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Abstract
This paper studies compact and comprehensive bargaining prob-

lems for n players and axiomatically characterize the extensions of the
three classical bargaining solutions to nonconvex bargaining problems:
the Nash solution, the egalitarian solution and the Kalai-Smorodinsky
solution. Our characterizing axioms are various extensions of Nash’s
original axioms.

∗ We are grateful to the referee and the associate editor whose comments
and suggestions greatly improved the exposition of the paper.
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1 Introduction

This paper considers nonconvex bargaining problems for n players. Specifi-
cally, we study (normalized) bargaining problems that are compact and com-
prehensive, but are not necessarily convex. Nonconvex bargaining problems
can arise in many economic contexts of resource allocations where, for ex-
ample, due to ‘economies of scale’ in the production technology, the under-
lying set of feasible allocations is itself not convex, and randomization is
unavailable due to the lack of correlating strategies among players. As a
consequence, primitive nonconvex bargaining problems cannot be convexi-
fied. Nonconvex bargaining problems can also arise naturally in bargaining
problems when individuals are not characterized by their utilities but by
their capability sets à la Sen (1985) (see Xu and Yoshihara (2004) for such
examples). In such cases, we would have to start with nonconvex bargaining
problems as primitives and develop theories to deal with them.
The literature has some discussions on nonconvex bargaining problems.

For example, there exists a number of characterizations of the Nash bargain-
ing solution for the class of compact and comprehensive bargaining problems.
However, in all the characterization results, either a type of continuity prop-
erty is imposed (see, for example, Kaneko (1980), Herrero (1989), Conley and
Wilkie (1996)), or the class of bargaining problems contains finite bargaining
problems in addition to those that are compact and comprehensive (see, for
example, Mariotti (1999)). The purpose of this paper is two-fold. First, we
give a new characterization of the Nash bargaining solution for the class of
compact and comprehensive bargaining problems by four axioms: Efficiency,
Symmetry, Scale Invariance and Contraction Independence, and provide a
simple proof that highlights the crucial role that Contraction Independence
plays. Because of our proof method, it is interesting to note that we do
not use any continuity type axiom in our characterization. The four axioms
used in the characterization result of the Nash solution are natural exten-
sions of Nash’s original four axioms (Nash (1950)) in our context. Viewed
in this way, this characterization result reported in the paper is perhaps
closer to Nash’s original program than those already existing in the litera-
ture. Secondly, we use variants of the four axioms used for characterizing
the Nash solution to characterize the egalitarian solution (Kalai (1977)) and
the Kalai-Smorodinsky solution (Kalai and Smorodinsky (1975)) for noncon-
vex bargaining problems. Our characterization results of the egalitarian and
the Kalai-Smorodinsky solutions again highlights the crucial role that Con-
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traction Independence or Weak Contraction Independence (see Section 3 for
the formal definition) plays. It should be noted that our characterizations
of the egalitarian as well as the Kalai-Smorodinsky solutions do not use the
commonly used Monotonicity type axioms for characterizations of those two
solutions.
The remainder of the paper is organized as follows. In Section 2, we lay

down some basic notation and definitions. Section 3 presents our axioms and
their discussions. The main results and their proofs are contained in Section
4. We conclude the paper with a few remarks in Section 5 comparing and
contrasting the axioms used in characterizing the three solutions.

2 Notation and Definitions

N = {1, 2, . . . , n} is the set of players with n ≥ 2. R+ is the set of all non-
negative real numbers and R++ is the set of all positive numbers. Rn

+ (resp.
Rn
++) is the n-fold Cartesian product of R+ (resp. R++). For any x, y ∈ Rn

+,
we write x > y to mean [xi ≥ yi for all i ∈ N and x 6= y], and xÀ y to mean
[xi > yi for all i ∈ N ]. For any x ∈ Rn

+ and any non-negative number α, we
write z = (α;x−i) ∈ Rn

+ to mean that zi = α and zj = xj for all j ∈ N \ {i}.
For any subset A ⊆ Rn

+, A is said to be (i) non-trivial if there exists a ∈ A
such that a À 0, and (ii) comprehensive if for all x, y ∈ Rn

+, [x > y and
x ∈ A] ⇒ y ∈ A. For all {x1, . . . , xm} ⊆ Rn

+, define the comprehensive hull
of {x1, . . . , xm}, to be denoted by comp(x1, . . . , xm), as follows:

comp(x1, . . . , xm) ≡
n
z ∈ Rn

+ : z ≤ x for some x ∈ {x1, . . . , xm}
o
.

