what follows, we consider a situation in which the mechanism designer does not know agents’

preferences. This situation is modeled by the triple
¡
N,X,Rnsp

¢
, which we refer to as a class of

rationing problems with single peaked preferences.

A number of SCC s that have been frequently discussed in the literature violate monotonicity

and no veto-power. Some of these SCC s are the following ones (Thomson, 1995).

Proportional SCC, PR: For all R ∈ Rnsp, x = PR (R) if x ∈ X, and (i) when P p (xi) ≥ 0, and
there exists λ ∈ R+ such that for all i ∈ N , xi = λp (Ri); and (ii) when

P
p (xi) = 0, xi =

¡
M
n

¢
for

all i ∈ N .

Equal Distance SCC, ED : For all R ∈ Rnsp, x = ED (R) if x ∈ X, and (i) when
P
p (xi) ≥M , and

there exists d ∈ R+ such that for all i ∈ N , xi = max {0, p (Ri)− d}; and (ii) when
P
p (xi) ≤M ,

and there exists d ∈ R+ such that for all i ∈ N , xi = p (Ri) + d.

Equal Sacrifice SCC, ES : For all R ∈ Rnsp, x = ES (R) if x ∈ X, and (i) when
P
p (xi) ≥M , and

there exists σ ∈ R+ such that for all i ∈ N , ri (xi)−xi ≤ σ, strict inequality holding only if xi = 0;
and (ii) when

P
p (xi) ≤M , and there exists σ ∈ R+ such that for all i ∈ N , xi − ri (xi) = σ.

Since the above SCC s do not satisfy monotonicity, they are not implementable in the standard

framework. Moreover, since they violate no veto-power, Dutta and Sen (2012)’s result does not

apply. A natural question, then, is whether or not these SCC s are partially honest implementable.

Proposition 3. Let
¡
N,X,Rnsp

¢
be any class of rationing problems with single peaked preferences.

The PR on Rnsp does not satisfy Condition μ∗.

Proof. Since PR is unanimous, we can set X ≡ Y PR. Take a profile R ∈ Rnsp such that p (R`) = 0
for any agent ` ∈ N\ {i} and 0 < p (Ri) < M and M is the uniquely least preferable over [0,M ] for
agent i at Ri. Then, by definition of PR, {x} = PR (R) where xi = M and x` = 0 for any agent
` ∈ N\ {i}. Moreover, L (Ri, x) = {x} by {x} = minRi X.

Let R∗ ∈ Rnsp be such that p (R∗i ) = 0 and there exists y ∈ X with y ∈ L (Ri, x) ⊆ L (R∗i , y)
and y ∈ maxR∗` X for any agent ` ∈ N\ {i}. Since L (Ri, x) = {x}, y = x. Thus, V̄i (x,R,R∗) = ∅,
13When its bounds are not explicitly indicated, a summation should be understood to cover all agents.
14For a study of consistent solutions to the problem of fair division when preferences are single-peaked, see Thomson

(1994).
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since y ∈ maxR∗` X for ` ∈ N\ {i}. However, since p (R∗` ) = 0 = y` holds for any ` ∈ N\ {i}
by y = x, {z} = PR (R∗) holds, where z` = M

n for all ` ∈ N . Thus, y /∈ PR (R∗), and so
y ∈ Ōi (x,R,R∗) and y /∈ Q̄i (x,R,R∗). Then, {x} = L (Ri, x), y = x, and y /∈ Q̄i (x,R,R∗) imply
that Q̄i (x,R,R

∗) ∪ V̄i (x,R,R∗) = ∅. The statement follows from Lemma 2.

Proposition 4. Let
¡
N,X,Rnsp

¢
be any class of rationing problems with single peaked preferences.

The ED on Rnsp satisfies Condition μ∗.

Proof. Since ED is a unanimous SCC, let Y ED ≡ X. Since ED is single-valued and Pareto

optimal, then Ōi (x,R,R) = ∅ for all i ∈ N . Then, following the algorithm of Lemma 4, for any

R ∈ Rnsp and any x ∈ ED (R), Ci (R, x) ≡ L (Ri, x) for each i ∈ N . Moreover, by case (1.a.ii) of the
algorithm, Si (R;x,R) = {x} for all i ∈ N . Finally, to apply Lemma 4, we shall only confirm that

Si (R
∗;x,R) is non-empty for case (1.b). Take any R, R∗ ∈ Rnsp, with x ∈ ED (R), and suppose

that y ∈ L (Ri, x) ⊆ L (R∗i , y) and y ∈ maxR∗` X for any agent ` ∈ N\ {i}.
If xi = M , then p (Ri) = M . For otherwise, there should be d > 0 such that p (Ri) + d = M ,

which also implies x` = p (R`) + d for any other ` 6= i, that is a contradiction. Moreover, if

p (Ri) = M , then p (R`) = 0 for any other ` 6= i. Indeed, if p (Rj) > 0, then there should be
d > 0 such that xj ≥ p (Rj) − d. Then, xi = p (Ri) − d < M holds, which is a contradiction.

Thus, if xi = M , then x is the unanimous allocation at R. Thus, since L (Ri, x) = X, it follows

from y ∈ L (Ri, x) ⊆ L (R∗i , y) and y ∈ maxR∗` X for any agent ` ∈ N\ {i} that y is the unanimous
allocation at R∗. Hence, y ∈ ED (R∗). Thus, if xi =M , then y ∈ Qi (x,R,R∗) = Si (R∗;x,R).

Let xi < M . If p (Ri) = xi, then L (Ri, x) = X, which implies that y is the unanimous allocation
at R∗ as the same reasoning as the case of xi =M . Thus, let p (Ri) 6= xi. Without loss of generality,
let xi < ri (xi). Suppose that p (R

∗
i ) ∈ [0, xi]∪ [ri (xi) ,M ]. Then, L (Ri, x) ⊆ L (R∗i , y) implies that

yi = p (R∗i ). Thus, by unanimity, y ∈ ED (R∗), which implies y ∈ Qi (x,R,R∗) = Si (R
∗;x,R).

Thus, let us consider the case that p (R∗i ) ∈ (xi, ri (xi)). Then, yi ∈ {xi, ri (xi)} must hold by
y ∈ L (Ri, x) ⊆ L (R∗i , y). In this case, since y` = p (R∗` ) for any agent ` ∈ N\ {i} and yi 6= p (R∗i ),
y /∈ ED (R∗) holds. Thus, y /∈ Qi (x,R,R∗). Then, even if Qi (x,R,R∗) = ∅, there always exists
z ∈ X with zi ∈ {xi, ri (xi)} and there is at least one agent j 6= i such that z /∈ maxR∗j X. This
implies Vi (x,R,R

∗) 6= ∅. The same argument applies if ri (xi) does not exist. The statement
follows from lemma 4.

Proposition 5. Let
¡
N,X,Rnsp

¢
be any class of rationing problems with single peaked preferences;

suppose that Assumption 1 holds. The ES on Rnsp satisfies Condition μ∗.

Proof. Since the proof can be obtained as in the proof of Proposition 4, we shall omit it here.

Combining with Corollary 1, the above propositions can be summarized as follows.

Corollary 5. Let
¡
N,X,Rnsp

¢
be any class of rationing problems with single peaked preferences;

suppose that Assumption 1 holds. Then, ED and ES are partially honest implementable, while

PR is not.

Single plateaued preferences generalize single peaked preferences by allowing for multiple peak

amounts. Formally, for each agent i ∈ N , the preference relation Ri defined on [0,M ] is called single
plateaued when there exist two numbers x̄i, xi ∈ [0,M ] such that xi ≤ x̄i and for all xi, yi ∈ [0,M ]:
(i) if xi < yi ≤ xi or xi > yi ≥ x̄i, then (y0, x0) ∈ Pi for any x0, y0 ∈ X, with x0i = xi and y0i = yi;
(ii) if xi, yi ∈ [xi, x̄i], then (x0, y0) ∈ Ii for any x0, y0 ∈ X, with x0i = xi and y0i = yi. The interval
p (Ri) ≡ [xi, x̄i] is the plateau of Ri, where x is the left end-point of the plateau of Ri, and x̄ is the
right end-point. For each agent i, Rspi denotes the class of all preference relations on [0,M ] that
satisfy continuity and single plateauedness. Let Rnsp be the class of admissible preference profiles.
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With obvious adaptations, the notation spelled out above for single peaked preferences is carried

over single plateaued preferences.

Single plateaued preferences have played an important role in areas such as voting, public good

economies, and matching problems. Since Maskin’s original result, it is known that the Pareto

Optimal SCC is monotonic and satisfies no veto-power when the class of admissible preference

profiles consists only of single peaked preferences. This conclusion does not extend, however, to

single plateaued preferences since this SCC satisfies neither monotonicity nor Condition μ(ii) of

Moore and Repullo (1990). In what follows, we show that the Pareto Optimal SCC (on Rnsp) is not
yet implementable even in the case that there are partially honest individuals.

Pareto SCC, PO : For all R ∈ Rnsp, PO (R) ≡ {x ∈ X|There is no y ∈ X: (y, x) ∈ Ri for all i ∈ N
and (y, x) ∈ Pi for some i ∈ N}.

Proposition 6. Let
³
N,X,Rnsp

´
be any class of rationing problems with single plateaued pref-

erences; suppose that Assumption 1 holds. The PO on Rnsp does not satisfy Condition μ∗.

