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Abstract

In this paper, we introduce the weak and the strong notions of partially hon-

est agents (Dutta and Sen, 2012), and then study implementation by natural

price-quantity mechanisms (Saijo et al., 1996, 1999) in pure exchange economies

with three or more agents in which pure-consequentialistically rational agents and

partially honest agents coexist. Firstly, assuming that there exists at least one

partially honest agent in either the weak notion or the strong notion, the class

of efficient social choice correspondences which are Nash-implementable by such

mechanisms is characterized. Secondly, the (unconstrained) Walrasian correspon-

dence is shown to be implementable by such a mechanism when there is at least

one partially honest agent of the strong type, which may provide a behavioral foun-

dation for decentralized implementation of the Walrasian equilibrium. Finally, in

this set-up, the effects of honesty on the implementation of more equitable Pareto

optimal allocations can be viewed as negligible.
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1 Introduction

A goal of implementation theory is to characterize the class of social choice corre-

spondences (SCC s) which could be implemented via some decentralized decision

making processes, given various information structures. Maskin (1999) provides

a general framework of implementation theory and, given the complete informa-

tion structure and the (Nash) equilibrium solution concept, discusses a necessary

condition and a sufficient condition for (Nash) implementation.1 This canonical

theory of implementation, however, rests on two basic assumptions: 1) There is no

restriction on mechanisms for decentralized decision making, and 2) agents act in

a pure-consequentialistically rational manner.

The first assumption can be justified whenever the main concern is to draw

a demarcation line between what SCC is or is not implementable. However, if

the theory of implementation is to have any practical meaning, implementable

SCC s must rely on mechanisms having unquestionable features whose suitability

depends greatly on the type of implementation problems at hand (Jackson, 1992).

For instance, in the case of resource allocation problems in a market structure, a

prominent and natural restriction on mechanisms is represented by price-quantity

mechanisms, because only information reported by agents in the form of prices and

their own quantity demands is required for decision making.

Indeed, a central concern in resource allocation problems of classical economic

environments regards the types of resource allocations implemented by the so-called

competitive market, in which each agent exchanges the information of prices and

their own demand quantities to determine an allocation. This interest has triggered

fundamental theoretical contributions which have sharpened the understanding of

market mechanisms in two different ways. On the one hand, when individuals in

the economy are sincere, the Walrasian equilibrium allocations are implemented as

being Pareto efficient via a competitive market, as suggested by the general equi-

librium theory and the fundamental theorems of welfare economics. Conversely,

when agents strategize, as Hurwicz (1978), Otani and Sicilian (1982) and Thom-

son (1984) discuss, the market mechanism is manipulated by such agents so that

the equilibrium allocations are identical to the lens-shaped area delimited by the

agents’ true offer curves, which are not truthfully Walrasian. This latter strand of

literature suggests that the existence of a scheme for punishing those manipulating

agents is indispensable to the successful operation of the market mechanism. Sem-

inal studies such as Hurwicz (1979), Schmeidler (1980), Postlewaite and Wettstein

(1989), and Tian (1992, 2000) design, for implementation of the (constrained) Wal-

rasian equilibrium allocations, a desirable price-quantity mechanism which could

be regarded as a formulation of a comprehensive market mechanism consisting of a

trading rule (a scheme for the exchange of the information of prices and quantities)

and a punishment scheme.

1Many studies of Nash implementation have followed, such as Saijo (1988), Moore and Repullo

(1990), Dutta and Sen (1991) and Lombardi and Yoshihara (2012a). Hereafter unless otherwise

specified “equilibrium” should be understood as Nash equilibrium, and “implementation” as Nash

implementation.
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Following the criticism of Jackson (1992) and the above mentioned works in

economic environments, Dutta et al. (1995), Sjöström (1996), and Saijo et al.

(1996, 1999) initiate the theory of natural implementation, which defines the class

of natural mechanisms as being appropriate for the allocation problems in economic

environments and then characterizes the class of SCC s that are implementable by

natural mechanisms. A typical example is of a price-quantity mechanism satisfying

individual feasibility, balancedness, forthrightness, and the best response property;

henceforth, natural price-quantity mechanism.2

The second assumption is that agents behave in a pure-consequentialistically

rational manner. In other words, the maximization of material gains is the only

intention of agents’ actions. This is frequently criticized for excluding honesty

as a powerful motivator.3 In fact, simple reasoning and everyday observation

suggest that a concern about honesty is an important determinant of behavior.

Furthermore, actual behavior is often the outcome of a compromise between what

honesty prescribes and what the pursuit of material gains dictates. Experimental

evidence confirms these impressions (see Green et al., 2009).

Acknowledging these criticisms, Dutta and Sen (2012) address the question of

implementation in the abstract social choice framework where some of the agents

share the virtue of honesty in their decentralized decision making.4 Formulating

an agent having a weak sense of the virtue of honesty as a partially honest one,

who prefers to be truthful in her preference profile report when a lie does not

better serve her material interests, and assuming that there exists at least one

such partially honest agent in the society and the mechanism designer does not

know her identity, Dutta and Sen (2012) show that in a society with three or more

agents, any SCC satisfying the no-veto power condition is implementable.5

This line of research is particularly relevant if the task at hand is to achieve

societal goals via market like-mechanisms. Indeed, "Cutthroat competitiveness in

the market can go together with strict adherence to norms of honesty" as Elster

(1989, p. 102) states, but the aforementioned literature has neglected the virtue of

honesty as a self-imposed standard of conduct, and so has failed to appreciate its

influence on the design of market-like mechanisms. There is, therefore, a need to

develop decentralized decision making processes that can take into account more

sophisticated behavior than has been analyzed up until this point, in order to

answer questions such as: What are the economic effects of honesty in the design of

market like-mechanisms? Which implementation problems can be resolved through

honestly motivated behaviour and which limitations cannot be overcome? This

2The definition of natural price-quantity mechanism with these four conditions was firstly

given by Saijo et al. (1996).
3For instructive discussions on the role of emotions and norms in economics, see Bowles and

Gintis (2000), Camerer (2003), Elster (1998), Kreps (1997), Sen (1997) and Suzumura and Xu

(2001).
4The first seminal work related to this subject is of Matsushima (2008a, 2008b). Moreover,

there are seminal related works such as Glazer and Rubinstein (1998), Eliaz (2002), Corchón and

Herrero (2004) and Kartik and Tercieux (2012).
5A complete characterization is provided in Lombardi and Yoshihara (2013).
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paper focuses on classical exchange economies in which pure-consequentialistically

rational agents and partially honest agents coexist, limits its analysis to natural

price-quantity mechanisms, and devises two different types of honestly motivated

behavior.

The first type is a weak notion in that only the announcement of demand quan-

tity is relevant for agents’ honest behavior. Thus, a partially honest agent in this

weak sense strictly prefers to report her true demand quantity rather than misre-

port it whenever the consequences of both actions are indifferent in her preference

over outcomes, but she is not concerned about honesty in her price announcements.

This is a very limited deviation from the standard natural implementation set-up,

since the degree of honesty injected into implementation problems is minimized,

as in the approach of Dutta and Sen (2012). However, the scope of naturally im-

plementable SCC s in such a setting is greatly enlarged in comparison with the

standard set-up, as will be argued later. The second type of partial honesty is of a

slightly stronger notion than the first, in that the announcement of both price and

demand quantity is relevant. Although this notion is not a minimal injection of

the virtue of honesty, causal introspection indicates that it is not unrealistic for an

agent to have strict preferences for reports that disclose all the true information

in her hands when a lie does not lead to any better outcome.

For each of the two notions of partial honesty, this paper provides a full charac-

terization of Nash implementable efficient SCC s by natural price-quantity mech-

anisms when there is at least one partially honest agent in a society with more

than two persons. Note that in this paper, as in Saijo et al. (1999), no efficient

SCC is restricted to interior points. It is therefore possible that boundary SCC -

optimal allocations exist in some economies. Moreover, since no differentiability of

utility functions is assumed, there are multiple efficiency price vectors correspond-

ing to an SCC -optimal allocation, as in Saijo et al. (1999). Unlike the case of

Dutta and Sen (2012) and Lombardi and Yoshihara (2012b),6 it is not true that

every efficient SCC is implementable by a natural price-quantity mechanism, even

if there is at least one partially honest agent. Indeed, neither of the two repre-

sentative fair allocation rules such as the No-envy and efficient correspondence7

and the efficient egalitarian-equivalent correspondence is implementable by such

comprehensive market mechanisms.

Note that the Walrasian correspondence does not satisfy Maskin monotonic-

ity (Maskin, 1999), and it is, therefore, not implementable, as shown by Hurwicz

et al. (1995). Thus, works on implementation of the Walrasian correspondence

such as Postlewaite and Wettstein (1989) and Tian (1992, 2000)8 replace the Wal-

6Lombardi and Yoshihara (2012b; Theorem 1) show that every efficient SCC is implementable

by a natural price-allocation mechanism whenever there is at least one partial honest agent in

the weak sense.
7However, this correspondence is Nash-implementable by some simple mechanism, as in Thom-

son (2005).
8Postlewaite and Wettstein (1989) and Tian (1992, 2000) consider the domain restriction

in which every Walrasian equilibrium allocation is interior in every admissible economy. Since

the Walrasian correspondence and the constrained Walrasian correspondence are identical in a
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rasian correspondence with the constrained Walrasian correspondence (Hurwicz et

al. 1995) as the target of implementation problems. Otherwise, designed mecha-

nisms for implementation of the Walrasian correspondence, such as Hurwicz (1979)

and Schemeidler (1980), must be individually infeasible,9 though individual fea-

sibility and balancedness seem to be indispensable for characterizing market-like

mechanisms.

However, one of the most striking implications of this paper is that the Wal-

rasian correspondence is implementable by a natural price-quantity mechanism

whenever there is at least one partially honest agent. To be more precise, given

that there is at least one partially honest agent in the weak sense, the Walrasian

correspondence is implementable by such a mechanism in economies with two

commodities, though it is not implementable in economies with more than two. In

contrast, given that there is at least one partially honest agent in the strong sense,

the Walrasian correspondence is implementable by such a mechanism in all pure

exchange economies.

Combined with the existing works, the above result may provide a behav-

ioral foundation for the theory of the Walrasian equilibrium. Indeed, our main

result may indicate that given the presumption of strategic agents, a careful and

thoughtful design of comprehensive market mechanisms is insufficient, and that the

presence of the virtue of honesty is indispensable for decentralized implementation

of the Walrasian equilibrium allocations.

The results of the paper are summarized in Table 1 of section 4 and compared

with those found in the conventional framework.