Let Σ be the set of all non-trivial, compact and comprehensive subsets
of Rn

+. Elements in Σ are interpreted as (normalized) bargaining problems.
A bargaining solution F assigns a nonempty subset F (A) of A for every
bargaining problem A ∈ Σ.
Let π be a permutation of N . The set of all permutations of N is denoted

by Π. For all x = (xi)i∈N ∈ Rn
+, let π(x) = (xπ(i))i∈N . For all A ∈ Σ and

any permutation π ∈ Π, let π(A) = {π(a) : a ∈ A}. For any A ∈ Σ, we say
that A is symmetric if A = π(A) for all π ∈ Π.
For all A ∈ Σ and all i ∈ N , let mi(A) = max{ai : (a1, · · · , ai, · · · , an) ∈

A}. Therefore, m(A) ≡ (mi(A))i∈N is the ideal point of A.

Definition 1: A bargaining solution F over Σ is the Nash solution if for all
A ∈ Σ, F (A) = {a ∈ A : Qi∈N ai ≥

Q
i∈N xi for all x ∈ A}.
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Definition 2: A bargaining solution F over Σ is the egalitarian solution if
for all A ∈ Σ, F (A) = {a ∈ A : ai = aj for all i, j ∈ N and there is no x ∈ A
such that xÀ a}.

Definition 3: A bargaining solution F over Σ is the Kalai-Smorodinsky
solution if for all A ∈ Σ, F (A) = {a ∈ A : mi(A)/ai = mj(A)/aj for all
i, j ∈ N and there is no x ∈ A such that xÀ a}.

Our notion of the Nash solution for nonconvex bargaining problems is
identical to the one proposed by Kaneko (1980).1 It should be noted that,
given that Σ contains all non-trivial, compact and comprehensive bargaining
problems, for any A ∈ Σ, the Nash solution F (A) can contain more than one
alternative, while both the egalitarian and the Kalai-Smorodinsky solutions
are singletons.

3 Axioms

In this section, we present our axioms that are to be used for characteriza-
tion results. We start with two efficiency type axioms which are commonly
invoked in the literature.

Efficiency (E): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such
that x > a.

Weak Efficiency (WE): For any A ∈ Σ and any a ∈ F (A), there is no
x ∈ A such that xÀ a.

The next two axioms are natural generalizations of Nash’s original sym-
metry axiom in our context.

Symmetry (S): For any A ∈ Σ, if A is symmetric, then [a ∈ F (A) ⇒
π(a) ∈ F (A) for all π ∈ Π].

1Mariotti (1999) also discusses axiomatic characterization of the Kaneko type of the
Nash solution for nonconvex problems, although his domain is larger than ours in the
sense that it includes “finite bargaining problems.” In contrast, Herrero’s proposal (Herrero
(1989)) for the Nash extension solution constitutes a superset of the set of the Kaneko type
solution outcomes on each nonconvex problem, and Conley and Wilkie (1996) proposes an
extension of the Nash solution which is a single-valued mapping in that domain.
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Strong Symmetry (SS): For any A ∈ Σ and all a ∈ A, if A is symmetric
and a ∈ F (A), then a1 = . . . = an.

Symmetry is a natural generalization of Nash’s original symmetry ax-
iom to nonconvex problems and is also discussed in Mariotti (1999). Strong
Symmetry is a stronger requirement than Symmetry in that (SS) demands
a1 = . . . = an whenever A is symmetric and a ∈ F (A), while (S) requires
any permutation of a be in F (A) whenever A is symmetric and a ∈ F (A).
It should be noted that, when restricted to convex bargaining problems, and
bargaining solutions are required to be single-valued mappings, the two sym-
metry axioms coincide with and are identical to Nash’s original Symmetry
axiom.
The next axiom is the familiar scale invariance property commonly used

in both convex (see, for example, Nash (1950)) and nonconvex bargaining
problems (see, for example, Conley and Wilkie (1996), Herrero (1989), Mar-
iotti (1999)).

Scale Invariance (SI): For all A ∈ Σ and all α ∈ Rn
++, if αA = {(αiai)i∈N :

a ∈ A} then F (αA) = {(αiai)i∈N : a ∈ F (A)}.

For convex bargaining problems, (SI) is often justified by appealing to the
expected utility theory. In the current context, (SI) seems reasonable as long
as players’ utilities are cardinally measurable, an implicit assumption made
in many standard bargaining problems. The introduction of nonconvex bar-
gaining problems does not seem to harm the attractiveness of (SI) in many
economic contexts of resource allocations that give rise to such nonconvex
problems. This is because, in such contexts, nonconvex problems arise from
the nonconvexity of the underlying set of feasible allocations where the intro-
duction of ‘lotteries’ over feasible allocations is unreasonable. We should also
mention that, (SI) has at least two interpretations: “utility-unit invariance”,
and “independence of utility intensities” as discussed in Yoshihara (2003).
Both of these interpretations seem to be compatible with the nonconvexity
of bargaining problems.
The final two axioms are extensions of Nash’s original Independence of

Irrelevant Alternatives (IIA).

