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Abstract

This paper discusses and develops “non-welfaristic” arguments on
distributive justice à la J. Rawls and A. K. Sen, and formalizes, in co-
operative production economies, “non-welfaristic” distribution rules
as game form types of resource allocation schemes. First, it conceptu-
alizes Needs Principle which the distribution rule should satisfy if this
takes the individuals’ needs into account. Second, one class of distrib-
ution rules which satisfy Needs Principle, a class of J-based Capability
Maximin Rules, is proposed. Third, axiomatic characterizations of the
class of J-based Capability Maximin Rules are provided.
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1 Introduction

In this paper, we discuss fair allocations in cooperative production economies,
mainly basing our arguments upon those of Rawls and Sen.
There have been two representative criteria on distributive justice, one

of which is “distribution with regard to individual contributions,” and the
other being “distribution with regard to individual needs.” While the former
criterion justifies resource allocations through competitive mechanisms, the
latter criterion may play an important role in judging what redistribution
policies are justifiable to achieve social security. In discussing fair allocations
based upon the latter criterion, it is important to give a precise concept of
individual needs as an objective one, as done by Rawls (1971, 1993) and Sen
(1980, 1983). While Rawls (1993) argued upon the citizens’ needs as indexed
by primary goods, Sen (1980, 1983) understood the needs in terms of his
capability approach. Sen’s capability is interpreted as the set of an individual’s
various states of well-being possibly attainable by her through various ways
of utilization of her share of resources. Based upon Sen’s arguments (1980,
1983), the needs of individuals should accordingly be conceptualized as a lack
of a reference level of capability, which is given for a given social context, but
which may vary among various social contexts. Our object in this paper is just
to propose an allocation scheme which meets the latter criterion discussed
above, called the J-based capability maximin rule which is based upon Sen’s
capability.1

While most literature on fair allocation problems discussed allocation
schemes of social choice correspondence types, we, in this paper, are partic-
ularly interested in game form types, which we call distribution rules. These
are similar to cost sharing rules discussed in Moulin and Schenker (1994).
A distribution rule is a function from the set of profiles of all individuals’
labor time to the set of profiles of all individuals’ shares of output. One rea-
son for our approach is to clarify the aspect of interaction among individuals
in assigning capabilities through the application of the allocation schemes.2

Note that Sen’s argument (1980) on equality of basic capability leaves out
this aspect of interaction. In contrast, we can explicitly capture this aspect

1Herrero (1996) also discussed recently designing allocation schemes of social choice
correspondence types in pure exchange economies by using Sen’s capability index.

2This aspect is also pointed out by Atkinson (1995), where it is argued that the activ-
ity of monopolistic commodity supplier is influential in each individual’s capability level
determined by her share of commodity.
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in our model by adopting the game form approach of allocation schemes, so
that the determination of each individual’s capability is influenced not only
by his own strategy (choice of his labor time), but also by that of any other
individual under a given distribution rule.
Another reason for our approach is related to the Rawlsian first principle

of justice [Rawls (1971)], which seems to require allocation schemes to guar-
antee every individual an equal right to choose her own labor time freely.
Such a procedural aspect of allocation schemes can be formally specified in
the game form types,3 while social choice correspondences specify no proce-
dural aspect of decision making.
In this paper, we discuss the fairness of resource allocations by arguing the

fairness of capability assignments given through the determination of resource
allocations. Although recent literature on ranking of equal opportunity sets
like Kranich (1996, 1997), etc.4, may give us various criteria for evaluating the
fairness of capability assignments, in this paper, we are not interested in what
criteria the ranking on “fair” capability assignments should satisfy. Instead,
we focus upon the problem of how social agreements on the ranking of “fair”
capability assignments would be arrived at, so that we simply suppose that in
the society, there exists a social procedure for determining “fair” capability
assignments. In particular, we are interested in the types of social decision
procedures which evaluate the fairness of capability assignments through
the evaluation of what is the desirable common capability, and call them
social welfare functions. The common capability is given by the intersection
of all individuals’ capabilities under the profile of individual handicaps and
feasible allocations. The J-based capability maximin rule is just defined as
being rationally chosen through a Paretian social welfare function whenever
this function always generates a social ordering over common capabilities,
which contains the set-inclusion relation as its subrelation. In other words,
the J-based capability maximin rule is defined to guarantee every individual
a maximal common capability with respect to set-inclusion. So, we first
discuss under what conditions there exists a Paretian social welfare function
which always generates a social ordering containing the set-inclusion relation,
so that it always rationally chooses the J-based capability maximin rule.

3Right structures of freedom of choice can be best captured by game form approach.
See Gaertner, Pattanaik, and Suzumura (1992).

4The literature of equal opportunity on basis of ranking opportunity profiles also in-
cludes Herrero (1997), Kranich and Ok (1998), Herrero, Iturbe-Ormaetxe, and Nieto
(1998), Bossert, Fleurbaey, and Van de Gaer (1999), and Arlegi and Nieto (1999).
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Next, we axiomatically characterize the social ordering on capability as-
signments which rationalizes the J-based capability maximin rule. A char-
acterization result of this ordering is obtained by adopting the axioms of
Pareto inclusion on capability assignments and anonymity, and an equity ax-
iom based upon a particular inequality measure of capability assignments.
Note that Herrero, Iturbe-Ormaetxe, and Nieto (1998) and Bossert, Fleur-
baey, and Van de Gaer (1999) discussed the axiomatic characterizations of
ranking opportunity set profiles on the basis of common opportunity sets. As
discussed below, these characterization results cannot be directly applied to
our discussion of ranking capability assignments based upon common capa-
bilities, because of the different mathematical structure in economic models
assumed in this study. So, our results are independent of the above literature.
Third, discussing several axioms on fairness of distribution rules, we ana-

lyze desirable properties which the class of J-based capability maximin rules
satisfies. Our first characterization result on the class of J-based capability
maximin rules is that it is the unique class of rules which meets the Needs
Principle defined below and satisfies two axioms of solidarity concerning
changes in individual supplies of labor time and individual handicap lev-
els respectively. Our second characterization result shows that a subclass of
capability maximin rules meets both axioms of responsibility and compen-
sation. Although previous literature on responsibility and compensation by
Fleurbaey (1994, 1995a,b), etc.,5 was mainly based upon evaluating individ-
ual welfares or incomes, we evaluate the state of individuals by using the
capability.
For the rest of this paper, section 2 defines a basic model; Section 3 dis-

cusses axioms on distribution rules; Section 4 proposes the capability max-
imin rules and analyzes their characteristics.

2 The Basic Model

There are two goods in the economy, one of which is labor time, x ∈ R+,
to be used to produce the other good, y ∈ R+, where R+ denotes the set of
non-negative real numbers. The population in the economy is given by the

5The recent literature on the issue of responsibility and compensation initiated by
Dworkin (1981) and followed by Arneson (1989) and Cohen (1989, 1993), includes Bossert
(1995), Bossert and Fleurbaey (1996), Fleurbaey (1998), Fleurbaey and Maniquet (1996,
1999), Iturbe (1997), Iturbe and Nieto (1996), Maniquet (1996), and Roemer (1993, 1996).
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set N = {1, · · · , n}, where 2 ≤ n < +∞. Individual i0s consumption vector
is denoted by zi = (li, yi), where li = x−xi denotes his/her leisure time, and
yi denotes his/her assigned share of output, and x, 0 < x < +∞, denotes
the upper bound of labor time. It is assumed that all individuals have the
same consumption set [0, x]×R+. Individual i is characterized by utilization
ability of resources, ai, and production skill, si, both of which are assumed to
be representable by real numbers. The universal set of utilization abilities,
which is common for all individuals, is denoted by A ⊆ R.6 The universal set
of production skills for all individuals is denoted by S ⊆ R++, where R++

denotes the set of positive real numbers. Thus, individual i0s characteristics
are denoted by (ai, si) ∈ A× S.7
A production process is described by a production function f : R+ → R+

which is assumed to be continuous, increasing, and f(0) ≥ 0. The set of
such functions is denoted by F .
Let there be m types of relevant functionings for each individual, which

are common for all individuals and are attainable by means of his/her leisure
time and share of output. Let us assume that we can measure these function-
ings by means of adequate non-negative real indices. Thus, an achievement of
functioning k by individual i is denoted by bik ∈ R+. Individual i0s achieve-
ment of relevant functionings is given by listing bik: bi = (bi1, · · · , bim) ∈ Rm+ .8
Individual i0s utilization ability, leisure time, and share of output deter-

mine the vector of functionings he/she can achieve. It is assumed that
there is a functional relationship which relates a triple of ability, leisure
time, and share of output to a set of m-dimensional functioning vectors viz.
C : A× [0, x]×R+ ³ Rm+ such that C(ai, l, y) ⊆ Rm+ for all i ∈ N . We call C
a capability correspondence. The intended interpretation is that individual i
with ai is able to attain the vector of relevant functionings bi ∈ C(ai, l, y) by
utilizing the consumption vector (l, y). For simplicity, we assume that each
admissible capability correspondence has the following properties:

6For any two sets X and Y , X ⊆ Y whenever any x ∈ X also belongs to Y , and X ( Y
if and only if X ⊆ Y and not (Y ⊆ X).

7There may exist a functional relationship between production skill and utilization
ability such as si = s(ai) and si is strictly monotonic with respect to ai. All the main
results in this paper are valid, mutatis mutandis, even when such a relationship holds
between si and ai.

8For any two vectors a = (a1, . . . , ap) and b = (b1, . . . , bp), a ≥ b if and only if ai ≥ bi
(i = 1, . . . , p), a > b if and only if a ≥ b and not (b ≥ a), and a À b if and only if ai > bi
(i = 1, . . . , p).
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(1)-(α) For all (a, l) ∈ A× [0, x], C(a, l, 0) = {0}.
(1)-(β) If (a, z) ≤ (a0, z0) (resp. (a, z) < (a0, z0)), then C(a, z) ⊆ C(a0, z0)
(resp. C(a, z) ( int C(a0, z0), where int C(a0, z0) is the interior of C(a0, z0)
in Rm+).9
(1)-(γ) For all (a, z) ∈ A× [0, x]×R+, C(a, z) is compact and comprehensive
in Rm+ .
(1)-(δ) Given a ∈ A, C : {a} × [0, x]×R+ ³ Rm+ is continuous.