The remainder of the paper is structured as follows: Section 2 describes the

formal environment. Section 3 provides the characterization results and explores

their consequences. Section 4 contains concluding remarks. The appendix includes

proofs omitted from the text.

2 The model

2.1 Preliminaries

There are n ≥ 3 agents in N ≡ {1, ..., n} and ` ≥ 2 distinct commodities in
L ≡ {1, ..., `}. Unless otherwise specified, we assume that the cardinality of L
is ` ≥ 2. R is the set of all real numbers; R+ (R++) denotes the set of all non-
negative (positive) real numbers; R` is the Cartesian product of ordered `-tuples
of real numbers, whereas R`+ (R`++) denotes its non-negative (positive) orthant.
Vector inequalities are defined as follows: For all x, y ∈ R`, x ≥ y if x` ≥ y` for
each ` ∈ L, x > y if x ≥ y and x 6= y, and xÀ y if x` > y` for each ` ∈ L.
such domain, it is not inappropriate to state that they consider Nash implementation of the

constrained Walrasian correspondence.
9Note that Maskin (1999)’s original framework of implementation problems presumes that

every mechanism has an outcome function whose range is the set of feasible social alternatives,

which implies that in the case of economic environments, every mechanism must be individually

feasible.
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Each i(∈ N) is characterized by a consumption spaceR`+ (where xi = (xi1, ..., xi`) ∈
R`+ is the i’s commodity bundle), by an endowment vector ωi ∈ R`+ and by a pref-
erence relation defined over R`+.10 We assume that i’s preferences have a utility
representation ui : R`+ → R which is continuous and quasi-concave on R`+, and
either strictly monotonic on R`+ or strictly monotonic on R`++ where the utility
of every interior consumption bundle is strictly higher than the utility of any con-

sumption bundle on the boundary. U is the class of all such utility functions,

whereas Ui is the class of admissible utility functions for i. Given a profile of en-

dowment vectors, we denote
P

i∈N ωi ≡ Ω ∈ R`++ as the aggregate endowment. It
is assumed that the distribution of endowments is known and fixed.

For i, ui ∈ Ui, and xi ∈ R`+, L (xi, ui) ≡
©
x0i ∈ R`+ | x0i ≤ Ω and ui (xi) ≥ ui (x0i)

ª
denotes the weak lower contour set of agent i for ui at xi. An economy is

specified by a list u = (ui)i∈N ∈ UN ≡ ×i∈NUi. An allocation is a list of

bundles x = (x1, ..., xn) ∈ Rn`+ , whereas a feasible allocation is an allocation

x = (x1, ..., xn) ∈ Rn`+ such that
P

i∈N xi = Ω. The set of all feasible allocations is
denoted by A.11

A social choice correspondence (SCC ) is a multi-valued mapping F : UN ³ A

such that for each u ∈ UN , F (u) is a non-empty subset of feasible allocations, that
is, ∅ 6= F (u) ⊆ A.12 Unless specified otherwise, we do not assume that for all
u ∈ UN and all x ∈ F (u), xi À 0 for all i. The set of (Pareto) efficient allocations
for the economy u ∈ UN , denoted P (u), is P (u) ≡ {x ∈ A |there is no y ∈ A :
ui (yi) > ui (xi) for all i}. An SCC F defined on UN is efficient if for any u ∈ UN ,
F (u) ⊆ P (u) holds. F is the class of all efficient SCC s defined on UN . Among

many elements of F , we shall be concerned with the following well-known SCC s:
Pareto correspondence P : P (u) = {x ∈ A | there is no y ∈ A : ui (yi) > ui (xi) for
all i}.
No-envy and efficient correspondence NP : NP (u) ≡ {x ∈ A | ui (xi) ≥ ui (xj) for
all i and j} ∩ P (u).
Walrasian correspondence W : W (u) ≡ {x ∈ A |there is p ∈ R`+ s.t. for all i,
p · xi = p · ωi and for all yi ∈ R`+, ui (xi) ≥ ui (yi) if p · yi ≤ p · ωi}.
Constrained Walrasian correspondence Wc: Wc (u) ≡ {x ∈ A |there is p ∈ R`+
s.t. for all i, p · xi = p · ωi and for all yi ∈ R`+, ui (xi) ≥ ui (yi) if yi ≤ Ω and

p · yi ≤ p · ωi}.
Efficient egalitarian-equivalent correspondence EE: EE (u) ≡ {x ∈ A | there is a
unique maximal number λ ∈ (0, 1) s.t. ui (xi) = ui (λΩ) for all i} ∩ P (u).
For any (ui, xi) ∈ Ui × R`+, Vi (xi, ui) ≡ {yi ∈ R`+|yi ≤ Ω and ui (xi) ≤ ui (yi)}

denotes the weak upper contour set of agent i for ui at xi. Given (ui, xi) ∈ Ui×R`+,
10Hereafter unless otherwise specified “i” should be understood as agent i ∈ N .
11Note that because of this definition of feasible allocations, any admissible domain UN in this

paper cannot be separable in the sense of Dutta and Sen (2012).
12The weak set inclusion is denoted by ⊆, while the strict set inclusion is denoted by ⊂.
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a price vector p belonging to the unit simplex ∆, that is, p ∈ ∆, is said to be a sub-
gradient of ui at xi if p·x0i ≥ p·xi for all x0i ∈ Vi (xi, ui). The set of all sub-gradients
of ui at xi, that is, δui (xi) ≡ {p ∈ ∆|p·x0i ≥ p·xi for all x0i ∈ Vi (xi, ui)}, is called the
sub-differential of ui at xi. For any (x, u) ∈ Rn`+ ×UN , let Π (x, u) ≡ ∩i∈Nδui (xi).
Notice that x ∈ P (u) if Π (x, u) is non-empty. In words, Π (x, u) consists of prices
p each of which is normal to a hyperplane separating the weak upper contour sets

of all agents with u at x. Any p ∈ Π (x, u) is referred to as an efficiency price for
u at x.13

A mechanism is a pair γ ≡ (M,g), where M ≡ M1 × ... × Mn, with each

Mi being a (non-empty) set and g : M → Rn`. It consists of a message space
M , where Mi is the message space for i, and an outcome function g such that

g (m) = (gi (m))i∈N ∈ Rn` for each m ∈ M . mi ∈ Mi denotes a generic message

(or strategy) for i. A message profile is denoted by m ≡ (m1, ...,mn) ∈ M . For
m ∈ M and j, let m−j ≡ (m1, ...,mj−1,mj+1, ...,mn) ∈ ×i∈N\{j}Mi ≡ M−j. Given
m−j ∈ M−j and mj ∈ Mj, (mj,m−j) is the message profile consisting of mj and

m−j. g (Mi,m−i) is the attainable set of i at m−i: That is, the set of bundles that
i can induce when the other agents select m−i.
Throughout the paper, we focus our attention on completely feasible mecha-

nisms (Saijo et. al, 1996, 1999). A mechanism γ = (M,g) is:

Individually feasible if g (m) ∈ Rn`+ for each m ∈M ;

Balanced if
P

i∈N gi (m) = Ω for each m ∈M .

A mechanism γ = (M,g) is completely feasible if it is individually feasible and
balanced. Such a mechanism γ has the property that g (m) ∈ A for each m ∈M .

2.2 Partially honest implementation

For any mechanism γ and i, a truth-telling correspondence is a correspondence

T
γ
i : UN × F ³ Mi such that, for each (u, F ) ∈ UN × F , ∅ 6= T

γ
i (u, F ) ⊆ Mi.

An interpretation of the set T
γ
i (u, F ) is that given the mechanism γ and a pair

(u, F ) ∈ UN ×F , i behaves truthfully at the message profile m ∈M if and only if

mi ∈ T γ
i (u, F ). We refer the reader to Definition 5 and Definition 6 of section 3

for two different definitions of truthful messages for price-quantity mechanisms.

For any (i, u) ∈ N × UN , let <ui be i’s weak order over M under the economy

u. The asymmetric part of <ui is denoted by Âui , while the symmetric part is
denoted by ∼ui . For any u ∈ UN , <u is the profile of weak orders overM under the

economy u; in other words, <u≡ (<ui )i∈N . As in Dutta and Sen (2012), partially
honest behavior is defined as follows.

13If ui ∈ Ui is differentiable for all i ∈ N and F ∈ F selects only interior allocations, ∅ 6=
F (u) ⊆ A ∩ Rn`++ for any u ∈ UN , then the set Π (x, u) is a singleton whenever x ∈ F (u); in
particular, the set Π (x, u) has the form of {p} ⊆ ∆ such that ∇ui (xi) = p for all i ∈ N , where
∇ui (xi) denotes the gradient vector at xi which is normalized to belong to the unit simplex ∆.
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Definition 1. An agent h ∈ N is a partially honest agent if for any mechanism

γ, any u ∈ UN , any F ∈ F , any m ≡ (mh,m−h) and any m0 ≡ (m0
h,m−h) ∈ M ,

the following properties hold:

(i) Ifmh ∈ T γ
h (u, F ),m

0
h /∈ T γ

h (u, F ) and uh (gh (m)) ≥ uh (gh (m0)), then (m,m0) ∈Âuh;
(ii) otherwise, (m,m0) ∈<uh if and only if uh (gh (m)) ≥ uh (gh (m0)).

Assume also that, for any i who is not partially honest, it follows that for any

mechanism γ, any u ∈ UN , any F ∈ F , any m ≡ (mi,m−i), and any m0 ≡
(m0

i,m−i) ∈M , (m,m0) ∈<ui if and only if ui (gi (m)) ≥ ui (gi (m0)).
The following informational assumption holds throughout the paper.

Assumption 1. There are partially honest agents in N . The mechanism designer
knows that there are partially honest agents in N , though she does not know their

identities or their exact number.

The mechanism designer cannot exclude any agent from being partially honest

on the basis of information given by Assumption 1. To formalize this fact, let

∅ 6= H ⊆ 2N\ {∅} be a class of non-empty subsets of N . Given the truly limited
information injected by Assumption 1, in what follows we shall viewH as the class
of conceivable sets of partially honest agents. Although Assumption 1 only implies

that #H ≥ 2, we might generally view H as being identical to 2N\ {∅}.
A mechanism γ induces a class of (non-cooperative) games with partially honest

agents {(γ,<u) | (u,H) ∈ UN ×H}. Given a game (γ,<u), we say that m∗ ∈M is

a (pure strategy)Nash equilibrium with partially honest agents at u if and only if for

all i,
¡
m∗,

¡
mi,m

∗
−i
¢¢ ∈<ui for all mi ∈Mi. Given a game (γ,<u), NE (γ,<u) de-

notes the set of (Nash) equilibrium message profiles of (γ,<u), whereas NA (γ,<u)
represents the corresponding set of (Nash) equilibrium allocations.