Proof. Since PO is unanimous, we can set X = Y PO. In what follows, let us suppose that

n = 3 and M = 1. Let R ≡ (R1, R2, R3) ∈ Rnsp be such that p (R) =
¡
1
4 , 1, [0, 1]

¢
. Then,¡

1
6 ,
5
6 , 0
¢ ∈ PO (R). For the sake of brevity, let x ≡ ¡16 , 56 , 0¢. Let R∗ ∈ Rnsp be such that R∗−2 =

R−2 , and R∗2 6= R2 with p (R
∗
2) =

£
0, 56

¤
. Then, for each j = 2, 3, L

³
R∗j , x

´
= X; moreover,

x ∈ L (R1, x) = L (R∗1, x), where L (R∗1, x) =
©
z ∈ X | 0 ≤ z1 ≤ 1

6 or r1 (x1) ≤ z1 ≤ 1
ª
.15 Then,

x /∈ PO (R∗), since y = ¡
1
4 ,
1
2 ,
1
4

¢
Pareto-dominates x at R∗. Thus, x /∈ Qi (x,R,R∗). Moreover,

take any z ∈ X such that L (R1, x) ⊆ L (R∗1, z) and L
³
R∗j , z

´
= X for each j = 2, 3. This

implies z1 ∈
£
1
6 , r1 (x1)

¤
by R∗1 = R1. However, by p (R

∗
2) =

£
0, 56

¤
, z1 =

1
6 must hold. Hence, y

Pareto-dominates z at R∗. Thus, Q̄i (x,R,R∗) = ∅.
Suppose z ∈ V̄i (x,R,R∗). Then, z1 = 1

6 or z1 = r1 (x1). Let z1 =
1
6 . Then, z2 + z3 =

5
6 must

hold, which implies that L
³
R∗j , z

´
= X for each j = 2, 3 from p (R∗2) =

£
0, 56

¤
and p (R∗3) = [0, 1],

a contradiction. Thus, let z1 = r1 (x1). Since r1 (x1) >
1
4 , we have z2 + z3 <

3
4 . This implies that

L
³
R∗j , z

´
= X for each j = 2, 3, a contradiction. Thus, V̄i (x,R,R

∗) = ∅. The statement follows
from Lemma 2.16

As a direct corollary of Proposition 6 and Corollary 1, we have the following result.

Corollary 6. Let
³
N,X,Rnsp

´
be any class of rationing problems with single plateaued pref-

erences; suppose that Assumption 1 holds. Then, the PO on Rnsp is not partially honest imple-
mentable.

Note that neither rationing problems with single peaked nor with single plateaued preferences

satisfy condition RD, because of the private preference property of those domains. Hence, partially

honest implementability of non-unanimous SCCs in those problems cannot be examined by means

of Condition μ∗.

3.3.3 On the impossibility of the strong core

A coalitional game contains a finite set of agents N with cardinality n ≥ 3, a non-empty set of
outcomes X, a preference profile R ∈ Rn, and a characteristic function v : 2N\ {∅} → 2X . A

15Without loss of generality, we suppose that r1 (x1) exists.
16We also see that the Pareto SCC violates monotonicity and Condition μ(ii) of Moore and Repullo (1990).
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coalition, denoted S, is a non-empty subset of the set N . Given a coalitional game (N,X,R, v), an
outcome x ∈ X is weakly blocked by S if there is y ∈ v (S) such that (y, x) ∈ Ri for each i ∈ S, and
(y, x) ∈ Pi for some i ∈ S. If there is an outcome which is not weakly blocked by any coalition S,
then (N,X,R, v) is referred to as a coalitional game with non-empty strong core.

In what follows, we consider a situation in which the mechanism designer knows what is feasible

for each coalition, that is, the characteristic function v, but she does not know agents’ preferences.

This situation is modeled by the quadruple (N,X,Rn, v), which we refer to as a coalitional game
environment. Given a coalitional game environment (N,X,Rn, v), the strong core correspondence
CS is defined as the SCC on Rn with

CS (R) ≡ ©x ∈ v (N) |x is not weakly blocked by any coalition S ∈ 2N\ {∅}ª .
We say that (N,X,Rn, v) is a coalitional game environment with non-empty strong core if CS (R) 6=
∅ for each R ∈ Rn.

It is well-known that the strong core correspondence CS violates monotonicity and no veto-

power. This SCC is not, therefore, implementable. Moreover, Dutta and Sen (2012)’s result is

silent with respect to the partially honest implementability of the strong core. A natural question,

then, is whether or not the strong core is implementable when agents have intrinsic preferences

towards honesty. A negative answer is provided in the following proposition.

Proposition 7. Let (N,X,Rn, v) be any coalitional environment with non-empty strong core.
The CS ∈ F does not satisfy Condition μ∗.

Proof. Let n ≥ 3; suppose that Assumption 1 holds. Let us suppose that N = {1, 2, 3} with
cardinality n = 3, X ≡ {w, x, y, z} with cardinality |X| = 4, and {R,R∗} = Rn, where profiles R
and R∗ are as follows:

R R∗

1 2 3 1 2 3

y, z x w y w, x, y, z w, x, y

x w, y, z x, z x z

w y w, z

where, as usual, xy means that the agent in question strictly prefers x to y, while x, y means that

the agent at issue is indifferent between x and y. Let us define v as

v ({1, 2}) = {x, z} , v ({1, 3}) = {w, y} , v ({2, 3}) = {w, z} , v (N) = X,
and v (S) = ∅ for all other coalitions S ∈ 2N\ {∅}.

By definition, (N,X,Rn, v) is a coalitional game environment with non-empty strong core
since CS (R) = {x} and CS (R∗) = {y}.17 Since CS is unanimous, X = Y C

S
. Since by definition,

L (R1, x) ⊆ L (R∗1, x) and X ⊆ L
³
R∗j , x

´
for j = 2, 3, CS (R∗) = {y} implies that x /∈ Q̄1 (x,R,R∗).

Since y /∈ L (R1, x), y /∈ Q̄1 (x,R,R∗). Thus, Q̄1 (x,R,R∗) = ∅. Moreover, since there is no
outcome which is indifferent to x at R1, V̄1 (x,R,R

∗) = ∅. The statement follows from Lemma

2.

The following result is a direct consequence of Proposition 7 and Corollary 1.

Corollary 7. Let (N,X,Rn, v) be any coalitional environment with non-empty strong core;
suppose that Assumption 1 holds. The CS is not partially honest implementable.

17An easy compuation yields that CS (R) = {x} since the outcome w is weakly blocked by {1, 2}, and y and z are
weakly blocked by {2, 3}; on the other hand, CS (R0) = {y} since the outcomes w, x and z are weakly blocked by
{1, 3}.
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3.3.4 On the possibility of the Nash bargaining solution

Let us examine the implementability of bargaining solutions: Suppose that there is a perfectly

divisible cake of size 1, to be shared among n ≥ 3 agents. The set of possible feasible allocations is
A ≡ ©(ai)i∈N ∈ Rn+ |Pi∈N ai ≤ 1

ª
. Moreover, we allow the lottery over A, so that X is the set of

all probability measures on the Borel sigma algebra of A with generic element x, y, and z. For each

i ∈ N , let Ri be a von Neumann-Morgenstern preference over X such that there is a corresponding

von Neumann-Morgenstern (henceforth, vNM) utility function ui : [0, 1]→ R+ which is continuous
and monotonic, and represents Ri in the sense that for any x, y ∈ X, xRiy if and only if Ui (x) ≥
Ui (y), where Ui (x) ≡

R
A ui (ai)dx (a). Without loss of generality, let ui (0) = 0 for each i ∈ N . Let

U be the set of all continuous and monotonic vNM utility functions having ui (0) = 0 and ui (a) > 0
for some a > 0. Given this, let us take the disagreement point as d = (di)i∈N ≡ 0 = (0, . . . , 0)| {z }

n times

.

Then, a bargaining problem is given by a pair (S,d) corresponding to a profile (N,X,u,d) where
u = (ui)i∈N ∈ Un and S =

©
s = (si)i∈N ∈Rn+ | ∃x ∈ X : si =

R
A ui (ai)dx (a) (∀i ∈ N)

ª
. Thus, let

(N,X,Un,d) be the available class of bargaining problems. A bargaining correspondence is defined
as a SCC F : Un ³ X such that for any u ∈ Un, F (u) 6= ∅ and the following property holds:

(1) essentially single-valuedness: for any x, y ∈ F (u), Ui (x) = Ui (y) holds for all i ∈ N ; and (2)
fullness: for any x ∈ F (u) and any y ∈ X, if Ui (x) = Ui (y) holds for all i ∈ N , then y ∈ F (u).
The Nash bargaining correspondence is a bargaining correspondence FN such that for any u ∈ Un,
FN (u) = argmaxy∈X

Q
i∈N Ui (y).

As Vartiainen (2007) shows, in such cake sharing contexts the Nash bargaining correspondence

FN violates monotonicity. Hence, this SCC is not Nash implementable. Moreover, as shown

below, it also violates no veto-power, so that Dutta and Sen (2012)’s result is silent with respect to

partially honest implementability of FN . However, FN is implementable when agents have intrinsic

preferences towards honesty, as provided in the following.

Proposition 8. Let (N,X,Un,d) be any class of bargaining problems. Then, FN does not satisfy
no veto-power, but satisfies Condition μ∗.

Proof. First, let us show that FN violates no veto-power. Let n = 3, and consider a bargaining
problem (S,d) such that S ≡ con {(0.5, 0, 0) , (0.5, 0.5, 0) , (0, 0.5, 0) , (0, 0, 1) ,0}, where conX means

the convex hull of the set X. Since S is convex, comprehensive, and compact, there is a suitable

u = (ui)i∈N ∈ Un from which S is generated as the corresponding utility possibility set, as is

well-known in the literature. Then, there is x ∈ X such that (Ui (x))i∈N = (0.5, 0.5, 0). This x
is thus the best outcome for agents 1 and 2, thus no veto-power requests that x is optimal at u.
However, x /∈ FN (u), thus FN violates no veto-power.

