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Abstract

The paper proposes necessary and su¢ cient conditions for the natural implementation
of (e¢ cient) social choice correspondences (SCC s) in pure �nite exchange economies
when some of the agents are partially honest. A partially honest agent is an agent who
strictly prefers to tell the truth when lying has no better material consequences for her.
Firstly, it is shown that if there is even one partially honest agent in the economy (and
the planner does not know her identity), then any SCC is Nash implementable by a
natural price-allocation mechanism. Secondly, and in sharp contrast with the results
of conventional models of natural implementation, it is shown that the equivalence
relationship between natural price-allocation mechanisms and natural price-quantity2

mechanisms no longer holds. Finally, and even more strikingly, the paper reports that
the class of implementable SCC s by natural price-quantity mechanisms is signi�cantly
enlarged.
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1 Introduction

Nash implementation aims at reaching allocations that satisfy a pre-speci�ed social welfare
criterion in situations in which the mechanism designer does not have all necessary relevant
information, but rather needs to elicit it from the agents. To this end, the mechanism
designer devises a mechanism, which represents a complete description of the set of actions
available to each agent and of the consequences of these actions. When only the Nash
equilibrium outcomes of the mechanism coincide with the allocations satisfying the given
welfare criterion, this welfare criterion is Nash implementable. The allocations that can be
implemented as Nash equilibrium in classical exchange economies are now well understood
when it is assumed that the agents are only concerned with their own material gains.1

This basic tenet is frequently criticized for excluding honesty as a powerful motivator.2

In fact, simple reasoning and everyday observation suggest that a concern about honesty is
an important determinant of behavior. Furthermore, actual behavior is often the outcome
of a compromise between what honesty prescribes and what the pursuit of material gains
dictates. Experimental evidence con�rms these impressions. As documented in Green et al.
(2009), and Hurkens and Kartik (2009), experimental subjects adhere to the civic duty of
honesty in the absence of opportunistic behavior. In other words, subjects have an intrinsic
motivation toward honesty, but the maximization of their material gains acts as a constraint
to this motivation.
This �nding is consistent with the conventional views that agents are sel�sh and self-

interested, and that relations are impersonal in market contexts. This consistency is stressed
by Jon Elster who states �Cutthroat competitiveness in the market can go together with
strict adherence to norms of honesty�(Elster, 1989; p. 102). Yet, barring the few exceptions
discussed below, the implementation literature has neglected the role of honesty as a motiva-
tor of human behavior and has failed to appreciate its in�uence on the design of market-like
mechanisms.
This paper follows Elster�s perspective and studies the question of which welfare criterion

can be implemented in pure �nite exchange economies when their participants uphold an
intrinsic motivation toward honesty. This study is conducted by focusing on natural mecha-
nisms (Saijo et al., 1996a; 1999). This paper demonstrates that even a �minimal�propensity
toward honesty of the participants enlarges considerably the class of implementable welfare
criteria.
This paper assumes complete information among the agents, and that all participants in

the economy are Nash competitors. Furthermore, it assumes that in the economy there are
partially honest agents. A partially honest participant is an agent who strictly prefers to
be truthful in her reports when a lie does not better serve her material interests, given the
actions of the other agents. Brie�y, the agent at issue can be viewed as having lexicographic
preferences for action pro�les in which she is concerned �rst, with material gains, and second,
with truthful behavior. The paper also assumes that the mechanism designer knows that
there are partially honest agents in the economy but does not know their identities or their
exact number.
The role of honesty is quanti�ed by devising only natural mechanisms.3 These mecha-
1Henceforth, by implementation we mean Nash implementation. The seminal paper is Maskin (1999).

For recent surveys see, for instance, Jackson (2001) and Maskin and Sjöström (2002).
2For instructive discussions on the role of emotions and norms in economics, see Bowles and Gintis (2000),

Camerer (2003), Elster (1998), Kreps (1997), Sen (1997), and Suzumura and Xu (2001).
3Simple mechanisms introduced by Thomson (2005) are very similar in spirit to natural mechanisms,
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nisms have straightforward economic interpretations because agents�actions consist of an-
nouncing consumption bundles and prices. Moreover, these mechanisms have several other
economically meaningful properties. In fact, following Saijo et al. (1996a; 1999), the paper
demands the mechanism (i) to be of �nite dimension, (ii) to be individually feasible and
balanced, (iii) to satisfy the regularity condition of forthrightness, and (iv) to satisfy the
best response property.4 An individually feasible and balanced mechanism implies that, in
and out of equilibrium, each agent always receives a consumption bundle that lies in her con-
sumption set, and the aggregate consumption is equal to the aggregate social endowments
of commodities. The forthrightness property requires that, in equilibrium, each agent ob-
tains what she has reported as her consumption bundle. Finally, the best response property
requires each participant to have a best response action for any given actions by the other
agents.5

Within the class of natural mechanisms, the paper considers four types of mechanisms in
which each agent�s action consists of reporting (1) a price vector and a consumption bundle,
(2) a price vector and two consumption bundles, (3) a price vector and n � 1 consumption
bundles,6 and (4) a price vector and an allocation (an entire pro�le of bundles). These
four types of natural mechanisms are termed, respectively, price-quantity, price-quantity2,
price-quantityn�1, and price-allocation mechanisms. The paper limits its analysis to �nite
pure exchange economies, and identi�es the class of e¢ cient welfare criteria - summarized in
social choice correspondences (SCC s) - that are implementable by each type of mechanism.
Before discussing the implications and novelty of our �ndings, it may be worthwhile to

emphasize that the departure from the standard implementation set-up is very limited. Like
the standard framework, the mechanism designer�s implementation problem consists of de-
signing a natural mechanism in such a way that, regardless of what the characteristics of the
current economy are and who the partially honest agents involved in the allocation process
are, only the SCC -optimal allocations emerge as the equilibrium outcomes from the devised
mechanism. Moreover, a truly minimal degree of honesty is injected into implementation
problems. This is formulated by explicating what constitutes a truthful report in this study.
Because a common feature of the four types of natural mechanisms is that an agent�s action
is made up of two announcement components - one representing prices, and the other rep-
resenting consumption bundles - this paper assumes that an agent is honest when only the
consumption bundles component reported by this agent is consistent with the pre-speci�ed
welfare criterion for the underlying economy.
The main results of the paper can be summarized as follows. In the case of natural price-

quantity mechanisms, the presence of partially honest agents enlarges in a signi�cant way
the class of implementable SCC s with respect to the class that is implementable in the con-
ventional framework. In contrast to the �ndings of Saijo et al. (1999), this paper reports not
only that the constrained Walrasian correspondence is implementable, but also that the (un-

though di¤erent in substance. Because our objective is to investigate how the implementability is a¤ected
when there are partially-honest agents, rather than studying the implementability of speci�c welfare criteria,
the paper focuses on natural mechanisms.

4The pioneers of the approach of setting several desirable properties for a mechanism are Dutta et al.
(1995) and Sjöström (1996). See Saijo et al. (1996a; 1999) for a detailed discussion on the implications
of the properties listed above. For an instructive study of informational properties of resource-allocation
mechanisms, see Hurwicz (1986b).

5See Saijo et al. (1996a; 1999), along with the references cited therein, for a detailed discussion on the
implications of these properties.

6n � 2 is the number of competing agents in our exchange economies.
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constrained) Walrasian correspondence is implementable in two-commodity economies. The
latter �nding is even more striking than the former because the Walrasian correspondence
is not implementable in the conventional framework.
While the class of implementable SCC s is further enlarged when natural price-quantity2

mechanisms are applied, this paper shows a more surprising �nding that any e¢ cient SCC
is implementable when natural price-quantityn�1 mechanisms are applied. This result runs
counter to conventional results, which dictate that only monotonic SCC s are implementable.
Moreover, while the analysis reveals that implementation by natural price-quantityn�1 mech-
anisms is equivalent to implementation by natural price-allocation mechanisms, the equiva-
lence relationship between implementation by natural price-quantity2 mechanisms and imple-
mentation by natural price-allocation mechanisms no longer holds. For instance, the e¢ cient
and egalitarian-equivalent correspondence is implementable by a natural price-allocation
mechanism, but it is not implementable by any natural price-quantity2 mechanism.7

1.1 Literature review

As a �nal entry to this section, we present the study and its �ndings within the growing
literature on implementation with partially honest agents.8 The papers most closely related
to this study are those by Dutta and Sen (2012) and Lombardi and Yoshihara (2011a).9

Dutta and Sen partially quanti�ed the e¤ect of honesty in abstract social choice environ-
ments. We borrow from that paper the concept of partial honesty. Dutta and Sen�s main
�nding is that, when there are three or more agents, any SCC satisfying the condition of
no-veto power is implementable. To get this result, the authors focussed on Maskin-type
mechanisms, which should be contrasted with the types of natural mechanisms studied in
this paper. For instance, in Maskin-type mechanisms each agent�s announcement includes
either whole preference pro�les or whole indi¤erence sets for several agents. In the economic
applications on which we focus, these are in�nite-dimensional.
Drawing primarily from the above seminal work on the subject, Lombardi and Yoshi-

hara addressed the issue of information decentralization and e¢ ciency in mechanisms. As
informationally decentralized mechanisms, the authors take Saijo-type mechanisms (Saijo,
1988; Lombardi and Yoshihara, 2011b), where each agent must announce her own type
and that of her neighbor, an alternative, and an integer (henceforth, s-mechanisms). One
main �nding is that, in contrast to the case of Maskin-type mechanisms, a weaker variant
of Maskin monotonicity is necessary to fully identify the class of implementable SCC s by
s-mechanisms. Consequently, several e¢ cient SCC s, such as the e¢ cient and egalitarian-
equivalent correspondence and the Walrasian correspondence, are not implementable via

7Similar results, though they di¤er in substance from those reported here, are found in Lombardi and
Yoshihara (2011c) when only quantity announcements are allowed.

8The impressive body of evidence accumulated by psychologists over the past two decades has caused
scholars to study the implications of weakening other fundamental assumptions in a variety of ways and
has already produced a number of alternatives to the standard implementation model, for instance, Eliaz,
2002; Glazer and Rubinstein, 1998; Cabrales and Serrano, 2011. Notably, the �rst paper on �behavioral
implementation theory� dates from 1986, in which Hurwicz solves the implementation problem without
positing the completeness nor the transitivity of agents�preferences (Hurwicz, 1986a).

9Kartik and Tercieux (2011) enrich the standard implementation framework by allowing agents to report
evidence. In these environments, they identify a necessary condition for implementability, called evidence-
monotonicity. This condition, when combined with no-veto power, is su¢ cient for implementation with
evidence. In a society with partially-honest agents, every SCC is evidence-monotonic because of Dutta-
Sen�s de�nition per se of partially-honest agents�orderings over message pro�les. Consequently, Kartik and
Tercieux�s result is similar to Dutta and Sen�s result, summarized above.
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this type of mechanism. It is intriguing, however, that those SCC s are implementable
when more demanding mechanisms such as natural price-allocation mechanisms are applied.
Note that natural price-allocation mechanisms are much more informationally e¢ cient than
s-mechanisms both in quantitative as well as qualitative senses. First, quantitatively speak-
ing, the strategy space of each participant in natural price-allocation mechanisms is much
�smaller�than that in s-mechanisms, in the sense that the former is �nite-dimensional whereas
the latter is in�nite-dimensional. Second, qualitatively speaking, all components of each mes-
sage in price-allocation mechanisms consist solely of self-relevant information, while they do
not in s-mechanisms.10 This noticeable di¤erence makes our result of natural price-allocation
mechanisms more compelling.
Other related papers are by Corchón and Herrero (2004) and Matsushima (2008). Mat-

sushima is the �rst author who quanti�ed the role of honesty in implementation theory.
Matsushima shows that if a social choice function is Bayesian-incentive compatible and
agents have the standard, quasi-linear preferences over outcomes and su¤er a small utility
loss from lying, then this social choice function is implementable in iteratively undominated
strategies. Therefore, it is also implementable in Bayesian Nash equilibrium when there are
more than two participants. Clearly, the main body of this paper is substantially di¤erent
from Matsushima (2008). First, in contrast to Matsushima (2008), this paper does not need
to presume that all agents should have intrinsic preferences for honesty but needs only to
presume that at least one agent has such preferences. Second, this paper focuses on imple-
mentation problems with complete information, while Matsushima (2008) concentrated on
problems with incomplete information.
Corchón and Herrero introduce decency requirements for the set of admissible messages

that depend on the true preferences of the outcomes of agents, and investigate their e¤ects
on the class of implementable SCC s. Given a particular formulation of these requirements,
these authors show that a stronger variant of no-veto power is su¢ cient for implementation
in decent strategies. In contrast, imposing no condition on the set of messages conveyed
by an agent, this paper instead assumes that each agent has a complete preference order of
message pro�les, which is determined as much by her intrinsic taste for the bundle brought
about by each pro�le as by her sense of honesty.

The remainder of the paper is structured as follows. Section 2 describes a formal model.
Section 3 reports the analysis for price-quantityn�1 and price-allocation mechanisms. Sec-
tions 4 and 5 cover price-quantity2 and price-quantity mechanisms, respectively. Section 6
discusses brie�y the implications of the results reported in sections 4 and 5. Section 7 reports
the analysis for two-agent economies. Section 8 concludes brie�y. Long proofs are collected
in the Appendix.

2 The Model

There are n � 2 agents or participants in N � f1; :::; ng and ` � 2 distinct commodities
in L � f1; :::; `g. Unless otherwise speci�ed, we assume that the cardinality of L is ` �
2. R is the set of all real numbers; R+ (resp., R++) denotes the set of all non-negative
10Indeed, natural price-allocation mechanisms can be regarded as examples of self-relevant mechanisms

(Hurwicz, 1960), as Tatamitani (2001) pointed out. In a recent paper, Lombardi and Yoshihara (2011d)
investigate implementation problems by self-relevant mechanisms when some of the participants are partially
honest.
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(respectively, positive) real numbers; R` is the Cartesian product of ordered `-tuples of real
numbers, whereas R`+ (resp., R`++) denotes its non-negative (resp., positive) orthant. Vector
inequalities are de�ned as follows: for all x; y 2 R`, x � y if x` � y` for each ` 2 L, x > y if
x � y and x 6= y, and x� y if x` > y` for each ` 2 L.
Each agent i 2 N is characterized by a consumption space R`+ (where xi = (xi1; :::; xi`) 2

R`+ is the agent i�s commodity bundle), by an endowment vector !i 2 R`+, and by a preference
relation de�ned over R`+. We assume that agent i�s preferences have a utility representation
ui : R`+ ! R which is continuous and quasi-concave on R`+, and either strictly monotonic
on R`+ or strictly monotonic on R`++ where the utility of every interior consumption bundle
is strictly higher than the utility of any consumption bundle on the boundary. U is the
class of all such utility functions, whereas Ui is the class of admissible utility functions for
agent i 2 N . Given a pro�le of endowment vectors, we denote

P
i2N !i � 
 2 R`++ as the

aggregate endowment. It is assumed that the distribution of endowments is known and �xed.
For (i; ui; xi) 2 N � Ui � R`+, L (xi; ui) �

�
x0i 2 R`+ j x0i � 
 and ui (xi) � ui (x

0
i)
	
denotes

the weak lower contour set for agent i with ui at xi, whereas @L (xi; ui) denotes the upper
boundary of L (xi; ui), that is, @L (xi; ui) � fx0i 2 L (xi; ui) j ui (xi) = ui (x

0
i)g. An economy

or state is speci�ed by a list u = (ui)i2N 2 UN � �i2NUi. An allocation is a list of bundles
x = (x1; :::; xn) 2 Rn`+ , whereas a feasible allocation is an allocation x = (x1; :::; xn) 2 Rn`+
such that

P
i2N xi = 
. The set of all feasible allocations is denoted by A. For any allocation

x 2 Rn`+ and any (non-empty) set of agents ? 6= T � N , x�T � (xi)i2NnT is the list of bundles
for the agents in NnT .11 Given xT 2 Rt`+ and x�T 2 R

(n�t)`
+ , we denote (xT ; x�T ) as the

allocation consisting of these xT and x�T . Given a set S � Rn+, its boundary and interior

are denoted @S and
�
S, respectively.