Let C be the class of capability correspondences satisfying these properties.10
The condition (1)-(α) implies that no one can survive without consumption
of output (income). The condition (1)-(β) implies the (strict) monotonicity
property of capability correspondences with respect to utilization ability a
and resource z. The conditions (1)-(γ) and (1)-(δ) are technical requirements
which are used in showing Lemma 1 discussed later.
The objective characteristics of the economy is defined by a list e =

(a, s, C, f) = ((ai)i∈N , (si)i∈N , C, f) ∈ E ≡ An × Sn × C × F , where An
and Sn stand, respectively, for the n-fold Cartesian product of A and that
of S. A feasible allocation for e is a vector z = (zi)i∈N ∈ ([0, x] × R+)n

such that f(
P
sixi) ≥

P
yi. We denote by Z(e) the set of feasible al-

locations for e ∈ E. Given the objective characteristics of the economy
e = (a, s, C, f) ∈ E, the feasible assignment of capabilities under e is a
list (C(ai, zi))i∈N satisfying (zi)i∈N ∈ Z(e).
A distribution rule is a function h : E × [0, x]n → Rn+ satisfying the

following property: for any e = (a, s, C, f) ∈ E and any x = (xi)i∈N ∈
[0, x]n, h(e,x) = y = (yi)i∈N such that (x − xi, yi)i∈N ∈ Z(e). Notice
that given e ∈ E and x ∈ [0, x]n, the distribution rule h specifies a feasible
assignment of capabilities for e. In this formula, the strategy space of every
individual is represented by [0, x], and each individual can be guaranteed
equal freedom in choosing her own labor time, and the rule remunerates her
with leisure as she sees fit.

9Incidentally, ∂C(a0, z0) appearing below is the boundary of C(a0, z0) in Rm
+ .

10Following Sen (1985), we may define a value function vi : Rm
+ → R for each individual

i ∈ N , and define his utility function ui by:

ui(z) ≡ vi(b(z, C(ai, z), vi)), where b(z,C(ai, z), vi) ≡ arg max
bi∈C(ai,z)

vi(bi), for all z ∈ [0, x]×R+.

If C(ai, ·, ·) is convex-valued, and vi is continuous, strictly monotonic, and quasi-concave
on Rm

+ , then ui is continuous, strictly monotonic, and quasi-concave on [0, x]×R+.
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3 Two Fundamental Principles of Distribu-
tive Justice

In this section, we consider two fundamental principles of distributive justice,
Contribution Principle and Needs Principle, which the society should consult
in determining distribution rules while it guarantees every individual equal
freedom of choice of labor time.
First, we define Contribution Principle:

Contribution Principle (CP) : For all e = (a, s, C,f) ∈ E, all x ∈
[0, x]n, and all i, j ∈ N , [sixi < sjxj ⇒ hi(e,x) < hj(e,x) and sixi =
sjxj ⇒ hi(e,x) = hj(e,x)].

The class of distribution rules which satisfy Contribution Principle is defined
by CR ≡ {h | h satisfies CP }. There are many rules which satisfy Contribu-
tion Principle. Moulin and Schenker (1994) discussed the axiomatic charac-
terizations of this type of distribution rule. An example of such a rule is the
proportional sharing rule PR, which distributes outputs in proportion to each
individual’s labor contribution: for all i ∈ N , hPRi (e,x) = sixiP

sjxj
f(
P
sjxj).

The next principle we discuss is Needs Principle. This should define a
reference level of the real opportunity of well-being for each social context,
a lack of which should be taken into account as one’s needs and being a
subject for compensation. Note that, in this paper, the real opportunity of
well-being is Sen’s capability. Then, Needs Principle is defined as follows:
given e = (a, s, C,f) ∈ E and x ∈ [0, x]n such that for all i, j ∈ N , xi = xj,
let yH(e,x) = (f(

P
sixi)
n

, · · · , f(
P
sixi)
n

) ∈ Rn+ be a hypothetical distribution.11
Then, a capability profile under (e,x,yH(e,x)) is determined as: (C(ai, x−
xi, y

H(e,x)))i∈N . Notice that by definition of the capability correspondence
C, in this case, there is one individual i∗ ∈ N such that for any other j 6= i∗,
C(aj, x − xj, yH(e,x)) ⊇ C(ai∗ , x − xi∗, yH(e,x)). Then, let CH(e,x) ≡
C(ai∗, x− xi∗, yH(e,x)), and call it a reference capability under (e,x).

Needs Principle (NP) : For all e = (a, s, C,f) ∈ E and all x ∈ [0, x]n

such that for all i, j ∈ N , xi = xj, there is no i ∈ N such that CH(e,x) )
C(ai, x− xi, hi(e,x)).

11This hypothetical distribution can be regarded as the derivation from the equal-
division-for-equal-work (EDEW ) proposed by Kranich (1994). Note that Needs Principle
defined below does not necessarily require distribution rules to satisfy the EDEW.
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The class of distribution rules which satisfy Needs Principle is denoted by
NR ≡ {h | h satisfies NP }.
The above definition of Needs Principle is explained as follows: if for some

j 6= i∗, C(aj, x − xj, yH(e,x)) ) C(ai∗, x − xi∗, yH(e,x)) = CH(e,x), this
difference in capabilities between j and i∗ under the hypothetical situation
(x,yH(e,x)) is based only upon the difference in their utilization abilities,
because, under the hypothetical situation, every individual enjoys the same
resource vector. Thus, individual i∗’s least favorable situation in capability
under the hypothetical distribution is attributed to her least favorable posi-
tion in utilization ability. Consequently, if individual i∗’s situation after the
application of the distribution rule is even worse than her situation under
the hypothetical distribution, it would be presumably reasonable to recog-
nize such a rule as failing to meet her needs. Thus, Needs Principle requires
the society to reject such a distribution rule.
It is easy to show that Contribution Principle and Needs Principle are in-

compatible. This incompatibility is obtained, irrelevant to whether the value
of production skill is strictly monotonic with respect to the value of utiliza-
tion ability or not.

4 A Distribution Rule according to Needs

In this section, we propose a class of desirable distribution rules which are
relevant to Needs Principle discussed in the last section.

4.1 Common Capabilities and Formulation of Social
Ordering over Distribution Rules

Given e = (a, s, C,f) ∈ E and x ∈ [0, x]n, let Y (e,x) ≡ {y = (yi)i∈N ∈ Rn+ |
f(
P
sixi) ≥

P
yi} be a set of feasible distributions of produced goods for

(e,x). To move from the space of goods to the space of capabilities, let

(2) FC(e,x) ≡ {(C(ai, x− xi, yi))i∈N | y = (yi)i∈N ∈ Y (e,x)}
be a set of feasible assignments of capabilities under (e,x). Let

(3) FC(e) ≡ ∪
x∈[0,x]n

FC(e,x) and FC ≡ ∪
e∈E

FC(e).

For each (C(ai, x− xi, yi))i∈N ∈ FC(e,x), let
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(4) CC(e,x,y) ≡ ∩
i∈N

C(ai, x− xi, yi),
which is to be called the common capability under (e,x,y).12 Notice that for
all (e,x), common capabilities are non-empty sets. Given e = (a, s, C,f) ∈ E
and x ∈ [0, x]n, let

(5) CC(e,x) ≡ {CC(e,x,y) | y ∈Y (e,x)} 13

be the set of common capabilities under (e,x). Moreover, let

(6) CC(e) ≡ ∪
x∈[0,x]n

CC(e,x) and CC ≡ ∪
e∈E

CC(e).

Complicated though it may look, the intuitive meaning of the common
capability is in fact very simple, and it has some intuitive appeal to those
who are interested in distributive fairness. Given e = (a, s, C,f) ∈ E, when
individuals decide to supply x ∈ [0, x]n, they are minimally warranted of
functioning vectors in the common capability, no matter how much they
differ in their utilization abilities. Clearly, this warranted set of functioning
vectors hinges squarely on the feasible distribution of the produced good, viz,
y ∈Y (e,x). By choosing a distribution rule appropriately, we are interested
in warranting individuals the “most fair” common capability. It is itself a
problem to determine what is the “most fair” common capability, which is
purely of social decision to choose one distribution rule from the admissi-
ble set of distribution rules so as to guarantee every individual a desirable
common capability.
In this section, we assume that each and every individual judges the de-

sirability of distribution rules through evaluating the common capabilities
which the distribution rules guarantee to all individuals. Moreover, there
is an aggregation procedure of all individuals’ judgements about what is
the “most fair” common capability, which just formulates the social de-
cision process for choosing one distribution rule. Let every individual i’s
value judgement about common capabilities be represented by an ordering
relation Ji ⊆ CC × CC. Let Ji(e) ≡ Ji ∩ [CC(e)×CC(e)] and Ji(e,x) ≡
Ji(e)∩[CC(e,x)× CC(e,x)], and the asymmetric and symmetric parts of Ji(e)

12Herrero, Iturbe-Ormaetxe, and Nieto (1998), Bossert, Fleurbaey, and Van de Gaer
(1999), and Arlegi and Nieto (1999) also discussed, in the problem of ranking opportunity
profiles, a “common opportunity” which is defined as the intersection of all individuals’
opportunity sets.
13For the sake of notational convenience, we sometimes denote the feasible allocation

by (x,y) instead of z when z = (x−x,y) ∈ Z(e).
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(resp. Ji(e,x)) will be denoted by P (Ji(e)) (resp. P (Ji(e,x))) and I(Ji(e))
(resp. I(Ji(e,x))), respectively. The universal class of value judgements will
be denoted by J . The social decision process for choosing one distribution
rule is formulated as a social welfare function ψ which is defined as follows:
for every value judgement profile J =(Ji)i∈N ∈ J n, J = ψ(J) is an ordering
on CC. We assume that ψ meets Pareto Principle: for all J =(Ji)i∈N , all (e,x),
and all y,y∗∈Y (e,x), if (CC(e,x,y), CC(e,x,y∗)) ∈ P (Ji(e,x)) for all
i ∈ N , then (CC(e,x,y), CC(e,x,y∗)) ∈ P (J(e,x)) where J = ψ(J) ∈ J .
Although each of the value judgements in J is interpreted as representing

one possible idea as to what constitutes the “most fair” common capability,
we are particularly interested in value judgements which satisfy the following
two conditions:

Set-Inclusion Subrelations: For all (e,x) and all y,y∗∈Y (e,x),
(α) CC(e,x,y) ⊇ CC(e,x,y∗) ⇒ (CC(e,x,y), CC(e,x,y∗)) ∈ J(e,x);
and
(β) CC(e,x,y) ) CC(e,x,y∗)⇒ (CC(e,x,y), CC(e,x,y∗)) ∈ P (J(e,x)).