Second, let us show that FN satisfies Condition μ∗ by applying the algorithm. Let Y FN ≡ X,
since FN is unanimous. By the fullness and the essential single-valuedness of bargaining correspon-

dence, Ōi (x,u,u) = ∅ for all i ∈ N . Thus, by the algorithm constructed for proving Lemma 4, for

each u ∈ Un and each x ∈ FN (u), Ci (u, x) ≡ L (ui, x) ∩X for each i ∈ N . Also, by case (1.a.ii)
of the algorithm, Si (u;x,u) = {x}∪Qi (x,u,u) for all i ∈ N . Finally, to apply Lemma 4, we shall
only confirm that Si (R

∗;x,R) is non-empty for case (1.b).
Take any u∗ ∈ Un\ {u}. Suppose that there is y ∈ X such that y ∈ Ci (u, x) ⊆ L (u∗i , y)

and y ∈ maxu∗` Y F
N
for all ` ∈ N\ {i}. If y ∈ FN (u∗), then y ∈ Qi (x,u,u∗) = Si (u

∗;x,u)
by the algorithm. Let y /∈ FN (u∗). Then, for any y0 ∈ X with y0 ∈ Ci (u, x) ⊆ L (u∗i , y

0)
and y0 ∈ maxu∗` Y F

N
for all ` ∈ N\ {i}, y0 /∈ FN (u∗) holds by the fullness property of bargaining

correspondences. Hence, according to the algorithm, we have to check Vi (x,u,u
∗) 6= ∅. Let w ∈ X

be such that the probability distribution over agent i’s sharings is identical to those of y, while j

receives 0 with probability 1. Note that such a probability distribution is always available over A.

15



Thus,
R
A u

∗
i (ai)dw (a) =

R
A u

∗
i (ai)dy (a) and w /∈ maxR∗j Y F . This implies Vi (x,u,u∗) 6= ∅. The

statement follows from lemma 4.

As a direct corollary of Proposition 8 and Corollary 1, we have the following important result.

Corollary 8. Let (N,X,Un,d) be any class of bargaining problems; suppose that Assumption 1
holds. The FN ∈ F is partially honest implementable.

Note that the above proof of Proposition 8 suggests that any strictly individual rational and

unanimous bargaining correspondence defined on (N,X,Un,d) is partially honest implementable.
Thus, the Kalai-Smorodinsky correspondence is also partially honest implementable. In contrast,

partially honest implementability of non-unanimous SCCs, such as the egalitarian bargaining cor-

respondence, in bargaining problems considered here, cannot be examined by means of Condition

μ∗, since the class of such problems does not satisfy condition RD.
Finally, in this cake sharing model, we can also define an extended class of SCCs by admitting

non-bargaining SCCs. For instance, let F
N
be an essentially single-valued but non-full conrre-

spondence such that for any u ∈ Un, ∅ 6= FN (u) ⊆ FN (u) and there is a unique agent i ∈ N such

that for some u∗ ∈ Un, there is xi ∈ FN (u∗) \FN (u∗) in which all agents ` ∈ N except i enjoys

xi ∈ maxu∗` X. We may find a justification of this F
N
to exclude this xi from optimal outcomes,

based on a non-welfaristic viewpoint. It can be shown by means of Lemma 3 that for x ∈ FN (u∗),
x /∈ S` (u∗;x,u∗) holds for all ` ∈ N\ {i}. Thus, FN is partially honest implementable, but not by
forthright mechanisms.

4 Concluding remarks

While this paper sets solid foundations for implementation with partially honest agents, it falls

short in many important aspects. For example, while this paper specified the set of properties

that an SCC should satisfy in order to be partially honest implementable, the devised mechanisms

present the disadvantage of involving complex strategy spaces. In particular, strategies include

either whole preference profiles or whole indifference sets for several agents. This implies that the

message space is of infinite dimension in many economic applications. Furthermore, the components

of the strategy space do not have a straightforward economic interpretation such as consumption

bundles, allocations, and prices. Therefore, there is a need to specify the scope of the analysis

reported herein away from abstract social choice environments. In this regard, the exploration of

the rich set of implications that arise from the injection of a minimal honesty to economic agents

involved in a mechanism can take many directions. One interesting direction is explored in a recent

work of Lombardi and Yoshihara (2013a) in which implementation of efficient SCC s by natural

mechanisms is analyzed in classical exchange economies.

5 Appendix

5.1 Proof of Theorem

Let Assumption 1 hold; let n ≥ 3; let F ∈ F ; and, let us suppose that Rn satisfies RD.
Let us suppose that F is partially honestly implemented by a mechanism γ ≡ (M,g). We show

that F satisfied Condition μ∗.
First, let us define Y F as Y F ≡ {y ∈ X|y = g (m) for some m ∈ M}. Take any R ∈ Rn

and any x ∈ F (R), so that x ∈ NA
³
γ,<R,H0

´
for each H 0 ∈ H. Then, there is a strategy

mN ∈ NE ¡γ,<R,N¢ such that g ¡mN
¢
= x, given that N ∈ H. Then, {x} ⊆ g

¡
M`,m

N
−`
¢ ⊆

16



L (R`, x) ∩ Y F for each ` ∈ N . For each ` ∈ N , let us define C` (R, x) as C` (R, x) ≡ g
¡
M`,m

N
−`
¢
;

therefore, x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y F for each ` ∈ N , as required.

Fix an arbitrary R∗ ∈ Rn, and an arbitrary H ∈ H. Pick any i ∈ N . Let us define the set
Si (R

∗;x,R) as

Si (R
∗;x,R) ≡ ©g ¡mi,m

N
−i
¢ ∈ Ci (R, x) |g ¡mN

¢
= x ∈ F (R) , mi ∈ T γ

i (R
∗, F )

ª
. (5)

Obviously, Si (R
∗;x,R) is a non-empty set. Moreover, let us suppose that R = R∗ and x /∈

Si (R;x,R). Then, by (5),m
N
i /∈ T γ

i (R,F ); moreover, sincem
N ∈ NE ¡γ,<R,N¢, ¡x, g ¡mi,m

N−i
¢¢ ∈

Pi for each mi ∈ T γ
i (R,F ).

18 Since i is arbitrary, this verifies Condition μ∗(i).

In what follows, we first show that F verifies Condition μ∗(ii), and then show that it satisfies
Condition μ∗(iii) too.

To show that F satisfies Condition μ∗(ii), let us suppose that y ∈ Ci (R, x) ⊆ L (R∗i , y) and
y ∈ maxR∗` Y F for each ` ∈ N\ {i}. Then, there exists mi ∈Mi such that g

¡
mi,m

N
−i
¢
= y.

To verify Condition μ∗(ii.a), let us assume that H = {i}. Suppose that y ∈ Si (R∗;x,R).
Then, by (5), there is m0i ∈ T γ

i (R
∗, F ) such that g

¡
m0i,m

N
−i
¢
= y. It follows that

¡
m0
i,m

N
−i
¢ ∈

NE
¡
γ,<R∗,{i}

¢
; hence, y ∈ F (R∗). Next, let us assume that, y /∈ Si (R∗;x,R) and Si (R∗;x,R) ⊆

L (P ∗i , y). Then, by (5), for each m
0
i ∈ T γ

i (R
∗, F ), g

¡
m0
i,m

N
−i
¢ 6= y = g

¡
mi,m

N
−i
¢
. Assume, to

the contrary, that y /∈ F (R∗). By our suppositions, it follows that there exists m0i ∈ T γ
i (R

∗, F )
such that

¡
g
¡
m0
i,m

N
−i
¢
, g
¡
mi,m

N
−i
¢¢ ∈ I∗i ; otherwise, we fall into a contradiction. Then, by (5),

g
¡
m0
i,m

N
−i
¢ ∈ Si (R∗;x,R), which is a contradiction; hence, F satisfies Condition μ∗(ii.a.2).

To verify Condition μ∗(ii.b), let us assume that i /∈ H, H = {h}, R∗ = R, and x ∈ Sh (R;x,R).
Then, since mN ∈ NE ¡γ,<R,N¢, mN

h ∈ T γ
h (R,F ) holds. Thus, since

¡
mi,m

N
−i
¢ ∈ NE ¡γ,<R,{h}¢,

the statement follows. Hence, F satisfies Condition μ∗(ii.b).

To show that F satisfies Condition μ∗(iii), let us suppose that y ∈ maxR∗` Y F for each ` ∈ N ,
and y /∈ F (R∗). It follows that the only agents who find a profitable deviation are those in the set
H. Select any of such agents h. Moreover, by RD, let R

∗p
h ∈ Rh be such that {y} = maxR∗ph Y

F ;

and, finally, let I∗h
¡
y, Y F

¢
denotes the set {y0 ∈ Y F | (y0, y) ∈ I∗h}. Since y /∈ F (R∗), it follows that

for any m ∈ g−1 (y), m /∈ NE ¡γ,<R∗,{h}¢. Furthermore, for any m ∈ g−1 (y), mh /∈ T γ
h (R

∗, F ),
and there exists m0h ∈ T γ

h (R
∗, F ) such that (m0

h,m−h) /∈ g−1 (y), with (g (m0h,m−h) , g (m)) ∈
I∗h; otherwise, we fall into a contradiction. It cannot be that R

∗
h = R

∗p
h ; otherwise, given that

(g (m0
h,m−h) , g (m)) ∈ I∗h, (m0

h,m−h) ∈ g−1 (y), which gives us a contradiction. Therefore, R∗h 6=
R
∗p
h , as sought. Moreover, by RD,

¡
R
∗p
h , R

∗
−h
¢ ∈ Rn. For the sake of brevity, let ¡R∗ph , R∗−h¢ ≡ R∗p.