Contraction Independence (CI): For any A,B ∈ Σ, if B ⊆ A and B ∩
F (A) 6= ∅, then F (B) = B ∩ F (A).
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Weak Contraction Independence (WCI): For any A,B ∈ Σ, if m(A) =
m(B), B ⊆ A and B ∩ F (A) 6= ∅, then F (B) = B ∩ F (A).
(CI) has been widely used in the literature of nonconvex bargaining prob-

lems, and is the usual (IIA) for correspondence. (WCI) extends Yu’s (1973)
axiom of “independence of irrelevant alternatives” to correspondence, and is
formally weaker than (CI): it restricts contractions to those problems that
have the same ideal point.

4 Extensions of the classical bargaining solu-
tions and their characterizations

In this section, we provide axiomatic characterizations of the Nash solution,
the egalitarian solution and the Kalai-Smorodinsky solution.

Theorem 1: A bargaining solution F over Σ is the Nash solution if and
only if it satisfies (E), (S), (SI) and (CI).

Before proving Theorem 1, we prove the following lemma first.

Lemma 1: Suppose a bargaining solution F over Σ satisfies (E), (S), (SI)
and (CI). Then, for all x, y ∈ Rn

+,
(L.1.) Πi∈Nxi = Πi∈Nyi > 0⇒ F (comp(x, y)) = {x, y},

and

(L.2) Πi∈Nyi < Πi∈Nxi ⇒ F (comp(x, y)) = {x}.
Proof. Let F over Σ satisfy (E), (S), (SI) and (CI). Let x, y ∈ Rn

+.
Suppose first that Πi∈Nxi = Πi∈Nyi > 0. It then follows that xi >

0, yi > 0 for all i ∈ N . Let α ∈ Rn
+ be defined as follows: α1 = 1,α2 =

x1
y2
α1, . . . ,αi =

xi−1
yi

αi−1, . . . ,αn =
xn−1
yn

αn−1. Clearly, for all i ∈ N , αi is well
defined and αi > 0. Furthermore, α2y2 = x1

y2
y2 = x1 = α1x1,α3y3 =

x2
y3
α2y3 =

α2x2, . . . ,αnyn = xn−1
yn

αn−1yn = αn−1xn−1, and αnxn = xn−1
yn

αn−1xn =
xnxn−1
yn

αn−1 = . . . = xn·...·x1
yn·...·y2 . Noting that xn · . . . ·x1 = yn · . . . ·y1, we then have

αnxn = y1 = α1y1. Let the permutation π0 be such that π0(i) = i + 1 for
i = 1, . . . , n− 1 and π0(n) = 1. Then, π0(αx) = αy. Let A = comp(αx,αy).
Consider the bargaining problem B ∈ Σ defined as B ≡ ∪π∈Ππ(A). From
the construction, B is symmetric. Note that, since αx and αy are the only
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efficient points in A, and αx and αy are permutations of each other, for
every permutation π ∈ Π, the set π(A) contains just two efficient points
that are permutations of αx and αy. By (E) and the non-emptiness of F ,
F (B) must contain at least one such point, say b. But b is a permutation
of αx and of αy. By (S), it then follows that {αx,αy} ⊆ F (B). By (CI)
and noting that A ⊆ B, {αx,αy} = F (A) follows easily. By (SI), we obtain
{x, y} = F (comp(x, y)). Thus, (L.1.) is proved.
Next, suppose that Πi∈Nxi > Πi∈Nyi. Clearly, x 6= y. Noting that

Πi∈Nyi ≥ 0, it then follows that Πi∈Nxi > 0 and x À 0. We need to show
that F (comp(x, y)) = {x}. Since Πi∈Nxi > Πi∈Nyi ≥ 0, there exists ² ∈ Rn

++

such that Πi∈N(yi + ²i) = Πi∈Nxi. Let z = y + ². From (L.1.), noting that
Πi∈Nxi = Πi∈Nzi > 0, we must have F (comp(x, z)) = {x, z}. Since z > y,
it must be true that comp(x, y) ⊆ comp(x, z). By (CI), it then follows that
{x} = F (comp(x, y)). This proves (L.2.). ¦

Proof of Theorem 1. It can be checked that if F is the Nash solution over
Σ then it satisfies the four axioms in Theorem 1. Thus, we need only to show
that if a bargaining solution F over Σ satisfies (E), (S), (SI) and (CI), then
it must be the Nash solution.
Let F overΣ satisfy the above four axioms. Given any bargaining problem