Definition 2. A mechanism γ partially honest implements F ∈ F in Nash equi-

libria, or simply partially honest implements F , if and only if F (u) = NA (γ,<u)
for all u ∈ UN and all H ∈ H.
If such a mechanism exists, then F is partially honest (Nash) implementable.

Definition 2 is similar, but not identical to, the standard definition of implemen-

tation.14 First, the equilibrium allocations are given by the game (γ,<u) rather
than by the game (γ, u). Second, the equivalence of the set of SCC -optimal allo-
cations with the set of Nash equilibrium allocations is required not only for any

economy u ∈ UN but also for any conceivable set H ∈ H.

3 Natural price-quantity mechanisms

A price-quantity mechanism is a mechanism in which each agent’s message consists

of reporting a price vector as well as her own consumption bundle. Moreover, it is

said to be natural if some elementary but important properties hold (Saijo et al.,

14The two definitions are however identical if H = ∅.
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1996, 1999). In addition to the property of complete feasibility (defined in sub-

section 2.1), a natural price-quantity mechanism satisfies the best response property

and the condition of forthrightness.

The property of non-emptiness of the agent’s best response function, introduced

by Jackson et al. (1994), can be formulated as follows:

Definition 3. (Jackson, Palfrey and Srivastava, 1994) A mechanism γ satisfies

the best response property if, for all i, all ui ∈ Ui, and all m−i ∈M−i, there exists
mi ∈Mi such that ui (gi (mi,m−i)) ≥ ui (gi (m0

i,m−i)) for all m
0
i ∈Mi.

Before introducing forthrightness a little more notation is needed: For each

u ∈ UN , each x ∈ F (u), and each p ∈ Π (x, u), define the set F−1 (x, p) as

F−1 (x, p) ≡ {u0 ∈ UN | x ∈ F (u0) and p ∈ Π (x, u0)} ,
whereas the sets F−1! (x, p) and ΠF (x, u) are defined respectively as follows:

F−1! (x, p) ≡ {u0 ∈ UN | x ∈ F (u0) and {p} = Π (x, u0)} , (1)

ΠF (x, u) ≡ ©p ∈ Π (x, u) | F−1! (x, p) 6= ∅ª . (2)

Then, for each u ∈ UN and each x ∈ F (u), define the set πF (x, u) as follows:

πF (x, u) ≡
½

ΠF (x, u) if it is non-empty,

Π (x, u) otherwise.
(3)

Any p ∈ πF (x, u) is referred to as an efficiency price for u and F at x.15

It is important to observe that the difference between πF (x, u) and Π (x, u)
centers on whether it is possible to select efficiency prices from the set Π (x, u)
which are relevant for the given u and F at the F -optimal allocation x. The

reason for this selection is that not all efficiency prices are equally important from

the standpoint of an F -optimal allocation. This is particularly true when F is the

(constrained) Walrasian.

Definition 4. An SCC F ∈ F is partially honest implementable by a natural

price-quantity mechanism if there exists a mechanism γ = (M,g) such that:
(i) γ partially honestly implements F .

(ii) For each i, Mi = ∆×Q, where Q ≡ ©xi ∈ R`+ | xi ≤ Ω
ª
.

(iii) For each u ∈ UN , each x ∈ F (u), and each p ∈ πF (x, u), if mi = (p, xi) for
each i, then m ∈ NE (γ,<u) and g (m) = x.
(iv) γ is completely feasible.

(v) γ satisfies the best response property.

15Note that, for any p ∈ Π (x, u) with x ∈ F (u), there always exists u0 ∈ UN such that {p} =
Π (x, u0) whenever UN contains the set of all linear utility functions. Indeed, if u0i (xi) = p ·xi for
all i ∈ N , then {p} = Π (x, u0). However, note that F−1! (x, p) 6= ∅ does not necessarily follow

from the case {p} = Π (x, u0). For instance, if F =Wc, it is possible that x ∈Wc (u), p ∈ Π (x, u),
{p} = Π (x, u0), but x /∈ Wc (u

0), whenever p is not a (constrained) Walrasian equilibrium price

vector corresponding to x ∈Wc (u).
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Call γ a natural price-quantity mechanism if γ satisfies requirements (ii)-(v) of

Definition 4.

Requirement (iii) of the definition just stated is the forthrightness condition for

a price-quantity mechanism: For every economy u and F -optimal allocation x at u,

if each i reports an efficiency price p for u and F at x and her assigned consumption

bundle xi, then the profilem constitutes an equilibrium in which i receives xi. The

condition requires therefore, that in equilibrium each agent receives what she has

announced as a bundle.16 Observe that our forthrightness condition differs from

that of Saijo et al. (1999) because it applies only to efficiency prices in πF (x, u)
rather than to those in Π (x, u). We shall make use of this difference in sub-section
3.3, which will be relevant for the case that F is the (constrained) Walrasian.17

We shall now introduce two different notions of honesty for a price-quantity

mechanism, called weak honesty and strong honesty. The weak honesty requires

that only the consumption bundle xi reported by i be consistent with F (u): That
is, (xi, x−i) ∈ F (u) for some x−i. The strong honesty requires not only that

xi be consistent with F (u), but also that the price vector reported by i be an
efficiency price for u and F at an F -optimal allocation

¡
xi, x

0
−i
¢
. The difference

between the weak and strong honesty centers therefore, on whether or not the price

announcement component p of the message must also be consistent with the true

economy u and the social goal F . The notions can be stated as follows:

Definition 5 (Weak honesty). Given a natural price-quantity mechanism γ,

an economy u ∈ UN and an SCC F ∈ F , a partially honest agent h has a weak
intrinsic preference towards honesty if the range of her truth-telling correspondence

is T
γ
h (u, F ) ≡

©
(p, xh) ∈ ∆×Q | ∃x−h ∈ R(n−1)` : (xh, x−h) ∈ F (u)

ª
.

Definition 6 (Strong honesty). Given a natural price-quantity mechanism
γ, an economy u ∈ UN and an SCC F ∈ F, a partially honest agent h has a strong
intrinsic preference towards honesty if the range of her truth-telling correspondence

is

T
γ
h (u, F ) ≡

©
(p, xh) ∈ ∆×Q | ∃x−h ∈ R(n−1)` : (xh, x−h) ∈ F (u) , &
∃x0−h ∈ R(n−1)` :

¡
xh, x

0
−h
¢ ∈ F (u) & p ∈ πF

¡¡
xh, x

0
−h
¢
, u
¢ª
.

3.1 Axiomatic characterization: Weak honesty

In this sub-section, we shall consider the case of weak honesty. Thus, in addi-

tion to Assumption 1, the mechanism designer knows that partially honest agents

16The reader should refer to Dutta et al. (1995) and Saijo et al. (1996) for a much fuller

discussion on forthrightness than is presented here.
17Indeed, in Saijo et al. (1999), it is possible that, if x is an interior Walrasian allocation for

some u, and every i announces the consumption bundle xi and the same non-Walrasian equilib-
rium price vector p ∈ Π (x, u) \πWc (x, u), then x must be a Nash equilibrium outcome. However,
such an unanimously false announcement of the Walrasian equilibrium price makes it difficult to

approximate every agent’s true budget set which should be induced by the truthful Walrasian

equilibrium price. Such a difficulty can be avoided in our formulation of the forthrightness.
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have weak preferences towards honesty. We shall propose two conditions which

are together necessary and sufficient for an efficient SCC to be partially honest

implementable by a natural price-quantity mechanism.

The first condition is calledMonotonicity with Weak Honesty (M-WH ). Before

introducing it, a little more notation is needed: For each u ∈ UN , x ∈ F (u), and
p ∈ πF (x, u), let ΛFi (x, p) ≡ ∩u0∈F−1(x,p)L (xi, u0i) for each i.

Condition M-WH. For any given H ∈ H, for all u, u∗ ∈ UN , all x ∈ F (u), and
all p ∈ πF (x, u), if ΛFi (x, p) ⊆ L (xi, u

∗
i ) for all i and if x /∈ F (u∗), then for

some h ∈ H, xh 6= x∗h for all x∗ ∈ F (u∗).

For any H ∈ H, any u ∈ UN , any x ∈ F (u) and any p ∈ πF (x, u), M-WH
requires that if the economy u moves to a new economy u∗ ∈ UN in such a way
that for each i the weak lower contour set for u∗i at xi contains the set Λ

F
i (x, p) and

if x /∈ F (u∗), then for some h ∈ H the bundle xh can never be a weakly truthful

F -optimal one for u∗, in the sense that xh 6= x∗h holds for all x∗ ∈ F (u∗).
M-WH is weaker than the Generalized Monotonicity (GM ) introduced by Saijo

et al. (1999). In fact, M-WH applies to price vectors belonging to πF (x, u) rather
than to Π (x, u). Moreover, whileGM requires that an F -optimal allocation x for u

should be F -optimal for u∗ if ΛFi (x, p) ⊆ L (xi, u∗i ) holds for each i,M-WH requires
such an invariant property if, in addition, it holds that for each h ∈ H the bundle

xh is a weakly truthful F -optimal one for u
∗, in the sense that

¡
xh, x

∗
−h
¢ ∈ F (u∗)

holds for some x∗−h ∈ Qn−1.
The second condition, called Punishment with Weak Honesty (P-WH ), is a

weaker variant of condition GPQ introduced by Saijo et al. (1999). Before stating

P-WH, a more notation is needed. Let p ∈ ∆ and x = (xi)i∈N ∈ Q × ... × Q be

given. Let xi ≡
³
Ω−Pj 6=i xj, x−i

´
. Define the set F̄−1 (xi, p) as follows:

F̄−1
¡
xi, p

¢ ≡ ½ F−1! (xi, p) if F−1! (xi, p) 6= ∅,
F−1 (xi, p) if F−1! (xi, p) = ∅, and @p0 ∈ ∆ : F−1! (xi, p0) 6= ∅.

Let IF (p, x) ≡ ©
i ∈ N |F̄−1 (xi, p) 6= ∅ª. For each x /∈ A, a member of the set

IF (p, x) is a potential deviator. For each i, ui ∈ Ui, and xi ∈ R`+, let ∂L (xi, ui)
denote the upper boundary of L (xi, ui), that is, ∂L (xi, ui) ≡ {x0i ∈ L (xi, ui) |
ui (xi) = ui (x

0
i)}. Finally, for each i, xi ∈ Q is weakly truthful for u0 ∈ UN if and

only if (xi, x̂−i) ∈ F (u0) for some x̂−i ∈ Qn−1.