Since F is partially honestly implemented by γ, it can be shown that y ∈ NA ¡γ,<R∗p,{h}¢ =
F (R∗p). Then, there is a strategy m∗N ∈ NE ¡γ,<R∗p,N¢ such that g ¡m∗N¢ = y, given that

N ∈ H. Let us define the set Sh (R∗; y,R∗p) as

Sh (R
∗; y,R∗p) =

©
g
¡
mh,m

∗N
−h
¢ ∈ Ch (R∗p, y) |g ¡m∗N¢ = y ∈ F (R∗p) , mh ∈ T γ

h (R
∗, F )

ª
.

Since for any m ∈ g−1 (y), m /∈ NE ¡γ,<R∗,{h}¢, it follows that ¡mh,m∗N−h¢ /∈ g−1 (y) for each mh ∈
T
γ
h (R

∗, F ), and so y /∈ Sh (R∗; y,R∗p), as sought. Sincem∗N /∈ NE ¡γ,<R∗,{h}¢,m∗Nh /∈ T γ
h (R

∗, F );
otherwise, a contradiction can be derived. Moreover, there exists mh ∈ T

γ
h (R

∗, F ) such that¡
mh,m

∗N¢ /∈ g−1 (y), with ¡g ¡mh,m
∗N
−h
¢
, g
¡
m∗N

¢¢ ∈ I∗h; otherwise, we fall into a contradiction.
18 It can be shown that x ∈ Si (R;x,R) for each R ∈ Rn and each x ∈ F (R) if it is assumed that F is partially

honestly implemented by a forthright mechanism.
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Then, there exists an outcome g
¡
mh,m

∗N
−h
¢ ∈ Y F \ {y} such that g ¡mh,m∗N−h¢ ∈ Sh (R∗; y,R∗p) ∩

I∗h
¡
y, Y F

¢
, as sought. We conclude that F satisfies Condition μ∗(iii).

Next, we prove sufficiency. Suppose that F satisfies Condition μ∗. Let γ ≡ (g,M) be a
mechanism whereby for each i ∈ N , the message space is Mi ≡ (Rn ∪ S) × Y F × N , under the
specification that Y F ⊆ X, S ∩Rn = ∅, and there exists a bijection φ : Rn → S.19 Thus, each
agent i announces a preference profile, Ri, or an element of S, φ ¡Ri¢. Moreover, she announces
an outcome, xi, and an agent index, ki. For each i ∈ N , and each R ∈ Rn, the set of truth-telling
messages is T

γ
i (R,F ) = {R} × Y F ×N . Before defining the outcome function g of γ, a little more

notation is needed.

Take any R ∈ Rn, and any x ∈ F (R). Let us define a profile of strategy sets (σ` (R,x))`∈N
corresponding to x ∈ F (R) as follows:

Property I: if x ∈ Sk (R;x,R) for some k ∈ N , and x /∈ Sj (R;x,R) for each j ∈ N\ {k}, then
σk (R, x) ≡ {R}×{x}×N , and σj (R, x) ≡ {φ (R)}×{x}×N for each j ∈ N\ {k}, where φ (R) ∈ S;

Property II: otherwise, σj (R, x) ≡ {R} × {x} ×N for each j ∈ N .

For the sake of notation, let

σj1 (R,x) =

½
φ (R) if (σj (R, x))j∈N corresponds to Property I and x /∈ Sj (R;x,R) ;
R otherwise.

For any message profile m ∈M :

Rule 1 : If for some
¡
R̄, x

¢ ∈ Rn × Y F , with x ∈ F ¡R̄¢, m` ∈ σ`
¡
R̄, x

¢
for all ` ∈ N , then

g (m) = x;

Rule 2 : If for some
¡
R̄, x

¢ ∈ Rn×Y F , with x ∈ F ¡R̄¢, there exists a unique agent i ∈ N such that

m` ∈ σ`
¡
R̄, x

¢
for all ` ∈ N\ {i}, mi /∈ σi

¡
R̄, x

¢
, then:

Rule 2.1 : if Ri = R̄ = σi1
¡
R̄, x

¢
, or φ

¡
Ri
¢
= φ

¡
R̄
¢
, then g (m) = x;

Rule 2.2 : if Ri 6= R̄ or φ ¡Ri¢ 6= φ
¡
R̄
¢
, then:

g (m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi if xi ∈ Si
¡
Ri;x, R̄

¢
;

xi if xi ∈ Ci
¡
R̄, x

¢ \Si ¡Ri;x, R̄¢, Si ¡Ri;x, R̄¢ ⊆ L ¡P ii , xi¢;
y if xi ∈ Ci

¡
R̄, x

¢ \Si ¡Ri;x, R̄¢, y ∈ Si ¡Ri;x, R̄¢ ∩ Iii ¡xi¢;
z ∈ Si

¡
Ri;x, R̄

¢
otherwise;

where Iii
¡
xi
¢
=
©
y ∈ Ci

¡
R̄, x

¢ | ¡xi, y¢ ∈ Iiiª;
19The reported indices in a mechanism are used to rule out undesired equilibrium outcomes as equilibria of the

mechanism. This type of device, common in the constructive proofs of the literature, is, however, subject to criticism

on several fronts. For a systematic criticism of the use of “modulo games” and “integer games” in the literature, see

Jackson (1992). Note that these critics do not defeat the point of our theorem, which is to draw a demarcation line

between which SCC s are or are not partially honest implementable. In addition, if we do not have access to “modulo

games” nor “integer games”, the range of SCC s that can be implemented is severely limited (again, see Jackson,

1992).

18



Rule 2.3 : if Ri = R̄ 6= σi1
¡
R̄, x

¢
, then:

g (m) =

⎧⎪⎪⎨⎪⎪⎩
xi if xi ∈ Si

¡
Ri;x, R̄

¢
;

z ∈ Si
¡
Ri;x, R̄

¢
otherwise;

Rule 3 : Otherwise, g (m) = x̃`
∗(m) where `∗ (m) =

P
i∈N

ki (mod n),20 and

x̃`
∗(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x̂

if x`
∗(m) ∈ maxR̂` Y F for all ` ∈ N , where R̂ = R`

∗(m) ∈ Rn, x`∗(m) /∈ F
³
R̂
´
,

and x̂ ∈ S`∗(m)
³
R̂;x`

∗(m),
³
R̂
p
`∗(m), R̂−`∗(m)

´´
∩ Î`∗(m)

¡
x`
∗(m), Y F

¢
;

x`
∗(m) otherwise.

where Y F ⊆ L
³
R̂
p
`∗(m), x

`∗(m)
´
= L

³
R̂`∗(m), x

`∗(m)
´
, and maxR̂p

`∗(m)
Y F =

©
x`
∗(m)ª.

Observe that Rule 3 is well-defined because F satisfies Condition μ∗(iii), Rn satisfies RD, and
{`} ∈ H for all ` ∈ N .

Take any R ∈ Rn. We show that F (R) = NA
³
γ,<R,H0

´
for all H 0 ∈ H.

To show that F (R) ⊆ NA
³
γ,<R,H0

´
for all H 0 ∈ H, take any H ∈ H. Let us suppose that

x ∈ F (R). We proceed according to whether Property I is applied or not.

Case A: Property II is applied.

Then, let m` =
¡
R, x, k`

¢ ∈ T γ
` (R,F ) for each ` ∈ N . By the definition of g, the message profile

m falls into Rule 1, where σ` (R, x) ⊆ T γ
` (R,F ) for each ` ∈ N ; therefore, g (m) = x. We can show

that any deviation of agent ` ∈ N will get her to an outcome in C` (R,x) by Rule 2.1 and Rule
2.2,21 that is, g (M`,m−`) ⊆ C` (R, x); then, g (M`,m−`) ⊆ L (R`, x), by Condition μ∗. Obviously,
such deviations are not profitable for any ` ∈ N . We conclude that m ∈ NE ¡γ,<R,H¢, and so
x ∈ NA ¡γ,<R,H¢.
Case B : Property I is applied.

Then, letmk =
¡
R, x, kk

¢ ∈ σk (R, x) ⊆ T γ
k (R,F ), andmj =

¡
φ (R) , x, kj

¢ ∈ σj (R,x), for each
j ∈ N\ {k}. The corresponding message profile m falls into Rule 1, and so g (m) = x. By definition
of g, we can show that any deviation of agent i ∈ N will get her to an outcome in Ci (R, x), that is,
g (Mi,m−i) ⊆ Ci (R, x); then, g (Mi,m−i) ⊆ L (Ri, x), by Condition μ∗. Obviously, such deviations
are not profitable for any i ∈ N\H. To see that such deviations are also not profitable for any
h ∈ H\ {k} whenever h deviates to a truthful message, take any h ∈ H\ {k}. Take any deviation of
agent h from mh to m

0
h ∈ T γ

h (R,F ). This deviation will get her to an outcome in Sh (R;x,R) via
Rule 2.3. Since x /∈ Sh (R;x,R) and Condition μ∗(i) holds, such a deviation is not profitable. Since
m0
h is arbitrary, agent h cannot find any profitable deviation. We conclude that m ∈ NE

¡
γ,<R,H

¢
,

and so x ∈ NA ¡γ,<R,H¢.
20 If the remainder is zero, the winner of the game is agent n. See Saijo (1988).
21Rule 2.3 can never be induced in this case.
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Since H is arbitrary, we conclude that x ∈ NA
³
γ,<R,H0

´
for each H 0 ∈ H.

To show that NA
³
γ,<R,H0

´
⊆ F (R) for all H 0 ∈ H, fix an arbitrary H ∈ H; let m ∈

NE
¡
γ,<R,H

¢
and let us consider the following cases.