A social choice correspondence (SCC ) is a multi-valued mapping F : UN � A such that
for each u 2 UN , F (u) is a non-empty subset of feasible allocations, that is, ? 6= F (u) � A.
Unless speci�ed otherwise, we do not assume that for all u 2 UN and all x 2 F (u), xi � 0
for all i 2 N . The set of (Pareto) e¢ cient allocations for the economy u 2 UN , denoted
P (u), is P (u) � fx 2 A jthere is no y 2 A : ui (yi) > ui (xi) for all i 2 Ng. An SCC F
de�ned on UN is e¢ cient if for any u 2 UN , F (u) � P (u) holds. F is the class of all e¢ cient
SCC s de�ned on UN .
For any (ui; xi) 2 Ui � R`+, Vi (xi; ui) � fyi 2 R`+jyi � 
 and ui (xi) � ui (yi)g denotes

the weak upper contour set for agent i with ui at xi. Given (ui; xi) 2 Ui�R`+, a price vector
p belonging to the unit simplex �, that is, p 2 �, is said to be a sub-gradient of ui at
xi if p � x0i � p � xi for all x0i 2 Vi (xi; ui). The set of all sub-gradients of ui at xi, that is,
�ui (xi) � fp 2 �jp � x0i � p � xi for all x0i 2 Vi (xi; ui)g, is called the sub-di¤erential of ui at
xi. For any (x; u) 2 Rn`+ � UN , let �(x; u) � \i2N�ui (xi). Notice that x 2 P (u) if �(x; u)
is non-empty. In words, �(x; u) consists of prices p each of which is normal to a hyperplane
separating the weak upper contour sets of all agents with u at x. Any p 2 �(x; u) is referred
to as a Pareto e¢ cient price for u at x. If ui 2 Ui is di¤erentiable for all i 2 N and F 2 F
selects only interior allocations, ? 6= F (u) � A \Rn`++ for any u 2 UN , then the set �(x; u)
is a singleton whenever x 2 F (u); in particular, the set �(x; u) has the form of fpg � �
such that Dui (xi) = p for all i 2 N .12

11The weak set inclusion is denoted by �, while the strict set inclusion is denoted by �. The notation �t�
means the cardinality of the set T .
12For ui 2 Ui, Dui (xi) denoted the gradient vector at xi which is normalized to belong to the unit simplex

�.
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A mechanism is a pair  � (M; g), whereM �M1� :::�Mn, with eachMi being a (non-
empty) set, and g : M ! Rn`. It consists of a message space M , where Mi is the message
space for agent i 2 N , and an outcome function g such that g (m) = (gi (m))i2N 2 Rn` for
each m 2 M . mi 2 Mi denotes a generic message (or strategy) for agent i. A message
pro�le is denoted by m � (m1; :::;mn) 2 M . For any m 2 M and j 2 N , let m�j �
(m1; :::;mj�1;mj+1; :::;mn) 2 �i2NnfjgMi � M�j. Given an m�j 2 M�j and an mj 2 Mj,
we denote (mj;m�j) to be the message pro�le consisting of mj and m�j. g (Mi;m�i) is the
attainable set of agent i at m�i, that is, the set of bundles that agent i can induce when
the other agents select m�i. A mechanism is: (i) individually feasible if g (m) 2 Rn`+ for
each m 2 M ; (ii) balanced if

P
i2N gi (m) = 
 for each m 2 M ; and, (iii) weakly balanced ifP

i2N gi (m) � 
 for each m 2M . An individually feasible and balanced mechanism has the
property that g (m) 2 A for each m 2 M . A mechanism satis�es the best response property
if, for all (i; ui;m�i) 2 N � Ui �M�i, there exists an mi 2 Mi such that ui (gi (mi;m�i)) �
ui (gi (m

0
i;m�i)) for all m0

i 2Mi.
A mechanism  induces a class of (non-cooperative) games f(; u) ju 2 UNg. Given a

game (; u), we say that m� 2 M is a (pure strategy) Nash equilibrium at u if and only if,
for all i 2 N , g

�
Mi;m

�
�i
�
� L (gi (m

�) ; ui). For any game (; u), NE (; u) denotes the set of
Nash equilibrium message pro�les of (; u), whereas NA (; u) represents the corresponding
set of Nash equilibrium allocations. A mechanism  implements F 2 F in Nash equilibria, or
simply implements F , if and only if F (u) = NA (; u) for all u 2 UN . If such a mechanism
exists, then F is (Nash) implementable.
For any mechanism  and any agent i 2 N , a truth-telling correspondence is a correspon-

dence T i : UN � F � Mi such that, for each (u; F ) 2 UN � F , ? 6= T i (u; F ) � Mi. An
interpretation of the set T i (u; F ) is that, given the mechanism  and a pair (u; F ) 2 UN�F ,
agent i behaves truthfully at the message pro�le m 2 M if and only if mi 2 T i (u; F ). In
other words, T i (u; F ) is the set of truthful messages of agent i under the mechanism ,
when the current economy is u 2 UN and the social goal is given by F . Note that the type
of elements of Mi constituting T


i (u; F ) depends on the type of mechanism  that one may

consider. For example, if the message conveyed by each agent to the mechanism designer
involves the announcement of an allocation and the relevant notion of truthfulness consists of
sending an allocation consistent with the welfare criterion F 2 F for any economy u 2 UN ,
then Mi may be de�ned by Mi � M1

i � M2
i , where T


i (u; F ) = fF (u)g � M2

i for each
(u; F ) 2 UN �F .
For any (i; u) 2 N�U , let <u

i be agent i�s weak order overM under the economy u. The
asymmetric factor of <u

i is denoted by �u
i , while the symmetric part is denoted by su

i . For
any u 2 UN , <u is the pro�le of weak orders over M under the economy u; in other words,
<u� (<u

i )i2N . As in Dutta and Sen (2011), partially honest behavior is de�ned as follows.

Definition 1. An agent h 2 N is a partially honest agent if for any mechanism , any
u 2 UN , any F 2 F , any m � (mh;m�h), and any m0 � (m0

h;m�h) 2 M , the following
properties hold:

(i) if mh 2 T h (u; F ), m0
h =2 T


h (u; F ), and uh (gh (m)) � uh (gh (m

0)), then (m;m0) 2�u
h;

(ii) otherwise, (m;m0) 2<u
h if and only if uh (gh (m)) � uh (gh (m

0)).

An agent i 2 N who is also a partially honest agent is denoted by h. If agent i 2 N is
not a partially honest agent (that is, i 6= h), then for each game (; u) and all m;m0 2 M :
(m;m0) 2<u

i if and only if ui (gi (m)) � ui (gi (m
0)).

Unless otherwise speci�ed, the following informational assumption holds throughout the
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paper.

Assumption 1. There are partially honest agents in N . The mechanism designer is well
aware of the fact that there are partially honest agents in N but she does not know their
identities or their exact number.

Thus, while the mechanism designer knows that there are partially honest agents in the
society and how these agents behave, the mechanism designer knows neither the identity of
the partially honest agents nor their exact number.
Let ? 6= H � 2Nn? be a class of non-empty subsets of N . The family H is viewed as

the class of conceivable sets of partially honest agents. That is, if H 2 H, then this H is a
conceivable set of partially honest agents. By Assumption 1, the mechanism designer knows
that H is non-empty, and she may even know the composition of H, but she never knows
what element of H is the current set of partially honest agents in society. Assumption 1
implies that #H � 2.
A mechanism  induces a class of (non-cooperative) games with partially honest agents

f(;<u) j (u;H) 2 UN �Hg. Given a game (;<u), we say that m� 2 M is a (pure strat-
egy) Nash equilibrium with partially honest agents at u if and only if, for all i 2 N ,�
m�;

�
mi;m

�
�i
��
2<u

i for all mi 2 Mi. Given a game (;<u), NE (;<u) denotes the set of
Nash equilibrium message pro�les of (;<u), whereas NA (;<u) represents the correspond-
ing set of Nash equilibrium allocations.

Definition 2. A mechanism  partially honestly implements F 2 F in Nash equilibria, or
simply partially honestly implements F , if and only if F (u) = NA (;<u) for all u 2 UN
and all H 2 H.
If such a mechanism exists, then F is partially honest (Nash) implementable.
Note that this de�nition of implementation is similar, but not identical, to the standard

de�nition.13 First, the Nash equilibrium allocations are given by the game (;<u) rather
than by the game (; u). Second, the equivalence of the set of SCC -optimal allocations with
the set of Nash equilibrium allocations is required not only for any economy u 2 UN , but also
for any conceivable set of partially honest agents H 2 H. The latter part of the de�nition
presented above captures the distinctiveness of our implementation models. Indeed, in these
models, a preference over message pro�les for each participant does not necessarily coincide
with her preference over allocations, and the mechanism designer has no information of these
preferences.14

3 Price-quantityn�1 and price-allocation mechanisms

This section explores the natural implementation of SCC s via natural price-allocation mech-
anisms and price-quantityn�1 mechanisms.
While in a price-allocation mechanism each participant states a price vector and an

allocation, a price-quantityn�1 mechanism is a game form in which each agent reports to the
mechanism designer a price vector, her consumption bundle, and the consumption bundles of
the other n� 2 participants. A way to proceed is to arrange agents clockwise facing inward,
13However, the two de�nitions are identical if H = ?.
14In the standard set-up, preferences of allocations are equivalent to preferences of message pro�les for

each participant.
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and require that each participant i announces, inter alia, her consumption bundle and the
consumption bundles of the n� 2 participants standing to her left.15
Requiring forthrightness, individual feasibility, balancedness, and the best response prop-

erty, partially honest implementation by natural price-allocation mechanisms and by natural
price-quantityn�1 mechanisms can be de�ned as follows.

Definition 3. An SCC F 2 F is partially honest implementable by a natural price-
allocation mechanism if there exists a mechanism  such that:
(i)  partially honestly implements F ;
(ii) for each i 2 N , Mi = �� A;
(iii) for each u 2 UN , each x 2 F (u), and each p 2 �(x; u), if mi = (p; x) for each i 2 N ,
then m 2 NE (;<u) and g (m) = x;
(iv)  is individually feasible and balanced;
(v)  satis�es the best response property.

Definition 4. An SCC F 2 F is partially honest implementable by a natural price-
quantityn�1 mechanism if there exists a mechanism  such that:
(i)  partially honestly implements F ;
(ii) for each i 2 N , Mi = ��Qn�1, where

Qn�1 �
(
(xi; xi+1; : : : ; xi+n�2) 2 R(n�1)`+ j

i+n�2X
l=i

xl � 

)
,

where i+ k for k 2 f1; :::; n� 2g is regarded as ` 2 N if i+ k = n+ ` > n;
(iii) for each u 2 UN , each x 2 F (u), and each p 2 �(x; u), if mi = (p; xi; xi+1; : : : ; xi+n�2)
for each i 2 N , then m 2 NE (;<u) and g (m) = x;
(iv)  is individually feasible and balanced;
(v)  satis�es the best response property.

Condition (iii) of both De�nition 3 and De�nition 4 is the regularity condition of forthright-
ness.16

We are now ready to de�ne the notion of truthfulness employed in this section for the
partially honest participants involved in each of the natural mechanisms just de�ned. By
employing the idea of Dutta and Sen (2012) and Lombardi and Yoshihara (2011a), an agent�s
message is truthful if it is truthful in its consumption bundles component. Formally, for any
economy u 2 UN , any welfare criterion F 2 F , and any agent i 2 N , the set of truthful
messages for a natural price-allocation mechanism  is

T i (u; F ) � f(p; x) 2 �� Ajx 2 F (u)g , (1)

whereas for a natural price-quantityn�1 mechanism , it is

T i (u; F ) �
�
(p; xi; : : : ; xi+n�2) 2 ��Qn�1j9xi+n�1 : (xi; : : : ; xi+n�2; xi+n�1) 2 F (u)

	
.
(2)

A key property of the notion of truthful messages is that it is functionally independent
of prices announced by the participants. In this sense, our characterization results are

15This way to proceed is without loss of generality. The following results hold for a more general case in
which for each participant there are n�1 participants who make announcements of her consumption bundle.
A similar way to proceed is employed below for the case of natural price-quantity2 mechansims.
16Forthrightness is called truthful implementation by Dutta et al. (1995).
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provided by injecting only a slight preference for honesty into the natural implementation
theory. Nonetheless, the conclusion that can be drawn from the following theorem (whose
proof is relegated to the Appendix) is that even this small departure from the conventional
framework widens the scope of implementation by natural price-quantityn�1 mechanisms
dramatically.

Theorem 1. Let n � 3 and suppose that Assumption 1 holds. Then, every SCC F 2 F is
partially honest implementable by a natural price-quantityn�1 mechanism.

Saijo et al. (1999) show that the constrained Walrasian correspondence cannot be im-
plemented by any natural mechanism if the common marginal rate of substitution is not
uniquely determined and there are more than two commodities, that is, ` � 3. A remarkable
implication of Theorem 1 is that the (unconstrained) Walrasian correspondence is partially
honest implementable by a natural price-quantityn�1 mechanism, even though the common
marginal rate of substitution is not unique and the equilibrium allocations are not necessarily
interior allocations.
It is important to note that for an individually feasible and balanced mechanism, announc-

ing a price vector and n� 1 consumption bundles is equivalent to announcing a price vector
and an allocation. This is because any n� 1 consumption bundles (xi; :::; xi+n�2) 2 Qn�1 in-
duce a unique allocation (xi; :::; xi+n�2; xi+n�1) 2 A, where xi+n�1 = max

�
0;
�

Pn�2
k=0 xi+k

	
.

The following result states an obvious implication of this equivalence relationship in the light
of Theorem 1.

Corollary 1. Let n � 3 and suppose that Assumption 1 holds. An SCC F 2 F is partially
honest implementable by a natural price-allocation if and only if F is partially honest
implementable by a natural price-quantityn�1 mechanism.

As a consequence of Theorem 1 and Corollary 1, every e¢ cient SCC is partially honest
implementable by a natural price-allocation mechanism.
In classical economic environments, while any e¢ cient SCC is partially honest imple-

mentable when no restriction is imposed on the class of available mechanisms, Lombardi and
Yoshihara (2011a) showed that several e¢ cient SCC s, such as the e¢ cient and egalitarian-
equivalent correspondence and the Walrasian correspondence, are not partially honest im-
plementable when only s-mechanisms can be employed. Compared to this result, Theorem
1 and Corollary 1 give us considerably more interesting results, because as mentioned in the
introduction, a natural price-allocation mechanism incorporates a strategy space reduction
which is more signi�cant than that of an s-mechanism, regarding the price announcement
as part of the self-relevant information.
Before closing this section, it may be worth noting that in the light of Theorem 1 and

the equivalence relationship between natural price-allocation mechanisms and natural price
quantityn�1 mechanisms, all e¢ cient SCC s are partially honest implementable by a natural
price-quantity2 mechanism in three-agent economies.

Corollary 2. Let n = 3 and suppose that Assumption 1 holds. Every SCC F 2 F is
partially honest implementable by a natural price-quantity2 mechanism.

4 Price-quantity2 mechanisms

As shown in Corollary 2, any e¢ cient SCC is partially honest implementable by a natural
price-quantity2 mechanism in three-agent economies. In other words, the equivalence be-
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tween partially honest implementation by natural price-quantity2 mechanisms and partially
honest implementation by natural price-allocation mechanisms holds in economies with only
three agents, as in the case of the standard framework of natural implementation (see Saijo
et al., 1996a; 1999). It is not apparent, however, whether such an equivalence holds when
there are four agents or more. This section investigates whether this equivalence relationship
continues to hold when there are more than three participants.
To this end, additional notation is needed. For each given u 2 UN and x 2 F (u), let

F�1 (x; u) � fu0 2 UN j x 2 F (u0)g ,

and �Fi (x; u) � \u02F�1(x;u)L (xi; u0i). Moreover, for each u 2 UN , each x 2 F (u), and each
p 2 �(x; u), de�ne the set F�1 (x; p) as

F�1 (x; p) � fu0 2 UN j x 2 F (u0) and p 2 �(x; u0)g ,

whereas the sets F�1! (x; p) and �F (x; u) are de�ned respectively as follows:

F�1! (x; p) � fu0 2 UN j x 2 F (u0) and fpg = �(x; u0)g ,

�F (x; u) �
�
p 2 �(x; u) j F�1! (x; p) 6= ?

	
.

Then, for each u 2 UN and each x 2 F (u), let us de�ne the set �F (x; u) as follows:

�F (x; u) �
�
�F (x; u) if it is non-empty,
�(x; u) otherwise.

Finally, for each u 2 UN , each x 2 F (u), and each p 2 �F (x; u), let �Fi (x; p) � \u02F�1(x;p)L (xi; u0i).
Requiring forthrightness, individual feasibility, balancedness, and the best response prop-

erty, we de�ne partially honest implementation by a natural price-quantity2 mechanism as
follows.