Condition P-WH . For any given H ∈ H, and any (p, x) ∈ ∆ × Qn such that
IF (p, x) = N and x /∈ A, there exists z (p, x) ∈ A such that:
(i) zi (p, x) ∈ ΛFi (x

i, p) for all i.
(ii) For each i, there exists a function Si (·; (p, x−i)) : ∆×Q→ Q such that for all

(p0, x0i) ∈ ∆×Q,
(a) if there exist u0 ∈ UN and x∗i ∈ Q such that IF (p, x∗) = N , where x∗ ≡
(x∗i , x−i), and ΛFj (x

∗j, p) ⊆ L
¡
zj (p, x

∗) , u0j
¢
for all j ∈ N and if x0i is weakly

truthful for u0, then Si ((p0, x0i) ; (p, x−i)) ∈ ΛFi (x
i, p);

10



(b) otherwise, Si ((p
0, x0i) ; (p, x−i)) = 0.

(iii) For all u∗ ∈ UN , if ΛFi (x
i, p) ⊆ L (zi (p, x) , u

∗
i ) for all i and if z (p, x) /∈

F (u∗), then there exists h ∈ H such that:

(a) xh is not weakly truthful for u
∗, and

(b) there exists (p0, x0h) ∈ ∆×Q, with x0h weakly truthful for u∗, such that Sh ((p0, x0h) ; (p, x−h)) ∈
∂L (zh (p, x) , u

∗
h).

Let us briefly discuss P-WH. This condition applies to the case in which each

agent announces the same price vector p, the announced quantities profile is not

a feasible allocation and all agents are potential deviators: That is, for each i,

mi = (p, xi) where (x1, ..., xn) /∈ A, and IF (p, x) = N . As Saijo et al. (1996,

1999) state, an important problem for implementation by natural price-quantity

mechanisms is to identify who should be punished in such a case. A solution to

this problem is to punish simultaneously all agents by assigning to each i a feasible

bundle which is not better than the bundle Ω −Pj 6=i xj, regardless of i’s true
utility function. Parallelly to part (i) of GPQ, part (i) of P-WH requires that a

feasible punishment allocation z (p, x) exists in such a case.18

To discuss part (ii) and part (iii) of P-WH, let us consider a situation in which a

punishment allocation z (p, x) has already been assigned to agents. In some cases it
is necessary to identify the property of bundles that i can achieve when she changes

her initial announcement (p, xi) into weakly truthful ones. In this regards, part
(ii) of P-WH requires that for each i there should exist a function Si (·; (p, x−i))
that assigns feasible bundles to i when she changes her announcement (p, xi), while
keeping the other agents’ announcements fixed. This function has the property of

punishment, in that i can never get from the assigned bundle a utility higher than

that derived from the bundle Ω −Pl 6=i xl, regardless of i’s true utility function.
Finally, the contrapositive of part (iii) of P-WH reads as follows: If for an economy

u∗ it is the case that for each i the weak lower contour set for u∗i at zi (x, p) contains
the intersection set ΛFi (x, p), and if for each h ∈ H the bundle xh is weakly truthful
for u∗ or u∗h (Sh ((p

0, x0h) ; (p, x−h))) < u
∗
h (zh (p, x)) for all pairs (p

0, x0h) such that x
0
h

is weakly truthful for u∗, then z (p, x) must be F -optimal for u∗. In other words,
if the punishment allocation z (p, x) corresponds to a truthful equilibrium for u∗

and the given set H, then it must be F -optimal for u∗.
We shall now establish our first characterization result.

18Note that, although P-WH -(i) is very similar to GPQ-(i) of Saijo et al. (1999), there is a

small difference: In Saijo et al. (1999), the set IF (p, x) and the intersection set ΛFi
¡
xi, p

¢
are

respectively defined by taking F−1
¡
xi, p

¢
as the domain of potential economies, whereas we take

F̄−1
¡
xi, p

¢
as the domain. The essence of this difference is that u ∈ F̄−1 ¡xi, p¢ implies not only

that xi is F -optimal for u, but also that p is an important and relevant efficiency price in that it
can support xi as an F -optimal allocation for u. In contrast, u ∈ F−1 ¡xi, p¢ implies that xi is
F -optimal for u, and p is simply an efficiency price for u at xi.
For instance, if F = Wc, then W̄

−1
c

¡
xi, p

¢ 6= ∅ implies that xi becomes a constrained Wal-
rasian equilibrium allocation for an economy, and in such an economy, p becomes a constrained
Walrasian equilibrium price vector. In contrast, although W−1c

¡
xi, p

¢ 6= ∅ implies that xi be-
comes a constrained Walrasian equilibrium allocation for an economy, it may correspond to the

case where p can never be a constrained Walrasian equilibrium price vector.

11



Theorem 1. Let n ≥ 3 and suppose that Assumption 1 with Definition 5 holds.
An SCC F ∈ F is partially honest implementable by a natural price-quantity

mechanism if and only if it satisfies M-WH and P-WH.

The reader will have observed that the rationales behindM-WH and P-WH differ.

In fact, M-WH can be viewed as a condition to suggest that the behavior of an

efficient SCC must be consistent with truthful announcements of bundles, whereas

P-WH can be viewed as a condition to suggest that an SCC must allow the

existence of feasible allocations in order to construct a punishment scheme.

3.2 Axiomatic characterization: Strong honesty

In this subsection, we shall be concerned with the case of strong honesty. Thus,

in addition to Assumption 1, the mechanism designer knows that partially honest

agents have strong preferences towards honesty. We propose below a condition

calledMonotonicity and Punishment with Strong Honesty (MP-SH ), which is nec-

essary and sufficient for an efficient SCC to be partially honest implementable by

a natural price-quantity mechanism.

To facilitate our discussion, we introduce some terminology and notation that

will be convenient: For each i, a pair (p, xi) ∈ ∆×Q is strongly truthful for u0 ∈ UN
if and only if (xi, x̂−i) ∈ F (u0) for some x̂−i ∈ R(n−1)`+ , and p ∈ πF ((xi, x̄−i) , u0)
for some x̄−i ∈ R(n−1)`+ with (xi, x̄−i) ∈ F (u0). For each i and (pj, xj)j∈N ∈
(∆×Q)n, with p = pj for all j, let x ≡ (xj)j∈N , (p, x) ≡ (pj, xj)j∈N , and (p, x−i) ≡
(pj, xj)j∈N\{i}. For each x = (xi)i∈N ∈ Q × ... × Q, we shall recall that xi ≡³
Ω−Pj 6=i xj, x−i

´
.

Condition MP-SH . There exists a map z : (∆×Q)n → Qn such that, for any

given H ∈ H and any (pj, xj)j∈N ∈ (∆×Q)n:
(i) The following requirements are satisfied:

(i.a) If pj = p for each j, then:
(i.a.1) If IF (p, x) = N , then z (p, x) ∈ A, with z (p, x) = x for x ∈ A, such that
zi (p, x) ∈ ΛFi (x

i, p) for each i.
(i.a.2) If 1 ≤ ¯̄IF (p, x)¯̄ ≤ n− 1, then z (p, x) ∈ A such that for each i ∈ IF (p, x),½

zi (p, x) ∈ ΛFi (x
i, p) if (p, xi) is strongly truthful for some u

0 ∈ UN ,
zi (p, x) = 0 otherwise.

(i.a.3) If
¯̄
IF (p, x)

¯̄
= 0, then z (p, x) = 0.

(i.b) If there exists i ∈ N such that pj = p for each j ∈ N\ {i} and pi 6= p, then:
(i.b.1) If there exists (u0, x∗i ) ∈ UN ×Q with IF (p, x∗) = N , where x∗ ≡ (x−i, x∗i ),
and ΛFj (x

∗j, p) ⊆ L ¡zj (p, x∗) , u0j¢ for each j ∈ N and if (pi, xi) is strongly truthful
for u0, then z ((pi, xi) , (p, x−i)) ∈ A with zi ((pi, xi) , (p, x−i)) ∈ ΛFi (x

i, p).
(i.b.2) Otherwise, z ((pi, xi) , (p, x−i)) = 0.
(i.c) For any other case, z ((pi, xi) , (p, x−i)) = 0.

12



(ii) Moreover, for all u∗ ∈ UN , if pi = p for all i, IF (p, x) = N and ΛFi (x
i, p) ⊆

L (zi (p, x) , u
∗
i ) for all i and if z (p, x) /∈ F (u∗), then there exists h ∈ H such that:

(a) (p, xh) is not strongly truthful for u
∗, and

(b) there exists (p0, x0h) ∈ ∆ × Q, which is strongly truthful for u∗, such that
zh ((p

0, x0h) , (p, x−h)) ∈ ∂L (zh (p, x) , u
∗
h).

The rationale behind MP-SH for the case that x ∈ A (resp., x /∈ A) is that of
M-WH (resp., P-WH ). Furthermore, the condition just stated is almost parallel

to M-WH and P-WH with differences directly linked to the different notions of

honesty that they refer to. The main differences can be summarized as follows:

First, part (i.b.1) of MP-SH identifies the property of bundles that i can achieve

when she changes her initial announcement (p, xi) into strongly truthful ones,
while keeping the other agents’ announcements fixed. Second, this identification

is also made for cases in which the initial situation is that each agent announced

the same price vector p and the announced quantities profile is F -optimal. Fi-

nally, and most significantly, the contrapositive of part (ii) of MP-SH reads as

follows: The punishment allocation z (p, x) is F -optimal for u∗ if for each i the
weak lower contour set for u∗i at zi (x, p) contains the intersection set Λ

F
i (x, p)

and if for each h ∈ H the announcement (p, xh) is strongly truthful for u
∗ or

u∗h (zh ((p
0, x0h) , (p, x−h))) < u

∗
h (zh (p, x)) for all strongly truthful pairs (p

0, x0h) for
u∗, that is, if z (p, x) corresponds a truthful equilibrium for u∗ and the given set H.
Note also that part (i.a) of MP-SH extends the existence of feasible punishment

allocations to cases in which the number of agents in IF (p, x) is less than n.
We shall now establish our second characterization result.

Theorem 2. Let n ≥ 3, and suppose Assumption 1 with Definition 6 holds. Then,
F ∈ F is partially honest implementable by a natural price-quantity mechanism

if and only if F satisfies MP-SH.