Anonymity: For all e ∈ E, all i, j ∈ N such that ai = aj and si = sj, all
x ∈ [0, x]n, and all y,y∗ ∈Y (e,x),
(CC(e,x,y), CC(e,x,y∗)) ∈ J(e,x)⇔(CC(e, ρij(x,y)), CC(e, ρij(x,y

∗))) ∈
J(e, ρij(x))
where ρij(x,y) = ((xρi , y

ρ
i ), (xρj , y

ρ
j ), (xN\{i,j},yN\{i,j})), x

ρ
i = xj, (resp. y

ρ
i =

yj) and x
ρ
j = xi (resp. y

ρ
j = yi).

Let JSIA be the class of value judgements which contain set-inclusion sub-
relations and satisfy Anonymity. The condition of Set-Inclusion Subre-
lations is to require the monotonicity of orderings over common capabilities
in terms of set-inclusion. It is based upon the idea that the larger the mini-
mally warranted capability for all individuals is, the more fair it will be. The
condition of Anonymity implies that the ranking of common capabilities
should not be influenced by replacement of the names of any two individuals
who have the same objective characteristics.
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4.2 The J-Based Capability Maximin Rule and its So-
cial Choice Process

Based upon the social value judgement ψ(J) defined by ψ and J, let us intro-
duce a best element set byB(CC(e,x),ψ(J)) ≡ {CC(e,x,y) | ∀CC(e,x,y0) ∈
CC(e,x) : (CC(e,x,y), CC(e,x,y0)) ∈ ψ(J)}. Then, we can define a ratio-
nal choice function ϕ as follows: for every J = (Ji)i∈N , ϕ(CC(e,x),ψ(J)) ∈
B(CC(e,x),ψ(J)) for each e ∈ E and x ∈ [0, x]n. Let Cmin

ϕ·ψ(J)(e,x) ≡
ϕ(CC(e,x),ψ(J)). We refer to this Cmin

ϕ·ψ(J)(e,x) as a reference capability under
(e,x). Given the social welfare function ψ and the rational choice function ϕ,
such a reference capability can vary, depending upon a profile of individuals’
value judgements, J. Thus, we call it J-based minimal capability under (e,x).
Given x = (xg)g∈N ∈ [0, x]n and i ∈ N , let x−i ≡ (xg)g∈N\{i} ∈ [0, x]n−1.

Given x = (xg)g∈N ∈ [0, x]n and i, j ∈ N , let ρij(x) ≡ (xρi , x
ρ
j ,xN\{i,j})

where xρi = xj and x
ρ
j = xi. Given x = (xg)g∈N ∈ [0, x]n and i, j ∈ N ,

let (ρij(x))−i ≡ x0−i where x0 = ρij(x). Given e ∈ E, x−i ∈ [0, x]n−1,
and a distribution rule h, let hi(e, [0, x],x−i) ≡ {y ∈ R+ | ∃x ∈ [0, x] :
y = hi(e, x,x−i)}. Then, we can introduce an anonymity requirement for
distribution rules in the following:

Equal Attainable Sets for Equal Handicaps (EAEH):14 For all e =
(a, s, C,f), all i, j ∈ N such that ai = aj and si = sj, and all x ∈
[0, x]n, hi(e, [0, x],x−i) = hj(e, [0, x], (ρij(x))−j) and hi(e, [0, x], (ρij(x))−i) =
hj(e, [0, x],x−j).

The society can determine a desirable distribution rule by choosing a refer-
ence capability called J-based minimal capability and by using an anonymous
requirement in the sense of EAEH:

Definition 1: Given ψ, ϕ, and J ∈ J n, the J-based capability maximin rule
(CMψ,ϕ

J ) is a function hCMψ,ϕ
J : E × [0, x]n → Rn+ satisfying EAEH such

that for all e ∈ E and all x = (xi)i∈N ∈ [0, x]n, hCMψ,ϕ
J (e,x) = y = (yi)i∈N

meets:
(α) for all i ∈ N , C(ai, x− xi, yi) ⊇ Cmin

ϕ·ψ(J)(e,x),
(β) there is no other y∗∈Y (e,x) such that CC(e,x,y∗) ) Cmin

ϕ·ψ(J)(e,x).

14A similar requirement was originally discussed by Fleurbaey (1995b, 1998).
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The implication of the J-based capability maximin rule is that all individuals
are always guaranteed a maximum of common capability under (e,x), where
the maximum is determined on the basis of all individuals’ judgements over
common capabilities, J ∈ J n.
Note that the J-based capability maximin rule is not always necessarily

well-defined by the Paretian social welfare function ψ: First, if the social
judgement ψ(J) has no maximal element on CC(e,x) for some (e,x), then
the J-based capability maximin rule is not well-defined. Second, if the social
judgement ψ(J) does not contain the set-inclusion subrelation in CC(e,x) for
some (e,x), then this rule cannot be generated through ψ . So, the problem
is to determine under what conditions this rule can be generated through the
Paretian social welfare function.
As an auxiliary step to guarantee well-definedness of the J-based capa-

bility maximin rule, let us introduce an appropriate topology into the space
of compact sets in Rm+ in terms of the Hausdorff metric.15 Equipped with
this topology and given e ∈ E and x ∈ [0, x]n, let us say that the common
capability CC(e,x,y) ∈ CC(e,x) is undominated under (e,x) if there is no
y0 ∈ Y (e,x) such that CC(e,x,y0) ) CC(e,x,y). Let UC(e,x) denote the
set of undominated common capabilities under (e,x). Moreover, given e ∈ E,
CC(e, z) ∈ CC(e,x), and an ordering J(e,x) on CC(e,x), let16

L (CC(e, z),J(e,x)) ≡ {CC(e, z0) ∈ CC(e,x) | (CC(e, z), CC(e, z0)) ∈ P (J(e,x))}.
The ordering relation J(e,x) is upper semi-continuous on UC(e,x) if for all
CC(e, z) ∈ UC(e,x), L (CC(e, z),J(e,x))∩UC(e,x) is open in the Hausdorff
relative topology on UC(e,x) .
Let NSIA(⊆ N) be the set of individuals whose proposed value judge-

ments always belong to JSIA, and are always upper-semi continuous on
UC(e,x) for all (e,x) ∈ E × [0, x]n.

Lemma 1: Suppose that #NSIA ≥ 1. Then, there exists a Paretian social
welfare function ψ such that for each proposed J ∈ J n, B(CC(e,x),ψ(J)) 6=
∅ and B(CC(e,x),ψ(J)) ⊆ UC(e,x) for all (e,x) ∈ E × [0, x]n.

15For any compact sets C, C0 ⊆ Rm, the Hausdorff metric is defined by
d(C,C0) ≡ max{max{δ(b, C) | b ∈ C0},max{δ(b, C 0) | b ∈ C}},

where δ(b, C) ≡min
b0∈C

k b,b0 k, and k b,b0 k denotes the Euclidean distance between b and

b0.
16For the sake of notational convenience, we sometimes denote the common capability

by CC(e, z) instead of CC(e,x,y) when z = (x− x,y) ∈ Z(e).
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We are now ready to put forward the result on the possibility of social
choice of the J-based capability maximin rule.

Theorem 1: Suppose that #NSIA ≥ 1. Then, there exists a Paretian social
welfare function ψ and the corresponding rational choice function ϕ by
which the J-based capability maximin rule hCMψ,ϕ

J is always generated. In
addition, the J-based capability maximin rule is uniquely determined.

Theorem 1 shows the existence of a Paretian social welfare function which
never fails to generate the J-based capability maximin rule whenever there
exists a person whose proposed value judgement, which is always upper semi-
continuous, always satisfies Anonymity and Set-Inclusion Subrelation.
Let ψ be just such a function and ϕ its corresponding rational choice function,
both of which are assumed to be fixed in the following discussion.

4.3 A Characterization of the Social Value Judgement

We now characterize the social value judgement ψ(J) which rationalizes the
J-based capability maximin rule. First, we define a ranking of the feasi-
ble assignments of capabilities by an ordering relation RFC ⊆ FC × FC
such that (C(e, z),C(e0, z0)) ∈ RFC, where C(e, z) ≡ (C(ai, zi))i∈N and
C(e0, z0) ≡ (C(a0i, z

0
i))i∈N , which implies that the feasible assignment of ca-

pabilities C(e, z) is at least as good as the feasible assignment of capabil-
ities C(e0, z0). The asymmetric and symmetric parts of RFC are denoted
by P (RFC) and I(RFC) respectively. Given e ∈ E and x ∈ [0, x]n, let
RFC(e,x) ≡ RFC∩(FC(e,x))2 andB(FC(e,x), RFC) ≡ {C(e, z) ∈ FC(e,x) |
∀C(e, z0) ∈ FC(e,x) : (C(e, z),C(e, z0)) ∈ RFC}. Among various orderings
on FC, we are particularly interested in an ordering RFCψ(J) ⊆ FC × FC
defined as follows: for all e, e0 ∈ E, all z ∈ Z(e), and all z0 ∈ Z(e0),
(C(e, z),C(e0, z0)) ∈ RFCψ(J) if and only if (CC(e, z), CC(e0, z0)) ∈ ψ(J).
Second, we introduce axioms concerning the rankings of the feasible ca-

pability assignments as follows:

Pareto Inclusion in Capability Assignments (PICA): For all e ∈ E,
all x ∈ [0, x]n, and all y,y0 ∈Y (e,x),
[C(ai, x−xi, yi) ⊇ C(ai, x−xi, y0i) (∀i ∈ N) and C(aj, x−xj, yj) ) C(aj, x−
xj, y

0
j) (∃j ∈ N) ⇒ (C(e, z),C(e, z0)) ∈ P (RFC(e,x))].
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Anonymity in Capability Assignments (ACA): For all e ∈ E, all
x ∈ [0, x]n, all y,y0 ∈Y (e,x), and all i, j ∈ N such that ai = aj and si = sj,
[(C(e,x,y),C(e,x,y0)) ∈ RFC(e,x) ⇔ (C(e, ρij(x,y)),C(e, ρij(x,y

0))) ∈
RFC(e, ρij(x)))].