Definition 5. An SCC F 2 F is partially honest implementable by a natural price-quantity2
mechanism if there exists a mechanism  such that:
(i)  partially honestly implements F ;
(ii) for each i 2 N , Mi = � � Q2, where Q2 �

�
(xi; xi+1) 2 R2`+ j xi + xi+1 � 


	
and

n+ 1 = 1;
(iii) for each u 2 UN , each x 2 F (u), and each p 2 �F (x; u), if mi = (p; xi; xi+1) for each
i 2 N , then m 2 NE (;<u) and g (m) = x, where n+ 1 = 1;
(iv)  is individually feasible and balanced;
(v)  satis�es the best response property.

Condition (iii) in De�nition 5 represents the regularity condition of forthrightness by natural
price-quantity2 mechanisms and di¤ers slightly from that imposed by Saijo et al. (1999;
De�nition 3(iii)). The di¤erence between the two conditions is that Saijo et al. (1999)�s
condition refers to all e¢ cient prices, p, supporting the allocation x at u, that is, to any
p 2 �(x; u), while our condition only refers to those e¢ cient prices belonging to the set
�F (x; u). So, the di¤erence materializes only when �F (x; u) is a proper subset of �(x; u).
In this sense, our forthrightness condition is slightly weaker than the regularity condition
provided by Saijo et al. (1999), when it is applied to the standard framework of natural
implementation.
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In line with the previous section, this section assumes that an agent involved in a price-
quantity2 mechanism is truthful when only the consumption bundles component reported by
this agent is consistent with the pre-speci�ed welfare criterion for the underlying economy.
Formally, for any economy u 2 UN , any societal goal F 2 F , and any agent i 2 N , the set
of truthful messages for a natural price-quantity2 mechanism, , is given by

T i (u; F ) �
�
(p; xi; xi+1) 2 ��Q2 j 9x�fi;i+1g 2 R(n�2)` :

�
xi; xi+1; x�fi;i+1g

�
2 F (u)

	
.
(3)

Let us now turn to state a condition relevant to partially honest implementation by
natural price-quantity2 mechanisms. To this end, let us �rst de�ne a new necessary and suf-
�cient condition for implementation by natural price-quantity2 mechanisms in the standard
framework.

Condition GM� (GM�): For all u; u� 2 UN , all x 2 F (u), and all p 2 �F (x; u), if
�Fi (x; p) � L (xi; u

�
i ) for all i 2 N , then x 2 F (u�).

Note that this condition is slightly weaker than the condition GM introduced by Saijo et
al. (1999; p. 278). This results from restricting the application of condition GM to only
e¢ cient prices belonging to the set �F (x; u). Since our forthrightness condition is weaker
than that presented in Saijo et al. (1999) for natural price-quantity2 mechanisms, condition
GM� is a plausible weakening of condition GM . Con�rmation of this assertion can be made
by applying the class of natural mechanisms presented in De�nition 5 to the conventional
framework. Within this framework, it can be shown that any e¢ cient SCC F is imple-
mentable by a natural price-quantity2 mechanism - which encompasses the forthrightness
condition of De�nition 5 above - if and only if F satis�es our variant of condition GM , that
is, condition GM�. A remarkable implication of this characterization is that the constrained
Walrasian correspondence becomes implementable by a natural price-quantity2 mechanism
(Refer to Section 6 for details). This result runs counter to the �ndings of Saijo et al. (1999),
according to which this SCC is not implementable by any natural mechanism, unless the
extra condition of budget balance is posited.17

As discussed in Section 2, in our set-up, to be ensured of the implementability of F ,
the mechanism designer has to design a mechanism in such a way that, no matter what
the current economy is and no matter who the partially honest participants are, only the
F -optimal allocations are realized as the equilibrium outcomes of the devised game form. In
particular, for any given economy, the designed mechanism must also implement the targeted
welfare criterion F under all conceivable sets of partially honest agents. Correspondingly,
a requirement for the partially honest implementability of F must also be applied to any
conceivable set H 2 H of partially honest participants. Having mentioned this point, let us
introduce the following weaker variant of condition GM� for characterizing partially honest
implementation by natural price-quantity2 mechanisms.

Weak Condition GM� (dGM�
): For any given H 2 H, for all u; u� 2 UN , all x 2 F (u),

and all p 2 �F (x; u), if �Fi (x; p) � L (xi; u
�
i ) for all i 2 N and x =2 F (u�), then there exists

h 2 H such that xh 6= x�h or xh+1 6= x�h+1 for all x
� 2 F (u�), where n+ 1 = 1.

The following theorem (whose proof is relegated to the Appendix) shows that condi-
tion dGM�

is necessary and su¢ cient for partially honest implementation by natural price-
quantity2 mechanisms.
17This SCC is implementable by a natural price-quantity2 mechanism only when there are two commodities

in the economy (Saijo et al., 1999; Lemma 2).
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Theorem 2. Let n � 3 and Assumption 1 hold. An SCC F 2 F is partially honest
implementable by a natural price-quantity2 mechanism if and only if it satis�es conditiondGM�

.

The above theorem, when combined with Theorem 1 and Corollary 1, shows that, when
there are four or more participants, the class of SCC s that are partially honest imple-
mentable by natural price-quantity2 mechanisms is not equivalent to the class of SCC s that
are partially honest implementable by natural price-allocation mechanisms (Refer to Section
6 for a more detailed discussion). This result stands in stark contrast to the equivalence
result between implementation by natural price-allocation mechanisms and implementation
by natural price-quantity2 mechanisms obtained by Saijo et al. (1996a; 1999).

5 Price-quantity mechanisms

From the viewpoint of decentralization, a price-quantity mechanism is qualitatively di¤erent
from a price-quantity2 mechanism. Though a price-quantity2 mechanism is more e¢ cient
than a price-allocation mechanism, it is still far from the self-relevancy condition advocated
by Hurwicz (1960). According to this condition, each agent must reveal information related
only to her own characteristics. In this sense, no price-quantity2 mechanism is decentralized
because each participant is required to disclose information about another participant. In
contrast, if we consider Pareto e¢ ciency to be one of our minimum requirements and regard
the price announcement component of the message as part of the self-relevant information,
then a natural price-quantity mechanism is a self-relevant and natural mechanism. This
section, then, investigates partially honest implementability of e¢ cient SCC s by natural
price-quantity mechanisms.
The de�nition of partially honest implementation by price-quantity mechanisms used in

this section can be stated as follows.

Definition 6. An SCC F 2 F is partially honest implementable by a natural price-quantity
mechanism if there exists a mechanism  = (M; g) such that:
(i)  partially honestly implements F ;
(ii) for each i 2 N , Mi = ��Q, where Q �

�
xi 2 R`+ j xi � 


	
;

(iii) for each u 2 UN , each x 2 F (u), and each p 2 �F (x; u), if mi = (p; xi) for each i 2 N ,
then m 2 NE (;<u) and g (m) = x;
(iv)  is individually feasible and balanced;
(v)  satis�es the best response property.

De�nition 6 stipulates individual feasibility, balancedness, and the best response property in
a natural price-quantity mechanism. Moreover, Condition (iii) in De�nition 6 represents the
regularity condition of forthrightness in a natural price-quantity mechanism. It is important
to note that this condition di¤ers slightly from that postulated by Saijo et al. (1999; De�-
nition 2(iii)). As in condition (iii) of De�nition 5, condition (iii) of De�nition 6 only refers
to price vectors p in the set �F (x; u), whereas the regularity condition of forthrightness in
Saijo et al. (1999; De�nition 2(iii)) refers to any price vector p in �(x; u).
In line with the previous sections, we assume that a participant of a natural price-quantity

mechanism is truthful when the consumption bundle reported by this agent coincides with
a bundle that the SCC dictates for her, given the underlying economy. Formally, for any
economy u 2 UN , any societal goal F 2 F , and any agent i 2 N , the set of truthful messages
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for a natural price-quantity mechanism  is given by

T i (u; F ) �
�
(p; xi) 2 ��Q j 9x�i 2 R(n�1)` : (xi; x�i) 2 F (u)

	
. (4)

A �rst condition relevant to partially honest implementation by natural price-quantity
mechanisms is stated below.

Weak Condition GM� (GM
�
). For any given H 2 H, for all u; u� 2 UN , all x 2 F (u),

and all p 2 �F (x; u), if �Fi (x; p) � L (xi; u
�
i ) for all i 2 N , and x =2 F (u�), then, for some

h 2 H, x�h 6= xh for all x� 2 F (u�).
For the reasons illustrated in the previous section, condition GM

�
is de�ned for any admissi-

ble set of partially honest agents H 2 H. It is important to note that condition GM�
implies

condition dGM�
.

Note that, as in the case of Saijo et al. (1996a; 1999), we cannot but impose another
condition for implementation by natural price-quantity mechanisms, which should de�ne a
punishment scheme for potential deviators. Let (p; x) 2 � � A be given. De�ne the set
�F�1 (x; p) as follows:

�F�1 (x; p) �
�
F�1! (x; p) if F�1! (x; p) 6= ?,
F�1 (x; p) if F�1! (x; p) = ?, and @p0 2 � : F�1! (x; p0) 6= ?.

Then, let IF (p; x) �
n
i 2 N j �F�1

��

�

P
j 6=i xj; x�i

�
; p
�
6= ?

o
denote the set of potential

deviators for price-quantity implementation. The following condition is a slightly weaker
variant of the condition GPQ introduced by Saijo et al. (1999; p. 279).

Condition GPQ� (GPQ�). For any (p; x) 2 ��Qn such that IF (p; x) = N and x =2 A,
there exists z (p; x) 2 A such that:
(i) zi (p; x) 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
for all i 2 N ;

(ii) for all u� 2 UN , if �Fi
��

�

P
l 6=i xl; x�i

�
; p
�
� L (zi (p; x) ; u

�
i ) for all i 2 N , then

z (p; x) 2 F (u�).
The only di¤erence between condition GPQ and GPQ� lies in the de�nition of the set of
potential deviators, IF (p; x). While condition GPQ de�nes it by referring to F�1, the above
condition de�nes the set IF (p; x) by referring to �F�1. Moreover, it can be shown that con-
dition GPQ�, when combined with condition GM�, fully identi�es the class of SCC s that
are implementable by natural price-quantity mechanisms in the standard set-up. A remark-
able consequence of this characterization is that the constrained Walrasian correspondence
is implementable by a natural price-quantity mechanism presented in De�nition 6 (Refer to
Section 6 for details), while its implementability is impossible under the de�nition of natural
price-quantity mechanism provided by Saijo et al. (1999; De�nition 2).
Next, let us introduce a variant of GPQ� to characterize partially honest implementation

by natural price-quantity mechanisms. Again, note that the requirement of the axiom should
be applied to any given potential set H 2 H of partially honest agents.

Weak Condition GPQ (GPQ
�
). For any given H 2 H, and any (p; x) 2 � � Qn such

that IF (p; x) = N and x =2 A, there exists z (p; x) 2 A such that:
(i) zi (p; x) 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
for all i 2 N ;

(ii) for each i 2 N , there exists a map Si (�; (p; x�i)) : Q! Q such that, for all (p0; x0i) 2 ��
Q, if there exist u0 2 UN and x�i 2 Q such that IF (p; x�) = N , �Fj

���

�

P
l 6=j x

�
l

�
; x��j

�
; p
�
�
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L
�
zj (p; x

�) ; u0j
�
for all j 2 N , where x� � (x�i ; x�i), and (x

0
i; x̂�i) 2 F (u0) for some

x̂�i 2 R(n�1)`, then Si ((p
0; x0i) ; (p; x�i)) 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
holds; otherwise,

Si ((p
0; x0i) ; (p; x�i)) = 0;

(iii) for all u� 2 UN , if �Fi
��

�

P
l 6=i xl; x�i

�
; p
�
� L (zi (p; x) ; u

�
i ) for all i 2 N and

z (p; x) =2 F (u�), then there exists h 2 H such that:
(a) (xh; x̂�h) =2 F (u�) for all x̂�h 2 R(n�1)`, and
(b) there exists (p00; x00h) 2 ��Q, with (x00h; x̂�h) 2 F (u�) for some x̂�h 2 R(n�1)`, such that
Sh ((p

00; x00h) ; (p; x�h)) 2 @L (zh (p; x) ; u�h).
Like condition GPQ, in condition GPQ

�
the punishment allocation z (p; x) depends on

the pro�le (p; x). Saijo et al. (1996b) introduced a punishment condition - named simple
punishment condition - that requires the same feasible punishment outcome in all cases
in which all participants are potential deviators. Since a variant of our theorem below can
easily be obtained by employing a weaker variant of Saijo et al. (1996b)�s simple punishment
condition, we omit it here for the sake of brevity.18

The following theorem (whose proof is relegated to the Appendix) shows that condi-
tion GM

�
and condition GPQ

�
fully identify the class of SCC s that are partially honest

implementable by natural price-quantity mechanisms.

Theorem 3. Let n � 3 and suppose that Assumption 1 holds. An SCC F 2 F is par-
tially honest implementable by a natural price-quantity mechanism if and only if it satis�es
condition GM

�
and condition GPQ

�
.

If balancedness is replaced by the less demanding postulate of the weak balancedness, in
the sense that the mechanism is required to be only weakly balanced, then condition GPQ

�

can be dispensed with from Theorem 3, as the following corollary shows.

Corollary 3. Let n � 3 and suppose that Assumption 1 holds. Let F 2 F . If free disposal is
allowed, then F is partially honest implementable by a price-quantity mechanism satisfying
forthrightness, individual feasibility, weak balancedness and the best response property if
and only if it satis�es condition GM

�
.

6 Implications

In this section, we discuss brie�y some implications of the �ndings of the previous sections.
Before going into detail, let us specify the structure on which the analysis is based.

Firstly, the informational assumption on which our theorems are based is that the mechanism
designer knows that there are partially honest participants and how these agents behave.
Then, the mechanism designer does not know the identity of these agents or their exact
number. Due to this truly limited information, the mechanism designer, to be ensured of the
implementability of her goal F 2 F , has to design a mechanism in such a way that, regardless
of the current economy and the partially honest participants involved in the mechanism, only

18The weaker variant of Saijo et al. (1996b)�s simple punishment condition can be stated as follows: For any
given H 2 H, and for all (p; x) 2 ��Qn such that IF (p; x) = N and x =2 A, there exists z 2 A such that: (i)
zi 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
for all i 2 N ; (ii) for all u� 2 UN , if �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
� L (zi; u�i )

for all i 2 N and z =2 F (u�), then, for some h 2 H, xh 6= x�h for all x
� 2 F (u�). Accordingly, the price-

quantity mechanism devised in the proof of Theorem 3 below (See the Appendix) will require only minor
changes to obtain the desired result.
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the F -optimal outcomes emerge as the equilibrium outcomes of the devised game form. This
implies that the mechanism designer has to devise a mechanism that guarantees the partially
honest implementability of F even when H = 2Nn?. Indeed, by covering this case, the
mechanism designer is ensured of the implementability of F for any other specialization that
the set H may take. For this reason, in what follows, we turn to analyze some implications
of the above theorems under the speci�cation that H = 2Nn?. Secondly, the welfare criteria
F considered below are de�ned on the domain U of all pro�les of utility functions which
are continuous, quasi-concave, and strictly monotonic. Finally, the analysis is limited to the
following well-known welfare criteria.

Pareto correspondence P : P (u) = fx 2 A j there is no y 2 A : ui (yi) > ui (xi) for all
i 2 Ng.
Individual rational and e¢ cient correspondence IrP : IrP (u) � fx 2 A j ui (xi) � ui (!i)
for all i 2 Ng \ P (u).
Egalitarian-equivalent and e¢ cient correspondence EE: EE (u) � fx 2 A j there is a unique
maximal number � 2 (0; 1) : ui (xi) = ui (�
) for all i 2 Ng \ P (u).
No-envy and e¢ cient correspondence NP : NP (u) � fx 2 A j ui (xi) � ui (xj) for all
i; j 2 Ng \ P (u).
Walrasian correspondence W : W (u) � fx 2 A jthere is p 2 � : p � xi = p � !i for all i 2 N ,
and for any yi 2 R`+ with p � yi � p � !i : ui (yi) � ui (xi)g.
Constrained Walrasian correspondence Wc: Wc (u) � fx 2 A j there is p 2 � : p � xi = p � !i
for all i 2 N , and for any yi 2 R`+ with yi � 
 and p � yi � p � !i : ui (yi) � ui (xi)g.

The �rst result is an impossibility one, since it shows that condition dGM�
imposes non-

trivial restrictions on the class of partially honest implementable SCC s by natural price-
quantity2 mechanisms.