3.3 Implications

For the remainder of the present section, we shall blend our characterization re-

sults and derive several important theorems. Unless there is specific mention to

the contrary, the domain of each SCC is the set Ū ≡ U × . . .× U| {z }
n-times

of all profiles of

utility functions that are continuous, quasi-concave and strictly monotonic. Fur-

thermore, unless otherwise specified, we shall let H =2N\ {∅}. Although some
other specifications of H are possible, our specification is naturally connected with
Assumption 1 and is of the utmost importance from the viewpoint of partially

honest implementation. None of the positive results presented here can be derived

from the conventional natural implementation setting.

It is well-known that the Walrasian correspondence, W , is not natural imple-

mentable. Moreover, Saijo et al. (1999; Lemma 3) show that the constrained

Walrasian correspondence, Wc, is not implementable by any natural mechanism in

economies endowed with more than two commodities. A natural question, then, is

13



whether or not W and Wc are natural implementable when agents have intrinsic

preferences towards honesty. While a positive answer is provided for Wc, the an-

swer for W depends on the type of honesty of partially honest agents and on the

number of commodities in the economy. The answers are based on the following

lemmata:

Lemma 1. Let n ≥ 3; suppose that Assumption 1 with Definition 5 holds; and let
the domain of Wc be Ū . Then, Wc satisfies M-WH.

Lemma 2. Let n ≥ 3; suppose that Assumption 1 with Definition 5 holds; and let
the domain of W and Wc be Ū . Then:

(i) W satisfies P-WH.

(ii) Wc satisfies P-WH.

Lemma 3. Let n ≥ 3; suppose that Assumption 1 with Definition 5 holds; let
H = 2N\ {∅} and let the domain of W be Ū . Then:

(i) W satisfies M-WH when ` = 2.
(ii) W does not satisfy M-WH when ` ≥ 3 and ωi =

Ω
n
for all i.

Lemma 4. Let n ≥ 3; suppose that Assumption 1 with Definition 6 holds; let
H = 2N\ {∅} and let the domain of W be Ū . Then, W satisfies MP-SH.

The following results are a direct consequence of the combination of the above

lemmata with either Theorem 1 or Theorem 2.

Theorem 3. Let n ≥ 3; suppose that Assumption 1 with Definition 5 holds; and
let the domain of W and Wc be Ū . Then:

(i) W is partially honest implementable by a natural price-quantity mechanism

when ` = 2.
(ii) W is not partially honest implementable by any natural price-quantity mech-

anism when ` ≥ 3.
(iii) Wc is partially honest implementable by a natural price-quantity mechanism.

Theorem 4. Let n ≥ 3; suppose that Assumption 1 with Definition 6 holds;
and let the domain of W be Ū . Then, W is partially honest implementable by a

natural price-quantity mechanism.

We shall now discuss the partially honest implementability by natural price-

quantity mechanisms of the Pareto correspondence, P , the no-envy and efficient

correspondence, NP , and the efficient egalitarian-equivalent correspondence, EE.

Saijo et al. (1999) show that these SCC s are not implementable by any natural

price-quantity mechanism. A natural question then, is whether or not these SCC s

are partially honest implementable. A negative answer is provided by means of

the following lemmata.

Lemma 5. Let n ≥ 3; suppose that Assumption 1 holds; and let the domain of P
be Ū . Then:
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(i) P does not satisfy part (i) of P-WH if Definition 5 holds.

(ii) P does not satisfy part (i.a.1) of MP-SH if Definition 6 holds.

Proof. This is due to the fact that the Pareto correspondence does not satisfy

condition PQ(i), as shown in Saijo et al. (1996).

Lemma 6. Let n ≥ 3; suppose that Assumption 1 holds; let H = 2N\ {∅} and
let the domain of NP be Ū . Then:

(i) NP does not satisfy part (iii) of P-WH if Definition 5 holds.

(ii) NP does not satisfy part (ii) of MP-SH if Definition 6 holds.

Lemma 7. Let n ≥ 3; suppose that Assumption 1 holds; let H = 2N\ {∅} and
let the domain of EE be Ū . Then:

(i) EE does not satisfy M-WH if Definition 5 holds.

(ii) EE does not satisfy MP-SH if Definition 6 holds.

Our last theorem is a direct consequence of the above lemmata, Theorem 1 and

Theorem 2.

Theorem 5. Let n ≥ 3; suppose that Assumption 1 holds with either Definition
5 or Definition 6; let H = 2N\ {∅} and let the domain of P , NP , and EE be

Ū . Then, none of P , NP , and EE are partially honest implementable by any

natural price-quantity mechanism.

4 Concluding remarks

In this paper, which introduces the weak and the strong types of partially hon-

est agent, we examined partially honest implementation by natural price-quantity

mechanisms in pure exchange economies. For each of the two types, the class of

efficient SCC s that are implementable is fully identified. The implications of our

characterization results, coupled with the findings for the two-agent economies of

the companion paper (Lombardi and Yoshihara, 2012b) are summarized in Table

1 below and compared with those of Saijo et al. (1996, 1999)’s characterization

result in the standard set-up. Two main conclusions can be drawn from this table.

Firstly, the main difficulty in implementing the Walrasian allocations in the

standard set-up can be found in the lack of the virtue of honesty in the society,

rather than in the failure to design reasonable mechanisms. This view is consis-

tent with the standard general equilibrium theory and the fundamental theorems

of welfare economics, in which all agents are assumed to be sincere. In other words,

honesty seems to be indispensable for the implementability of the Walrasian cor-

respondence.

Secondly, honesty does not seem to be a major determinant of human behavior

in solving implemenation problems of fair allocations. The failure to partially

honestly implement the no-envy and efficient correspondence is to be attributed

to the impossibility of successful design of punishment schemes consistent with
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natural price-quantity mechanisms (see the proof of Lemma 6). On the other

hand, the failure to partially honestly implement the efficient egalitarian-equivalent

correspondence is to be attributed to the impossibility of nullifying the appeal to

any variant of Maskin monotonicity. No degree of honesty can help to resolve these

impossibilities.

We shall close this section with some remarks for two-agent economies: It is

well-known that the efficient egalitarian-equivalent correspondence violates Maskin

monotonicity. Thus, it is not implementable. In our companion paper, we found

that this SCC is partially honest implementable by a natural price-quantity mech-

anism in economies with more than two commodities. Although this is a positive

and important result, this SCC is not implementable by any natural price-quantity

mechanism in economies with two commodities, for the same reason that it is not

implementable in economies with more than two agents. The existence, therefore,

of the virtue of honesty in the society is not helpful, in general, for the natural

implementation of this SCC.

TABLE 1: Honest set-up/Standard set-up Comparison Table
A summary of results

Number of agents: n = 2 n ≥ 3
Types of honesty: Weak honesty Weak honesty Strong honesty

Wc yes/no yes/no yes/no

W : ` = 2 yes/no yes/no yes/no

SCCs : W : ` ≥ 3 yes/no no/no yes/no

NP yes/yes no/no no/no

EE : ` = 2 no/no no/no no/no

EE : ` ≥ 3 yes/no no/no no/no

P no/no no/no no/no

Wc, the constrained Walrasian correspondence; W , the Walrasian correspondence;

NP , the non-envy and efficient correspondence; EE, the egalitarian-equivalent and efficient correspondence;

P , the Pareto correspondence; ` (≥ 2), number of commodities in the economy.

Appendix

Before proceeding, we shall recall that xi ≡
³
Ω−Pj 6=i xj, x−i

´
and that ∂L (xi, ui) ≡

{x0i ∈ L (xi, ui) | ui (xi) = ui (x0i)}.

Proof of Theorem 1

First, we suppose that F ∈ F is partially honest implementable by a natural

price-quantity mechanism γ = (M, g), and shall show that F satisfies M-WH and

P-WH.
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Let (H, u, x, p) ∈ H× UN × F (u)× πF (x, u) and let mi ≡ (p, xi) ∈ ∆×Q for
each i. By forthrightness, g (m) = x and m ∈ NE ¡γ,<u0¢ for all u0 ∈ F−1 (x, p),
whence it follows that gi (Mi,m−i) ⊆ ΛFi (x, p) for all i. If x /∈ F (u∗) for some
u∗ ∈ UN and if ΛFi (x, p) ⊆ L (xi, u∗i ) for all i, it follows that mi /∈ T γ

i (u
∗, F ) and

((m0
i,m−i) ,m) ∈Âu∗i for some i ∈ H and some m0

i ∈ T γ
i (u

∗, F ), then xi 6= x∗i for
all x∗ ∈ F (u∗), as sought. This shows that F satisfies M-WH for all H ∈ H.
Let H ∈ H, let m̄i = (p, xi) ∈ ∆ × Q for each i, and let p and x = (xi)i∈N

be such that IF (p, x) = N and x /∈ A. For any i, let m = (m̄−i,mi) where

mi =
³
p,Ω−Pl 6=i xl

´
. By forthrightness, g (m) = xi and m ∈ NE

¡
γ,<u0

¢
for all u0 ∈ F̄−1 (xi, p), whence it follows that gi (Mi,m−i) ⊆ ΛFi (x

i, p). But

since i is arbitrary, it follows that gi (Mi,m−i) ⊆ ΛFi (x
i, p) for all i. Now let

z (p, x) = g (m̄) and use the fact that gi (Mi,m−i) ⊆ ΛFi (x
i, p) for all i to obtain

that zi (p, x) ∈ ΛFi (x
i, p) for all i. This shows that F satisfies part (i) of P-WH.

For any i and (p, x−i) ∈ ∆×Qn−1, define the real-valued function Si (·; (p, x−i)) :
∆×Q→ Q as follows: For any (p0, x0i) ∈ ∆×Q,
(i) if there exist u0 ∈ UN and x∗i ∈ Q such that IF (p, x∗) = N , ΛFj (x

∗j, p) ⊆
L
¡
zj (p, x

∗) , u0j
¢
for all j ∈ N , where x∗ ≡ (x∗i , x−i), and if x0i is weakly truthful

for u0, then Si ((p0, x0i) ; (p, x−i)) ≡ gi ((p0, x0i) , m̄−i);
(ii) otherwise, Si ((p

0, x0i) ; (p, x−i)) ≡ 0.
Noting that x∗i = xi, so that ΛFi (x

∗i, p) = ΛFi (x
i, p), it is readily verifiable that

part (ii) of P-WH is satisfied by the just stated definition of Si (·; ·).
If for some u∗ ∈ UN it holds that ΛFi (xi, p) ⊆ L (zi (p, x) , u∗i ) for all i and if

z (p, x) = g (m̄) /∈ F (u∗), it follows that m̄i /∈ T γ
i (u

∗, F ) and ((m0
i, m̄−i) , m̄) ∈Âu∗i

for some i ∈ H and some m0
i = (p0, x0i) ∈ T γ

i (u
∗, F ), then u∗i (gi (m

0
i, m̄−i)) =

u∗i (gi (m̄)), so that xi is not weakly truthful for u
∗, x0i is weakly truthful for u

∗,
and gi (m

0
i, m̄−i) ∈ ΛFi (x

i, p) ∩ ∂L (zi (p, x) , u
∗
i ). By part (i) of the definition of

function Si (·; (p, x−i)), it follows that Si ((p0, x0i) ; (p, x−i)) = gi (m0
i, m̄−i), in which

case Si ((p
0, x0i) ; (p, x−i)) ∈ ∂L (zi (p, x) , u

∗
i ). This shows that F satisfies part (iii)

of P-WH.

