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Abstract

We reconsider the three well-known solutions: the Nash, the
egalitarian and the Kalai-Smorodinsky solutions, to the classi-
cal domains of convex (bargaining) problems. A new proof for
the Nash solution that highlights the crucial role the axiom Con-
traction Independence plays is provided. We also give new ax-
iomatic characterizations for both the egalitarian and the Kalai-
Smorodinsky solutions. Our results focus on both contraction
and expansion independence properties of problems and, as a
consequence, some new insights on the three solutions from the
perspective of rational choice may be derived.

∗We are grateful to William Thomson for comments on an earlier draft of the paper.
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1 Introduction

This paper reconsiders some well-known solutions to convex bargaining prob-
lems. Our purpose is two-fold. First, we provide a new proof for the Nash
solution that highlights the crucial role the axiom Contraction Independence
plays. Our proof method is proof-by-contradiction. Secondly, by employing
similar proof methods as for the Nash solution, we provide new axiomatic
characterizations for both the egalitarian and the Kalai-Smorodinsky solu-
tions. Instead of using any monotonicity type axiom, which is commonly
used in the literature for characterizing these two solutions (see, for exam-
ple, Kalai (1977), Kalai and Smorodinsky (1975); see also Peters (1992) and
Thomson (1994) for excellent surveys), we use variants of Contraction Inde-
pendence and Expansion Independence to characterize the egalitarian and
the Kalai-Smorodinsky solutions. Both Contraction Independence and Ex-
pansion Independence properties figure prominently in the theory of rational
choice. Our new characterizations therefore may shed some new insights into
the three well-known solutions to the problems.
The remainder of the paper is organized as follows. Section 2 provides a

basic framework for the subsequent analysis. Section 3 presents the axioms.
Our main results and their proofs are contained in Section 4. Section 5 makes
several concluding remarks.

2 Basic Model

The set of players is to be denoted by N = {1, 2, . . . , n} where n ≥ 2. We
use R+ to denote the set of all non-negative real numbers, while Rn

+ is used
to denote the n-fold Cartesian product of R+. For each x,y ∈ Rn+, we write
x > y as [xi ≥ yi for each i ∈ N and x 6= y] and xÀ y as [xi > yi for each
i ∈ N ].
Let π be a permutation of N . For each x = (xi)i∈N ∈ Rn+, let π (x) =

(xπ(i))i∈N . Let Π be the set of all permutations of N .
Let B be the set of all compact, convex, and comprehensive subsets of Rn+,

each of which contains an interior point of Rn+. Elements in B are interpreted
as normalized (bargaining) problems. For each A ∈ B and any π ∈ Π, let
π (A) = {π (a) | a ∈ A}. For each A ∈ B, A is a symmetric problem if
A = π (A) for all π ∈ Π.
For eachA ∈ B and each i ∈ N , letmi(A) = max{ai | (a1, · · · , ai, · · · , an) ∈
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A}. Therefore, m(A) ≡ (mi(A))i∈N is the ideal point of A.
For each x ∈ Rn+ and α ∈ Rn++, let α(x) ≡ (αixi)i∈N . Given A ∈ B and

α ∈ Rn++, let α(A) ≡
©
α(x) ∈ Rn+ | x ∈ A

ª
. For each A in Rn+, we define

the comprehensive hull of A by

compA ≡ ©z ∈ Rn+ | ∃x ∈ A : z ≤ xª .
Let the convex hull of A be denoted by conA. The convex hull of compA
will be called the convex and comprehensive hull of A, and will be denoted
by concompA.
A solution F is a single-valued mapping from B to Rn+ such that for every

problem A ∈ B, F (A) ∈ A. For given F (A) ∈ A, let Fi (A) ∈ R+ be its i-th
component. The following three are well-known solutions.

Nash Solution FNA: For every A ∈ B, FNA(A) = argmax(ai)i∈N∈A
Q
i∈N ai.

Kalai-Smorodinsky Solution FKS: For every A ∈ B, FKS(A) ∈ A
implies that: (1) there is no other a ∈ A such that a À FKS(A); and (2)
there exists γ ∈ (0, 1) such that FKS(A) = γ ·m (A).

Egalitarian Solution FE: For every A ∈ B, FE(A) ∈ A implies that: (1)
there is no other a ∈ A such that aÀ FE(A); and (2) FEi (A) = F

E
j (A) for

all i, j ∈ N .

3 Axioms

We consider the following axioms:

Efficiency (E): For each A ∈ B, there is no x ∈ A such that x > F (A).