Corollary 4. Let n � 4 and suppose that Assumption 1 holds with H = 2Nn?. Then, the
egalitarian-equivalent and e¢ cient correspondence, EE, de�ned on UN = U , is not partially
honest implementable by any natural price-quantity2 mechanism.

Proof. Suppose that Assumption 1 holds with H = 2Nn?. Moreover, let n � 4. By
Theorem 2, it su¢ ces to show that EE, de�ned on UN = U , does not satisfy conditiondGM�

. To this end, take any u 2 UN , where each ui is strictly concave and di¤erentiable, and
any x 2 EE (u) \ Rn`++. Then, there exists a unique supporting price fpg = �EE (x; u), for
which each �EEi (x; p) is constructed. By de�nition, for each u0 2 EE�1 (x; p), there exists

�u
0 2 (0; 1) such that, for each i 2 N , ui (xi) = ui

�
�u

0


�
. In addition, for any �0 > �u

0
,

if there exists x0 2 Rn`+ such that ui (x0i) = ui (�
0
) for each i 2 N , then

P
i2N x

0
i > 
.

Hence, �u
0

 2 @L (xi; u

0
i) for each i 2 N . Let �(x;p) � minu02EE�1(x;p) �

u0. Then, �(x;p)
 2
@�EEi (x; p) for each i 2 N . Moreover, each �EEi (x; p) has the following property: for each
i 2 N , there is a neighborhood B (xi) � @�EEi (x; p) of xi such that, for any yi 2 B (xi),
p � yi = p � xi.
Take an economy u� 2 UN , where u�i is strictly concave and di¤erentiable for each agent

i 2 N , such that �EEi (x; p) � L (xi; u
�
i ) for all i 2 N . Moreover, suppose that there

are two distinct agents j; k 2 N such that, for some � > 0, u�j (xj + (�;0)) = u�j (�
�
) and

u�k (xk � (�;0)) = u�k (�
�
) for some �� > �(x;p), andDu�j (xj + (�;0)) = p = Du�k (xk � (�;0)),

where 0 is the ` � 1-th dimensional zero vector. Finally, for any other agent l 2 Nn fj; kg,
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let u�l (xl) = u�l (�
�
). By construction, there exist �j; �k such that �(x;p) < �j < �� < �k,

u�j (xj) = u�j
�
�j


�
, and u�k (xk) = u�k

�
�k


�
. Note that such a pro�le u� exists because of our

supposition that UN = U . Thus, x 2 P (u�) nEE (u�), but x� �
�
xj + (�;0) ; xk � (�;0) ; x�fj;kg

�
2

EE (u�). Note that, since EE is essentially single-valued,19 and each u�i is strictly concave,
fx�g = EE (u�) holds.
Consider a permutation � such that � (k) = � (j)+1, � (j + 1) = k, and � (l) = l for any

l 2 Nn fj + 1; kg. Correspondingly, let u�� �
�
u��(l)

�
l2N
, x�� �

�
x��(l)

�
l2N
, u� �

�
u�(l)

�
l2N ,

and x� �
�
x�(l)

�
l2N . Then, since EE meets the anonymity property, x�� 2 EE

�
u��
�
but

x� 2 EE
�
u�
�
nEE

�
u��
�
. Observe that, by construction, x��(j) 6= x���(j), x

�
�(k) 6= x���(k), and

x��(l) = x���(l) for any other � (l) 2 Nn f� (j) ; � (k)g. Moreover, since H = 2Nn? and n � 4,
there exists H 2 H such that f� (j) ; � (j) � 1; � (k)g \ H = ?. Thus, for any h 2 H,
x�h = x��h and x�h+1 = x��h+1 hold, which implies that EE does not satisfy condition dGM�

, as
sought.

Note that this corollary, combined with Theorem 1 and Corollary 1, implies that, when
there are four or more participants, the class of SCC s that are partially honest implementable
by natural price-allocation mechanisms di¤ers from the class of SCC s that are partially
honest implementable by natural price-quantity2 mechanisms. This result runs counter to
the equivalence relationship holding between these two classes in the conventional natural
implementation framework.
While it is easy to see that the individual rational and e¢ cient correspondence, IrP , and

the no-envy and e¢ cient correspondence, NP , satisfy condition dGM�
, it is not apparent

that the constrained Walrasian correspondence, Wc, is partially honest implementable by a
natural price-quantity2 mechanism. This is due to the fact that Saijo et al. (1999; Lemma
3) show thatWc is not implementable by any natural mechanism in economies endowed with
more than two commodities. In contrast to this impossibility result, the following lemma
shows that this SCC can be implemented by a natural price-quantity2 mechanism under the
concept of natural implementation presented in De�nition 5.

Lemma 1. Let n � 3. Then, the constrained Walrasian correspondence, Wc, de�ned on
UN = U , satis�es condition GM�.

Proof. Let n � 3. Assume that Wc is de�ned on UN = U , and take any u 2 UN and
any x 2 Wc (u). Let us �rst show that �Wc (x; u) is non-empty and consists solely of the
constrained Walrasian competitive equilibrium price vectors. Then, let pWc 2 �(x; u) be
a constrained Walrasian price vector. Note that since x 2 Wc (u), there is such a price
vector. Then, by de�nition, pWc � xi = pWc � !i for any i 2 N . Since UN = U , there always
exists u0 2 UN such that

�
pWc
	
= �(x; u0). Then, by the de�nition of Wc, x 2 Wc (u

0),
which, in turn, implies that W�1

c!

�
x; pWc

�
6= ?. Therefore, pWc 2 �Wc (x; u), as sought.

Next, let p 2 �(x; u) be not a constrained Walrasian price vector. Then, by de�nition,
p � xi 6= p � !i for some i 2 N . Since UN = U , there always exists u0 2 UN such that
fpg = �(x; u0). This implies that x 2 P (u0). Then, since p � xi 6= p � !i holds for some
i 2 N , x =2 Wc (u

0). The same argument is applied for any other u00 2 UN such that
fpg = �(x; u00). Thus, W�1

c! (x; p) = ?, which, in turn, implies p =2 �Wc (x; u), as sought.
Therefore, �Wc (x; u) = �Wc (x; u) holds for any u 2 UN and any allocation x such that

19An SCC F is essentially single-valued if, for any u 2 UN , x; x0 2 F (u) implies that ui (xi) = ui (x0i) for
all i 2 N .
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x 2 Wc (u). It follows that for any u 2 UN , any x 2 Wc (u), any p 2 �Wc (x; u), and
any i 2 N , �Wc

i (x; p) = \u02W�1
c (x;p)L (xi; u

0
i) =

�
yi 2 R`+ j yi � 
 and p � yi = p � !i

	
holds.

Then, if u� 2 UN is such that �Wc
i (x; p) � L (xi; u

�
i ) for all i 2 N , then it is easy to see that

x 2 Wc (u
�). This implies that Wc de�ned on U satis�es condition GM�.

The above lemma, combined with Theorem 2, readily yields the following corollary.

Corollary 5. Let n � 3 and suppose that Assumption 1 holds. Then, the constrained
Walrasian correspondence, Wc, de�ned on UN = U , is partially honest implementable by a
natural price-quantity2 mechanism.

The next result is another possibility result, because it shows that the Walrasian cor-
respondence, W , is partially honest implementable by a natural price-quantity2 mechanism
in two-commodity economies. This stands in stark contrast with the standard literature on
implementation, where it is well-known that this SCC is not implementable.20

Lemma 2. Let n � 3 and ` = 2. Suppose that Assumption 1 holds. Then, the Walrasian
correspondence, W , de�ned on UN = U , satis�es condition GM

�
.

Proof. Suppose that n � 3 and ` = 2. Moreover, assume thatW is de�ned on UN = U , and
take any u 2 UN and any x 2 W (u). Then, let us �rst show that �W (x; u) is non-empty
and consists solely of the Walrasian competitive equilibrium price vectors. Let pW 2 �(x; u)
be a Walrasian price vector. Note that since x 2 W (u), there is such a price vector. Then,
by de�nition, pW � xi = pW � !i for any i 2 N . Since UN = U , there always exists u0 2 UN
such that

�
pW
	
= �(x; u0). Then, by the de�nition of W , x 2 W (u0), which, in turn,

implies that W�1
!

�
x; pW

�
6= ?. Thus, pW 2 �W (x; u). Next, let p 2 �(x; u) be not a

Walrasian price vector. Then, by de�nition, p � xi 6= p � !i for some i 2 N . Since UN = U ,
there always exists u0 2 UN such that fpg = �(x; u0). This implies that x 2 P (u0), and p
is the unique supporting price for u0 at x. Then, since p � xi 6= p � !i holds for some i 2 N ,
x =2 W (u0). The same argument is applied for any other u00 2 UN such that fpg = �(x; u00).
Thus, W�1

! (x; p) = ?, which, in turn, implies p =2 �W (x; u). In summary, �W (x; u) is non-
empty and consists solely of the Walrasian price vectors. Given this, �W (x; u) = �W (x; u)
holds for any u 2 UN and any allocation x such that x 2 W (u). Then, for any u 2 UN ,
any x 2 W (u), and any p 2 �W (x; u), we have that �Wi (x; p) = \u02W�1(x;p)L (xi; u

0
i) =�

yi 2 R`+ j yi � 
 and p � yi = p � !i
	
for any i 2 N . Finally, suppose that u� 2 UN is such

that �Wi (x; p) � L (xi; u
�
i ) for all i 2 N , but x =2 W (u�). Then, for any p 2 � such that

p � xi = p � !i for all i 2 N , there exists j 2 N such that xj =2 argmaxp�yj=p�!j u
�
j (yj).

Since �Wi (x; p) � L (xi; u
�
i ) for all i 2 N , x is not an interior allocation, and x0j � 
 if

x0j 2 argmaxp�yj=p�!j u�j (yj). Thus, for such a price vector p, there is no associated Walrasian
allocation under u�. Hence, when ` = 2, for any x� 2 W (u�), the associated Walrasian price
vector p� implies that, for each i 2 N , p� � xi 6= p� � !i. This, in turn, implies that, for any
x� 2 W (u�), x�i 6= xi for each i 2 N . It follows that x�h 6= xh for any H 2 H and any h 2 H.
We conclude that W , de�ned on U , satis�es condition GM

�
.

Because condition GM
�
implies condition dGM�

, the following corollary is easily obtained
from Lemma 2 and Theorem 2.

Corollary 6. Let n � 3 and ` = 2. Suppose that Assumption 1 holds. Then, the Walrasian
correspondence, W , de�ned on UN = U , is partially honest implementable by a natural
price-quantity2 mechanism.

20See, for instance, Jackson (2001).
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Note that, even under the supposition that an economy is endowed with only two commodi-
ties, theWalrasian correspondence is not partially honest implementable by any s-mechanism
(see, Lombardi and Yoshihara, 2011a). In the light of this negative result, Corollary 6 seems
remarkably surprising.
In the remaining part of this section, we discuss brie�y some implications of Theorem

3; consequently, our discussion will focus on the condition GM
�
and the condition GPQ

�
.

Firstly, note that the individual rational and e¢ cient correspondence, IrP , is partially honest
implementable by a natural price-quantity mechanism, since it satis�es the conditions GM�

and GPQ�. Secondly, in two-commodity economies, the Walrasian correspondence, W , is
still partially honest implementable by a natural price-quantity mechanism when Lemma 2
is read in combination with the following lemma.

Lemma 3. Let n � 3. Then, the Walrasian correspondence, W , de�ned on UN = U ,
satis�es condition GPQ�.

Proof. Suppose that n � 3. Moreover, let W be de�ned on UN = U . We show that W
satis�es condition GPQ�. Take any (p; x) 2 � � Qn such that IW (p; x) = N and x =2 A.

Then, W�1
!

��

�

P
j 6=i xj; x�i

�
; p
�
6= ? for each i 2 N , which implies that for any

u 2 W�1
!

��

�

P
j 6=i xj; x�i

�
; p
�
, ui

�

�

P
j 6=i xj

�
� ui (!i) holds for each i 2 N . Thus,

!i 2 �Wi

��

�

P
j 6=i xj; x�i

�
; p
�
holds for all i 2 N . Let z (p; x) � !. Then, W sat-

is�es condition GPQ�(i). Moreover, for any u� 2 UN , if �Wi
��

�

P
j 6=i xj; x�i

�
; p
�
�

L (zi (p; x) ; u
�
i ), then zi (p; x) 2 argmaxp0�yi�p0�!i u�i (yi) holds for any p0 2 � and any i 2 N ,

which, in turn, implies that z (p; x) 2 W (u�). Therefore, W satis�es condition GPQ�(ii).
This completes the proof.

Thirdly, we �nd that the constrained Walrasian correspondence is partially honest imple-
mentable by a natural price-quantity mechanism, as the following result shows.

Lemma 4. Let n � 3. Then, the constrained Walrasian correspondence, Wc, de�ned on
UN = U , satis�es condition GPQ�.

Proof. Let n � 3. Since Wc � W , Lemma 3 implies that Wc satis�es condition GPQ�.

From the above lemmata, the following corollary is readily obtained.

Corollary 7. Let n � 3 and suppose that Assumption 1 holds. Then:
(i) The Walrasian correspondence,W , de�ned on UN = U , is partially honest implementable
by a natural price-quantity mechanism when ` = 2;
(ii) The constrained Walrasian correspondence, Wc, de�ned on UN = U , is partially honest
implementable by a natural price-quantity mechanism.

Finally, we show that the condition GM
�
and the condition GPQ

�
impose non-trivial

restrictions on the class of partially honest implementable SCC s by natural price-quantity
mechanisms.

Lemma 5. Let n � 3 and suppose that Assumption 1 holds. Then, the Pareto correspon-
dence, P , de�ned on UN = �U , does not satisfy condition GPQ

�
(i).

Proof. This is due to the fact that the Pareto correspondence does not satisfy condition
PQ(i), as shown in Saijo et al. (1996a).
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Lemma 6. Let n � 3 and suppose that Assumption 1 holds with H = 2Nn?. Then, the
no-envy and e¢ cient correspondence, NP , de�ned on UN = U , does not satisfy condition
GPQ

�
(iii).

Proof. Let n � 3. Suppose that Assumption 1 holds with H = 2Nn?. We show that NP
violates condition GPQ

�
(iii) when it is de�ned on UN = U . To this end, let us consider the

economy depicted in Figure 1 and Figure 2 of Saijo et al. (1999; Proof of Lemma 1). We
reproduce this economy in Figure 1 below. Suppose that there are only three participants
and two commodities. Assume that each participant i announces (p; xi), with xi =

�
0;


2
2

�
.

Thus, INP (p; x) = f1; 2; 3g and, for each agent i, 
 � xj � xk = (
1; 0), with i 6= j; k,
and �NPi (((
1; 0) ; x�i) ; p) is represented by the area of the Figure 0AB plus the line BC.
Following the argument in Saijo et al. (1999; Proof of Lemma 1), the allocation z (p; x)
which satis�es condition GPQ

�
(i) is only within the set��

(
1; 0) ;

�
0;

2

2

�
;

�
0;

2

2

��
;

��
0;

2

2

�
; (
1; 0) ;

�
0;

2

2

��
;

��
0;

2

2

�
;

�
0;

2

2

�
; (
1; 0)

��
.

Given this situation, let us show that NP violates condition GPQ
�
(iii). Assume, to the

contrary, that NP satis�es condition GPQ
�
(iii). Without loss of generality, let us focus on

the case that z (p; x) =
�
(
1; 0) ;

�
0;


2
2

�
;
�
0;


2
2

��
. Following the argument in Saijo et al.

(1999; Proof of Lemma 1), we can �nd a utility pro�le u� such that, for all participants
i, �NPi (((
1; 0) ; x�i) ; p) � L (zi (p; x) ; u

�
i ) but z (p; x) =2 NP (u�). Our Figure illustrates

such a utility pro�le u�, where u�2 and u
�
3 induce respectively the indi¤erence curves I

�
2 and

I�3 through the bundle
�
0;


2
2

�
, denoted by the line AC, while u�1 induces the indi¤erence
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curve I�1 through the bundle (
1; 0), represented by the lines AD and DE. For the sake of
simplicity, let u� represent a pro�le of homothetic preferences. It follows that the indi¤erence
curve I�1 of u

�
1 at F �

�

1
2
;

2
4

�
is represented by the lines HF and FG. Note that each

Pareto e¢ cient allocation x0 2 P (u�) has the property that the bundle x01 is always on the
ray from the origin which passes through the point D. Then, z (p; x) =2 NP (u�) holds, as
shown in Saijo et al. (1999; Proof of Lemma 1). Because H = 2Nn?, let us consider the
case that H = f2g. Since the premises of condition GPQ�(iii) are ful�lled, this condition
implies that (x2; x̂�2) =2 NP (u�) for all x̂�2 2 R2�2. However, it can be easily checked that
(x̂1; x2; x̂3) 2 NP (u�), where x̂1 = x̂3 =

�

1
2
;

2
4

�
, yielding a contradiction. We conclude

that NP does not satisfy condition GPQ
�
(iii), as sought.