Let us define a relative advantage function µ : FC ×N → R+ such that
for all C(e,x,y) ∈ FC and all i ∈ N :
(i) [C(ai, x− xi, yi) = CC(e,x,y)⇒ µ(C(e,x,y), i) = 0],
(ii) for all j ∈ N , [C(ai, x − xi, yi) ⊇ C(aj, x − xj, yj) ⇒ µ(C(e,x,y), i) ≥
µ(C(e,x,y), j)].

This function provides a measure that is intended to capture the extent
of inequality in capability assignments: the higher the real number of max

i∈N
µ(C(e,x,y), i) is, the higher the degree of inequality in capabilities will be.
Among possibly various relative advantage functions, we are particularly in-
terested in the following one: µ∗ : FC×N → R+ such that for allC(e,x,y) ∈
FC and all i ∈ N , µ∗(C(e,x,y), i) ≡ min{η−1 ∈ R+ | ∃b ∈ ∂C(ai, x−xi, yi)
s.t. η−1b ∈ ∂CC(e,x,y))}. We can easily check that the function µ∗ meets
the two conditions (i) and (ii) of relative advantage functions. By using this
µ∗, we introduce the following:

µ∗-Equity in Capability Assignments (µ∗ECA): For all e ∈ E and all
x ∈ [0, x]n, there exists max

i∈N
µ∗(C(e,x,y∗), i) ≡ min

y∈Y (e,x)
max
i∈N

µ∗(C(e,x,y), i)

such that C(e,x,y∗) ∈ B(FC(e,x), RFC).

The implication of µ∗ECA will be explained as follows: Given (e,x,y) and
given i ∈ N , any functioning vectors bi,b

0
i ∈ ∂C(ai, x− xi, yi) are incompa-

rable from each other and maximal in C(ai, x− xi, yi) with respect to vector
inequalities. Note that for any bi ∈ ∂C(ai, x− xi, yi), there is a functioning
vector b(bi) ≡ η−1bi in ∂CC(e,x,y) where η ∈ [1,+∞) implies the degree
of advantage of the functioning bi over the minimally warranted functioning
b(bi). Among such functioning vectors in ∂C(ai, x− xi, yi), there is a func-
tioning vector b∗i such that its corresponding scalar η

∗ is the minimum value
in ∂C(ai, x−xi, yi), which implies that the advantage of b∗i over b(b∗i ) is less
than the advantage of any vector in ∂C(ai, x − xi, yi). In the function µ∗,
individual i’s relative advantage over other individuals in capability assign-
ments under (e,x,y) is measured by η∗ − 1. The axiom µ∗ECA says that
the capability assignment under which the degree of inequality in capabilities
in terms of µ∗ is minimized should be most preferable.
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Theorem 2: Given J ∈ J n, suppose that there exists at least one individual
i ∈ N such that Ji ∈ JSIA and Ji(e,x) is upper-semi continuous on UC(e,x).
Then, the ordering RFCψ(J) ⊆ FC × FC satisfies PICA, ACA, and µ∗ECA.
Conversely, if the ordering RFC ⊆ FC × FC satisfies PICA, ACA, and
µ∗ECA, then RFC = RFCψ(J) for some J ∈ J n.

We should mention the literature related to the characterization of the
ordering RFCψ(J). Herrero et al. (1998) and Bossert et al. (1999) respectively
defined the ordering of opportunity profiles, which is similar to RFCψ(J), in the
abstract rich domains, and provided axiomatic characterizations under the
assumption of richness in Herrero et al. (1998) and Bossert et al. (1999).
Note that their characterization results cannot be directly applied to RFCψ(J),
since the domain of the ordering RFC, which is the Hausdorff space FC,
does not necessarily satisfy the richness condition. Thus, in contrast to their
results, our axiomatic characterization on RFCψ(J) is obtained independently of
the richness condition. Moreover, it is obtained by adopting a specific equity
axiom, µ∗ECA, instead of the Hammond’s equity axioms in Herrero et al.
(1998) and Bossert et al. (1999).

5 Characterizations of the Class of J-Based
Capability Maximin Rules

5.1 Axioms on Distribution Rules

In this subsection, we discuss the desirability of distribution rules from the
viewpoints of fair opportunity to well-being. Here, individual opportunity to
well-being is identified with individual capabilities attainable through the ap-
plication of distribution rules. How can we define the fairness of opportunity
to well-being in this context?
In support of these viewpoints, we consider the following axioms:

Minimal Equality of Capability (MEC): For all e = (a, s, C,f) ∈ E
and all x = (xi)i∈N ∈ [0, x]n,
[ ∀i, j ∈ N , ai = aj and xi = xj]⇒[ ∀i, j ∈ N , C(ai, x − xi, hi(e,x)) =
C(aj, x− xj, hj(e,x))].

Note that NP implies MEC, and CP also implies MEC whenever si =
sj ⇔ ai = aj for all i, j ∈ N .
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The next three axioms are related to responsibility and compensation dis-
cussed in Bossert (1995), Fleurbaey (1994, 1995a, b, 1998), and Fleurbaey
and Maniquet (1994, 1996), etc. The first axiom is motivated by the follow-
ing discussion: if there is reason to compensate someone in their capabilities,
then there should exist differences in individuals’ utilization abilities. To for-
mulate a similar argument in the context of compensating inequal utility
distributions, Fleurbaey (1995a, 1998), etc., introduced the equal resource
for equal handicap axiom and/or other similar ones. Since our distribution
rules are game forms, the formulation of which differs from that of alloca-
tion rules by Fleurbaey (1995a, 1998), etc., we cannot directly apply the
equal resource for equal handicap and/or other similar axioms to our con-
text. However, the following axiom seems to be along the same line as the
equal resource for equal handicap axioms:

NoDomination of Resources among Equally Handicapped (NDEH):
For all e = (a, s, C,f) ∈ E, all x ∈ [0, x]n, and all i, j ∈ N such that ai = aj,
[xi = xj ⇒ hi(e,x) = hj(e,x)] and [xi < xj ⇒ hi(e,x) < hj(e,x)].

It is easy to show that NDEH implies MEC. Note that NDEH and EAEH
are logically independent of each other.
The following two axioms are relevant to “principle of compensation in

capabilities.”

No Domination of Capabilities among Equal Efforts (NDEE): For
all e = (a, s, C,f) ∈ E, all x ∈ [0, x]n, and all i, j ∈ N such that xi = xj,
[neither C(ai, x− xi, hi(e,x)) ( C(aj, x− xj, hj(e,x))
nor C(ai, x− xi, hi(e,x)) ) C(aj, x− xj, hj(e,x))].

No Strict Domination of Capabilities among Equal Efforts (NS-
DEE): For all e = (a, s, C,f) ∈ E, all x ∈ [0, x]n, and all i, j ∈ N such that
xi = xj, [neither C(ai, x− xi, hi(e,x)) ( int C(aj, x− xj, hj(e,x))
nor int C(ai, x− xi, hi(e,x)) ) C(aj, x− xj, hj(e,x))].

These two axioms mean that, given that one chooses the same amount of la-
bor time as another, then should the individual’s utilization ability be worse
than the other, this should not necessarily determine a worse situation in
that person’s capability. Note that it seems to be more appealing if the prin-
ciple of compensation in capabilities requires equal capabilities for any two
persons who respectively provide the same amount of labor time. However,
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such a requirement is generally empty. So, these kinds of “non-domination in
terms of set-inclusion” are more appropriate in discussing compensation of
capabilities. Note that NSDEE is implied by NDEE. Moreover, it is easy to
show that NSDEE impliesMEC. However, NSDEE and NP are independent
of each other.
The next two axioms concern “solidarity” conditions of distribution rules.

The first axiom is relevant to the change in individuals’ supplies of labor
time. If, as a result of a change in their supplies of labor time, someone’s
capability is worse relative to another’s, then the first one should be described
as suffering the negative effect of the change more than the second. The
axiom, Solidarity in Rank of the Weakest Functioning Vectors, defined below
precludes any individual from falling into such a situation.
As an auxiliary step in introducing the above axiom, let us discuss the

following: Given e = (a, s, C,f) ∈ E, z ∈ Z(e), and bi ∈ ∂C(ai,zi) of i ∈ N ,
let N(i,bi, e, z) ≡ {j ∈ N | ∃λj ≥ 1, s.t. λjbi ∈ C(aj, zj)}.
Definition 2: Given e = (a, s, C,f) ∈ E and z ∈ Z(e), the functioning
vector bi ∈ ∂C(ai, zi) of i ∈ N is the weakest vector for i ∈ N if for any
other b∗i ∈ ∂C(ai, zi), #N(i,bi, e, z) ≥ #N(i,b∗i , e, z).

Given e = (a, s, C,f) ∈ E and z ∈ Z(e), let us denote the set of the
weakest functioning vectors for i ∈ N by Bwi (e, z), and denote an element of
Bwi (e, z) by bwi (e, z).

Solidarity in Rank of the Weakest Functioning Vectors (SRWF):
For all e = (a, s, C,f) ∈ E and all x = (xi)i∈N(6= 0), x0 = (x0i)i∈N(6= 0) ∈
[0, x]n such that for all i 6= j, xi = x0i and xj ≤ x0j, there is no i ∈ N such
that #N(i,bwi (e, z), e, z) > #N(i,bwi (e, z0), e, z0) where z =(x−x,h(e,x)),
z0 =(x−x0,h(e,x0)), and x = (x, . . . , x) ∈ Rn+.
This axiom stipulates that no one’s rank in the weakest functioning vector
will shift up through additional labor time by an individual.
The next axiom is relevant to the change in individuals’ ability endow-

ments. Consider that someone suffers from a bad accident, and as a result,
can no longer maintain her current capability. The following axiom requires
compensating the unlucky person in such a situation for her loss of capability.

No Relative Advantage by Bad Accidents (NRABA): For all e =
(a, s, C,f), e0 = (a0, s, C, f) ∈ E such that for some j ∈ N , aj ≥ a0j and
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for any other i 6= j, ai = a0i, and all x ∈ [0, x]n, there is no i ∈ N such
that #N(i,bwi (e, z), e, z) > #N(i,bwi (e0, z0), e0, z0) where z =(x−x,h(e,x))
and z0 =(x−x,h(e0,x)).

This axiom requires precluding every individual from making her rank of the
weakest vector shift up through another’s unfortunate accident. This implies
that all individuals are required to share the effect of someone’s brute luck.
The following axiom is a requirement for non-wastefulness of resource

allocations in the sense that it only requires distributing total outputs ex-
haustively.