Case 1 : m corresponds to Rule 1.

Then, g (m) = x. Assume, to the contrary, that x /∈ F (R). We proceed according to whether
Property I is applied or not.

Sub-case 1.1 : Property II is applied.

Since each partially honest participant can obtain a profitable deviation via Rule 2.2 whenever

R 6= R̄, it follows that R = R̄, and so x ∈ F (R), which is a contradiction.22

Sub-case 1.2 : Property I is applied.

Then, mk =
¡
R̄, x, kk

¢ ∈ σk
¡
R̄, x

¢
, and mj =

¡
φ
¡
R̄
¢
, x, kj

¢ ∈ σj
¡
R̄, x

¢
for each j ∈ N\ {k}.

An immediate contradiction is derived if R̄ = R. Let us suppose therefore, that R̄ 6= R. We show
that this case is not admissible. First, k /∈ H; otherwise, she can obtain a profitable deviation
via Rule 2.2 by changing mk into m

0
k =

¡
R, x, kk

¢ ∈ T γ
k (R,F ), which gives us a contradiction. It

follows that H ⊆ N\ {k}. Take an arbitrary j ∈ H; by changing mj =
¡
φ
¡
R̄
¢
, x, kj

¢
/∈ T γ

j (R,F )

into m0
j =

¡
R, x, kj

¢ ∈ T γ
j (R,F ), agent j obtains a profitable deviation via Rule 2.2, which gives

us a contradiction. Since j ∈ H is an arbitrary agent, and H ⊆ N\ {k}, it follows that H is an

empty set, which is a contradiction.

Case 2 : m corresponds to Rule 2.

Then, g (m) ∈ Ci
¡
R̄, x

¢
. Since m cannot correspond to Rule 2.3, m falls either into Rule 2.1

or Rule 2.2.

Case 2.1 : m corresponds to Rule 2.1.

Then, g (m) = x. Assume, to the contrary, that x /∈ F (R). We proceed according to whether
Property I is applied or not.

Case 2.1.a: Property II is applied.

Then, R̄ = σi1
¡
R̄, x

¢
. Let us suppose that R 6= R̄. Then, agent ` ∈ H\ {i} (resp., i ∈ H)

can induce Rule 3 (resp., Rule 2.2 ) by changing m` /∈ T γ
` (R,F ) (resp., mi /∈ T γ

i (R,F )) into
m0
` =

¡
R, x, k`

¢ ∈ T γ
` (R,F ) (resp., m

0
i =

¡
R, x, ki

¢ ∈ T γ
i (R,F )) - with the caution that agent

` chooses k` so as to win the modulo game. In this way, agent ` (resp., i) obtains an outcome

g (m0
`,m−`) (resp., g (m

0
i,m−i)) such that (g (m

0
`,m−`) , x) ∈ I` (resp., (g (m0i,m−i) , x) ∈ Ii), which

gives us a contradiction. We conclude that R = R̄, and so x ∈ F (R), which is a contradiction.

Case 2.1.b: Property I is applied.

Then, σ1k
¡
R̄, x

¢
= R̄, and σ1j

¡
R̄, x

¢
= φ

¡
R̄
¢
for each j ∈ N\ {k}. First, notice that for the

unique agent i identified by Rule 2, either σ1i
¡
R̄, x

¢
= R̄ or σ1i

¡
R̄, x

¢
= φ

¡
R̄
¢
. Next, let us

suppose that R 6= R̄. Let us also suppose that k ∈ H. Then, by changing mk /∈ T γ
k (R,F ) into

m0
k =

¡
R, x, kk

¢ ∈ T γ
k (R,F ), agent k 6= i (resp., k = i ) can induce Rule 3 (resp., Rule 2.2 ) - with

the caution that agent k chooses kk so as to win the modulo game if Rule 3 is triggered. In this

way, agent k obtains an outcome g (m0k,m−k) such that (g (m
0
k,m−k) , x) ∈ Ik, which gives us a

contradiction. Therefore, H ⊆ N\ {k}, otherwise, we fall into a contradiction. Take an arbitrary
22Rule 2.2 always applies to (m−h,m0

h) since by our contradiction hypothesis x /∈ F (R), and so the profile of
strategy sets (σj (R,x))j∈N is not defined when a partially honest agent h ∈ H deviates from mh tom

0
h =


R,x, kh

 ∈
T
γ
h (R,F ). We caution the reader that similar reasoning applies below.
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j ∈ H; by changing mj /∈ T γ
j (R,F ) into m

0
j =

¡
R, x, kj

¢ ∈ T γ
j (R,F ), agent j 6= i (resp., j = i ) can

induce Rule 3 (resp., Rule 2.2 ) - with the caution that agent j chooses kj so as to win the modulo

game if the modulo game is triggered. In this way, agent j obtains an outcome g
³
m0j ,m−j

´
such

that
³
g
³
m0
j ,m−j

´
, x
´
∈ Ij , which gives us a contradiction. Since j ∈ H is an arbitrary agent, and

H ⊆ N\ {k}, it follows that H is an empty set, which is a contradiction. Hence, R̄ = R, and so

x ∈ F (R), which is a contradiction.

Case 2.2 : m corresponds to Rule 2.2.

In what follows, we first show that Y F ⊆ L (R`, g (m)) for each ` ∈ N\ {i}, and then we show
that Ci

¡
R̄, x

¢ ⊆ L (Ri, g (m)).
To show that Y F ⊆ L (R`, g (m)) for each ` ∈ N\ {i}, take an arbitrary ` ∈ N\ {i} and an

arbitrary x0 ∈ Y F . Since m falls into Rule 2.2, Ri 6= R̄ or φ
¡
Ri
¢ 6= φ

¡
R̄
¢
. By changing m` into

m0
` =

¡
φ
¡
Ri
¢
, x0, k`

¢
/∈ σ`

¡
R̄, x

¢
, agent ` can induce Rule 3. To attain x0, agent ` has only to

adjust k` so as to win the modulo game. Since x0 is arbitrary, Y F ⊆ g (M`,m−`). Moreover, since
m ∈ NE ¡γ,<R,H¢, it follows that Y F ⊆ L (R`, g (m)). Since ` is an arbitrary agent in N\ {i},
Y F ⊆ L (R`, g (m)) for each ` ∈ N\ {i}.

Next, to show that Ci
¡
R̄, x

¢ ⊆ L (Ri, g (m)), we proceed according to whether R = R̄ or

not. First, let us notice that agent i can induce Rule 1 and obtain x by announcing either m0i =¡
R̄, x, ki

¢
or m0

i =
¡
φ
¡
R̄
¢
, x, ki

¢
. Let us suppose that R 6= R̄. Agent i can change mi into

m0
i =

¡
φ (R) , xi, ki

¢
so as to obtain g (m0

i,m−i) = x
i if xi ∈ Si

¡
R;x, R̄

¢
, by Rule 2.2. Therefore,

Si
¡
R;x, R̄

¢ ∪ {x} ⊆ g (Mi,m−i), and so, by our suppositions, Si
¡
R;x, R̄

¢ ∪ {x} ⊆ L (Ri, g (m)).
Assume, to the contrary, that there exists xi ∈ Ci

¡
R̄, x

¢ \Si ¡R;x, R̄¢ such that xi /∈ L (Ri, g (m)),
so that

¡
xi, g (m)

¢ ∈ Pi. By transitivity, Si
¡
Ri;x, R̄

¢ ∪ {x} ⊆ L
¡
Pi, x

i
¢
. Then, agent i can

change mi into m
0
i =

¡
φ (R) , xi, ki

¢
so as to obtain g (m0

i,m−i) = x
i, by Rule 2.2, which gives us a

contradiction. Therefore, Ci
¡
R̄, x

¢ ⊆ L (Ri, g (m)) if R 6= R̄. Let us suppose that R = R̄. Then,
(x, g (m)) ∈ Ri. Moreover, since {x} ⊆ g (Mi,m−i), and, by our suppositions, (g (m) , x) ∈ Ri,
it follows that (x, g (m)) ∈ Ii. Assume, to the contrary, that there exists xi ∈ Ci (R,x) such
that xi /∈ L (Ri, g (m)), so that

¡
xi, g (m)

¢ ∈ Pi. By transitivity, ¡xi, x¢ ∈ Pi, which gives us a
contradiction. We conclude that Ci

¡
R̄, x

¢ ⊆ L (Ri, g (m)).
Next, we show that g (m) ∈ F (R). Assume, to the contrary, that g (m) /∈ F (R). We proceed

according to whether Property I is applied or not. First, let us notice that the profile of strategy

sets (σj (R, g (m)))j∈N is not defined, given our contradiction hypothesis.

Case 2.2.a: Property II is applied.

Then, σj1
¡
R̄, x

¢
= R̄ for all j ∈ N . Let us suppose that mh /∈ T γ

h (R,F ) for some h ∈ H\ {i}
- where agent i is the agent identified by Rule 2. By changing mh into m

0
h =

¡
R, g (m) , kh

¢ ∈
T
γ
h (R,F ), agent h can induce Rule 3 - regardless of whether agent i is announcing the true prefer-
ence profile or not, and whether g (m) = x or not. It is true even if#N = 3 andmi =

¡
R, g (m) , ki

¢
,

since g (m) /∈ F (R) by supposition. To attain g (m) or an outcome which is indifferent to g (m)
according to her true preferences, agent h has only to adjust kh so as to win the modulo game,

which gives us a contradiction. Therefore, mh ∈ T γ
h (R,F ) for each h ∈ H\ {i}. In what follows,

we proceed according to whether #H > 1 and i ∈ H or not.