Lemma 7. Let n � 3 and suppose that Assumption 1 holds with H = 2Nn?. Then, the
e¢ cient and egalitarian-equivalent correspondence, EE, de�ned on UN = U , does not satisfy
condition GM

�
.

Proof. It directly follows from Corollary 4, since condition GM
�
implies condition dGM�

.

From the above lemmata, the last result of this section follows.

Corollary 8. Let n � 3 and suppose that Assumption 1 holds. Then, neither the Pareto
correspondence, P , the no-envy and e¢ cient correspondence, NP , nor the e¢ cient and
egalitarian-equivalent correspondence, EE, each of which is de�ned on UN = U , is partially
honest implementable by any natural price-quantity mechanism.

All the results of this section are summarized in Table 1 displayed in Section 8.

7 The case of two agents

In this section, we investigate the two-agent case. Before turning to the details of our
investigation, let us clarify some features on which our analysis is based. Firstly, in the
two-person case, a natural price-quantity mechanism can be regarded as equivalent to a
natural price-allocation mechanism, given that the di¤erence of the aggregate endowment
and the quantity announced by an agent can be interpreted as the consumption bundle of
the other agent. Then, in what follows, we focus on natural price-allocation mechanisms,
where the message space of each agent i is Mi � � � A. Secondly, and consequently, for
each participant i, the set of truthful messages is that de�ned in (1). Finally, it is assumed
that F selects only interior allocations,21 that is, F (u) � A \ Rn`++ for each u 2 UN .
In the conventional framework of natural implementation, when n = 2, Saijo et al.

(1996a) show that a punishment condition, combined with a stronger variant of Maskin
monotonicity, is necessary and su¢ cient for implementation by a natural price-allocation
mechanism. The punishment condition can be stated as follows.

Condition PA2. For any (p; x; p0; x0) 2 ��A���A, with (p; x) 6= (p0; x0), F�1 (x; p) 6= ?
and F�1 (x0; p0) 6= ?, there exists z (p; x; p0; x0) 2 A such that:
(i) z1 (p; x; p0; x0) 2 �F1 (x; p) and z2 (p; x; p0; x0) 2 �F2 (x0; p0);
(ii) for all u� 2 U , if �F1 (x; p) � L (z1 (p; x; p

0; x0) ; u�1) and �
F
2 (x

0; p0) � L (z2 (p; x; p
0; x0) ; u�2),

then z (p; x; p0; x0) 2 F (u�).
21This is because otherwise, F does not necessarily satisfy the no-veto power condition (Maskin, 1999);

which makes the issue more complicated.
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In abstract social choice environments, Lombardi and Yoshihara (2011a) show that a
punishment condition is indispensable for partially honest implementation in the two-person
case. As a consequence, we amend the condition PA2 as follows.

Weak Condition PA2 (PA2). There exists a map z : � � A �� � A ! Q2 such that,
for any H 2 H and any (p; x; p0; x0) 2 �� A��� A:

(i) the following requirements are satis�ed:
(a) if F�1 (x; p) 6= ? and F�1 (x0; p0) 6= ?, then z (p; x; p0; x0) 2 A, with z (p; x; p0; x0) = x if
(p; x) = (p0; x0), such that z1 (p; x; p0; x0) 2 �F1 (x; p) and z2 (p; x; p0; x0) 2 �F2 (x0; p0);
(b) if F�1 (x; p) 6= ?, F�1 (x0; p0) = ?, with x0 2 F (u) for some u 2 UN , then z1 (p; x; p0; x0) 2
�F1 (x; p);
(c) if F�1 (x; p) = ?, F�1 (x0; p0) 6= ?, with x 2 F (u) for some u 2 UN , then z2 (p; x; p0; x0) 2
�F2 (x

0; p0);
(d) otherwise, z (p; x; p0; x0) = 0;

(ii) for all u 2 UN , and all (p; x; p0; x0) 2 ��A���A, with (p; x) 6= (p0; x0), if F�1 (x; p) 6=
? and F�1 (x0; p0) 6= ?, �F1 (x; p) � L (z1 (p; x; p

0; x0) ; u1), �F2 (x
0; p0) � L (z2 (p; x; p

0; x0) ; u2),
and z (p; x; p0; x0) =2 F (u), then there exists h 2 H such that:
(a) if h = 1, then x0 =2 F (u) and for some (p00; x00) 2 ��A, with x00 2 F (u), z1 (p; x; p00; x00) 2
@L (z1 (p; x; p

0; x0) ; u1), or
(b) if h = 2, then x =2 F (u) and for some (p00; x00) 2 ��A, with x00 2 F (u), z2 (p00; x00; p0; x0) 2
@L (z2 (p; x; p

0; x0) ; u2).

In the above condition, the requirements (b)-(c) imposed by condition PA2(i) are satis�ed
by any SCC because the mapping z can be de�ned as z1 (p; x; p0; x0) � 0 2 �F1 (x; p) and
z2 (p; x; p

0; x0) � 0 2 �F2 (x0; p0). However, checking of the condition PA2(ii) can be a di¢ cult
matter because it may require a speci�c type of the mapping z.
In line with earlier results, the next theorem (whose proof is relegated to the Appen-

dix) shows that even in two-agent economies the scope of implementation by natural price-
allocation mechanisms is enlarged when some of the agents are partially honest, though
limits still remain.

Theorem 4. Let n = 2 and ` � 3. Suppose that Assumption 1 holds. Let F 2 F be an
SCC such that F (u) � A\Rn`++ for all u 2 UN . Then, F is partially honest implementable
by a natural price-allocation mechanism if and only if it satis�es condition PA2.

While the above theorem fully identi�es the class of SCC s that are partially honest
implementable by natural price-allocation mechanisms in two-agent economies endowed with
more than two commodities, an analogous theorem can be given for two-agent and two-
commodity economies for the sake of completeness. To this end, the de�nition of partially
honest implementation by natural price-allocation mechanisms must be slightly modi�ed
to apply to these kinds of economies. Before introducing this de�nition, some additional
notation is needed. Let � �

�
p 2 R2+j

P2
i=1 pi � 1

	
be the set of price announcements that

each participant is allowed to report. Moreover, let ' : � ! � be a surjection as follows:
for any p 2 �, ' (p) 2 � is such that '1(p)

'2(p)
= p1

p2
.

Definition 7. Let #N = 2 and ` = 2. An SCC F 2 F is partially honest implementable
by a natural price-allocation mechanism if there exists a mechanism  which satis�es Defi-
nition 3-(i), (iv), (v), and:
(ii) for each i 2 N , Mi = �� A; and
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(iii) for each u 2 UN , each x 2 F (u), and each ' (p) 2 �(x; u), if mi = (p; x) for each i 2 N ,
then m 2 NE (;<u) and g (m) = x.

Based on this de�nition, condition PA2 can be shown to be necessary and su¢ cient for
partially honest implementation by natural price-allocation mechanisms for two-agent and
two-commodity economies (see Theorem 5 in the Appendix).
Finally, let us brie�y discuss some implications of the results reported here. Firstly,

because the constrained Walrasian correspondence satis�es condition PA2, which can be
shown as in the proof of Lemma 3, this SCC is partially honest implementable by a natural
price-allocation mechanism even in two-agent economies. Secondly, as discussed in Saijo et
al. (1996a), while the no-envy and e¢ cient correspondence NP satis�es condition PA2,
making it partially honest implementable by a natural price-allocation mechanism in two-
agent economies, the Pareto correspondence P does not satisfy the assertion (a) of condition
PA2(i). The latter remark implies that the Pareto correspondence is not partially honest
implementable by any natural price-allocation mechanism in two-agent economies. Finally,
let U = UN be the class of all pro�les of utility functions which are continuous, quasi-
concave, and strictly monotonic. The following results show that the e¢ cient and egalitarian-
equivalent correspondence, EE, de�ned on U = UN , is partially honest implementable by
natural price-allocation mechanisms even in two-agent economies.

Lemma 8. Let n = 2. Then, the e¢ cient and egalitarian-equivalent correspondence, EE,
de�ned on UN = U , satis�es condition PA2.

Proof. See the Appendix.

Corollary 9. Let n = 2 and suppose that Assumption 1 holds. Then, the e¢ cient and
egalitarian-equivalent correspondence, EE, de�ned on UN = U , is partially honest imple-
mentable by a natural price-allocation mechanism.

A summary of the results reported above can be found in Table 1 displayed in the next
section.

8 Concluding remarks

This paper examined the problem of fully implementing e¢ cient SCC s in classical exchange
economies by natural mechanisms when some of the participants are partially honest. The
problem is formalized by considering only a minimal departure from the standard framework
of natural implementation. First, it is postulated that the mechanism designer knows that
there are partially honest agents involved in the mechanism, but not who these agents
are. Second, the paper posited that partially honest agents have only �minimal� intrinsic
preferences for honesty. The mechanism designer�s implementation problem is to design a
mechanism in such a way that, regardless of the current economy and the partially honest
agents involved in the mechanism, only the F -optimal outcomes emerge as the equilibrium
outcomes of the devised game form.
Several concepts of natural implementation are explored. New necessary and su¢ cient

conditions for implementation by natural mechanisms are presented. On the basis of these
conditions, while the class of SCC s that are implementable by a price-quantity mechanism
is signi�cantly enlarged when there are partially honest agents, the scope of natural imple-
mentation is drastically enlarged when larger strategy spaces are considered. Remarkably,
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when there are more than two participants, any e¢ cient SCC is partially honest imple-
mentable by a natural price-quantityn�1 mechanism, and thus by a natural price-allocation
mechanism. Surprisingly, the (unconstrained) Walrasian correspondence is partially honest
implementable even via a natural price-quantity mechanism in two-commodity economies.
The reported results stand in stark contrast with those of the standard literature on natural
implementation theory. These results are summarized in Table 1.

TABLE 1
A summary of the reported results

No of Participants: n = 2 n � 3
Mechanisms: PQ = PA PQ PQ2 PA = PQn�1

IrP yes yes
NP yes no yes
EE yes no no yes

SCC s : Wc yes yes
W : ` = 2 yes yes
W : ` � 3 yes yes

P no no no yes
PQ, price-quantity mechanism; PQ2, price-quantity2 mechanism; PQn�1, price-quantityn�1;

PA, price-allocation mechanism; IrP , the individual rational and e¢ cient correspondence;
NP , the no-envy and e¢ cient correspondence; EE, the egalitarian-equivalent and e¢ cient
correspondence; Wc, the constrained Walrasian correspondence;W , the Walrasian correspon-

dence; P , the Pareto correspondence.

Appendix

Proof of Theorem 1. Let n � 3 and Assumption 1 hold. Take any F 2 F . Let  � (M; g)
be a price-quantityn�1 mechanism. A message announced by agent i 2 N is denoted by
mi =

�
pi; xii; x

i
i+1; :::; x

i
i+n�2

�
2 � � Qn�1, where xii+k denotes agent i + k�s consumption

bundle announced by agent i, for k 2 f1; :::; n� 2g. For each i 2 N , the set of truthful
messages is that de�ned in (2). Fix any triple (m; p; x) 2 M ��� A. The message pro�le
m is:

(i) consistent with p and x if, for all j 2 N , pj = p, and xj�kj = xjj = xj for k 2 f1; :::; n� 2g;
(ii) m�i consistent with p and x if, for all j 2 Nn fig, pj = p, xj�kj = xjj = xj for k 2
f1; :::; n� 2g, with j � k 6= i, xi�ki = xi for k 2 f1; :::; n� 2g, and

�
pi; xii; x

i
i+1; :::; x

i
i+n�2

�
6=

(p; xi; xi+1; :::; xi+n�2);

where `� k is regarded as n� `� 2 N if `� k = �`� for ` 2 fj; ig.
The outcome function g of  is de�ned as follows:

Rule 1: If m is consistent with p and x, where p 2 �(x; u) and x 2 F (u) for some u 2 UN ,
then g (m) = x.
Rule 2: If m is m�i consistent with p and x, where p 2 �(x; u) and x 2 F (u) for some
u 2 UN , then g (m) = x.
Rule 3: Otherwise, gi� (m) = 
 and gj (m) = 0 for all j 6= i�, where i� is de�ned as follows.
Without loss of generality, let us suppose that 
1 � 1. Let

P
i2N x

i
i1 = t. Furthermore,

by De�nition 4(ii), it follows that xii1 2 [0;
1] for all i 2 N . Let v be an integer such that
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v � t < v + 1. Therefore, t = v + s where s 2 [0; 1). It follows that there is a unique agent
i� 2 N such that s 2

�
i��1
n
; i

�

n

�
.

According to the proposed construction,  is individually feasible and balanced; moreover,
it satis�es forthrightness and the best response property.
We show that F (u) = NA (;<u) holds for any u 2 UN and any H 2 H. Take any

u 2 UN and any H 2 H.
First, let us show that F (u) � NA (;<u) for this H. Let x 2 F (u), and assume that,

for all i 2 N , mi =
�
pi; xii; :::; x

i
i+n�2

�
= (p; xi; :::; xi+n�2) 2 T i (u; F ), where p 2 �(x; u)

and the tuple (xi; :::; xi+n�2) is the n� 1 tuple of x. From Rule 1 it follows that g (m) = x.
Unilateral deviations from this announcement can only induce Rule 2. Therefore, by Rule
2, we have that, for all i 2 N , g (Mi;m�i) = x. It follows that x 2 NA (;<u) for this H.
Conversely, for the �xed H, let m 2 NE (;<u). Since one cannot have a Nash

equilibrium message pro�le under Rules 2-3, it follows that m falls into Rule 1. Then,
g (m) = x 2 F (u0) for some u0 2 UN . Suppose that there is a partially honest agent
h 2 N such that mh =2 T h (u; F ). Then, she can induce Rule 2 by changing mh to

m0
h =

�
p0; x0�(h+n�1)

�
2 T h (u; F ) and obtain gh (m0

h;m�h) = gh (mh;m�h) = xh. Therefore,

((m0
h;m�h) ;m) 2�u

h, which contradicts that m 2 NE (;<u) for the given H. Therefore,
every partially honest agent h is reporting truthfully. From the uniqueness of xh+n�1, it
follows that x 2 F (u), as sought.
As the above arguments hold for any H 2 H and any u 2 UN , the statement follows.

Proof of Theorem 2. Let n � 3 and Assumption 1 hold. Take any F 2 F . Denote an
arbitrary partially honest agent by h 2 N . For each i 2 N , the set of truthful messages is
that de�ned in (3).
Suppose that F is partially honest implementable by a natural price-quantity2 mechanism

. We show that F satis�es condition dGM�
. Let (H; u; x; p) 2 H � UN � F (u) � �F (x; u)

be given. For each i 2 N , let mi = (p; xi; xi+1) 2 � � Q2, where n + 1 = 1. Then, for
all u0 2 F�1 (x; p), g (m) = x and m 2 NE

�
;<u0

�
by forthrightness. Observe that m 2

NE
�
;<u0

�
for all H 0 2 H and all u0 2 F�1 (x; p). This implies that gi (Mi;m�i) � L (xi; u

0
i)

for all u0 2 F�1 (x; p). Then, gi (Mi;m�i) � �Fi (x; p) for all i 2 N . Let x =2 F (u�) for some
u� 2 UN and �Fi (x; p) � L (xi; u

�
i ) for all i 2 N . Therefore, g (m) = x =2 NA

�
;<u�

�
for all

H 0 2 H. We have that ((m0
i;m�i) ;m) 2�u�

i for some i 2 N and somem0
i 2Mi, which implies

that u�i (gi (m
0
i;m�i)) � u�i (gi (m)). However, from gi (m

0
i;m�i) 2 gi (Mi;m�i) � L (xi; u

�
i ),

it follows that u�i (gi (m
0
i;m�i)) = u�i (gi (m)). Thus, the deviator i is a partially honest

agent, that is, i 2 H. Therefore, mi =2 T i (u
�; F ) and m0

i 2 T i (u
�; F ), otherwise we

fall into a contradiction. Then,
�
xi; xi+1; x

0
�fi;i+1g

�
=2 F (u�) for all x0�fi;i+1g 2 R(n�2)`.