Pareto Efficiency with respect to Capabilities (PEC): For all e =
(a, s, C,f) ∈ E, all x ∈ [0, x]n, and all y0 ∈Rn+, [C(ai, x−xi, y0i) ) C(ai, x−
xi, hi(e,x)) (∀i ∈ N) ⇒ (x− xi, y0i)i∈N /∈ Z(e)].

Note that PEC and NSDEE together imply NP .

5.2 Characterizations of the Class of J-Based Capabil-
ity Maximin Rules

Note, that if the profile of individual value judgements changes from J
to J∗, then the distribution rule selected through ψ and ϕ would change
from hCMψ,ϕ

J to hCMψ,ϕ
J∗ , where hCMψ,ϕ

J 6= hCMψ,ϕ
J∗ . This implies that there

are many J-based capability maximin rules which are socially chosen ac-
cording to the profile of individual value judgements J ∈ J n. Based upon
this property, we can introduce the class of J-based capability maximin
rules which are socially chosen through individual value judgements, and
denote this class by UCM ≡ {hCMψ,ϕ

J | J ∈ J n}. One of the proper-
ties of the set UCM deserves attention. The set UCM is defined indepen-
dently of ψ and ϕ, whenever ψ satisfies Pareto Principle. To understand
this point, let us take a distribution rule hCMψ,ϕ

J from UCM . By definition,
this distribution rule is socially chosen through ψ and ϕ under the profile
of individual value judgements J ∈ J n. Then, corresponding to hCMψ,ϕ

J ,
Cmin
ϕ·ψ(J)(e,x) ∈ UC(e,x) is defined for each and every (e,x) ∈ E × [0, x]n.
Let us define another Paretian social welfare function ψ∗ and the associated
rational choice function ϕ∗. Let us also consider another profile of individual
value judgements J∗ ∈ J n such that for each and every (e,x) ∈ E × [0, x]n,
(Cmin

ϕ·ψ(J)(e,x), CC(e,x,y)) ∈ P (J∗i (e,x)) for all y ∈Y (e,x) and all i ∈ N .
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Then, we can definitely obtain ϕ∗(CC(e,x),ψ∗(J∗)) = Cmin
ϕ·ψ(J)(e,x) for each

and every (e,x) ∈ E × [0, x]n, since ψ∗ satisfies the Pareto principle. This
implies that the set UCM is determined, regardless of the Paretian social
welfare functions and the rational choice functions.
To characterize the class of J-based capability maximin rules by means

of the axioms defined in the previous section, we first introduce the following
concept concerning assignments of capabilities by distribution rules:

Definition 3: The distribution rule h meets undominated property if for all
e = (a, s, C,f) ∈ E and all x ∈ [0, x]n, there is no i ∈ N such that for all
j 6= i, int C(ai, x− xi, hi(e,x)) ) ∩

j 6=i
C(aj, x− xj, hj(e,x)).

Let us denote the class of undominated distribution rules by UD.

Lemma 3: UCM = EAEH ∩ UD ∩ PEC.

By using Lemma 3, we obtain the following characterizations of UCM :

Theorem 3: UCM = EAEH ∩MEC ∩ SRWF ∩NRABA ∩ PEC.

This characterization shows that UCM is the set of anonymous and non-
wasteful distribution rules satisfyingMEC and the two solidarity conditions.
By this characterization, we may see that if we support equality of capabilities
[Sen (1980)] as the answer to the problem on “equality of what,” all rules in
UCM would be egalitarian in the sense of Sen (1980).
We can show that the above five axioms in Theorem 3 are logically inde-

pendent. To see this, consider the following examples:

Example 1: Let h be a distribution rule having the following property: there
is J ∈J n such that for all e ∈ E and all x ∈ [0, x]n,
(1) if for all i, j ∈ N , xi = xj 6= 0, then h(e,x) = hCMψ,ϕ

J (e,x),
(2) otherwise, h(e,x) = 0.
Then, h satisfies EAEH, MEC, SRWF , and NRABA, but not PEC.

Example 2: Let h be a distribution rule having the following property: there
is J ∈J n such that for all e ∈ E and all x ∈ [0, x]n,
(1) if there exists j ∈ N such that xj > 0, and for any i 6= j, xi = 0, then

hj(e,x) = f(sjxj) and hi(e,x) = 0,
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(2) otherwise, h(e,x) = hCMψ,ϕ
J (e,x).

Then, h satisfies EAEH, MEC, PEC, and NRABA, but not SRWF .

Example 3: Let h be a distribution rule having the following property: there
is J ∈J n such that for all e ∈ E and all x ∈ [0, x]n,
(1) if there exists a pair of individuals {i, j} ⊆ N such that ai = aj, then
h(e,x) = hCMψ,ϕ

J (e,x),
(2) otherwise, h has the property that f(

P
sgxg) =

P
hg(e,x), and there

exists a partition of N , N (e,x) ≡ {N1(e,x), N2(e,x), · · · , NT (e,x)} where
2 ≤ T ≤ n, such that
(α) for all N t(e,x) ∈ N (e,x) and all i, j ∈ N t(e,x),

#N (i,bwi (e, (x, h(e,x))) , e, (x, h(e,x))) = #N
¡
j,bwj (e, (x, h(e,x))) , e, (x, h(e,x))

¢
,

(β) there exists N t(e,x) ∈ N (e,x) such that for all i ∈ N t(e,x),

#N (i,bwi (e, (x, h(e,x))) , e, (x, h(e,x))) < n, and

(γ) for any other x0 ∈ [0, x]n, N (e,x0) = N (e,x).
Then, h satisfies EAEH, MEC, PEC, and SRWF , but not NRABA.

Example 4: Let h be a distribution rule having the following property: there
is J ∈J n such that for all e = (a, s, C,f) ∈ E and all x ∈ [0, x]n,
(1) if there exists a pair of individuals {i, j} ⊆ N such that si = sj, then
h(e,x) = hCMψ,ϕ

J (e,x),
(2) otherwise, h has the property that f(

P
sgxg) =

P
hg(e,x), and

(α) if for all i, j ∈ N , ai = aj and xi = xj 6= 0, then
h1(e,x) < h2(e,x) < · · · < hn(e,x),
(β) otherwise, C(a1, x − x1, h1(e,x)) ( C(a2, x − x2, h2(e,x)) ( · · · (
C(an, x− xn, hn(e,x)) whenever x 6= 0, and h(e,x) = 0 if x = 0.
Then, h satisfies EAEH, SRWF , NRABA, and PEC, but not MEC.

Example 5: Let h be a distribution rule having the following property:
(1) for all e ∈ E and all x ∈ [0, x]n, there exists J ∈J n such that h(e,x) =

hCMψ,ϕ
J (e,x),

(2) there is an economy e0 = (a0, s0, C,f) ∈ E and a pair of individuals
{i, j} ⊆ N such that a0i = a0j and s

0
i = s0j, but

hi(e
0,x0) 6= hj(e

0, ρij(x0)) and hj(e0,x0) 6= hi(e
0, ρij(x0))
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for some x0 ∈ [0, x]n such that x0i 6= x0j.
Then, h satisfies MEC, SRWF , NRABA, and PEC, but not EAEH.

The following characterization shows that UCM is the unique class of
anonymous and non-wasteful distribution rules satisfying Needs Principle
and the two solidarity conditions:

Theorem 4: UCM = NP ∩EAEH ∩ SRWF ∩NRABA ∩ PEC.17

Since the Needs Principle and the two solidarity conditions together may be
important requirements in determining resource allocations from the view-
points of social security, it might be plausible to adopt the distribution rules
in UCM in order to implement social security.
We can check the independence of the five axioms in Theorem 4 if #N ≥

3. The independence of PEC, SRABA, NP , and EAEH is shown by the
above Examples 1, 2, 4, and 5, respectively. The independence of NRABA
is shown by the following example:

Example 3∗: Let h be a distribution rule having the properties of Example
3-(1) and (2). Moreover, for all e ∈ E and all x ∈ [0, x]n, there is no pair of
individuals, {i, j} ( N , such that

int C(ai, x− xi, hi(e,x)) ) C(aj, x− xj, hj(e,x)).

Then, h satisfies EAEH, NP , PEC, and SRWF , but not NRABA.

Theorem 5: There exists a distribution rule h such that h ∈ EAEH ∩
NDEH ∩NDEE. Moreover, for some J ∈J n, h = hCMψ,ϕ

J .18

Among the above three characterizations on UCM , it is particularly
worth noting regarding Theorem 5 that UCM contains a class of rules sat-
isfying the axioms of responsibility and of compensation, when we evalu-
ate individuals’ well-being by Sen’s capabilities. In contrast, previous works

17If we assume two-person economies, Theorem 4 is reduced to the following:

[#N = 2]⇒[UCM = NP ∩EAEH ∩ SRWF ∩ PEC].
18We also obtain the following results similar to Theorem 5:

UCM = NDEH ∩EAEH ∩ SRWF ∩NRABA ∩ PEC,
UCM = NSDEE ∩EAEH ∩ SRWF ∩NRABA ∩ PEC.
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showed the incompatibility between the axioms of responsibility and of full
compensation, when individual well-being is evaluated by the standard indi-
vidual utility [Fleurbaey (1994, 1995a), etc.]. This difference between us and
the previous works may come from the different evaluative basis of comparing
individuals’ well-being: The basis in the previous works is put on individuals’
achieved satisfactions (utilities), while in ours it is on individuals’ opportu-
nities (capabilities) to achieve satisfactions. In fact, in our model, if we
introduce individual utility functions and define the axiom which requires
equal utility for any two individual with equal utility functions in the same
way as Equal Welfare for Equal Preference (EWEP) in Fleurbaey (1994,
1995a), then it might lead to the incompatibility result similar to Fleurbaey
(1994, 1995a). This implies that if only the objective states of individual
well-being, like capability assignments, are the informational basis for evalu-
ating individuals’ outcomes in resource allocations, the conflict between the
requirements of responsibility and of compensation is not so serious as the
one when the subjective states of individual well-being are the informational
basis.