Sub-case 2.2.a.1: #H > 1 and i ∈ H.
Then, R = R̄, x ∈ F (R), and (x, g (m)) ∈ Ii. Since m falls into Rule 2.2, mi /∈ T γ

i (R,F ).
Therefore, agent i can deviate to m0i =

¡
R, x, ki

¢ ∈ T γ
i (R,F ) so that Rule 1 applies to (m

0
i,m−i) -

recall that Property II is applied; then, g (m0
i,m−i) = x, which gives us a contradiction.
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Sub-case 2.2.a.2: not[#H > 1 and i ∈ H].
Let us suppose that H = {i}. Let us first notice that R 6= R̄; otherwise, x ∈ F (R), (x, g (m)) ∈

Ii, and a contradiction can be derived by applying the reasoning used in Sub-case 2.2.a.1. Further-

more, mi ∈ T γ
i (R,F ); otherwise, agent i can deviate to m

0
i =

¡
R, g (m) , ki

¢ ∈ T γ
i (R,F ) so as to

obtain (g (m) , g (m−i,m0i)) ∈ Ii, by Rule 2.2, which gives us a contradiction. Let us suppose that
g (m) ∈ Si

¡
R;x, R̄

¢
. Then, Condition μ∗(ii.a) implies that g (m) ∈ F (R), which is a contradiction.

Then, let us assume that g (m) /∈ Si
¡
R;x, R̄

¢
. By definition of g, g (m) ∈ Ci

¡
R̄, x

¢ \Si ¡R;x, R̄¢ and
Si
¡
R;x, R̄

¢ ⊆ L (Pi, g (m)); Condition μ∗(ii.a) implies that g (m) ∈ F (R), which is a contradiction.
Let us suppose that #H ≥ 1 and i /∈ H. Then, R = R̄. Let us suppose that x /∈ Si (R;x,R).

Then, g (m) /∈ Si (R;x,R); otherwise, since Condition μ∗(i) holds, agent i can find a profitable devi-
ation by inducing Rule 1, which gives us a contradiction. Thus, since {i} ∈ H holds, (x, g (m)) ∈ Ii,
Condition μ∗(i), and Condition μ∗(ii.a) together imply that g (m) ∈ F (R), which is a contradiction.
Therefore, let us suppose that x ∈ Si (R;x,R). Since, by our supposition, Property II is applied,
x ∈ S` (R;x,R) for some ` ∈ N\ {i}. Since {`} ∈ H, Condition μ∗(ii.b) implies that g (m) ∈ F (R),
which is a contradiction.

Case 2.2.b: Property I is applied.

Then, σ1k
¡
R̄, x

¢
= R̄, and σ1j

¡
R̄, x

¢
= φ

¡
R̄
¢
for each j ∈ N\ {k}. First, let us notice that agent

k may or may not coincide with agent i identified by Rule 2 ; second, since, by our contradiction

hypothesis, g (m) /∈ F (R), it follows that R 6= R̄ or g (m) 6= x. Finally, by our contradiction

hypothesis, the profile of strategy sets (σj (R, g (m)))j∈N is not defined.
Let us suppose that there exists j ∈ N\ {i, k} such that j ∈ H. Then, mj /∈ T γ

j (R,F ). By

changing mj into m
0
j =

¡
R, g (m) , kj

¢ ∈ T γ
j (R,F ), agent j can induce Rule 3 - regardless of

whether i = k or not. To attain g (m) or an outcome which is indifferent to g (m) according to
her true preferences, agent j has only to adjust kj so as to win the modulo game, which gives us a

contradiction. Since j is arbitrary, we conclude that H ⊆ {i, k}. We proceed according to whether
i 6= k or not.

Sub-case 2.2.b.1: i 6= k.
Then, x /∈ Si

¡
R;x, R̄

¢
. We proceed according to whether R̄ = R or not.

Let us suppose that R̄ = R. Then, g (m) /∈ Si (R;x,R); otherwise, since x /∈ Si (R;x,R) and
Condition μ∗(i) hold, by changing mi into m0

i ∈ σi (R, x), agent i can obtain x via Rule 1, which
gives us a contradiction. Thus, since {i} ∈ H holds, (x, g (m)) ∈ Ii, Condition μ∗(i), and Condition
μ∗(ii.a) together imply that g (m) ∈ F (R), which is a contradiction.

Let us suppose that R̄ 6= R. Let us suppose that k ∈ H. By changing mk into m
0
k =¡

R, g (m) , kk
¢ ∈ T γ

k (R,F ), agent k can induce Rule 3. To attain g (m) or an outcome which
is indifferent to g (m) according to her true preferences, agent k has only to adjust kk so as
to win the modulo game, which gives us a contradiction. Therefore, k /∈ H. Since H ∈ H
and H ⊆ {i, k}, it follows that H = {i}. Let us suppose that mi /∈ T

γ
i (R,F ). By chang-

ing mi into m
0
i =

¡
R, g (m) , ki

¢ ∈ T γ
i (R,F ), agent i obtains an outcome g (m−i,m

0
i) such that

(g (m−i,m0i) , g (m)) ∈ Ii, by Rule 2.2, which gives us a contradiction. Hence, mi ∈ T γ
i (R,F ).

Let us suppose that g (m) ∈ Si
¡
R;x, R̄

¢
. Then, Condition μ∗(ii.a) implies that g (m) ∈ F (R),

which is a contradiction. Then, let us suppose that g (m) /∈ Si
¡
R;x, R̄

¢
. By definition of g,

g (m) ∈ Ci
¡
R̄, x

¢ \Si ¡R;x, R̄¢ and Si ¡R;x, R̄¢ ⊆ L (Pi, g (m)); Condition μ∗(ii.a) implies that
g (m) ∈ F (R), which is a contradiction.

Sub-case 2.2.b.2: i = k.
Then, H = {i}, given that H ⊆ {i, k}. Let us suppose that R̄ = R. Then, (g (m) , x) ∈ Ii;

moreover, mi /∈ T γ
i (R,F ). By changing mi into m

0
i =

¡
R, x, ki

¢ ∈ T γ
i (R,F ) ∩ σi (R, x), agent i

can attain x via Rule 1, which gives us a contradiction. Therefore, let us suppose that R̄ 6= R. By
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the same arguments used in Sub-case 2.2.b.1, when R̄ 6= R, it can be shown that mi ∈ T γ
i (R,F ).

Condition μ∗(ii.a) implies that g (m) ∈ F (R), which is a contradiction.

Case 3: m corresponds to Rule 3.

It can be shown that for each ` ∈ N , Y F ⊆ L (R`, g (m)) - see addendum. To show that

g (m) ∈ F (R), assume, to the contrary, that g (m) /∈ F (R). Given that {`} ∈ H for ` ∈ N , let us
consider the case {`∗ (m)} = Ĥ. Let us suppose that m`∗(m) /∈ T γ

`∗(m) (R,F ). By changing m`∗(m)

into m0
`∗(m) =

¡
R, g (m) , k`

∗(m)¢ ∈ T γ
`∗(m) (R,F ), agent `

∗ (m) can induce Rule 3 - the reason being
that m0`∗(m) /∈ σ`∗(m) (R

0, x0) for all (R0, x0) ∈ Rn × Y F , with x0 ∈ F (R0), combined with our
suppositions that g (m) /∈ F (R) and Rule 3 applies to m. To attain g (m) or an outcome which is
indifferent to g (m) according to her true preferences, agent `∗ (m) has only to adjust k`∗(m) so as
to win the modulo game, which gives us a contradiction. Thus, m`∗(m) ∈ T γ

`∗(m) (R,F ).
We proceed according to whether or not the following requirements are met:

x`
∗(m) ∈ max

R`
Y F for all ` ∈ N , (6)

x`
∗(m) /∈ F (R) , and (7)

S`∗(m)

³
R;x`

∗(m), Rp
´
∩ I`∗(m)

³
x`
∗(m), Y F

´
6= ∅, (8)

where R = R`
∗(m), and Rp =

³
R
p
`∗(m), R−`∗(m)

´
, with maxRp

`∗(m)
Y F =

©
x`
∗(m)ª.

Let us suppose that requirements (6)-(8) are met. Then, let us suppose that x̂ ∈ S`∗(m)(R;x`∗(m), Rp)∩
I`∗(m)

¡
x`
∗(m), Y F

¢
; therefore, g (m) = x̂, by Rule 3. Since Rn satisfies RD, Rp ∈ Rn. Since¡

y0, x`∗(m)
¢
/∈ Ip`∗(m) for all y0 ∈ Y F\

©
x`
∗(m)ª, Condition μ∗(iii) implies that x`∗(m) ∈ F (Rp). Con-

dition μ∗(ii.a), in turn, implies that x̂ = g (m) ∈ F (R), which is a contradiction. Therefore, let us
suppose that at least one of the requirements listed above is not met. Then, g (m) = x`

∗(m), by

Rule 3, and so requirement (6) is met; furthermore, by our contradiction hypothesis, requirement

(7) is met as well. Finally, Condition μ∗(iii) implies that (8) is met too, producing a contradiction.

As the above arguments hold for any H ∈ H and any R ∈ Rn, the statement follows.

5.2 Proofs of Lemmata

Proof of Lemma 1. Suppose that the premises hold. Take any x ∈ Y F . Assume, to the contrary,
that x /∈ Ȳ F . Then, by (1), for some R ∈ Rn, X ⊆ L (R`, x) for all ` ∈ N , and x /∈ F (Rn). Since for
any i ∈ N , (Rpi , R−i) ∈ Rn by RD, Condition μ∗(iii) implies x ∈ F (Rpi , R−i) ⊆ F (Rn), producing
a contradiction. This completes the proof of part (i). To prove part (ii), take any R ∈ Rn and any
x ∈ Ȳ F ; and suppose that x ∈ maxR` Ȳ F for all ` ∈ N . By (1), x ∈ F (Rn), and x ∈ maxR` Y F for
all ` ∈ N by part (i). Condition μ∗(iii) implies that x ∈ F (Rpi , R−i) for all i ∈ N , as sought.