Moreover,
�
p; x�i ; x

�
i+1

�
2 T i (u

�; F ) and
�
x�i ; x

�
i+1

�
6= (xi; xi+1) hold for each x� 2 F (u�),

since otherwise, a contradiction is obtained. We conclude that, for some i 2 H, xi 6= x�i or
xi+1 6= x�i+1 for all x

� 2 F (u�), as sought. Since it holds for any H 2 H, we conclude that F
satis�es condition dGM�

.
Next, we prove su¢ ciency. Suppose that F satis�es condition dGM�

. Consider the fol-
lowing price-quantity2 mechanism  � (M; g). For each i 2 N , let Mi � ��Q2. A message
announced by agent i 2 N is denoted by mi =

�
pi; xii; x

i
i+1

�
2 � � Q2, where xii+1 denotes

agent i + 1�s consumption bundle announced by agent i. Take any (m; p; x) 2 M ��� A.
The message pro�le m is:
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(i) consistent with p and x if, for each j 2 N , pj = p and xjj = xj�1j = xj;
(ii) m�i consistent with p and x, with i 2 N , if (a) for each j 2 Nn fig, pj = p, and (b)
for each j 2 Nn fi; i+ 1g, xjj = xj�1j = xj, xi�1i = xi, xi+1i+1 = xi+1, and

�
pi; xii; x

i
i+1

�
6=

(p; xi; xi+1);
where 1� 1 = n and n+ 1 = 1.
The outcome function g of  is de�ned as follows:

Rule 1: If m is consistent with p and x, where x 2 F (u) and p 2 �F (x; u) for some u 2 UN ,
then g (m) = x.

Rule 2: If there exists a unique i 2 N such that m is m�i consistent with p and x, where
x 2 F (u) and p 2 �F (x; u) for some u 2 UN , and

�
pi; xii; x

i
i+1

�
6= (p; xi; xi+1), then:

Rule 2.1: if pi 6= p, then g (m) = x;
Rule 2.2: if pi = p and there exists �x�fi;i+1g 2 R(n�2)` such that

�
�x�fi;i+1g; x

i
i; x

i
i+1

�
2 F (u0)

for some u0 2 UN , then g (m) = x;
Rule 2.3: otherwise,

g (m) =

8<:
�
xii;
�

�xii
n�1

�
j 6=i

�
if xii 2 �Fi (x; p) ,

x otherwise.

Rule 3: Otherwise, gi� (m) = 
 and gj (m) = 0 for all j 6= i�, where i� is de�ned as follows.
Without loss of generality, let us suppose that 
1 � 1. Let

P
i2N x

i
i1 = t. Furthermore,

by De�nition 5(ii), it follows that xii1 2 [0;
1] for all i 2 N . Let v be an integer such that
v � t < v + 1. Therefore, t = v + s where s 2 [0; 1). It follows that there is a unique agent
i� 2 N such that s 2

�
i��1
n
; i

�

n

�
.

According to the proposed construction,  is individually feasible and balanced; moreover,
it satis�es forthrightness and the best response property.
We show that F (u) = NA (;<u) holds for any u 2 UN and any H 2 H. Take any

u 2 UN and any H 2 H.
First, we show F (u) � NA (;<u). Let x 2 F (u) and p 2 �F (x; u). Let mi =

(p; xi; xi+1) 2 T i (u; F ) for each i 2 N . Then, by Rule 1, g (m) = x. Suppose that agent
i 2 N deviates from mi to a di¤erent message m0

i 2 Mi. By the de�nition of g, we have
that any deviation of agent i will get her to an outcome in �Fi (x; p), so that gi (Mi;m�i) =
�Fi (x; p) � L (xi; ui). Since mi 2 T i (u; F ) for any i 2 N , it follows that x 2 NA (;<u) for
this H, as sought.
Conversely, for this H, we show NA (;<u) � F (u). Let m 2 NE (;<u) for this H.

Because m cannot correspond to Rules 2-3, m falls into Rule 1. Thus, there exists a p 2 �
and an x 2 A, with which m is consistent with, such that x 2 F (u0) and p 2 �F (x; u0)
for some u0 2 UN . Then, g (m) = x. By Rule 2, �Fi (x; p) = gi (Mi;m�i) � L (xi; ui) for
all i 2 N . We show that mh 2 T h (u; F ) for every h 2 H. Assume, to the contrary, that
mh =2 T h (u; F ) for some h 2 H. Agent h can change mh to m0

h =
�
p; xhh; x

h
h+1

�
2 T h (u; F ).

If xhh 6= xh and xhh+1 6= xh+1, then it is obvious that agent h is the unique deviator and Rule
2 applies. Otherwise, let xhh 6= xh and xhh+1 = xh+1. Since x 2 A and

�
x�h; x

h
h

�
=2 A, it

follows that h is the unique deviator and Rule 2 applies again. A similar argument applies
to the case in which xhh = xh and xhh+1 6= xh+1. Since m0

h 2 T h (u; F ), it follows that there
exists �x�fh;h+1g 2 R(n�2)` such that

�
�x�fh;h+1g; x

h
h; x

h
h+1

�
2 F (u), so that gh (m0

h;m�h) = xh
by Rule 2.2. We have that ((m0

h;m�h) ;m) 2�u
h for this h 2 H, which contradicts that
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m 2 NE (;<u) for the given H. Therefore, mh = (p; xh; xh+1) 2 T h (u; F ) for all h 2 H.
Thus, for the given H, condition dGM�

implies that x 2 F (u).
As the above arguments hold for any H 2 H and any u 2 UN , the statement follows.

Proof of Theorem 3. Let n � 3 and suppose that Assumption 1 holds. Take any F 2 F .
For each i 2 N , the set of truthful messages is that de�ned in (4).
Let us �rst show the necessity of condition GM

�
and condition GPQ

�
. To that purpose,

suppose that F is partially honest implementable by a natural price-quantity mechanism.
First, we show that F meets condition GM

�
. Let (H; u; x; p) 2 H�UN�F (u)��F (x; u)

be given. For each i 2 N , let mi � (p; xi) 2 � � Q. Then, for any u0 2 F�1 (x; p),
g (m) = x and m 2 NE

�
;<u0

�
hold by forthrightness. Thus, gi (Mi;m�i) � L (xi; u

0
i).

Since it holds for any u0 2 F�1 (x; p), it follows that gi (Mi;m�i) � �Fi (x; p). Therefore,
gi (Mi;m�i) � �Fi (x; p) for all i 2 N . Observe that m 2 NE

�
;<u0

�
for all H 0 2 H, and,

for all u0 2 F�1 (x; p), mi 2 T i (u
0; F ) for all i 2 N . Let x =2 F (u�) for some u� 2 UN and

�Fi (x; p) � L (xi; u
�
i ) for all i 2 N . Therefore, g (m) = x =2 NE

�
;<u�

�
for all H 0 2 H.

Moreover, ((m0
i;m�i) ;m) 2�u�

i for some i 2 N and some m0
i 2 Mi, which implies that

u�i (gi (m
0
i;m�i)) � u�i (gi (m)). However, from gi (m

0
i;m�i) 2 gi (Mi;m�i) � L (xi; u

�
i ), it

follows that u�i (gi (m
0
i;m�i)) = u�i (gi (m)). Thus, agent i is a partially honest agent, that

is, i 2 H. It follows that mi =2 T i (u
�; F ) and m0

i � (p; x�i ) 2 T i (u
�; F ), with x�i 6= xi,

otherwise we fall into a contradiction. We conclude that xh 6= x�h for all x
� 2 F (u�) for some

h(= i) 2 H, as sought. Since it holds for any H 2 H, we conclude that F satis�es condition
GM

�
.

Next, we show that F satis�es condition GPQ
�
. Take anyH 2 H. Let (p; x) 2 ��Qn be

such that IF (p; x) = N and x =2 A. Take any i 2 N and any u 2 F�1
��

�

P
l 6=i xl; x�i

�
; p
�
.

De�ne ml � (p; xl) for all l 2 Nn fig and mi �
�
p;
�

P
l 6=i xl

�
. Forthrightness im-

plies that g (m) =
�

�

P
l 6=i xl; x�i

�
and m 2 NE (;<u) for the given H. Because

mj 2 T j (u; F ) for all j 2 N , we have that m 2 NE (;<u) for each H 0 2 H. More-
over, we have that gi (Mi;m�i) � L

�

�

P
l 6=i xl; ui

�
. Since the previous arguments hold

for any u 2 F�1
��

�

P
l 6=i xl; x�i

�
; p
�
and any i 2 N , it follows that gi (Mi;m�i) �

�Fi ((
 �
P

l 6=i xl; x�i); p) for each i 2 N . Let z (p; x) � g ( �m), where �m �
�
(p; xi)i2N

�
.

Then, zi (p; x) 2 �Fi
��

�

P
l 6=i xl; x�i

�
; p
�
for all i 2 N . This proves condition GPQ�(i).

For each i 2 N , let us de�ne the map Si (�; (p; x�i)) : � � Q ! Q as follows. For any
(p0; x0i) 2 ��Q:

(i) if there exist u0 2 UN and x�i 2 Q such that IF (p; x�) = N , �Fj
��

�

P
l 6=j x

�
l ; x

�
�j

�
; p
�
�

L
�
zj (p; x

�) ; u0j
�
for all j 2 N , where x� � (x�i ; x�i), and (x

0
i; x̂�i) 2 F (u0) for some x̂�i 2

R(n�1)`, then Si ((p0; x0i) ; (p; x�i)) � gi ((p
0; x0i) ; �m�i);

(ii) otherwise, Si ((p0; x0i) ; (p; x�i)) � 0.
It is clear that Si ((p0; x0i) ; (p; x�i)) 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
because gi (Mi; �m�i) �

�Fi

��

�

P
l 6=i xl; x�i

�
; p
�
and 0 2 �Fi

��

�

P
l 6=i xl; x�i

�
; p
�
. Thus, condition GPQ

�
(ii)

holds.
To show that condition GPQ

�
(iii) is also satis�ed, take any u� 2 UN and suppose that

�Fi

��

�

P
l 6=i xl; x�i

�
; p
�
� L (zi (p; x) ; u

�
i ) holds for all i 2 N . Moreover, let z (p; x) �
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g ( �m) =2 F (u�) = NA (;<) for all H 0 2 H. Then, ((m0
i; �m�i) ; �m) 2�u�

i for some i 2 N and
some m0

i 2 Mi, which implies that u�i (gi (m
0
i; �m�i)) � u�i (gi ( �m)). Because gi (m

0
i; �m�i) 2

gi (Mi; �m�i) � L (zi (p; x) ; u
�
i ), u

�
i (gi (m

0
i; �m�i)) = u�i (gi ( �m)). Then, the deviator i is a par-

tially honest agent, that is, i 2 H. Therefore, m0
i � (p0; x0i) 2 T


i (u

�; F ) and �mi =2 T i (u�; F ),
otherwise we fall into a contradiction. Let h � i. Since �mh =2 T h (u

�; F ), it follows that
(xh; x̂�h) =2 F (u�) for all x̂�h 2 R(n�1)`. Thus, the assertion (a) of condition GPQ�(iii)
holds. Hence, we are left to show that the assertion (b) of this condition is veri�ed by F too.

From the previous arguments, it follows that gh (m0
h; �m�h) 2 @�Fh

��

�

P
l 6=h xl; x�h

�
; p
�
\

@L (zh (p; x) ; u
�
h). Since m

0
h � (p0; x0h) 2 T h (u

�; F ), (x0h; x̂�h) 2 F (u�) for some x̂�h 2
R(n�1)`. Thus, by the de�nition of the mapping Sh (�; (p; x�h)) in condition GPQ

�
(ii),

we have that Sh ((p0; x0h) ; (p; x�h)) � gh ((p
0; x0h) ; �m�h). Hence, Sh ((p0; x0h) ; (p; x�h)) 2

@L (zh (p; x) ; u
�
h), as sought. In summary, condition GPQ

�
(iii) is satis�ed.

Next, we prove su¢ ciency. Suppose that F satis�es condition GM
�
and condition GPQ

�
.

Because of condition GPQ
�
(ii), for each i 2 N , there exists a map Si (�; (p; x�i)) : � �

Q ! Q which satis�es the requirements of condition GPQ
�
(ii). For any vertex �p 2 �

and any other price vector p 2 �, let B� (�p; p) be a closed ball with center �p and radius
� > 0 such that B� (�p; p) � � and p =2 B� (�p; p). Since B� (�p; p) and � are homeomorphic,
there is a bijection between � : B� (�p; p) ! �. Then, given (p; x�i) 2 � � Qn�1 and a
vertex �p 2 �, let us de�ne, for each i 2 N , the map ~Si (�; (p; x�i)) : B� (�p; p) � Q ! Q
as ~Si ((p̂; x̂i) ; (p; x�i)) � Si ((� (p̂) ; x̂i) ; (p; x�i)) for each (p̂; x̂i) 2 B� (�p; p) � Q. For any
x 2 Qn, let B

�
�Fi (x; p)

�
be the upper boundary of �Fi (x; p), that is, B

�
�Fi (x; p)

�
��

yi 2 Qjyi 2 �Fi (x; p) and @zi 2 �Fi (x; p) such that zi � yi
	
.

Consider the following price-quantity mechanism  � (M; g). For each i 2 N , let Mi �
��Q. A message announced by agent i 2 N is denoted by mi = (p

i; xii) 2 ��Q. De�ne
its outcome function as follows:

Rule 1: If mi = (p; xi) for all i 2 N such that x 2 F (u0) and p 2 �F (x; u0) for some u0 2 UN ,
then g (m) = x.

Rule 2: If mi = (p; xi) for all i 2 N such that x =2 A and IF (p; x) = N , then g (m) = z (p; x),
where z (p; x) is the allocation speci�ed in condition GPQ

�
(i).

Rule 3: If mi = (p; xi) for all i 2 N , 1 � #IF (p; x) � n� 1, then

gi (m) =

� 

n�jIF (p;x)j if i =2 IF (p; x)

0 otherwise.

Rule 4: If, for some i 2 N , (p; xl) for all l 2 Nn fig, and (pi; xi), with p 6= pi, and i 2 IF (p; x),
then, take two distinct vertices �p; �p0 2 @�, and:
Rule 4.1: if pi = �p0, then g (m) =

�

�

P
l 6=i xl; x�i

�
;

Rule 4.2: if pi 2 B� (�p; p), then

g (m) =

8>>>>>>>><>>>>>>>>:

 
~Si ((p

i; xi) ; (p; x�i)) ;

�

� ~Si((pi;xi);(p;x�i))

n�1

�
l 6=i

!
if ~Si ((p

i; xi) ; (p; x�i)) 6= 0�
xi;
�

�xi
n�1

�
l 6=i

�
if

(
~Si ((p

i; xi) ; (p; x�i)) = 0 and

xi 2 �Fi
��

�

P
l 6=i xl; x�i

�
; p
� )�

 i (xi) ;
�

� i(xi)
n�1

�
l 6=i

�
otherwise,
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where  i : Qn�Fi
��

�

P
l 6=i xl; x�i

�
; p
�
! @�Fi

��

�

P
l 6=i xl; x�i

�
; p
�
is a surjective

function;
Rule 4.3: otherwise, g (m) =

�
x̂i;
�

�x̂i
n�1

�
l 6=i

�
, where fx̂ig � B

�
�Fi

��

�

P
l 6=i xl; x�i

�
; p
��
\

fyi 2 R`+j there exists � 2 R+ such that yi = �xig;
Rule 5: Otherwise, gi� (m) = 
 and gj (m) = 0 for all j 6= i�, where i� is de�ned as follows.
Without loss of generality, let us suppose that 
1 � 1. Let

P
i2N y

i
i1 = t. Furthermore, by

De�nition 6(ii), it follows that, for all i 2 N , yi1 2 [0;
1]. Let v be an integer such that
v � t < v + 1. Therefore, t = v + s where s 2 [0; 1). It follows that there is a unique agent
i� 2 N such that s 2

�
i��1
n
; i

�

n

�
.

According to the proposed construction,  is individually feasible and balanced; moreover,
it satis�es forthrightness and the best response property.
We show that F (u) = NA (;<u) holds for any u 2 UN and any H 2 H. To this end,

take any u 2 UN and any H 2 H.
First, we show F (u) � NA (;<u) for this H. Let x 2 F (u) and p 2 �F (x; u). Let

mi = (p; xi) 2 T i (u; F ) for all i 2 N . Rule 1 implies g (m) = x. Suppose that agent i
deviates from mi to a di¤erent message m0

i 2 Mi. By the de�nition of g, any deviation of
agent i 2 N will get her to an outcome in �Fi (x; p) so that gi (Mi;m�i) � �Fi (x; p). Since
�Fi (x; p) � L (xi; ui) for all i 2 N and every agent is truthful, it follows that x 2 NA (;<u)
for this H.
Conversely, for the given H 2 H, we show NA (;<u) � F (u). Let m 2 NE (;<u).