5.3 Discussion

As was shown in the formulation of capabilities and in the proposal of J-based
capability maximin rules, we focussed only on the relevant functionings of
consumption aspects in human life and on the determination of the opportu-
nity sets of such functionings through the application of distribution rules. So,
in this paper, there is no discussion about determining, through the applica-
tion of distribution rules, the opportunity sets of functionings of production
aspects such as that of “being able to work as much as one wants.” This is
because of the simple, static setting of production economies and resource
allocations where every individual is endowed with a fixed production skill
and the same set of labor time, and engages in the same type of labor.19 So,
the application of distribution rules does not influence the sizes of the oppor-
tunity sets of labor. Although we believe that such a limited analysis can be
drawn from the Rawlsian viewpoint of distributive justice, of course, there
may well be an argument that the opportunity sets of some functionings of
production aspects such as “being able to work as much as one wants” should
19By taking skills of individuals fixed, we are in effect excluding the possibility of im-

proving skills through education. Likewise, by assuming only one type of labor, we are in
effect excluding the possibility of searching for alternative job opportunities.
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be variable, depending upon the results of resource allocations. This would
be true even if we assume only one type of labor. For example, the Marxian
theory on reproduction of labor-power seems to lead us to such a perspective
on the opportunity sets of some functionings of production aspects.
The last argument may make us consider resource allocation schemes

which fairly assign to every individual, opportunity sets of functionings not
only for consumption activities, but also for production activities. We think
that this problem can appropriately be treated in dynamic settings of resource
allocation problems. In this case, the reproduction process of “labor-power”
and/or the education and learning process for improving production skills
are explicitly discussed, although this is far beyond the scope of this paper.

6 Concluding Remarks

In this paper, we formalize, in cooperative production economies, the distri-
bution rules as game forms, and define Sen’s capability set in the context of
existence of interaction among individuals concerning assignment of capabil-
ities. Moreover, we propose a class of distribution rules, the class of J-based
capability maximin rules, and discuss axiomatic characterizations of these
rules mainly from normative viewpoints. Strategic aspects of the J-based
capability maximin rules are discussed by Gotoh and Yoshihara (1997).
Although this paper discusses the social decision procedure for selecting

distribution rules, which chooses the J-based capability maximin rule in the
primordial stage of rule selection, the object of this paper is not to formalize
systematically the two principles of justice proposed by Rawls (1971). This
formalization has been done by Gotoh, Suzumura, and Yoshihara (2001).

7 Proofs of Theorems
Proof of Lemma 1: We will complete the proof by showing, first, Step (1)
and second, Step (2) as follows:

Step (1): UC(e,x) is non-empty and compact for each e ∈ E and each
x ∈ [0, x]n.
We define a correspondence ζe,x and show that it is continuous on the com-

pact set Ye(x) which is also defined below. Next, we define a set UIC(e,x)
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and show that it is compact. Finally, we show that the compactness of
UC(e,x) by noting that UC(e,x) = UIC(e,x) ∩ ζe,x(∂Ye(x)).
Given e ∈ E, the set Y (e,x) is well-defined and compact for each x ∈

[0, x]n, which can be used to define a compact-valued and continuous cor-
respondence Ye : [0, x]n ³ Rn+ as Ye(x) =Y (e,x) for each x ∈ [0, x]n. Let
∂Ye(x) ≡ {y = (yi)i∈N ∈ Rn+ | f(

P
sixi) =

P
yi}.

Given e ∈ E and x ∈ [0, x]n, let ζe,x : Ye(x) ³ Rm+ be such that, for
all y ∈ Ye(x), ζe,x(y) ≡ CC(e,x,y). Since, by (1)-(δ), C(ai, ·, ·) is upper
hemi-continuous (u.h.c.) for each i ∈ N , ζe,x is u.h.c. We show that ζe,x is
also lower hemi-continuous (l.h.c.). Let ηie,x : Ye(x) ³ Rm+ be such that for
all y ∈ Ye(x), ηie,x(y) ≡ int C(ai, x − xi, yi). Since ηie,x is l.h.c. by (1)-(δ),
and ηje,x can be shown to have open graph, η

i
e,x ∩ ηje,x is l.h.c. Similarly, we

can show that ∩
i∈N

ηie,x is l.h.c. Since the closure of ∩
i∈N

ηie,x(y) is ζe,x(y) for

all y ∈ Ye(x), we can see that ζe,x is l.h.c. Thus, ζe,x is continuous. Since,
by (1)-(γ), CC(e,x) is a family of compact sets, ζe,x is a continuous function
from Ye(x) to CC(e,x). Since Ye(x) is compact, ζe,x(Ye(x)) = CC(e,x) is
compact for each x ∈ [0, x]n.
Given CC(e,x,y) ∈ CC(e,x), let

Linte,x (CC(e,x,y), )) ≡ {CC(e,x,y0) ∈ CC(e,x) | int CC(e,x,y) ) CC(e,x,y0)}.
For any CC(e,x,y0) ∈ Linte,x (CC(e,x,y), )), there exists an ² > 0 such that
² = min{δ(b, CC(e,x,y0)) | b ∈ ∂CC(e,x,y)}, where ∂CC(e,x,y) is the
boundary of the set CC(e,x,y). Define

O(CC(e,x,y0),
1

2
²) ≡ {CC(e,x,y00) ∈ CC(e,x) |d(CC(e,x,y0), CC(e,x,y00)) <

1

2
²}.

By definition of the Hausdorff metric d, int CC(e,x,y) ) CC(e,x,y00) for
all CC(e,x,y00) ∈ O(CC(e,x,y0),1

2
²). Thus, Linte,x (CC(e,x,y), )) is open in

the Hausdorff topology on CC(e,x), so ) is upper semi-continuous. Then,
since the relation ) is transitive, hence acyclic, there exists a CC(e,x,y∗) ∈
CC(e,x) such that int CC(e,x,y0) +CC(e,x,y∗) for allCC(e,x,y0) ∈ CC(e,x).
Denote the set of such CC(e,x,y∗) by UIC(e,x) for each e ∈ E and
x ∈ [0, x]n. Note that the non-empty set UIC(e,x) is closed in CC(e,x),
and UIC(e,x) ⊇ UC(e,x). Since CC(e,x) is compact, UIC(e,x) is compact.
For CC(e,x,y) ∈ UIC(e,x), if y ∈ Ye(x)\∂Ye(x), then there exists

y∗ ∈ ∂Ye(x) such that CC(e,x,y∗) ) CC(e,x,y). Moreover, it is shown
that CC(e,x,y∗) ∈ UC(e,x). Since CC(e,x,y∗) ∈ UIC(e,x), there exists
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bi ∈ ∂C(ai, x−xi, y∗i ) for all i ∈ N such that bi ∈ ∂CC(e,x,y∗). Since y∗ ∈
∂Ye(x), for any y∗∗(6= y∗) ∈ Ye(x), there exists at least one individual j ∈ N
such that intC(aj, x − xi, y∗i ) ) C(aj, x − xi, y∗∗i ) by the property (1)-(β)
of the capability correspondence. It follows that there is no CC(e,x,y∗∗) ∈
CC(e,x) such that CC(e,x,y∗∗) ) CC(e,x,y∗). Thus, UC(e,x) 6= ∅ and
UIC(e,x)∩ ζe,x(∂Ye(x)) = UC(e,x). Since ζe,x(∂Ye(x)) is compact, UC(e,x)
is compact.
Step (2): Existence of ψ having the property stated in Lemma 1.
Given J ∈ J n, let ∩

i∈NSIA
Ji. Note that ∩

i∈NSIA
Ji is a quasi-ordering,

and ∩
i∈NSIA

Ji(e,x) is upper semi-continuous on UC(e,x) for each e ∈ E
and each x ∈ [0, x]n. Let JUCSIA(e,x) ≡ ∩

i∈NSIA
Ji(e,x) ∩ (UC(e,x)×CC(e,x))

and JUCSIA ≡ ∪
(e,x)∈E×[0,x]n

JUCSIA(e,x). Since JUCSIA is quasi-ordering, by Jaffray’s

(1975) theorem, there exists an ordering extension JSIA of JUCSIA such that
for each e ∈ E and each x ∈ [0, x]n, JSIA(e,x) ∩ (UC(e,x))2 is upper semi-
continuous on UC(e,x).
Next, given J ∈ J n, let JN ≡ ∩

i∈N
Ji. Then, since we can easily show

that the relation JSIA ∪ JN is consistent in the sense of Suzumura (1983,
chapter 1),20 there exists an ordering extension J of JSIA ∪ JN over CC.
Let ψ(J) ≡ J . Since ψ(J) contains JSIA, and every individuals in NSIA

always proposes the value judgement containing the set-inclusion subrelation,
B(CC(e,x),ψ(J)) ⊆ UC(e,x). Since UC(e,x) is non-empty and compact,
B(CC(e,x),ψ(J)) = B(UC(e,x),ψ(J)) 6= ∅. Finally, by the construction of
ψ(J), it is clear that ψ satisfies Pareto Principle.

Given e = (a, s, C,f) ∈ E and x = (xi)i∈N ∈ [0, x]n, let Y (e,x,ψ(J),ϕ) ≡
{y = (yi)i∈N ∈ Y (e,x) | for all i ∈ N, C(ai, x− xi, yi) ⊇ Cmin

ϕ·ψ(J)(e,x)}.

Lemma 2: Suppose that the J-based capability maximin rule hCMψ,ϕ
J is gen-

erated through the Paretian social welfare function ψ. Then, for all e =
(a, s, C,f) ∈ E and all x = (xi)i∈N ∈ [0, x]n, the J-based minimal capability
Cmin
ϕ·ψ(J)(e,x), which corresponds to hCMψ,ϕ

J , has the following property: for

20A binary relation R on a set X is consistent if there exists no finite subset {x1, · · · , xt}
of X, where 2 ≤ t < +∞, such that (x1, x2) ∈ P (R), (x2, x3) ∈ R, · · ·, (xt, x1) ∈ R
hold. A binary relation R∗ on X is called an extension of R if and only if R ⊆ R∗ and
P (R) ⊆ P (R∗) hold. It is shown in Suzumura (1983, Theorem A(5)) that there exists an
ordering extension of R if and only if R is consistent.
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all i ∈ N , there exists bi ∈ ∂C(ai, x − xi, yi) such that bi ∈ ∂Cmin
ϕ·ψ(J)(e,x)

where y = (yi)i∈N ∈ Y (e,x,ψ(J),ϕ).