Proof of Lemma 2. Suppose that the premises hold. Assume, to the contrary, that for any

y ∈ L (Ri, x), with (y, x) ∈ R∗i , y /∈ F (R∗) and y ∈ maxR∗` Ȳ F for all ` ∈ N\ {i}. Since F satisfied
Condition μ∗ and R∗i is an ordering, there exists z ∈ Ci (R, x) ⊆ L (R∗i , z). Condition μ∗(ii.a)
implies that z /∈ Si (R∗;x,R), and there exists y ∈ Si (R∗;x,R) such that (y, z) ∈ I∗i , so that
y ∈ Ci (R,x) ⊆ L (R∗i , y). Condition μ∗(ii.a) implies that y ∈ F (R), which is a contradiction.

Proof of Lemma 3. Suppose that the premises hold, with y ∈ Oi (x,R,R). Then, (x, y) ∈ Ii and
x 6= y. Moreover, Condition μ∗(ii.a) implies that y /∈ Si (R;x,R) and there exists z ∈ Si (R;x,R)
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such that (z, y) ∈ Ii. Then, (x, z) ∈ Ii. If x = z, then x ∈ Si (R;x,R); otherwise, Condition μ∗(i)
implies that x ∈ Si (R;x,R). Since y /∈ F (R), Condition μ∗(ii.b) implies that x /∈ S` (R;x,R)
for ` ∈ N\ {i}. Then, Condition μ∗(i) implies that S` (R;x,R) ⊆ L (P`, x). Finally, since x /∈
S` (R;x,R), it is also plain by the above arguments that the set O` (x,R,R) is empty.

Proof of Lemma 4. Suppose that the premises hold. Take any F ∈ F . Consider the above
construction of the sets specified by Condition μ∗. It is plain that F satisfies Condition μ∗(i). Take
any R,R∗ ∈ Rn, with x ∈ F (R), and any i ∈ N , and suppose that y ∈ Ci (R,x) ⊆ L (R∗i , y) and
y ∈ maxR∗` Y F for all ` ∈ N\ {i}. We proceed according to whether R = R∗ or not.

Suppose that R = R∗, so that (x, y) ∈ Ii. Suppose that there is a unique agent j ∈ N\ {i}
such that Ōj (x,R,R) 6= ∅. Then, x /∈ Si (R;x,R), Si (R;x,R) = L (Pi, y), and Sj (R;x,R) ≡
{x} ∪Qj (x,R,R). Since the set Ōi (x,R,R) = ∅, (2) implies that y ∈ F (R), which is consistent
with Condition μ∗(ii).

Suppose that agent j = i. Then, x /∈ S` (R;x,R) for all ` ∈ N\ {i} and x ∈ Si (R;x,R) ≡
{x} ∪ Qi (x,R,R). Suppose that y ∈ Ōi (x,R,R). Then, y 6= x, y /∈ Si (x,R,R) by (3), and
(y, x) ∈ Ii, which is consistent with Condition μ∗(ii.a). Suppose that y /∈ Ōi (x,R,R). Then, (3)
implies that y ∈ Si (x,R,R), which is consistent with Condition μ∗(ii.a). Note that the construction
is consistent with Condition μ∗(ii.b) too.

Suppose that Ōj (x,R,R) = ∅ all j ∈ N . Then, Si (R;x,R) = {x}∪Qi (x,R,R). Since the set
Ōi (x,R,R) = ∅, (2) and (3) imply y ∈ Qi (R;x;R), which is consistent with Condition μ∗(ii).

Suppose there are at least two agents j, k ∈ N , j 6= k, such that Ōj (x,R,R) 6= ∅ 6= Ōk (x,R,R).
We observe that y /∈ Ōi (x,R,R), so that (2) and (3) imply that y ∈ Qi (x,R,R), which is consistent
with Condition μ∗(ii).

Suppose that R 6= R∗. Suppose that Si (R
∗;x,R) = Qi (x,R,R

∗) 6= ∅. It is plain that

Condition μ∗(ii.a) is satisfied if y ∈ Qi (x,R,R∗). Then, suppose that y ∈ Ci (R, x) \Qi (x,R,R∗).
Since Qi (x,R,R

∗) 6= ∅, (3) implies that there exists z ∈ Qi (x,R,R∗) such that (z, y) ∈ I∗i , which
is consistent with Condition μ∗(ii). Suppose that Qi (x,R,R∗) = ∅, so that y ∈ Ōi (x,R,R∗) and
Si (R

∗;x,R) = Vi (x,R,R∗) 6= ∅. By definition (4), y /∈ Vi (x,R,R∗). Since Vi (x,R,R∗) 6= ∅, (4)
implies that there exists z ∈ Vi (x,R,R∗) such that (z, y) ∈ I∗i , which is consistent with Condition
μ∗(ii).

To check Condition μ∗(iii), take any R,R∗ ∈ Rn, with x ∈ F (R), and suppose that y ∈
maxR∗` Y

F for all ` ∈ N . Then, by the supposition (ii) of the statement, y ∈ F ¡R∗−i, R∗pi ¢ for
i ∈ N . Fix any i ∈ N , and let

¡
R∗−i, R

∗p
i

¢ ≡ R∗p for the sake of brevity. (2) implies that

Ō` (y,R
∗p, R∗p) = ∅ for all ` ∈ N . Then, Ci (R

∗p, y) = L
¡
R
∗p
i , y

¢ ∩ Y F ⊇ Y F . Therefore,

either Si (R
∗; y,R∗p) = Qi (y,R∗p, R∗) or Si (R∗; y,R∗p) = Vi (y,R∗p, R∗) by the above construction.

Moreover, y /∈ Vi (y,R∗p, R∗). Condition μ∗(iii) is satisfied if y ∈ F (R∗). Then, suppose that
y /∈ F (R∗), so that y /∈ Qi (y,R∗p, R∗). Since Qi (y,R∗p, R∗) ∪ Vi (y,R∗p, R∗) 6= ∅, there exists z ∈
Qi (y,R

∗p, R∗)∪Vi (y,R∗p, R∗) such that (y, z) ∈ I∗i . Since Si (R∗; y,R∗p) 6= ∅, z ∈ Si (R∗; y,R∗p)∩
I∗i
¡
y, Y F

¢
, which is consistent with Condition μ∗(iii). This completes the proof.
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1 Completion of the Proof of the Case 3 of Theorem

Case 3: m corresponds to Rule 3.
Let us show that for each ` ∈ N , Y F ⊆ L (R`, g (m)). Take an arbitrary i ∈ N . We proceed

according to whether x` = x for all ` ∈ N\ {i} or not. Before proceeding, a little more notation is
needed. Let us denote the first component of the message m` as m`1 ∈ Rn ∪ S.

Sub-case 3.1: x` = x ∈ Y F for all ` ∈ N\ {i}.
Let us suppose that x /∈ F (R). Take any x′ ∈ Y F . By changing mi into m′i =

(
φ (R) , x′, ki

)
,

agent i induces Rule 3. To attain x′, agent i has only to adjust ki so as to win the modulo game.
We conclude that Y F ⊆ g (Mi,m−i). Therefore, in what follows, let us suppose that x ∈ F (R).

Sub-case 3.1.a: m`1 = R (resp., m`1 = φ (R)) for each ` ∈ N\ {i}.
Then, for the case m`1 = R for each ` ∈ N\ {i}, Property I must be applied to x ∈ F (R);

otherwise, we fall into a contradiction. On the other hand, for the case m`1 = φ (R) for each
` ∈ N\ {i}, Property I can be applied to x ∈ F (R), under the specification that agent k identified
by this property differs from i; otherwise, we fall into a contradiction. Take any x′ ∈ Y F \ {x}.

For the case m`1 = R for each ` ∈ N\ {i}, by changing mi into m′i =
(
φ (R) , x′, ki

)
, agent i

induces Rule 3. To attain x′, agent i has only to adjust ki so as to win the modulo game. To
attain x, agent i has only to adjust ki so that agent ` ∈ N\ {i} wins the modulo game. We
conclude that Y F ⊆ g (Mi,m−i). For the case m`1 = φ (R) for each ` ∈ N\ {i}, by changing mi

into m′i =
(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain x′, agent i has only to adjust ki so as

to win the modulo game. To attain x, agent i has only to adjust ki so that agent ` ∈ N\ {i} wins
the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.1.b: m`1 6= R (resp., m`1 6= φ (R)) for some ` ∈ N\ {i}.
Let us define the set NR (resp., Nφ(R)) as NR ≡ {` ∈ N\ {i} |m`1 6= R} (resp., Nφ(R) ≡

{` ∈ N\ {i} |m`1 6= φ (R)}). We proceed according to whether #NR > 1 (resp., #Nφ(R) > 1)
or not.

Sub-case 3.1.b.1: #NR = 1 (resp., #Nφ(R) = 1).

Sub-case 3.1.b.1.1: mj1 = φ (R) (resp., mj1 = R) for j ∈ NR (resp., j ∈ Nφ(R)).
Let us suppose that Property I applies to x ∈ F (R). Then, for the case mj1 = φ (R), agent k

identified by this property cannot coincides with agent ` ∈ N\
(
NR ∪ {i}

)
if #N\

(
NR ∪ {i}

)
= 1;

otherwise, we fall into a contradiction. Moreover, for the case mj1 = R, agent k identified by
Property I cannot coincides with agent j ∈ Nφ(R); otherwise, we fall into a contradiction. Next,
take any x′ ∈ Y F \ {x}. By changing mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain

x′, agent i has only to adjust ki so as to win the modulo game. To attain x, agent i has only
to adjust ki so that agent j ∈ NR (resp., j ∈ Nφ(R)) wins the modulo game. We conclude that
Y F ⊆ g (Mi,m−i).