Since m cannot correspond to Rules 3-5, m falls either into Rule 1 or into Rule 2.
Suppose that m falls into Rule 1. Then, mi = (p; xi) for all i 2 N such that g (m) =

x 2 F (u0) and p 2 �F (x; u0) for some u0 2 UN . By Rule 4.3, it follows that @�Fi (x; p) �
gi (Mi;m�i) for all i 2 N , which further implies �Fi (x; p) � L (xi; ui) for all i 2 N given that
m 2 NE (;<u) and our suppositions of agents�preferences. Take any h 2 H and suppose
thatmh =2 T h (u; F ). Then, (xh; �x�h) =2 F (u) for all �x�h 2 R(n�1)`. Take anym0

h = (p
0; x0h) 2

T h (u; F ) with p
0 = �p0 2 �nfB� (�p; p) [ fpgg. Rule 4.1 implies that gh (m0

h;m�h) = xh. So,
(m0

h;m�h) �u
h m, which contradicts that m 2 NE (;<u) for the given H 2 H. It follows

that mh 2 T h (u; F ) for all h 2 H. Therefore, for the given H 2 H, condition GM�
implies

that x 2 F (u), as sought.
Suppose that m falls into Rule 2. Then, mi = (p; xi) for all i 2 N , IF (p; x) =

N , and x =2 A. This rule implies that g (m) = z (p; x). By Rule 4.3, it follows that

@�Fi

��

�

P
l 6=i xl; x�i

�
; p
�
� gi (Mi;m�i) for all i 2 N . Given that m 2 NE (;<u)

and our suppositions of agents�preferences, it follows that �Fi
��

�

P
l 6=i xl; x�i

�
; p
�
�

L (zi (p; x) ; ui) for all i 2 N . By the supposition that m 2 NE (;<u), it follows that
for any h 2 H, gh (m0

h;m�h) =2 @L (zh (p; x) ; uh) if mh =2 T h (u; F ) and m
0
h 2 T h (u; F ),

otherwise we fall into a contradiction. Suppose that mh 2 T h (u; F ) for all h 2 H.
Condition GPQ

�
(iii) implies that z (p; x) 2 F (u), as sought. Otherwise, suppose that

mh =2 T h (u; F ) for some h 2 H, so that (xh; x̂�h) =2 F (u) for all x̂�h 2 R(n�1)`. De�ne
H 0 � fh 2 Hjmh =2 T h (u; F )g. Take any h 2 H 0. It follows that for any m0

h = (p
0; x0h) 2

T h (u; F ), with p0 2 B� (�p; p), gh (m0
h;m�h) =2 @L (zh (p; x) ; uh). So, for each h 2 H 0, it

follows that ~Sh ((p0; x0h) ; (p; x�h)) =2 @L (zh (p; x) ; uh) for all (p0; x0h) 2 B� (�p; p) � Q, with
(x0h; x̂�h) 2 F (u) for some x̂�h 2 R(n�1)`. Therefore, for all (p00; x0h) 2 � � Q, where
� (p0) = p00, Sh ((p00; x0h) ; (p; x�h)) =2 @L (zh (p; x) ; uh). Moreover, if HnH 0 is not an empty
set, then mh 2 T h (u; F ) for h 2 HnH 0. Condition GPQ

�
(iii) implies that z (p; x) 2 F (u)
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for the given H, as sought.
As the above arguments hold for any H 2 H and any u 2 UN , the statement follows.

Proof of Theorem 4. Let n = 2 and ` � 3. Let Assumption 1 hold. Let F 2 F be such
that F (u) � A \ Rn`++ for all u 2 UN . For each i 2 N , the set of truthful messages is that
de�ned in (1). First, we show that F satis�es condition PA2. Suppose that F is partially
honest implementable by a natural price-allocation mechanism.
Take any H 2 H. Let us de�ne the map z :M ! Q2 as follows:

(a) if F�1 (x; p) 6= ? and F�1 (x0; p0) 6= ?, then z (p; x; p0; x0) = g ((p0; x0) ; (p; x));
(b) if F�1 (x; p) 6= ? and F�1 (x0; p0) = ?, with x0 2 F (u) for some u 2 UN , then
z (p; x; p0; x0) = g ((p0; x0) ; (p; x));
(c) if F�1 (x; p) = ?, F�1 (x0; p0) 6= ?, with x 2 F (u) for some u 2 UN , then z (p; x; p0; x0) =
g ((p0; x0) ; (p; x));
(d) otherwise, z (p; x; p0; x0) = 0.
Pick any (p; x; p0; x0) 2 �� A��� A, with F�1 (x; p) 6= ? and F�1 (x0; p0) 6= ?. Take

any u 2 F�1 (x; p) and let mi = (pi; xi) = (p; x) for each i 2 N . From forthrightness, it
follows that m 2 NE (;<u) and g (m) = x. So, g1 (M1; (p; x)) � L (x1; u1). Since this
property holds for any u 2 F�1 (x; p), we have that g1 (M1; (p; x)) � �F1 (x; p). Similarly, it
can be shown that g2 ((p0; x0) ;M2) � �F2 (x0; p0) � \u2F�1(x0;p0)L (x02; u2). From the de�nition
of the map z, it follows that z (p; x; p0; x0) = g ((p0; x0) ; (p; x)). Then, z (p; x; p0; x0) 2 A,
with z1 (p; x; p0; x0) 2 �F1 (x; p) and z2 (p; x; p0; x0) 2 �F2 (x0; p0). Moreover, from the above
arguments, z (p; x; p0; x0) = g ((p0; x0) ; (p; x)) = x if (p; x) = (p0; x0). This proves the assertion
(a) of condition PA2(i).
Pick any (p; x; p0; x0) 2 � � A � � � A such that F�1 (x; p) 6= ?, F�1 (x0; p0) = ?

and x0 2 F (u) for some u 2 UN . Then, from the de�nition of the map z, it follows
z (p; x; p0; x0) 2 A and z1 (p; x; p0; x0) 2 �F1 (x; p). This proves the assertion (b) of condition
PA2(i). Similarly, it can be shown that the map z satis�es the assertion (c) of condition
PA2(i). Finally, the assertion (d) of condition PA2 is obvious by the de�nition of the
mapping z. We conclude that condition PA2(i) is veri�ed.
Finally, we show that condition PA2(ii) is satis�ed by the given F and H 2 H. Take any

u 2 UN and any (p; x; p0; x0) 2 ��A���A, with (p; x) 6= (p0; x0). Suppose that the premises
of condition PA2(ii) are satis�ed. Therefore, z (p; x; p0; x0) = g ((p0; x0) ; (p; x)) =2 F (u) =
NA (;<u) for each H 0 2 H, and �m � ((p0; x0) ; (p; x)) =2 NE (;<u) for each H 0 2 H.
It follows that ((m̂i; �ml) ; �m) 2�u

i for some i 2 N and some m̂i 2 Mi, with i 6= l 2 N .
This implies that ui (gi (m̂i; �ml)) � ui (gi ( �m)). However, since gi (m̂i; �ml) 2 gi (Mi; �ml) �
L(zi (p; x; p

0; x0) ; ui), it follows that ui (gi (m̂i; �ml)) = ui (gi ( �m)). Therefore, the deviator i
is a partially honest agent, that is, i 2 H. This means that m̂i � (p̂; x̂) 2 T i (u; F ) and
�mi =2 T i (u; F ), otherwise we fall into a contradiction.
Suppose that the deviator is i � 1. Then, since �m1 =2 T 1 (u; F ), x

0 =2 F (u) holds.
Moreover, since u1 (g1 (m̂1; �m2)) = u1 (g1 ( �m)), g1 (m̂1; �m2) 2 @L (z1 (p; x; p

0; x0) ; u1) holds.
Suppose that F�1 (p̂; x̂) 6= ?. Then, F�1 (p̂; x̂) 6= ? and F�1 (p; x) 6= ?. It follows from
the de�nition of the mapping z that g1 (m̂1; �m2) = z1 (p; x; p̂; x̂). Otherwise, suppose that
F�1 (p̂; x̂) = ?. Then, F�1 (p; x) 6= ? and F�1 (p̂; x̂) = ?, with x̂ 2 F (u). Again, by the
de�nition of the mapping z, g1 (m̂1; �m2) = z1 (p; x; p̂; x̂). In any case, we have found that
x0 =2 F (u) and z1 (p; x; p̂; x̂) = g1 (m̂1; �m2) 2 @L (z1 (p; x; p0; x0) ; u1), with x̂ 2 F (u). Similar
arguments can be applied to the case that the deviator is i � 2. We conclude that F satis�es
condition PA2(ii), as sought.
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Next, we prove su¢ ciency. Suppose that F satis�es condition PA2. We show that F
is partially honestly implemented by a natural price-allocation mechanism. Then, let the
message space of each agent i 2 N be Mi � ��A. Then, the message of the participant i,
denoted mi = (p

i; xi), consists of a price vector and a feasible allocation. Let  = (M; g) be
a price-allocation mechanism.
Because F satis�es condition PA2, there exists a map z : M ! Q2 satisfying the re-

quirements of condition PA2(i). For any two di¤erent vertices �p and
=
p of the unit sim-

plex �, �(�p;
=
p) denotes the 1-dimensional simplex with vertices �p and

=
p. Next, �x any

two vertices of the simplex �, that is, �p and
=
p. Let B�

�
�p;
=
p
�
be a closed ball around �p

with radius � > 0 such that B�
�
�p;
=
p
�
is a proper set of �(�p;

=
p) and

=
p =2 B�

�
�p;
=
p
�
. Let

� : B�
�
�p;
=
p
�
! � be a bijective function. This bijection always exists since B�

�
�p;
=
p
�

and � are cardinally equivalent. Let (p2; x2) be any message reported by agent 2 such

that F�1 (p2; x2) 6= ?. Then, for each (p̂; x̂) 2 B�
�
�p;
=
p
�
� A, de�ne ~z (p̂; x̂; p2; x2) �

z (p2; x2; � (p̂) ; x̂), where z (p2; x2; � (p̂) ; x̂) is allocation speci�ed by the assertions (b) and (d)
of condition PA2(i). Similarly, for any (p1; x1) 2 ��A such that F�1 (p1; x1) 6= ?, and for
each (p̂; x̂) 2 B�

�
�p;
=
p
�
�A, de�ne ~z (p̂; x̂; p1; x1) � z (� (p̂) ; x̂; p1; x1), where z (� (p̂) ; x̂; p1; x1)

is the allocation speci�ed speci�ed by the assertions (c) and (d) of condition PA2(i). Fi-
nally, for any x 2 Rn`+ and p 2 �, B

�
�Fi (x; p)

�
is the upper boundary of �Fi (x; p), that is,

B
�
�Fi (x; p)

�
� fyi 2 R`+jyi 2 �Fi (x; p) and @zi 2 �Fi (x; p) such that zi � yig.

De�ne the outcome function g of  as follows:

Rule 1: If (p1; x1) = (p2; x2) = (p; x) and F�1 (x; p) 6= ?, then g (m) = x.

Rule 2: If (p1; x1) 6= (p2; x2) and F�1 (xi; pi) 6= ? for all i 2 N , then g (m) = z (p2; x2; p1; x1),
where z (p2; x2; p1; x1) is the allocation speci�ed by the assertion (a) of condition PA2(i).

Rule 3: If (p1; x1) 6= (p2; x2), F�1
�
xl; pl

�
6= ? for some l 2 N and F�1 (xi; pi) = ? for

i 2 Nn flg, then:

Rule 3.1: If pi 2 �nB�
�
�p;
=
p
�
, then g (m) = xl;

Rule 3.2: If pi 2 B�
�
�p;
=
p
�
, then gl (m) = (
� gi (m)) and

(a) If i � 1, then

gi (m) =

8<:
~zi (p

i; xi; p2; x2) if ~zi (p
i; xi; p2; x2) 6= 0

xii if ~zi (p
i; xi; p2; x2) = 0 and xii 2 �Fi (x2; p2)

x̂i otherwise;

(b) If i � 2, then

gi (m) =

8<:
~zi (p

i; xi; p1; x1) if ~zi (p
i; xi; p1; x1) 6= 0

xii if ~zi (p
i; xi; p1; x1) = 0 and xii 2 �Fi (x1; p1)

x̂i otherwise;

where fx̂ig � B
�
�Fi
�
xl; pl

��
\ fyi 2 R`+j there exists � 2 R+ such that yi = �xig, where

l 2 Nn fig;
Rule 4: Otherwise, gi� (m) = 
 and gj (m) = 0 for all j 6= i�, where i� is de�ned as follows.
Without loss of generality, let us suppose that 
1 � 1. Let

P
i2N x

i
i1 = t. Furthermore,

31



by De�nition 3(ii), it follows that xii1 2 [0;
1] for all i 2 N . Let v be an integer such that
v � t < v + 1. Therefore, let t = v + s where s 2 [0; 1). It follows that there is a unique
i� 2 N such that s 2

�
i��1
n
; i

�

n

�
.

According to the proposed construction,  is individually feasible and balanced; moreover,
it satis�es forthrightness and the best response property.
We show that F (u) = NA (;<u) for any u 2 UN and any H 2 H. Then, take any

u 2 UN and any H 2 H.
First, we show that F (u) � NA (;<u). To this end, let x 2 F (u) and p 2 �(x; u). Let

mi = (p
i; xi) = (p; x) 2 T i (u; F ) for each i 2 N . From Rule 1, it follows that g (m) = x.

Suppose that agent i 2 N deviates frommi to a di¤erent messagem0
i 2Mi. By the de�nition

of g, we have that any deviation of agent i will get her to an outcome in �Fi (x; p), so that
gi (Mi;ml) � �Fi (x; p), where l 2 Nn fig. Since �Fi (x; p) � L (xi; ui), these deviations are
not pro�table. As every agent is truthful, it follows that x 2 NA (;<u) for the given H.
Conversely, let m 2 NE (;<u) for this H. Since one cannot have a Nash equilibrium

message pro�le under Rules 3-4, it follows that m falls either into Rule 1 or into Rule 2.
Suppose that m falls into Rule 1. Then, m1 = (p; x) = m2, where x 2 F (u0) and

p 2 �(x; u0) for some u0 2 UN . This rule implies that g (m) = x. Suppose that for a
partially honest agent h 2 H, mh =2 T h (u; F ). Then, by changing mh into m0

h =
�
ph; xh

�
2

T h (u; F ), where p
h =

=
p =2 B�

�
�p;
=
p
�
, agent h can induce Rule 3.1 as F�1

�
xh; ph

�
= ? and

F�1 (x; p) 6= ?. Thus, g (m0
h;ml) = x, where h 6= l 2 N . It follows that ((m0

h;ml) ;m) 2�u
h,

which contradicts that m 2 NE (;<u) for the given H. Therefore, mh 2 T h (u; F ) for all
h 2 H. We conclude that x 2 F (u) for this H, as sought.
Suppose that m falls into Rule 2. Then, g (m) = g ((p1; x1) ; (p2; x2)) = z (p2; x2; p1; x1).

Notice that each agent i 2 N can induce Rule 3.2 and attain any bundle in @�Fi
�
xl; pl

�
,

where l 2 Nn fig. Thus, @�Fi
�
xl; pl

�
� gi (Mi;ml). Because m 2 NE (;<u), it follows

that @�Fi
�
xl; pl

�
� L (zi (p

2; x2; p1; x1) ; ui). Therefore, �Fi
�
xl; pl

�
� L (zi (p

2; x2; p1; x1) ; ui)
for each i 2 N , given our supposition of agents� preferences. By the supposition that
m 2 NE (;<u), it follows that for any h 2 H, gh (m�

h;m�h) =2 @L (zh (p
2; x2; p1; x1) ; uh) if

mh =2 T h (u; F ) and m
�
h 2 T h (u; F ), otherwise we fall into a contradiction. Suppose that

mh 2 T h (u; F ) for each h 2 H. Then, condition PA2(ii) implies that z (p2; x2; p1; x1) 2 F (u)
for the given H. Otherwise, let us suppose that mh =2 T h (u; F ) for some h 2 H. De�ne
H 0 � fh 2 Hjmh =2 T h (u; F )g. Therefore, xh =2 F (u) for all h 2 H 0. Next, take any

h 2 H 0 and any m�
h � (p�; x�) 2 T h (u; F ) such that p

� 2 B�
�
�p;
=
p
�
. Suppose that h � 1.