Conversely, suppose that F satisfies M-WH and P-WH. Before proceeding, let

us introduce some preliminaries. Denote the boundary set of ∆ by ∂∆. For any
vertex p̄ ∈ ∂∆ and any other p ∈ ∆, let B² (p̄; p) be a closed ball with center p̄ and
radius ² ≡ 1

2
kp̄, pk > 0, where kp̄, pk is the Euclidean distance between p̄ and p. Let

B² (p̄; p) ≡ B² (p̄; p)∩∆. Since B² (p̄; p) and ∆ are cardinally equivalent, there is a

bijection φ : B² (p̄; p)→ ∆. For any i, any (p, x−i) ∈ ∆×Qn−1 and any vertex p̄ ∈
∆, define the function S̃i (·; (p, x−i)) : B² (p̄; p)×Q→ Q by S̃i ((p̂, x̂i) ; (p, x−i)) ≡
Si ((φ (p̂) , x̂i) ; (p, x−i)) for all (p̂, x̂i) ∈ B² (p̄; p) × Q. For any (x, p) ∈ Qn × ∆,
∂ΛFi (x, p) is the upper boundary of Λ

F
i (x, p), that is, ∂Λ

F
i (x, p) ≡ {yi ∈ Q|yi ∈

ΛFi (x, p) and @zi ∈ ΛFi (x, p) such that zi À yi}.
With these preliminaries and given any two fixed and distinct vertices p̄ and

p̄0 of ∂∆ we now define the outcome function g of a price-quantity mechanism

γ = (M,g) as follows:

Rule 1: If mi = (p, xi) for all i such that x ∈ F (u0) and p ∈ πF (x, u0) for some

17



u0 ∈ UN , then g (m) = x.

Rule 2: If mi = (p, xi) for all i such that x /∈ A and IF (p, x) = N , then g (m) =
z (p, x), where z (p, x) is the allocation specified in part (i) of P-WH.

Rule 3: If mi = (p, xi) for all i, 1 ≤
¯̄
IF (p, x)

¯̄ ≤ n− 1, then:
gi (m) =

½ Ω
n−|IF (p,x)| if i /∈ IF (p, x) ,

0 otherwise.

Rule 4: If, for some i, (p, xl) for all l ∈ N\ {i}, and (pi, xi), with p 6= pi, and

i ∈ IF (p, x), then:

Rule 4.1: if pi = p̄0, then g (m) = xi;

Rule 4.2: if pi ∈ B² (p̄; p), then:

g (m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ã
S̃i ((p

i, xi) ; (p, x−i)) ,
µ

Ω−S̃i((pi,xi);(p,x−i))
n−1

¶
l 6=i

!
if S̃i ((p

i, xi) ; (p, x−i)) 6= 0,³
xi,
¡
Ω−xi
n−1

¢
l 6=i

´
if

S̃i ((p
i, xi) ; (p, x−i)) = 0

and xi ∈ ΛFi (x
i, p) ,µ

ψi (xi) ,
³
Ω−ψi(xi)
n−1

´
l 6=i

¶
otherwise,

where ψi : Q\ΛFi (xi, p)→ ∂ΛFi (x
i, p) is a surjective function;

Rule 4.3: otherwise, g (m) =
³
x̂i,
¡
Ω−x̂i
n−1

¢
l 6=i

´
, where {x̂i} ≡ ∂ΛFi (x

i, p)∩{yi ∈ R`+|
∃α ∈ R+ s.t. yi = αxi}.

Rule 5: Otherwise, gi∗ (m) = Ω and gj (m) = 0 for all j 6= i∗, where i∗ is defined as
follows. Without loss of generality, let us suppose that Ω1 ≥ 1. Let

P
i∈N yi1 = t.

Furthermore, it follows that, for all i, yi1 ∈ [0,Ω1]. Let v be an integer such that
v ≤ t < v + 1. Therefore, t = v + s where s ∈ [0, 1). It follows that there is a
unique agent i∗ ∈ N such that s ∈ £ i∗−1

n
, i
∗
n

¢
.

According to the proposed construction, γ is a natural price-quantity mechanism.

We shall show that F (u) = NA (γ,<u) for all u ∈ UN and all H ∈ H. Since
it is a routine exercise to prove that F (u) ⊆ NA (γ,<u) for any u and any H, we
shall omit the proof here. Conversely, for any (u,H) ∈ UN×H, letm ∈ NE (γ,<u)
for the given H. Since m cannot correspond to Rule 3, Rule 4, or Rule 5, m falls

either into Rule 1 or Rule 2.

Suppose that m falls into Rule 1. By Rule 4.3, we obtain that ∂ΛFi (x, p) ⊆
gi (Mi,m−i) for all i from which it follows that ΛFi (x, p) ⊆ L (xi, ui) for all i
since m ∈ NE (γ,<u) and since agents’ utility functions are strictly monotonic.
If i ∈ H and if mi /∈ T γ

i (u, F ), Rule 4.1 implies that gh (m
0
i,m−i) = xi for any

m0
i = (p̄0, x0i) ∈ T γ

i (u, F ), so that ((m
0
i,m−i) ,m) ∈Âui . Since this contradicts
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the assumption that m ∈ NE (γ,<u) for the given H, mi ∈ T γ
i (u, F ) if i ∈ H.

Therefore, M-WH implies that g (m) ∈ F (u).
Suppose that m falls into Rule 2. By the same reasoning used for Rule 1, it

is clear that ΛFi (x
i, p) ⊆ L (zi (p, x) , ui) for all i. If i ∈ H, if mi /∈ T γ

i (u, F )
and if there exists m0

i ∈ T γ
i (u, F ) such that gi (m

0
i,m−i) ∈ ∂L (zi (p, x) , ui), then

((m0
i,m−i) ,m) ∈Âui . Since this contradicts the assumption that m ∈ NE (γ,<u)

for the given H, gi (m
0
i,m−i) /∈ ∂L (zi (p, x) , ui) for all m

0
i ∈ T γ

i (u, F ) if i ∈ H
and mi /∈ T γ

i (u, F ). By the definition of function S̃i (·; ·) and the fact that φ is a
bijection from B² (p̄; p) to ∆, it follows that Si ((p0, x0i) ; (p, x−i)) /∈ ∂L (zi (p, x) , ui)
for all p0 ∈ ∆ and all weakly truthfully bundle x0i ∈ Q for u if i ∈ H and mi /∈
T
γ
i (u, F ). Therefore, part (iii) of P-WH implies that z (p, x) ∈ F (u).
Since H ∈ H and u ∈ UN were chosen arbitrarily, the statement follows.

Proof of Theorem 2

First, we suppose that F ∈ F is partially honest implementable by a natural price-
quantity mechanism γ = (M,g) and shall show that F satisfiesMP-SH. Define the
real-valued function z : (∆×Q)n → Qn as follows: For any H ∈ H and for any

(pj, xj)j∈N ∈ (∆×Q)n, where x ≡ (xj)j∈N ,
(a) if pj = p for each j, IF (p, x) = N , then z (p, x) = g

³
(pj, xj)j∈N

´
;

(b) if pj = p for each j, and 1 ≤ ¯̄IF (p, x)¯̄ ≤ n− 1, then for each i:
zi (p, x) =

⎧⎪⎪⎨⎪⎪⎩
gi

³
(pj, xj)j∈N

´
if i ∈ S,

0 if i ∈ IF (p, x) \S,
Ω−k∈S gk


(pj ,xj)

j∈N


n−|IF (p,x)| otherwise,

where the set S is defined as follows:

S =
©
i ∈ IF (p, x) | (p, xi) is strongly truthful for some u0 ∈ UN

ª
; (4)

(c) if there exists i ∈ N such that pj = p for each j ∈ N\ {i} and pi 6= p, if

there exists (u0, x∗i ) ∈ UN ×Q with IF (p, x∗) = N , where x∗ ≡ (x−i, x∗i ), such that
ΛFj (x

∗j, p) ⊆ L ¡zj (p, x∗) , u0j¢ for each j ∈ N , and if (pi, xi) is strongly truthful
for u0, then z ((pi, xi) , (p, x−i)) = g

³
(pi, xi) , (p

j, xj)j∈N\{i}
´
;

(d) otherwise, z
³
(pj, xj)j∈N

´
= 0.

Let m̄i = (p, xi) ∈ ∆×Q for each i. Suppose that p and x = (xi)i∈N are such
that IF (p, x) = N . For any i, let m = (m̄−i,mi) where mi =

³
p,Ω−Pl 6=i xl

´
.

By forthrightness, g (m) = xi and m ∈ NE ¡γ,<u0¢ for all u0 ∈ F̄−1 (xi, p), whence
it follows that gi (Mi,m−i) ⊆ ΛFi (x

i, p). But since i is arbitrary, it follows that
gi (Mi,m−i) ⊆ ΛFi (x

i, p) for all i. By definition of function z and the fact that
gi (Mi,m−i) ⊆ ΛFi (x

i, p) for all i, it follows that z (p, x) = g (m̄) and zi (p, x) ∈
ΛFi (x

i, p) for all i. Moreover, z (p, x) = x if x ∈ A by forthrightness. This shows
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that F satisfies part (i.a.1) ofMP-SH. Suppose that p and x = (xi)i∈N are such that
1 ≤ ¯̄IF (p, x)¯̄ ≤ n− 1. For any i ∈ IF (p, x), it follows that xi ∈ NA (γ,<u) for
all H 0 ∈ H and all u ∈ F̄−1 (xi, p), so that gi (m̄) ∈ ΛFi (x

i, p). If (4) is non-empty,
part (b) of the definition of function z implies that zi (p, x) = gi (m̄) ∈ ΛFi (x

i, p)
for all i ∈ S, zi (p, x) = 0 for all i ∈ IF (p, x) \S and z (p, x) ∈ A. If (4) is empty,
then part (b) of the definition of function z implies that zi (p, x) = 0 for each
i ∈ IF (p, x) and z (p, x) ∈ A. This shows that the above definition of function z
satisfies part (i.a.2) of MP-SH. Noting that x∗i = xi and ΛFi (x

∗i, p) = ΛFi (x
i, p), it

is readily verifiable that part (i.a.3), part (i.b) and part (i.c) ofMP-SH are satisfied

by the definition of real-valued function z. Thus, we conclude that F satisfies part

(i) of MP-SH.