Weak Efficiency (WE): For each A ∈ B, there is no x ∈ A such that
xÀ F (A).

Symmetry (S): For each A ∈ B, if A is symmetric, then Fi (A) = Fj (A)
for all i, j ∈ N .

Scale Invariance (SI): For each A,B ∈ B, and each α ∈ Rn++, if B =
α(A), then F (B) = α(F (A)).
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Contraction Independence (CI): For each A,B ∈ B, if A ⊇ B and
F (A) ∈ B, then F (B) = F (A).

Weak Contraction Independence (WCI): For each A,B ∈ B such that
m (A) =m (B), if A ⊇ B and F (A) ∈ B, then F (B) = F (A).

Expansion Independence (EI): For each A,B ∈ B, if A ⊆ B and F (A)
is efficient on B, then F (B) = F (A).

Weak Expansion Independence (WEI): For each A,B ∈ B such that
m (A) =m (B), if A ⊆ B and F (A) is efficient on B, then F (B) = F (A).

The first five axioms are standard ones discussed in the literature on convex
problems (see, for example, Peters (1992) and Thomson (1994) for discus-
sions). WCI is due to Yu (1973). It restricts its applicability to contraction
situations in which the ideal point remains unchanged. EI requires that,
when a problem A is enlarged to another problem B, if the solution F (A)
to A continues to be efficient on B, then F (A) should continue to be the
solution to the problem B. The idea is that, even though there is an enlarge-
ment of “opportunities” from A to B, given that F (A) is both efficient on
A and on B, and that F (A) is already the solution to the original problem
A, any movement away from F (A) will hurt at least one player, and thus
the solution to the enlarged problem B should continue to be F (A). This
requirement suggests a solidarity type property embedded in the solution.
This can also be seen as stating a certain inertia of the choice process. WEI
is weaker than EI in that it restricts its applicability to situations where the
ideal point remains unchanged.
We note that EI is logically weaker than the following axiom, Indepen-

dence of Undominated Alternatives, which is proposed in Thomson and My-
erson (1980):

Independence of Undominated Alternatives (IUA): For each A,B ∈
B, if A ⊆ B and F (A) is weakly efficient on B, then F (B) = F (A).

It is worth noting thatCI and EI are logically implied by theMonotonic-
ity axiom, which is introduced by Kalai (1977), together withWE, but the
converse relation does not hold. In fact, the monotone path solution, which
is proposed by Thomson and Myerson (1980) and which is characterized by
WE and the monotonicity axiom of Kalai (1977), satisfies both CI and EI.
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On the other hand, we can construct a non-monotone path solution which
satisfies EI,CI andWE, and which violates the monotonicity axiom of Kalai
(1977).

4 Results and Their Proofs

This section presents our main results and their proofs follow.

Theorem 1: FNA is the unique solution satisfying E, S, SI, and CI.

Proof. It can be checked that FNA satisfies the four axioms of Theorem 1.
We therefore show that if a solution satisfies the four axioms of Theorem 1,
then it must be FNA.
Let F be a solution satisfying the four axioms of Theorem 1. For each

A ∈ B, we first show that:
For each x and a that are both efficient in A, and if x ∈ A is such thatQ
i∈N xi <

Q
i∈N ai, then x 6= F (A).

Let x and a be such that both are efficient in A and
Q
i∈N xi <

Q
i∈N ai.

We note that, since
Q
i∈N xi ≥ 0 and

Q
i∈N xi <

Q
i∈N ai, it follows thatQ

i∈N ai > 0. It is therefore clear that ai > 0 for each i ∈ N . Suppose to the
contrary that x = F (A). Consider B ≡ concomp {x,a}. By CI, it follows
that x ∈ F (B).
Let β ≡ mini∈N{ai} and α ≡ (β/a1, . . . , β/ai, . . . ,β/an). Note that each

ai(i ∈ N) is positive. α is well-defined. Then, α(a) = (β, . . . ,β). Denote
B0 ≡ α(B), a0 ≡ α(a), and x0 ≡ α(x). Note that a0 6= x0. By SI, F (B0) =
x0.
Consider the set [∪π∈Ππ (B0)], and denote it by C. By construction, not-

ing that
Q
i∈N xi <

Q
i∈N ai, C is symmetric, convex, and C ⊇ B0. Moreover,

by the construction of B0, both a0 and x0 are efficient on C. By E and S,
it follows that F (C) = a0. By CI, F (B0) = a0, which is a contradiction.
Therefore, x 6= F (A).
From the above, it follows that, for every A ∈ B,

F (A) ⊆
(
a ∈ A | ∀x ∈ A :

Y
i∈N
ai ≥

Y
i∈N
xi

)
.