Then, gh ((p�; x�) ; (p2; x2)) = ~zh (p
�; x�; p2; x2) 6= 0 holds. Note that ~zh ((p�; x�) ; (p2; x2)) 6=

0 because x� 2 F (u). Thus, ~zh (p�; x�; p2; x2) =2 @L (zh (p
2; x2; p1; x1) ; uh). By de�nition

of ~z (�; p2; x2), zh (p2; x2; � (p�) ; x�) =2 @L (zh (p
2; x2; p1; x1) ; uh). Since � is a bijection and

the previous arguments hold for any p� 2 B�
�
�p;
=
p
�
and any x� 2 F (u), zh (p2; x2; p; x) =2

@L (zh (p
2; x2; p1; x1) ; uh) for any p 2 � and any x 2 F (u). Similar reasoning applies if

h � 2. Moreover, if HnH 0 is not an empty set, then mh 2 T h (u; F ) for h 2 HnH 0.
Condition PA2(ii) implies that z (p2; x2; p1; x1) 2 F (u) for the given H, as sought.
As the above arguments hold for any H 2 H and any u 2 UN , the statement follows.

Theorem 5. Let n = 2 and ` = 2. Suppose that Assumption 1 holds. Let F 2 F be
such that F (u) � A \ Rn`++ for all u 2 UN . Then, F is partially honest implementable by
a natural price-allocation mechanism in terms of Definition 7 if and only if it satis�es
condition PA2.
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Proof of Theorem 5. For each agent i 2 N , the set of truthful messages is that de�ned in
(1). It su¢ ces to discuss the su¢ ciency part. Note that when ` = 2, then � is of dimension
one, so that it is not possible to construct a simplex of dimension zero which contain two
distinct vertices of �. In contrast, since �� is a 2-dimensional compact set, a 1-dimensional
compact set ��(�p;

=
p) which have the property that F�1 (x; p) = ? for any x 2 A\R2�2++ and any

p 2 ��(�p;
=
p) can be obtained from two di¤erent vertices �p and

=
p of ��. Then, �x �p � (0; 0) and

=
p � (0; 1), and let ��(�p;

=
p) be the closed line connecting �p and

=
p. By the construction of ��(�p;

=
p)

and the de�nition of the mapping ', ' (p) 2 � for any p 2 ��(�p;
=
p). Moreover, because ��(�p;

=
p)

and �� are cardinally equivalent, there exists a bijective function �� : ��(�p;
=
p) ! ��. Let (p2; x2)

be any message reported by agent 2 such that F�1 (p2; x2) 6= ?. Then, for each (p̂; x̂) 2
��(�p;

=
p) � A, de�ne z (p̂; x̂; p2; x2) � z

�
p2; x2; '

�
�� (p̂)

�
; x̂
�
, where z

�
p2; x2; '

�
�� (p̂)

�
; x̂
�
is

allocation speci�ed by the assertions (b) and (d) of PA2(i). Similarly, for any (p1; x1) 2
�� A such that F�1 (p1; x1) 6= ?, and for each (p̂; x̂) 2 ��(�p;

=
p) � A, de�ne z (p̂; x̂; p1; x1) �

z
�
'
�
�� (p̂)

�
; x̂; p1; x1

�
, where z (� (p̂) ; x̂; p1; x1) is the allocation speci�ed by the assertions

(c) and (d) of PA2(i). Based on these de�nitions, the desired result can be obtained by

replacing, in Rule 3 of the mechanism constructed in the proof of Theorem 4, B�
�
�p;
=
p
�
with

��(�p;
=
p), the mapping ~z (�; p2; x2) with �z (�; p2; x2) (in Rule 3.2(a)), and the mapping ~z (�; p1; x1)

with �z (�; p1; x1) (in Rule 3.2(b)).

Proof of Lemma 8. Let n = 2. We show that the e¢ cient and egalitarian-equivalent
correspondence, EE, de�ned on UN = U , satis�es condition PA2. To this end, take any
(p; x; p0; x0) 2 ��A���A, with (p; x) 6= (p0; x0), EE�1 (x; p) 6= ? and EE�1 (x0; p0) 6= ?.
Then, for any u 2 EE�1 (x; p), there exists �u(x;p) 2 (0; 1) such that ui (xi) = ui

�
�u(x;p)


�
for each i 2 N . Let �min(x;p) denote minu2EE�1(x;p) �

u
(x;p), so that �

min
(x;p) � �u(x;p) for any u 2

EE�1 (x; p). Observe that �min(x;p) always exists, given our suppositions. Moreover, given
our suppositions, it cannot be that p � �min(x;p)
 6= max fp � x1; p � x2g. To see it, assume, to
the contrary, that p � �min(x;p)
 6= max fp � x1; p � x2g. Without loss of generality, let p � x1 =
max fp � x1; p � x2g. Suppose that p � �min(x;p)
 < p � x1. Then, there is no u1 2 U1 such that
u1 (x1) = u1

�
�min(x;p)


�
and p 2 �u1 (x1), which is a contradiction. Otherwise, suppose that

p � �min(x;p)
 > p � x1. Then, there exists u 2 EE�1 (x; p) such that ui (xi) = ui
�
�min(x;p)


�
and

p 2 �ui (xi) for each i 2 N . However, because UN = U and p � �min(x;p)
 > p � x1, there
exists u0 2 EE�1 (x; p), with �u0(x;p) < �min(x;p), such that u

0
i (xi) = u0i

�
�u

0

(x;p)

�
and p 2 �u0i (xi)

for each i 2 N , which produces a contradiction. Therefore, we conclude that p � �min(x;p)
 =

max fp � x1; p � x2g. In a similar way, it can be shown that there exists �min(x0;p0) 2 (0; 1) such
that p0 � �min(x0;p0)
 = max fp0 � x01; p0 � x02g. It follows that p �

�
1� �min(x;p)

�

 = min fp � x1; p � x2g

and p0 �
�
1� �min(x0;p0)

�

 = min fp0 � x01; p0 � x02g. Moreover, observe that �min(x;p) � 1

2
and �min(x0;p0) �

1
2
.
From what we established above, it can easily be seen that �min(x;p)
 2 @�EE1 (x; p) \

@�EE2 (x; p) and
�
1� �min(x;p)

�

 2 �EE1 (x; p) \ �EE2 (x; p), because �EEi (x; p) � H (p; xi) \ Q

for each i 2 N .22 Likewise, �min(x0;p0)
 2 @�EE1 (x0; p0) \ @�EE2 (x0; p0) and
�
1� �min(x0;p0)

�

 2

�EE1 (x0; p0) \ �EE2 (x0; p0).

22H (p; xi) is the hyperplane with normal p through xi.
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Now, let us �rst show that EE satis�es condition PA2(i). To this end, it su¢ ces to
consider the following cases:
(1) p � x1 > p � 1

2

 > p � x2 and p0 � x01 � p0 � 1

2

 � p0 � x02;

(2) p � x1 > p � 1
2

 > p � x2 and p0 � x02 > p0 � 1

2

 > p0 � x01;

(3) p � x1 � p � 1
2

 � p � x2 and p0 � x02 > p0 � 1

2

 > p0 � x01;

(4) p � x1 > p � 1
2

 > p � x2 and p0 � x02 � p0 � 1

2

 � p0 � x01;

(5) p � x1 = p � 1
2

 = p � x2 and p0 � x02 = p0 � 1

2

 = p0 � x01.

For each of the above cases, we proceed according to whether the allocation speci�ed in
condition PA2(i) is (a) z (p; x; p0; x0) or (b) z (p0; x0; p; x).

� Case 1.a: p � x1 > p � 1
2

 > p � x2, p0 � x01 � p0 � 1

2

 � p0 � x02, and z (p; x; p0; x0).

Since p � x1 > p � x2, it follows that �EE1 (x; p) = H (p; x1) \ Q. Let z1 (p; x; p0; x0) ��
1� �min(x0;p0)

�

 and z2 (p; x; p0; x0) � �min(x0;p0)
. Then, z2 (p; x; p

0; x0) 2 �EE2 (x0; p0). Moreover,

�min(x0;p0) � 1
2
and p � x1 > p � 1

2

 imply that z1 (p; x; p0; x0) �

�
1� �min(x0;p0)

�

 2

�
H (p; x1) \Q �

�EE1 (x; p). Therefore, under these con�gurations, EE meets condition PA2(i).

� Case 1.b: p � x1 > p � 1
2

 > p � x2, p0 � x01 � p0 � 1

2

 � p0 � x02, and z (p0; x0; p; x).

Let z1 (p0; x0; p; x) �
�
1� �min(x;p)

�

 and z2 (p0; x0; p; x) � �min(x;p)
. Since �

min
(x;p) >

1
2
and p0 �

x01 � p0 � 1
2

, z1 (p0; x0; p; x) �

�
1� �min(x;p)

�

 2

�
H (p0; x01) \ Q � �EE1 (x0; p0). Moreover, by

de�nition, z2 (p0; x0; p; x) � �min(x;p)
 2 �EE2 (x; p). Again, under these con�gurations, EE
satis�es condition PA2(i).

� Case 2.a: p � x1 > p � 1
2

 > p � x2, p0 � x02 > p0 � 1

2

 > p0 � x01, and z (p; x; p0; x0).

Since p �x1 > p �x2 and p0 �x02 > p0 �x01, we have �EE1 (x; p) = H (p; x1)\Q and �EE2 (x0; p0) =

H (p0; x02)\Q. Let z (p; x; p0; x0) �
�
1
2

; 1

2


�
. Then, z (p; x; p0; x0) 2

�
�
EE

1 (x; p)�
�
�
EE

2 (x0; p0).
Since z1 (p; x; p0; x0) 2 �EE1 (x; p) and z2 (p; x; p0; x0) 2 �EE2 (x0; p0), it follows that EE satis�es
condition PA2(i) given our suppositions.

� Case 2.b: p � x1 > p � 1
2

 > p � x2, p0 � x02 > p0 � 1

2

 > p0 � x01, and z (p0; x0; p; x).

We proceed according to whether �min(x;p) 6= �min(x0;p0) or not. Firstly, let us consider the case that
�min(x;p) 6= �min(x0;p0). Then, let

z (p0; x0; p; x) �
� ��

1� �min(x;p)

�

; �min(x;p)


�
if �min(x;p) > �min(x0;p0),�

�min(x0;p0)
;
�
1� �min(x0;p0)

�


�
if �min(x;p) < �min(x0;p0).

Then, if �min(x;p) > �min(x0;p0), then z1 (p
0; x0; p; x) 2

�
�
EE

1 (x0; p0) and z2 (p0; x0; p; x) 2 �EE2 (x; p);

otherwise, z1 (p0; x0; p; x) 2 �EE1 (x0; p0) and z2 (p0; x0; p; x) 2
�
�
EE

2 (x; p). In either case, we
have that condition PA2(i) is satis�ed by EE.
Secondly, let us consider the case that �min(x;p) = �min(x0;p0). For this case, we proceed according

to whether there exists a suitable non-zero vector � 2 Rmn f0g with j�j > 0 being su¢ ciently
small, such that �min(x;p)
 + � 2 �EE1 (x0; p0) \ �EE2 (x; p) or not.

Sub-case 2.b.1: �min(x;p) = �min(x0;p0) and 9� 2 Rmn f0g, with j�j > 0 : �min(x;p)
 + � 2 �EE1 (x0; p0) \
�EE2 (x; p).
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In this case, by appropriately selecting such an �, we can �nd two feasible allocations��
1� �min(x;p)

�

� �; �min(x;p)
 + �

�
and

�
�min(x;p)
 + �;

�
1� �min(x;p)

�

� �

�
such that either

�
1� �min(x;p)

�

�

� 2
�
�
EE

1 (x0; p0) or
�
1� �min(x;p)

�

� � 2

�
�
EE

2 (x; p). Thus, if
�
1� �min(x;p)

�

� � 2

�
�
EE

1 (x0; p0), let
z (p0; x0; p; x) �

��
1� �min(x;p)

�

� �; �min(x;p)
 + �

�
, where �min(x;p)
 + � 2 �EE2 (x; p). Otherwise,

let z (p0; x0; p; x) �
�
�min(x;p)
 + �;

�
1� �min(x;p)

�

� �

�
, where �min(x;p)
+ � 2 �EE1 (x0; p0). This way

of selecting z (p0; x0; p; x) can be applied regardless of whether p = p0 or not. In either case,
we have that z1 (p0; x0; p; x) 2 �EE1 (x0; p0) and z2 (p0; x0; p; x) 2 �EE2 (x; p).

Sub-case 2.b.2: �min(x;p) = �min(x0;p0) and @� 2 Rmn f0g, with j�j > 0 : �min(x;p)
 + � 2 �EE1 (x0; p0) \
�EE2 (x; p).

Then, take a non-zero vector � 2 Rmn f0g, with j�j being su¢ ciently small, and consider
�min(x;p)
 + �. Then, by appropriately selecting such an �, it is possible to have �min(x;p)
 + � 2

�EE1 (x0; p0)[�EE2 (x; p) and
�
1� �min(x;p)

�

� � 2

�
�
H (p0; x01) \Q

�
[
�
�
H (p; x2) \Q

�
such that

�min(x;p)
 + � 2 �EE1 (x0; p0) (resp., �min(x;p)
 + � 2 �EE2 (x; p)) implies that
�
1� �min(x;p)

�

 � � 2�

�
H (p; x2) \Q

�
(resp.,

�
1� �min(x;p)

�

 � � 2

�
�
H (p0; x01) \Q

�
). Therefore, if �min(x;p)
 + � 2

�EE2 (x; p), let z (p0; x0; p; x) �
��
1� �min(x;p)

�

� �; �min(x;p)
 + �

�
, where the bundle

��
1� �min(x;p)

�

� �

�
2

�
�
EE

1 (x0; p0); otherwise, let z (p0; x0; p; x) �
�
�min(x;p)
 + �;

�
1� �min(x;p)

�

� �

�
, where the bundle��

1� �min(x;p)

�

� �

�
2

�
�
EE

2 (x; p). This way of selecting z (p0; x0; p; x) can be applied regardless
of whether p = p0 or not. In either case, under these con�gurations, EE satis�es condition
PA2(i).

� Cases 3-4.
Suitable punishment allocations can be found for Case 3 and Case 4 in a way similar to
those shown for Case 2.a and Case 2.b.

� Case 5: p � x1 = p � 1
2

 = p � x2 and p0 � x02 = p0 � 1

2

 = p0 � x01.

We consider only the sub-case that the punishment allocation is z (p; x; p0; x0), since the other
sub-case can be proved in a similar way. Then, �EE1 (x; p) = H (p; x1)\Q and �EE2 (x0; p0) =
H (p0; x02) \ Q. If p 6= p0, then we can easily �nd a feasible allocation z 2 A such that

z1 2
�
H (p; x1) \ Q and z2 2

�
H (p0; x02) \ Q. Therefore, let z (p; x; p0; x0) � z whenever

p 6= p0. If p = p0, then z (p; x; p0; x0) �
�
1
2

; 1

2


�
, so that z1 (p; x; p0; x0) 2 @�EE1 (x; p) and

z2 (p; x; p
0; x0) 2 @�EE2 (x0; p0). In either case, we have that condition PA2(i) is satis�ed by

EE.

Since the above arguments hold for any (p; x; p0; x0) 2 ��A���A, with (p; x) 6= (p0; x0),
EE�1 (x; p) 6= ? and EE�1 (x0; p0) 6= ?, it follows that EE, de�ned on UN = U , satis�es
condition PA2(i), as sought.

Finally, let us show that EE satis�es condition PA2(ii). By the above constructions
of z (p; x; p0; x0) and z (p0; x0; p; x), the only case in which condition PA2(ii) is not vacu-
ously satis�ed is that of Case 5, when p = p0. In what follows, we show this case by
considering only the sub-case that the punishment allocation is z (p; x; p0; x0), because the
other sub-case can be proved in a similar way. Then, let z (p; x; p0; x0) �

�
1
2

; 1

2


�
, with
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z1 (p; x; p
0; x0) 2 �EE1 (x; p) = H (p; x1)\Q and z2 (p; x; p0; x0) 2 �EE2 (x0; p0) = H (p0; x02)\Q.

Moreover, suppose that, for some u� 2 UN , we have that �EE1 (x; p) � L (z1 (p; x; p
0; x0) ; u�1)

and �EE2 (x0; p0) � L (z2 (p; x; p
0; x0) ; u�2). Then, z (p; x; p

0; x0) 2 P (u�). Furthermore, because
z (p; x; p0; x0) �

�
1
2

; 1

2


�
, it follows that z (p; x; p0; x0) 2 EE (u�), as sought. We conclude

that condition PA2(ii) is satis�ed by EE. This completes the proof.
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