If for some u∗ ∈ UN it holds that ΛFi (xi, p) ⊆ L (zi (p, x) , u∗i ) for all i and if
z (p, x) = g (m̄) /∈ F (u∗), it follows that m̄i /∈ T γ

i (u
∗, F ) and ((m0

i, m̄−i) , m̄) ∈Âu∗i
for some i ∈ H and some m0

i = (p0, x0i) ∈ T γ
i (u

∗, F ), then u∗i (gi (m
0
i, m̄−i)) =

u∗i (gi (m̄)), so that (p, xi) is not strongly truthful for u
∗, (p0, x0i) is strongly truth-

ful for u∗, and gi (m0
i, m̄−i) ∈ ΛFi (x

i, p) ∩ ∂L (zi (p, x) , u
∗
i ). By part (c) of defini-

tion of function z, it follows that zi ((p
0, x0i) , (p, x−i)) = gi ((p

0, x0i) , m̄−i), so that
zi ((p

0, x0i) , (p, x−i)) ∈ ∂L (zi (p, x) , u
∗
i ). This shows that F satisfies part (ii) of

MP-SH.

Conversely, suppose that F satisfiesMP-SH. Before proceeding, let us introduce

some preliminaries. Denote the boundary set of ∆ by ∂∆. For any (x, p) ∈ Qn×∆,
∂ΛFi (x, p) is the upper boundary of Λ

F
i (x, p), that is, ∂Λ

F
i (x, p) ≡ {yi ∈ Q|yi ∈

ΛFi (x, p) and @zi ∈ ΛFi (x, p) such that zi À yi}. With these preliminaries we now
define the outcome function g of a price-quantity mechanism γ = (M,g) as follows:

Rule 1: If mj = (p, xj) for all j such that x ≡ (xj)j∈N ∈ F (u0) and p ∈ πF (x, u0)
for some u0 ∈ UN , then g (m) = z (p, x) = x is specified in part (i.a.1) of MP-SH.
Rule 2: If mj = (p, xj) for all j such that x ≡ (xj)j∈N /∈ A and IF (p, x) = N , then
g (m) = z (p, x), where z (p, x) is specified in part (i.a.1) of MP-SH.

Rule 3: If mj = (p, xj) for all j, 1 ≤
¯̄
IF (p, x)

¯̄ ≤ n− 1, where x ≡ (xj)j∈N , then:
gi (m) =

(
Ω−

k∈IF (p,x) zk(p,x)
n−|IF (p,x)| if i /∈ IF (p, x) ,
zi (p, x) otherwise,

where z (p, x) is specified in part (i.a.2) of MP-SH.

Rule 4: If, for some i, (p, xj) for all j ∈ N\ {i}, and (pi, xi), with p 6= pi, and

i ∈ IF (p, x), where x ≡ (xj)j∈N , then:

g (m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ã
zi ((p

i, xi) , (p, x−i)) ,
µ

Ω−zi((pi,xi),(p,x−i))
n−1

¶
j 6=i

!
if zi ((p

i, xi) , (p, x−i)) 6= 0,³
xi,
¡
Ω−xi
n−1

¢
j 6=i

´
if zi ((p

i, xi) , (p, x−i)) = 0
& xi ∈ ΛFi (x

i, p) ,³
x̂i,
¡
Ω−x̂i
n−1

¢
j 6=i

´
otherwise,
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where {x̂i} ≡ ∂ΛFi (x
i, p)∩{yi ∈ R`+| ∃α ∈ R+ s.t. yi = αxi}, and z ((pi, xi) , (p, x−i))

is specified in part (i.b) and in part (i.c) of MP-SH.

Rule 5: Otherwise, gi∗ (m) = Ω and gj (m) = 0 for all j 6= i∗, where i∗ is defined as
follows. Without loss of generality, let us suppose that Ω1 ≥ 1. Let

P
i∈N yi1 = t.

Furthermore, it follows that, for all i, yi1 ∈ [0,Ω1]. Let v be an integer such that
v ≤ t < v + 1. Therefore, t = v + s where s ∈ [0, 1). It follows that there is a
unique agent i∗ ∈ N such that s ∈ £ i∗−1

n
, i
∗
n

¢
.

According to the proposed construction, γ is a natural price-quantity mechanism.

Note that in Rule 4, gi (m) = x̂i holds whenever p
i ∈ ∂∆ and xi ∈ Q\ΛFi (xi, p),

since (pi, xi) can never be a truthful message for any u
0 ∈ UN if pi ∈ ∂∆.

Thus, agent i can realize any element of ∂ΛFi (x
i, p) by a suitable choice of xi ∈

Q\ΛFi (xi, p).
We shall show that F (u) = NA (γ,<u) for all u ∈ UN and all H ∈ H. Since

it is a routine exercise to prove that F (u) ⊆ NA (γ,<u) for any u and any H, we
shall omit the proof here. Conversely, for any (u,H) ∈ UN×H letm ∈ NE (γ,<u)
for the given H. Since m cannot correspond to Rule 3, Rule 4, or Rule 5, m falls

either into Rule 1 or Rule 2.

Suppose that m falls into Rule 1. By Rule 4, we obtain that ∂ΛFi (x, p) ⊆
gi (Mi,m−i) for all i from which it follows that ΛFi (x, p) ⊆ L (xi, ui) for all i since
m ∈ NE (γ,<u) and since agents’ utility functions are strictly monotonic. If

i ∈ H, if mi /∈ T γ
i (u, F ) and if there exists m

0
i = (p0, x0i) ∈ T γ

i (u, F ) such that
gi (m

0
i,m−i) ∈ ∂L (xi, ui), then ((m

0
i,m−i) ,m) ∈Âui . Since this contradicts the

assumption that m ∈ NE (γ,<u) for the given H, gi (m0
i,m−i) /∈ ∂L (xi, ui) for

all m0
i ∈ T γ

i (u, F ) if i ∈ H and mi /∈ T γ
i (u, F ). By the definition of function g,

it follows that zi

³
(p0, x0i) , (p, xj)j∈N\{i}

´
/∈ ∂L (xi, ui) for all pairs (p

0, x0i) which

are strongly truthful for u if i ∈ H and mi /∈ T γ
i (u, F ). Therefore, part (ii) of

MP-SH implies that x ∈ F (u). Since the case of m falling into Rule 2 can be

dealt similarly, we shall omit the proof here.

Since H ∈ H and u ∈ UN were chosen arbitrarily, the statement follows.

Proof of Lemma 1

We shall first show that ΠWc (x, u) is non-empty and consists solely of constrained
Walrasian prices pWc for any u ∈ Ū and any x ∈Wc (u). If u ∈ Ū and if x ∈Wc (u),
there exists pWc ∈ Π (x, u) such that pWc · xi = pWc · ωi for all i. Since the domain
of Wc is Ū , there exists u

0 ∈ Ū such that x ∈ Wc (u
0) and

©
pWc

ª
= Π (x, u0), in

which case u0 ∈ W−1
c!

¡
x, pWc

¢
and pWc ∈ ΠWc (x, u) by (1) and (2), respectively.

If (x, u) ∈ Rn`+ × Ū , if p ∈ Π (x, u) is such that p · xi 6= p · ωi for some i and
if {p} = Π (x, u0) for some u0 ∈ Ū , then x ∈ P (u0) \Wc (u

0), whence it follows
from (1) that u0 /∈ W−1

c! (x, p). Therefore, if (x, u) ∈ Rn`+ × Ū and if p ∈ Π (x, u)
is such that p · xi 6= p · ωi for some i, W−1

c! (x, p) is an empty set, in which case
(2) implies that p /∈ ΠWc (x, u). By definition (3), πWc (x, u) = ΠWc (x, u) for
any u ∈ Ū and any x ∈ Wc (u). For any tuple (u, x, p) ∈ Ū ×Wc (u)× πWc (x, u),
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the intersection set ΛWc
i (x, p) is ∩u0∈W−1

c (x,p)L (xi, u
0
i) = {yi ∈ Q | p · yi ≤ p · ωi} for

each i. If u∗ ∈ Ū and if ΛWc
i (x, p) ⊆ L (xi, u∗i ) for all i, it is plain that x ∈Wc (u

∗)
with the equilibrium price p.

Proof of Lemma 2

We shall show only part (i) of the statement since part (ii) can be proved similarly.

Let p ∈ ∆, let ω ∈ Rn`+ and let ωp = (ωpi )i∈N ≡
³³

p·ωi
p·Ω
´
Ω
´
i∈N
. If (p, x) ∈ ∆×Qn

is such that IW (p, x) = N and x /∈ A, it follows from the definition of IW (p, x)
and the fact that Ū is the domain of W that W−1

! (xi, p) 6= ∅ for each i. Thus for
any i, ui (x

i
i) ≥ ui (ωpi ) for all u ∈W−1

! (xi, p). Moreover, given that IW (p, x) = N
and that agents’ utility functions are strictly monotonic, it follows that pÀ 0, so
that ω

p
i ∈ ΛWi (x

i, p)∩R`++ for all i. Let z (p, x) ≡ ωp. Therefore, by construction,

part (i) of P-WH is satisfied. If u∗ ∈ Ū and if ΛWi (xi, p) ⊆ L (zi (p, x) , u∗i ) for all
i, then zi (p, x) ∈ argmaxp·yi≤p·ωi u∗j (yi) for all i, so that z (p, x) ∈W (u∗). Since a
suitable definition of function Si (·; (p, x−i)) satisfying part (ii) of P-WH exists and

part (iii) of P-WH is vacuously satisfied, we conclude that W satisfies P-WH.

Proof of Lemma 3

We shall first prove part (i) and then part (ii).

(i) Similarly to the proof of Lemma 1, it can be shown that πW (x, u) =
ΠW (x, u) holds for any u ∈ Ū and any x ∈ W (u). Furthermore, fix any tu-
ple (u, x, p) ∈ Ū × W (u) × πW (x, u). Then the intersection set ΛWi (x, p) is
∩u0∈W−1(x,p)L (xi, u

0
i) = {yi ∈ Q | p · yi ≤ p · ωi} for each i. Note that πW (x, u) =

{p} since ` = 2. Fix an arbitrary u∗ ∈ Ū . Let ΛWi (x, p) ⊆ L (xi, u
∗
i ) for all

i and let x /∈ W (u∗). Then, x is a boundary point; moreover, x0j £ Ω if

x0j ∈ argmaxp·yj≤p·ωj u∗j (yj) for some j, in which case p cannot be paired with
any Walrasian allocation for u∗. Take any x∗ ∈ W (u∗) paired with the unique
equilibrium price pW . If x∗i = xi for some i, then p = p

W , which contradicts the

hypothesis that x∗ ∈W (u∗). Thus x∗i 6= xi for all i. Since x∗ ∈W (u∗) is arbitrary,
it follows that W satisfies M-WH.