Proof: Let e = (a, s, C,f) ∈ E and x ∈ [0, x]n. Suppose that for some
y = (yi)i∈N ∈ Y (e,x,ψ(J),ϕ), there exists j ∈ N such that for all bj ∈
∂C(aj, x−xj, yj), bj /∈ Cmin

ϕ·ψ(J)(e,x). Let us denote the set of such individuals
by N(e,x,ψ(J),ϕ,y). Then, we can consider another distribution as follows:

y0 ≡
 y0j = yj − εj > 0 (∃εj > 0) for j ∈ N(e,x,ψ(J),ϕ,y)

y0i = yi +

P
j∈N(e,x,ψ(J),ϕ,y)

εj

#[N\N(e,x,ψ(J),ϕ,y)]
for i ∈ N\N(e,x,ψ(J),ϕ,y)

where ∩
i∈N\N(e,x,ψ(J),ϕ,y)

C(ai, x − xi, y0i) ⊆ C(aj, x − xj, y0j) for any j ∈
N(e,x,ψ(J),ϕ,y). The existence of such a distribution is guaranteed by (1)-
(δ). By (1)-(β), C(ai, x−xi, y0i) ) C(ai, x−xi, yi). Then, since ∩

i∈N\N(e,x,ψ(J),ϕ,y)

C(ai, x− xi, y0i) = ∩
i∈N

C(ai, x− xi, y0i),
∩
i∈N

C(ai, x− xi, y0i) ) Cmin
ϕ·ψ(J)(e,x). Since y0 ∈ Y (e,x),

∩
i∈N

C(ai, x− xi, y0i) = CC(e,y0,x) ∈ CC(e,x), that is a contradiction.

Proof of Theorem 1: Given e ∈ E and x ∈ [0, x]n, let i, j ∈ N be such
that ai = aj and si = sj. Then, by the definition of JSIA, we obtain that
JUCSIA(e,x) = JUCSIA(e, ρij(x)), where the quasi-ordering JUCSIA(e,x) is defined in
the proof of Lemma 1. Thus, by way of the proof of Lemma 1, we can guar-
antee that there exists an upper semi-continuous ordering extension JSIA

∗
of

JUCSIA such that for all e ∈ E, all x ∈ [0, x]n, and all i, j ∈ N such that ai = aj
and si = sj, JSIA

∗
(e,x) = JSIA

∗
(e, ρij(x)). Moreover, by the same way as in

the proof of Lemma 1, there exists an ordering extension J∗ of JSIA
∗ ∪ JN

over CC. Let ψ(J) ≡ J∗. Then, by Lemma 1, ψ satisfies Pareto Principle, and
B(CC(e,x),ψ(J)) 6= ∅ and B(CC(e,x),ψ(J)) ⊆ UC(e,x) for each e ∈ E and
x ∈ [0, x]n.
Given e ∈ E and x ∈ [0, x]n, let i, j ∈ N be such that ai = aj and

si = sj. We next show that CC(e,x,y) ∈ B(CC(e,x),ψ(J)) if and only if
CC(e, ρij(x,y)) ∈ B(CC(e, ρij(x)),ψ(J)). First, note that CC(e,x) = CC(e, ρij(x)).
Second, by construction of ψ(J), we obtain that

B(CC(e,x),ψ(J)) = B(UC(e,x),JSIA
∗
(e,x)) and

B(CC(e, ρij(x)),ψ(J)) = B(UC(e, ρij(x)),JSIA
∗
(e, ρij(x))).
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Since JSIA
∗
(e,x) = JSIA

∗
(e, ρij(x)), we obtain thatB(UC(e,x),JSIA

∗
(e,x)) =

B(UC(e, ρij(x)),JSIA
∗
(e, ρij(x))). Thus, CC(e,x,y) ∈ B(CC(e,x),ψ(J)) if

and only if CC(e, ρij(x,y)) ∈ B(CC(e, ρij(x)),ψ(J)).
Thus, let us define a rational choice function ϕ as follows: for all e ∈ E, all

x ∈ [0, x]n, and all i, j ∈ N such that ai = aj and si = sj, ϕ(CC(e,x),ψ(J)) ∈
B(CC(e,x),ψ(J)) and ϕ(CC(e, ρij(x)),ψ(J)) = ϕ(CC(e,x),ψ(J)). The former
property of ϕ implies that for each e ∈ E and x ∈ [0, x]n, Y (e,x,ψ(J),ϕ) is
non-empty. Let us define a distribution rule h : E×[0, x]n → Rn+ such that for
all e ∈ E and all x ∈ [0, x]n, h(e,x) ∈ Y (e,x,ψ(J),ϕ). Then by the definition
of ϕ(CC(e,x),ψ(J)), CC(e,x, h(e,x)) ∈ UC(e,x) for all e ∈ E and all x ∈
[0, x]n. Moreover, the second property of ϕ implies that the distribution rule
h satisfies the EAEH. Since CC(e,x, h(e,x)) = Cmin

ϕ·ψ(J)(e,x), this implies

that h is a J-based capability maximin rule: hCMψ,ϕ
J ≡ h.

Next, we show that given ψ(J) and ϕ, the J-based capability maximin
rule hCMψ,ϕ

J is uniquely determined: there is no other distribution rule h0

such that for all e ∈ E and all x ∈ [0, x]n, h0(e,x) ∈ Y (e,x,ψ(J),ϕ) and
CC(e,x, h0(e,x)) ∈ UC(e,x), and for some e ∈ E and some x ∈ [0, x]n,
h0(e,x) 6= hCMψ,ϕ

J (e,x). It is sufficient to show that for any e ∈ E, any
x ∈ [0, x]n, any J ∈ J n and ψ, and any ϕ, Y (e,x,ψ(J),ϕ) is singleton. Given
e ∈ E, x ∈ [0, x]n, ψ(J), and ϕ, let Cmin

ϕ·ψ(J)(e,x) be the J-based minimal
capability under (e,x), and y ∈ Y (e,x,ψ(J),ϕ). Suppose that there exists
another distribution y0 ∈Y (e,x,ψ(J),ϕ) such that y0 6= y. By (1)-(β) of C
and lemma 2, y and y0 in Y (e,x,ψ(J),ϕ) have the following property:

P
yi =P

y0i = f(
P
sixi). This implies that there exist at least two individuals

i, j ∈ N such that y0i < yi and y0j > yj. Then, by (1)-(β) of the correspondence
C, ∂C(ai, x − xi, y0i) ( int C(ai, x − xi, yi). By lemma 2, there exists bi ∈
∂C(ai, x− xi, yi) such that bi ∈ ∂Cmin

ϕ·ψ(J)(e,x). Hence, bi /∈ ∂C(ai, x− xi, y0i),
so that C(ai, x− xi, y0i) + Cmin

ϕ·ψ(J)(e,x). This is a contradiction.

Proof of Theorem 2: First, we show that the ordering RFCψ(J) ⊆ FC × FC
satisfies PICA, ACA, and µ∗ECA. By definition of RFCψ(J), it satisfiesACA. For
any two capability assignments C(e,x,y),C(e,x,y0) ∈ FC(e,x), if C(ai, x−
xi, yi) ⊇ C(ai, x−xi, y0i) for all i ∈ N and C(aj, x−xj, yj) ) C(aj, x−xj, y0j)
for some j ∈ N , then this implies that CC(e,x,y) ) CC(e,x,y0). Since ψ(J)
contains the set-inclusion subrelation by Theorem 1, (C(e, z),C(e, z0)) ∈
P (RFCψ(J)(e,x)). Thus, RFCψ(J) satisfies PICA. Next, we show that R

FC
ψ(J) sat-

isfies µ∗ECA. Suppose that given e ∈ E and x ∈ [0, x]n, C(e,x,y∗) ∈
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B(FC(e,x), RFCψ(J)). This supposition is not empty, since there exists an un-
dominated common capability CC(e,x,y∗) ≡ Cmin

ϕ·ψ(J)(e,x) ∈ CC(e,x), and
by the definition ofRFCψ(J) and Theorem 1, (C(e,x,y∗),C(e,x,y)) ∈ RFCψ(J)(e,x)

for all y ∈Y (e,x). Then, by definition of µ∗,max
i∈N

µ∗(C(e,x,y∗), i) = 0. Since

µ∗(C(e,x,y), i) ≥ 0 for all i ∈ N ,
max
i∈N

µ∗(C(e,x,y∗), i) = min
y∈Y (e,x)

max
i∈N

µ∗(C(e,x,y), i).

Next, suppose that the ordering RFC ⊆ FC × FC satisfies PICA, ACA,
and µ∗ECA. Note that for all e ∈ E, all x ∈ [0, x]n, and all y ∈Y (e,x),
if CC(e,x,y) ∈ UC(e,x), then µ∗(C(e,x,y), i) = 1 for all i ∈ N , while if
CC(e,x,y) ∈ CC(e,x)\UC(e,x), then for some i ∈ N , µ∗(C(e,x,y), i) > 0.
This implies that max

i∈N
µ∗(C(e,x,y∗), i) = min

y∈Y (e,x)
max
i∈N

µ∗(C(e,x,y), i) for all

CC(e,x,y∗) ∈ UC(e,x). By the property of RFC which satisifies the above
three axioms, for all e ∈ E, all i, j ∈ N such that ai = aj and si = sj, and
all x ∈ [0, x]n, there exists C(e,x,y∗) ∈ B(FC(e,x), RFC) such that

max
i∈N

µ∗(C(e,x,y∗), i) = min
y∈Y (e,x)

max
i∈N

µ∗(C(e,x,y), i),

CC(e,x,y∗) ∈ UC(e,x), and C(e, ρij(x,y
∗)) ∈ B(FC(e, ρij(x)), RFC).

Let us consider a profile of individual value judgements J∗ ∈ J n such that
for all i ∈ N , (CC(e,x,y), CC(e0,x0,y0)) ∈ J∗i ⇔ (C(e,x,y),C(e0,x0,y0)) ∈
RFC. This implies for all i ∈ N , J∗i ∈ JSIA . Thus, by construction of
ψ, ψ(J∗) = J∗i for all i ∈ N . Then, for all e ∈ E, all x ∈ [0, x]n, and
all i, j ∈ N such that ai = aj and si = sj, CC(e,x,y∗) = Cmin

ϕ·ψ(J∗)(e,x)

and CC(e, ρij(x,y
∗)) = Cmin

ϕ·ψ(J∗)(e, ρij(x))). Since ψ(J∗) rationalizes the J∗-

capability maxmin rule hCMψ,ϕ
J∗ , RFC = RFCψ(J∗).