A ∈ Σ, the non-emptiness of F implies that, for some a ∈ A, a ∈ F (A). We
note that a must be such that Πi∈Nai ≥ Πi∈Nxi for all x ∈ A. For, otherwise,
there would exist b ∈ A with Πi∈Nbi > Πi∈Nai. Noting that comp(a, b) ⊆ A,
(CI) would then imply a ∈ F (comp(a, b)), a contradiction to Lemma 1(L.2.).
Another straightforward application of (CI) and Lemma 1(L.1.) gives us that
F (A) contains all x ∈ A with Πi∈Nxi = Πi∈Nai. Therefore, F (A) is the Nash
solution. ¦

Theorem 2: A bargaining solution F over Σ is the egalitarian solution if
and only if it satisfies (WE), (SS) and (CI).

Proof. It can be checked that if F is the egalitarian solution over Σ then it
satisfies the three axioms in Theorem 2. Thus, we need only to show that if
a bargaining solution F over Σ satisfies (WE), (SS) and (CI), then it must
be the egalitarian solution.
Let F over Σ satisfy the above three axioms. Given any bargaining prob-

lem A ∈ Σ, let a ∈ A be such that it is weakly efficient in A and that
a1 = . . . = an. We need to show that F (A) = {a}. Define the real number γ
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as γ ≡ max {mi(A) | i = 1, . . . , n}, and the vectors xi = (γ; a−i), i = 1, . . . , n.
Consider the bargaining problem B = comp(x1, x2, . . . , xn). From the con-
struction, B is symmetric and A ⊆ B. By (SS) and (WE), F (B) = {a}.
Noting that A ⊆ B, by (CI), F (A) = {a}. This completes the proof of
Theorem 2. ¦

Theorem 3: A bargaining solution F over Σ is the Kalai-Smorodinsky
solution if and only if it satisfies (WE), (SS), (SI) and (WCI).

Proof. It can be checked that if F is the Kalai-Smorodinsky solution over Σ
then it satisfies the four axioms in Theorem 3. Thus, we need only to show
that if a bargaining solution F over Σ satisfies (WE), (SS), (SI) and (WCI),
then it must be the Kalai-Smorodinsky solution.
Let F overΣ satisfy the above four axioms. Given any bargaining problem

A ∈ Σ, by (SI), without loss of generality, we take that [mi(A) = mj(A) for
all i, j ∈ N ]. We need to show that if a is weakly efficient in A and [ai = aj for
all i, j ∈ N ], then F (A) = {a}. This is done by following a similar argument
as for proving Theorem 2. Therefore, Theorem 3 is proved. ¦

To conclude this section, we note that it is easy to check the independence
of the axioms used in the three characterizations.

5 Conclusion

In this paper, we have presented a unified framework to provide axiomatic
characterizations of the extensions of the three classical bargaining solutions
for nonconvex bargaining problems. Our characterizations are simpler than
those existing in the literature. Our axioms are various natural general-
izations of the axioms used in Nash’s original discussion of the bargaining
problems for convex bargaining problems. The following table summarizes
our findings:

Table 1
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Axioms\ Solutions NS ES KS
(E) ⊕ × ×
(WE) ° ⊕ ⊕
(S) ⊕ ° °
(SS) × ⊕ ⊕
(SI) ⊕ × ⊕
(CI) ⊕ ⊕ ×
(WCI) ° ° ⊕

where

NS is for Nash Solution, ES for Egalitarian Solution, and KS for Kalai-
Smorodinsky Solution

⊕ stands for that the axiom is used for the characterization,

° stands for that the axiom is satisfied by the solution,

× stands for that the axiom is violated by the solution.

Clearly, (WE), (S) and (WCI) are satisfied by all three solutions. It
is also clear that the Nash solution satisfies all the axioms but (SS), the
egalitarian solution satisfies all the axioms but (E) and (SI), and the Kalai-
Smorodinsky solution satisfies all but (E) and (CI). Note that Theorem 2
(resp. Theorem 3) constitutes a strengthening of the characterization of
the egalitarian solution (resp. the Kalai-Smorodinsky solution) by Conley
and Wilkie (1991), since (CI) (resp. (WCI)) is logically implied by the
monotonicity axiom (resp. the weak monotonicity axiom) of Kalai (1977) in
the presence of (WE).
It is also interesting to note that the Kalai-Smorodinsky solution has

some constrained contraction property. It implies that once a partition of
the class of bargaining problems is defined, where each equivalence class of
this partition consists of the bargaining problems with the same ideal point,
then the Kalai-Smorodinsky solution is rationalizable within each equivalence
class of the problems. This fact gives us some insight on the rational choice
property of this solution, although it was widely considered that it has no
rational choice property.
We hope that our characterizations will shed some new light on the three

solutions for nonconvex bargaining problems.
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