(ii) For the sake of simplicity, let n = 3. Without loss of generality, let ωi =
(1, 1, 1) for each i. Choose u ∈ Ū such that a Walrasian equilibrium allocation at

u is x1 =
¡
3, 1

2
, 1
2

¢
, x2 =

¡
0, 5

2
, 0
¢
and x3 =

¡
0, 0, 5

2

¢
, with the equilibrium price

p =
¡
1
5
, 2
5
, 2
5

¢
. Let x∗ ∈ A be such that x∗1 =

¡
5
2
, 0, 0

¢
, x∗2 =

¡
1
2
, 3, 1

2

¢
and x∗3 = x3.

Furthermore, given our domain supposition, it is possible to choose a differentiable

u∗ ∈ Ū such that the gradient vector of u∗i at xi for agent i is ∇u∗1 (x1) =
¡
1
4
, 3
8
, 3
8

¢
for agent 1, ∇u∗2 (x2) =

¡
1
10
, 3
5
, 3
10

¢
for agent 2 and ∇u∗3 (x3) =

¡
1
10
, 3
10
, 3
5

¢
for agent

3, while the gradient vector of u∗i at x
∗
i is ∇u∗1 (x∗1) =

¡
2
5
, 1
5
, 2
5

¢
for agent 1 and

∇u∗2 (x2) =
¡
2
5
, 1
5
, 2
5

¢
for agent 2. Note that ∇u∗3 (x∗3) = ∇u∗3 (x3) for agent 3 since

x3 = x
∗
3. By construction, Λ

W
i (x, p) ⊆ L (xi, u∗i ) for all i and x ∈Wc (u

∗) \W (u∗).
On the other hand, x∗ ∈ W (u∗) with the equilibrium price p∗ =

¡
2
5
, 1
5
, 2
5

¢
. We

established that x∗ ∈W (u∗) and x∗3 = x3, in violation of M-WH for H = {3}.
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Proof of Lemma 4

For any p ∈ ∆ and ω ∈ Rn`+ , define ωp as in the proof of Lemma 2. Define the

real-valued function z of MP-SH as follows: For all (pj, xj)j∈N ∈ (∆×Q)n, with
x ≡ (xj)j∈N ,
(a) if pj = p for each j, IW (p, x) = N , then z (p, x) = x if x ∈ A, otherwise,
z (p, x) = ωp;

(b) if pj = p for each j, and 1 ≤ ¯̄IW (p, x)¯̄ ≤ n− 1, then for each i:
zi (p, x) =

⎧⎪⎨⎪⎩
ω
p
i if i ∈ S,
0 if i ∈ IW (p, x) \S,

Ω−j∈S ωpj
n−|IW (p,x)| otherwise;

where the set S is defined as follows:

S =
©
i ∈ IW (p, x) | (p, xi) is strongly truthful for some u0 ∈ Ū

ª
(c) if for some i, pj = p for each j ∈ N\ {i} and pi 6= p, and if there exists

(u0, x∗i ) ∈ Ū ×Q such that IW (p, x∗) = N , where x∗ = (x−i, x∗i ), and ΛWj (x∗j, p) ⊆
L
¡
zj (p, x

∗) , u0j
¢
for each j ∈ N and if (pi, xi) is strongly truthful for some u

0, then:
(c.1) if x∗ ∈ A, then z ((pi, xi) , (p, x−i)) = x∗;
(c.2) if x∗ /∈ A, then z ((pi, xi) , (p, x−i)) = ωp;

(d) otherwise, z
³
(pj, xj)j∈N

´
= 0.

By the above definition of function z, it is plain that part (i) of MP-SH is

satisfied. To show part (ii), take any (p, x) ∈ ∆ × Qn such that IW (p, x) = N .

Let u∗ ∈ Ū and let ΛWi (xi, p) ⊆ L (zi (p, x) , u∗i ) for all i. If x /∈ A, it follows from
the same reasoning used in the proof of Lemma 2 that z (p, x) = ωp ∈ W (u∗),
whence part (ii) of MP-SH is vacuously satisfied. Suppose that x ∈ A, so that for
some u ∈ Ū , x ∈ W (u) with the equilibrium price p. Suppose that x /∈ W (u∗).
First observe that x ∈ Wc (u

∗). We note also that x is a boundary point and
that x0j £ Ω if x0j ∈ argmaxp·yj≤p·ωj u∗j (yj) and xj /∈ argmaxp·yj≤p·ωj u∗j (yj) for
some j. Therefore, p cannot be paired with any Walrasian allocation for u∗, as
in the proof of part (i) of Lemma 3. Fix an arbitrary i. The pair (p, xi) is not
strongly truthful for u∗, which shows part (ii.a) ofMP-SH. Let (p0, x0i) be a strongly
truthful pair for u∗. By part (c.1) of the definition of function z, it follows that
zi ((p

0, x0i) , (p, x−i)) = xi. Since i is arbitrary, this shows thatW satisfiesMP-SH.

Proof of Lemma 6

We shall show only part (i) of the statement since part (ii) can be proved in the

same way.

Let n = 3, let ` = 2 and let Ω = (Ω1,Ω2) = (1, 1). Following Saijo et al. (1999;

proof of Lemma 1), suppose that each i announces (p, xi), with xi =
³
0,

Ω2
2

´
.

Thus,
¯̄
INP (p, x)

¯̄
= n and for each i, ΛNPi (xi, p) is represented by the area of

the Figure 0AB plus the line BC (see Figure 1 below). Then, z (p, x) which
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satisfies part (i) of P-WH is such that for any i, zi (p, x) = (Ω1, 0) and zj (p, x) =³
0,

Ω2
2

´
for all j 6= i. Without loss of generality, let us focus on the case that

z (p, x) =
³
(Ω1, 0) ,

³
0,

Ω2
2

´
,
³
0,

Ω2
2

´´
. Assume, to the contrary, that NP satisfies

P-WH. By Saijo et al. (1999; proof of Lemma 1), there exists u∗ ∈ Ū such that

z (p, x) /∈ NP (u∗) and for any i, ΛNPi (xi, p) ⊆ L (zi (p, x) , u∗i ). Figure 1 illustrates
the economy u∗, where u∗1 induces the indifference curve I

∗
1 through A ≡ (Ω1, 0),

represented by the lines AD and DE; u∗2 induces the indifference curve I
∗
2 through

C ≡
³
0,

Ω2
2

´
, denoted by the line CK, which is orthogonal to p and parallel to

AB; u∗3 induces the indifference curve I
∗
3 through C =

³
0,

Ω2
2

´
and F ≡

³
Ω1
2
,
Ω2
4

´
,

denoted by the lines CF and FG. Let u∗ represent an economy with homothetic
preferences. It follows that I∗1 of u

∗
1 at F =

³
Ω1
2
,
Ω2
4

´
is represented by HF and

FG. If x0 ∈ P (u∗), then x01 is always on the ray from the origin which passes

through D. Then, z (p, x) /∈ NP (u∗). Consider x̂ ≡ (x̂1, x2, x̂3) ∈ A such that

x̂1 = x̂3 =
³
Ω1
2
,
Ω2
4

´
. Observe that x̂ is Pareto superior to z (p, x) at u∗ and that

x̂ ∈ NP (u∗) with p ∈ πNP (x̂, u∗). We established that x2 is weakly truthful for
u∗, in violation of part (iii.a) of P-WH for H = {2}.

Figure 1: NP violates P-WH and MP-SH
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Proof of Lemma 7

Fix any u ∈ Ū such that ui is strictly concave and differentiable for each i. Let x ∈
EE (u) ∩ Rn`++. Then {p} = πEE (x, u), from which ΛEEi (x, p) can be constructed

for each i. If u0 ∈ EE−1 (x, p), then for some λu0 ∈ (0, 1), u0i (xi) = u0i
³
λu

0
Ω
´
for

each i. Therefore, λu
0
Ω ∈ ∂L (xi, u

0
i) for each i if u

0 ∈ EE−1 (x, p). Define λ(x,p)

as λ(x,p) ≡ minu0∈EE−1(x,p) λu0. It follows that λ(x,p)Ω ∈ ∂ΛEEi (x, p) for each i and
that i’s intersection set ΛEEi (x, p) has the following property: For each i, there is a
neighborhood B (xi) ⊂ ∂ΛEEi (x, p) of xi such that for any yi ∈ B (xi), p ·yi = p ·xi.
Let u∗ ∈ Ū be such that u∗i is strictly concave and differentiable for each i and

let ΛEEi (x, p) ⊆ L (xi, u∗i ) for all i. Fix any two distinct agents j, k ∈ N . Suppose
that for j and k and for some ² > 0 it holds that u∗j (xj + (²,0)) = u∗j (λ

∗Ω)
and u∗k (xk − (²,0)) = u∗k (λ∗Ω) for some λ∗ > λ(x,p), and it holds that the gradient

vector of u∗j at (xj + (²,0)) and the gradient vector of u
∗
k at (xj − (²,0)) are equal to

p: That is, ∇u∗j (xj + (²,0)) = ∇u∗k (xk − (²,0)) = p, where 0 ∈ R`−1+ is the `−1-th
dimensional zero vector. Let u∗i (xi) = u

∗
i (λ

∗Ω) for each i 6= j, k. By construction
and the supposition that u∗ ∈ Ū , it follows that there exist λj and λk such that

λ(x,p) < λj < λ∗ < λk, u∗j (xj) = u∗j
¡
λjΩ

¢
and u∗k (xk) = u∗k

¡
λkΩ

¢
. Then, x ∈

P (u∗) \EE (u∗) and x∗ ∈ EE (u∗), where x∗j = (xj + (²,0)), x
∗
k = (xk − (²,0)),

and x∗i = xi for each i 6= j, k. Since EE is essentially single-valued and since each
u∗i is strictly concave,

19 {x∗} = EE (u∗). Moreover, p ∈ πEE (x∗, u∗). It follows
that for each i 6= j, k, xi is weakly truthful for u∗ and (p, xi) is strongly truthful
for u∗, in violation of M-WH and MP-SH for i 6= j, k.
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