Let us suppose that Property II applies to x ∈ F (R). Take any x′ ∈ Y F \ {x}. By changing
mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain x′, agent i has only to adjust ki so

as to win the modulo game. To attain x, agent i has only to adjust ki so that agent j ∈ NR (resp.,
j ∈ Nφ(R)) wins the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.1.b.1.2: mj1 6= φ (R) (resp., mj1 6= R) for j ∈ NR (resp., j ∈ Nφ(R)).
Take any x′ ∈ Y F \ {x}. By changing mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3. To

attain x′ ∈ Y F , agent i has only to adjust ki so as to win the modulo game. To attain x, agent
i has only to adjust ki so that agent ` ∈ N\

(
NR ∪ {i}

)
(resp., ` ∈ N\

(
Nφ(R) ∪ {i}

)
) wins the

modulo game. We conclude that Y F ⊆ g (Mi,m−i).
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Sub-case 3.1.b.2: #NR > 1 (resp., #Nφ(R) > 1).

Sub-case 3.1.b.2.1: mj1 = φ (R) (resp., mj1 = R) for all j ∈ NR (resp., j ∈ Nφ(R)).
The proof follows from Sub-case 3.1.a and Sub-case 3.1.b.1.1 if n − 2 ≤ #NR ≤ n − 1 (resp.,

n−2 ≤ Nφ(R) ≤ n−1). Therefore, let us suppose that 1 < #NR < n−2 (resp., 1 < Nφ(R) < n−2).
Therefore, n ≥ 4.

Let us suppose that Property I applies to x ∈ F (R). Then, agent k identified by this property
cannot coincides with agent ` ∈ N\

(
NR ∪ {i}

)
if #N\

(
NR ∪ {i}

)
= 1; otherwise, we fall into a

contradiction. Next, take any x′ ∈ Y F \ {x}. By changing mi into m′i =
(
φ (R) , x′, ki

)
, agent i

induces Rule 3. To attain x′, agent i has only to adjust ki so as to win the modulo game. To attain
x, agent i has only to adjust ki so that agent j ∈ NR (resp., j ∈ Nφ(R)) wins the modulo game.
We conclude that Y F ⊆ g (Mi,m−i).

Let us suppose that Property II applies to x ∈ F (R). Take any x′ ∈ Y F \ {x}. By changing
mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain x′, agent i has only to adjust ki so

as to win the modulo game. To attain x, agent i has only to adjust ki so that agent j ∈ NR (resp.,
j ∈ Nφ(R)) wins the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.1.b.2.2: mj1 6= φ (R) (resp., mj1 6= R) for some j ∈ NR (resp., j ∈ Nφ(R)).
Then, there exists j ∈ NR (resp., j ∈ Nφ(R)) such that mj1 /∈ {R,φ (R)}. Take any x′ ∈

Y F \ {x}. By changing mi into m′i =
(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain x′, agent i

has only to adjust ki so as to win the modulo game.
To show that agent i can also attain x, let us proceed according to whether #NR = n − 1

(resp., #Nφ(R) = n − 1) or not. Let us suppose that #NR 6= n − 1 (resp., #Nφ(R) 6= n − 1).
Then, there exists ` ∈ N such that m`1 = R (resp., m`1 = φ (R)). Take any x′ ∈ Y F \ {x}. Let
us suppose that Property I applies to x ∈ F (R). By changing mi into m′i =

(
R, x′, ki

)
(resp.,

m′i =
(
φ (R) , x′, ki

)
), agent i induces Rule 3. To attain x, agent i has only to adjust ki so as agent

` wins the modulo game. Let us suppose that Property II applies to x ∈ F (R). By changing mi

into m′i =
(
φ (R) , x, ki

)
, agent i induces Rule 3. To attain x, agent i has only to adjust ki so as

to win the modulo game. Therefore, let us suppose that #NR = n − 1 (resp., #Nφ(R) = n − 1).
By changing mi into m′i =

(
φ (R) , x, ki

)
, agent i induces Rule 3. To attain x, agent i has only to

adjust ki so as to win the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.2: x` 6= xj ∈ Y F for some j, ` ∈ N\ {i}, with j 6= `.
We proceed according to the following exhaustive cases:

{
x`, xj

}
∩ F (R) = ∅,

#
{{
x`, xj

}
∩ F (R)

}
= 1, and

{
x`, xj

}
⊆ F (R).

Sub-case 3.2.a:
{
x`, xj

}
∩ F (R) = ∅.

Take any x′ ∈ Y F . By changing mi into m′i =
(
φ (R) , x′, ki

)
, agent i induces Rule 3. To attain

x′, agent i has only to adjust ki so as to win the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.2.b: x` ∈ F (R) and xj /∈ F (R).1
Take any x′ ∈ Y F \

{
x`
}
. By changing mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3. To

attain x′, agent i has only to adjust ki so as to win the modulo game. To show that agent i can
also attain x`, let us proceed according to whether Property I applies to x` ∈ F (R) or not.

Let us suppose that Property I applies to x` ∈ F (R). Let us suppose that agent k identified
by Property I coincides with agent i. Then, by changing mi into m′i =

(
φ (R) , x`, ki

)
, agent i

induces Rule 3. To attain x`, agent i has only to adjust ki so as to win the modulo game. Let
us suppose that agent k identified by Property I belongs to N\ {i}. Then, by changing mi into

1The case xj ∈ F (R) and x` /∈ F (R) is not explicitly considered, since it can be proved similarly to the case
x` ∈ F (R) and xj /∈ F (R).
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m′i =
(
R, x`, ki

)
, agent i induces Rule 3. To attain x`, agent i has only to adjust ki so as to win

the modulo game. We conclude that Y F ⊆ g (Mi,m−i).
Let us suppose that Property II applies to x` ∈ F (R). Then, by changing mi into m′i =(

φ (R) , x`, ki
)
, agent i induces Rule 3. To attain x`, agent i has only to adjust ki so as to win the

modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.2.c:
{
x`, xj

}
⊆ F (R).

Take any x′ ∈ Y F \
{
x`, xj

}
. By changing mi into m′i =

(
φ (R) , x′, ki

)
, agent i induces Rule 3.

To attain x′, agent i has only to adjust ki so as to win the modulo game. To show that agent i can
also attain x` and xj , let us proceed according to whether or not Property I applies to x` ∈ F (R)
and xj ∈ F (R). Before proceeding, a little more notation is needed. Let kx` (resp., kxj ) denote
the agent k identified by Property I for x` ∈ F (R) (resp., xj ∈ F (R)).

Sub-case 3.2.c.1: Property I applies to both x` ∈ F (R) and xj ∈ F (R).
We proceed according to whether or not kx` = i and kxj = i.2

Let us suppose that kx` = kxj = i. Then, by changing mi into m′i =
(
φ (R) , x`, ki

)
(resp.,

m′i =
(
φ (R) , xj , ki

)
), agent i induces Rule 3. To attain x` (resp., xj), agent i has only to adjust ki

so as to win the modulo game.
Let us suppose that kx` = i and kxj 6= i. Then, by changing mi into m′i =

(
φ (R) , x`, ki

)
(resp.,

m′i =
(
R, xj , ki

)
), agent i induces Rule 3. To attain x` (resp., xj), agent i has only to adjust ki so

as to win the modulo game.
Let us suppose that kx` 6= i and kxj 6= i. Then, by changing mi into m′i =

(
R, x`, ki

)
(resp.,

m′i =
(
R, xj , ki

)
), agent i induces Rule 3. To attain x` (resp., xj), agent i has only to adjust ki so

as to win the modulo game.
We conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.2.c.2: Property II applies to both x` ∈ F (R) and xj ∈ F (R).
Then, by changing mi into m′i =

(
φ (R) , x`, ki

)
(resp., m′i =

(
φ (R) , xj , ki

)
), agent i induces

Rule 3. To attain x` (resp., xj), agent i has only to adjust ki so as to win the modulo game. We
conclude that Y F ⊆ g (Mi,m−i).

Sub-case 3.2.c.3: Property I applies to x` ∈ F (R) and Property II applies to xj ∈ F (R).3
Let us suppose that kx` = i. Then, by changing mi into m′i =

(
φ (R) , x`, ki

)
(resp., m′i =(

φ (R) , xj , ki
)
), agent i induces Rule 3. To attain x` (resp., xj), agent i has only to adjust ki so as

to win the modulo game.
Let us suppose that kx` 6= i. Then, by changing mi into m′i =

(
R, x`, ki

)
(resp., m′i =(

φ (R) , xj , ki
)
), agent i induces Rule 3. To attain x` (resp., xj), agent i has only to adjust ki

so as to win the modulo game. We conclude that Y F ⊆ g (Mi,m−i).

Since agent i ∈ N is arbitrary, Y F ⊆ g (Mi,m−i) for each i ∈ N . Furthermore, by our
supposition that m ∈ NE

(
γ,<R,H

)
, it follows that Y F ⊆ L (Ri, g (m)) for each i ∈ N .

2The case kx` 6= i and kxj = i is not explicitly considered, since it can be proved similarly to the case kx` = i and
kxj 6= i.

3The case Property II applies to x` ∈ F (R) and Property I applies to xj ∈ F (R) is not explicitly considered,
since it can be proved similarly to the case Property I applies to x` ∈ F (R) and Property II applies to xj ∈ F (R).
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