Since the right-hand set is a singleton, the non-emptiness of F implies that
F = FNA.
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Theorem 2: FE is the unique solution satisfying WE, S, CI, and EI.

Proof. It can be checked that if FE satisfies the four axioms of Theorem 2.
Therefore, we need only to show that if a solution satisfies the four axioms
of Theorem 2, it must be FE.
Let F be a solution satisfying the four axioms of Theorem 2. By non-

emptiness of F andWE, we need only to show the following

For each A ∈ B, each x and a that are weakly efficient in A, if
[ai = aj for all i, j ∈ N ], but [xi 6= xj for some i, j ∈ N ], then x 6= F (A).
Let x and a be such that both are weakly efficient on A, [ai = aj for all

i, j ∈ N ], and [xi 6= xj for some i, j ∈ N ]. Suppose to the contrary that
x = F (A). Consider B ≡ comp{x}. Note that B ⊆ A. By CI, x = F (B).
Consider the set con [∪π∈Ππ (B)], and denote it by C. By construction,

C is a symmetric convex set having C ⊇ B. By the construction of B and
C, x is efficient on C. Therefore, noting that x = F (B), B ⊆ C and x is
efficient on C, x = F (C) follows from EI. Since C is symmetric, by WE
and S, F (C) must be weakly efficient and be the equal utility point, which
is a contradiction. Therefore, x 6= F (A). This proves the above statement
and thus Theorem 2.

Theorem 3: FKS is the unique solution satisfying WE, S, SI, and WCI,
and WEI.

Proof. It can be checked that FKS satisfies the five axioms of Theorem 3.
We need only to show that if a solution satisfies the five axioms of Theorem
3, it must be FKS.
Let F satisfy the five axioms of Theorem 3. Given each problemA ∈ B, by

SI, without loss of generality, we take that [mi(A) = mj(A) for all i, j ∈ N ].
We need to show that if a is weakly efficient in A and [ai = aj for all i, j ∈ N ],
then F (A) = {a}. This is done by following a similar argument as for proving
Theorem 2. Therefore, Theorem 3 is proved.

Remark 1: It can be verified that FE is also characterized by WE, S, and
IUA. Note that if we use the axiom IUA, which is stronger than EI, in the
characterization of FE, CI becomes superfluous and thus can be dropped out.
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Remark 2: If #N = 2, then FKS is characterized by E, S, SI, and WEI.
Thus, WCI is no longer indispensable to characterize this solution in two
person problems.

To conclude this section, we note that the independence of the respective
axioms used in Theorems 2 and 3 can be checked.

5 Concluding Remarks

Our results on the characterizations of the three solutions are summarized
in the following table.

Table 1

Axioms\ Solutions NA ES KS
E +∗ − −
WE + + +∗

S +∗ +∗ +∗

SI +∗ − +∗

CI +∗ +∗ −
WCI + + +∗

EI − +∗ −
WEI − + +∗

where

+∗ stands for that the axiom is used for the characterization,

+ stands for that the axiom is satisfied by the solution,

− stands for that the axiom is violated by the solution.

Clearly, all three solutions satisfy axioms WE, S and WCI. The Nash
solution satisfies all but EI andWEI, the egalitarian solution satisfies all but
E and SI, and the Kalai-Smorodinsky solution violates E, CI and EI while
satisfies all the other axioms. It is also worth noting that Theorem 2 (resp.
Theorem 3) constitutes a strengthening of the original characterization of the
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egalitarian solution (resp. the Kalai-Smorodinsky solution) by Kalai (1977)
(resp. Kalai and Smorodinsky (1975)), since the combination of CI and EI
(resp. WCI and WEI) is logically weaker than the monotonicity axiom
(resp. the weak monotonicity axiom).
As far as contraction and expansion properties are concerned, it is in-

teresting to note that the egalitarian solution satisfies all the contraction
and expansion properties discussed in this paper, the Nash solution fails the
two expansion properties while survives the two contraction properties, and
the Kalai-Smorodinsky solution satisfies the weaker versions of contraction
and expansion properties. The fact that the Kalai-Smorodinsky solution has
some constrained contraction and expansion properties gives us some insights
on the rational choice property of this solution.1
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