Proof of Lemma 3: By lemma 2, it is easy to see that for any J ∈ J n,
hCMψ,ϕ

J meets the undominated property, and it also satisfies PEC. We show
that for any h ∈ EAEH ∩ UD ∩ PEC, there exists J ∈ J n such that
h = hCMψ,ϕ

J .
First, we show that for any h ∈ EAEH∩UD∩PEC, all e = (a, s, C,f) ∈

E, and all x ∈ [0, x]n, there is no y ∈Y (e,x) such that y 6=h(e,x) and
CC(e,x,y) ) CC(e,x, h(e,x)). Suppose that for some y ∈Y (e,x) such that
y 6=h(e,x), CC(e,x,y) ) CC(e,x, h(e,x)). By UD, for all i ∈ N , there
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is bi ∈ ∂C(ai, x − xi, hi(e,x)) such that bi ∈ ∂CC(e,x, h(e,x)). Hence,
CC(e,x,y) ) CC(e,x, h(e,x)) implies that for some j ∈ N ,

int C(aj, x− xj, yj) ) C(aj, x− xj, hj(e,x))

by (1)-(β) of the correspondence C. Thus, yj > hj(e,x) and for any other
i 6= j, yi ≥ hi(e,x). However, such a distribution is infeasible, because
h ∈ PEC.
Second, let us show that if h ∈ EAEH ∩ UD ∩ PEC, then for some

J ∈ J n, for all e ∈ E and all x ∈ [0, x]n, CC(e,x, h(e,x)) = Cmin
ϕ·ψ(J)(e,x).

By the above argument, for each e ∈ E and x ∈ [0, x]n, CC(e,x, h(e,x)) ∈
UC(e,x). Let J∗ ∈ J n be such that for each e ∈ E and each x ∈ [0, x]n,
(CC(e,x, h(e,x)), CC(e,x,y)) ∈ P (J∗i (e,x)) for all y ∈Y (e,x)\{h(e,x)}
and all i ∈ N . Then, by Pareto Principle of ψ, CC(e,x, h(e,x)) = Cmin

ϕ·ψ(J∗)(e,x).

This implies that h = hCMψ,ϕ
J∗ for J∗ ∈ J n.

Proof of Theorem 3: Given J ∈J n, let hCMψ,ϕ
J ∈ UCM . Then, by Lemma

3, hCMψ,ϕ
J ∈ EAEH∩UD∩PEC. It is easy to show that hCMψ,ϕ

J ∈MEC. So,
we show first hCMψ,ϕ

J ∈ SRWF . Suppose that there exist e = (a, s, C,f) ∈ E,
x = (xi)i∈N ∈ [0, x]n, and x0 = (x0i)i∈N ∈ [0, x]n such that for all g 6= j,
xg = x0g and xj ≤ x0j, and for some i ∈ N ,

#N(i, bwi (e, (x,hCMψ,ϕ
J (e,x))), e, (x,hCMψ,ϕ

J (e,x)))

> #N(i, bwi (e, (x0,hCMψ,ϕ
J (e,x0))), e, (x0,hCMψ,ϕ

J (e,x0))).

This implies that for all bi ∈ ∂C(ai, x − xi, hCMψ,ϕ
J

i (e,x0)), there is g ∈ N
and λg < 1 such that λgbi ∈ ∂C(ag, x− xg, hCMψ,ϕ

J
g (e,x0)), since

#N(i, bwi (e, (x0,hCMψ,ϕ
J (e,x0))), e, (x0,hCMψ,ϕ

J (e,x0))) < n. This also implies

that int C(ai, x − xi, hCMψ,ϕ
J

i (e,x0)) ) Cmin
ϕ·ψ(J)(e,x

0). It is a contradiction by

Lemma 2. In the same way, we can show that hCMψ,ϕ
J ∈ NRABA.

Next, we show that for any h ∈ EAEH ∩PEC, if h ∈MEC ∩SRWF ∩
NRABA, then h ∈ UD. Let e = (a, s, C,f) ∈ E and x = (xi)i∈N ∈ [0, x]n

be such that for all i, j ∈ N , ai = aj and xi = xj. Then, h ∈ MEC ∩ PEC
implies that

hi(e,x) =
f(
P
sixi)

n
for all i ∈ N .
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Since for all i, j ∈ N ,
C(ai, x− xi, hi(e,x)) = C(aj, x− xj, hj(e,x)),

we obtain

#N(i, bwi (e, (x,h(e,x))), e, (x,h(e,x))) = n for all i ∈ N .
Let e0 = (a0, s, C,f) ∈ E and x0 = (x0i)i∈N ∈ [0, x]n be given. Without loss
of generality, we assume that a01 ≤ · · · ≤ a0n and x01 ≤ · · · ≤ x0n. Let e00 =
(a00, s, C, f) ∈ E such that a00 = (a0n, · · · , a0n) and x00 = (x01, · · · , x01) ∈ [0, x]n.
Then, by h ∈MEC,

#N(i, bwi (e00, (x00,h(e00,x00))), e00, (x00,h(e00,x00))) = n for all i ∈ N .
By repeatedly applying the SRWF and NRABA, we obtain

#N(i, bwi (e0, (x0,h(e0,x0))), e0, (x0,h(e0,x0))) = n for all i ∈ N .

This implies that h ∈ UD. By Lemma 3, for some J ∈J n, h = hCMψ,ϕ
J ∈

UCM .

Proof of Theorem 4: Since NP impliesMEC, from Theorem 3, it is suffi-
cient to show that UCM impliesNP . Let e = (a, s, C,f) ∈ E, and x ∈ [0, x]n

be such that for all i, j ∈ N , xi = xj. Then, CH(e,x) ∈ CC(e,x). If a is such
that for all i, j ∈ N , ai = aj, then CH(e,x) = Cmin

ϕ·ψ(J)(e,x) for any J ∈ J n.
Otherwise, there exists an individual i∗ ∈ N such that for any other j 6= i∗,
ai∗ < aj, and that CH(e,x) = C(ai∗ , x− xi∗, yH(e,x)). Then, consider other
distribution y∗ such that for some ε > 0, for some j 6= i∗, y∗j = yH(e,x)− ε,
for i∗, y∗i∗ = yH(e,x)+ε, and for any other g 6= i∗, j, y∗g = yH(e,x). Then, by
continuity and strict monotonicity of C, CC(e,x,y∗) = C(ai∗, x−xi∗, y∗i∗) ⊇
CH(e,x). This implies that for any J ∈ J n, Cmin

ϕ·ψ(J)(e,x) ⊇ CH(e,x). Since

C(ai, x − xi, hCMψ,ϕ
J

i (e,x)) ⊇ Cmin
ϕ·ψ(J)(e,x) for all i ∈ N , there is no i ∈ N

such that CH(e,x) ) C(ai, x− xi, hCMψ,ϕ
J

i (e,x)).

Proof of Theorem 5: First, we show that UCM implies NDEH and
NSDEE. Given J ∈J n, let hCMψ,ϕ

J ∈ UCM . Suppose that hCMψ,ϕ
J vio-

lates NDEH. Then, for some (e,x) ∈ E × [0, x]n and some i, j ∈ N such

that ai = aj, we obtain either (I) xi = xj and h
CMψ,ϕ

J
i (e,x) < h

CMψ,ϕ
J

j (e,x)
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or (II) xi < xj and h
CMψ,ϕ

J
i (e,x) ≥ h

CMψ,ϕ
J

j (e,x). In case (I), C(ai, x −
xi, h

CMψ,ϕ
J

i (e,x)) ( int C(aj, x − xj, hCMψ,ϕ
J

j (e,x)), and in case (II), int

C(ai, x − xi, hCMψ,ϕ
J

i (e,x)) ) C(aj, x − xj, hCMψ,ϕ
J

j (e,x)). The both cases

imply that hCMψ,ϕ
J /∈ UD, which is a contradiction by Lemma 3. Sup-

pose that hCMψ,ϕ
J violates NSDEE. Then, for some (e,x) ∈ E × [0, x]n

and some i, j ∈ N such that xi = xj, int C(ai, x − xi, hCMψ,ϕ
J

i (e,x)) )
C(aj, x−xj, hCMψ,ϕ

J
j (e,x)). This implies that int C(ai, x−xi, hCMψ,ϕ

J
i (e,x)) )

∩
j 6=i
C(aj, x−xj, hCMψ,ϕ

J
j (e,x)). Hence, hCMψ,ϕ

J /∈ UD, which is a contradiction
by Lemma 3.
Next, based upon hCMψ,ϕ

J ∈ UCM , we construct another distribution rule
h ∈ EAEH ∩PEC satisfying the undominated property as follows: for each
(e,x) ∈ E × [0, x]n,

(III) if there is i∗ ∈ N such that C(ai∗, x− xi∗, hCMψ,ϕ
J

i∗ (e,x)) = Cmin
ϕ·ψ(J)(e,x)

and there is a group N(i∗) ⊆ N \ {i∗} such that for all j∗ ∈ N(i∗),

C(ai∗ , x− xi∗ , hCMψ,ϕ
J

i∗ (e,x)) ( C(aj∗ , x− xj∗, hCMψ,ϕ
J

j∗ (e,x)),

then

hi∗(e,x) = h
CMψ,ϕ

J
i∗ (e,x) + ε for some ε > 0,

hj∗(e,x) = h
CMψ,ϕ

J
j∗ (e,x)− αj∗ε for all j∗ ∈ N(i∗)

where αj∗ ≥ 0 and
X
N(i∗)

αj∗ = 1,

and hg(e,x) = h
CMψ,ϕ

J
g (e,x) for all g ∈ N \ (N(i∗) ∪ {i∗})

such that there is no i ∈ N ,
C(ai, x− xi, hi(e,x)) ) ∩

j 6=i
C(aj, x− xj, hj(e,x)),

and moreover, if there exists a pair of individuals {i, j} ⊆ N such that ai = aj
and si = sj, then for x0 = ρij(x) ∈ [0, x]n,

hi(e,x
0) = hj(e,x), hj(e,x0) = hi(e,x),

and hg(e,x0) = hg(e,x) for all g ∈ N \ {i, j},
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(IV) otherwise, h(e,x) = hCMψ,ϕ
J∗ (e,x).

The case (III) is possible by the continuity of the capability correspon-
denceC. Then, by definition, h ∈ EAEH∩PEC∩UD. By Lemma 3, for some
J∗∈J n, h = hCMψ,ϕ

J∗ . Thus, by the above arguments, h ∈ NDEH∩NSDEE.
Moreover, the construction of h implies that h ∈ NDEE.
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