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1 Introduction

In Nash implementation theory,1 it is Maskin’s Theorem (Maskin, 1999)

which shows that when the planner faces at least three agents, a social choice

correspondence (SCC ) is implementable in (pure-strategy) Nash equilibria if

it satisfies Maskin monotonicity and no-veto power ; conversely, any imple-

mentable SCC is Maskin monotonic. Two issues pertaining to this theorem

stand out. First, it does not provide a complete characterization of imple-

mentable SCC s, since no-veto power is not necessary for implementation.

Second, the constructed mechanisms, called canonical mechanisms, employ

large strategy spaces as each agent is required to report to the planner the

entire profile of all agents’ preferences, a feasible social outcome, and an inte-

ger. Therefore, the mechanism constructed in the proof of Maskin’s Theorem

is far from informationally efficient (on this point see, for instance, Hurwicz,

1960).

Moore and Repullo (1990) address the first issue by providing a necessary

and sufficient condition, called Condition μ, for implementability of SCC s in
societies with more than two agents.2 On the other hand, the issue of infor-

mational efficiency is addressed by Saijo (1988), who devises mechanisms that

implement SCC s by employing strategy spaces that are significantly smaller

than those employed by canonical mechanisms. In particular, in Saijo’s mech-

anisms (henceforth, s-mechanisms) each agent announces, in addition to a
feasible social outcome and an integer, her own and her neighbor’s prefer-

ences solely. Yet, while Moore and Repullo (1990) only employ canonical

mechanisms for identifying the class of implementable SCC s in full, Saijo

(1988) discusses only sufficient conditions for SCC s to be implemented by

s-mechanisms. Therefore, it is left unclear not only whether Moore and Re-
pullo’s result indispensably relies on canonical mechanisms, but also whether

s-mechanisms can implement any other SCC than those satisfying Maskin

monotonicity and no-veto power.

1Henceforth, by implementation and its adjectives we mean Nash implementation and

its adjectives, respectively.
2Note that, for two person societies, Moore and Repullo (1990) and Dutta and Sen

(1991) independently provided necessary and sufficient conditions for implementation.

Danilov (1992) and Yamato (1992) refined Maskin’s Theorem by providing necessary and

sufficient conditions for an SCC to be implementable under some domain restrictions. By

devising mechanisms with awards, Sanver (2006) shows that a weaker variant of Maskin

monotonicity constitutes a necessary and sufficient condition for implementation with

awards.
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In this paper, we address the issue of what constitutes the necessary and

sufficient condition for implementation by s-mechanisms in the following two
ways. Firstly, by directly employing the classical Condition μ, we resolve
this issue. Secondly, the same issue is addressed by introducing an alterna-

tive condition, Condition Ms, which is relevant for incorporating behavioral

economics into implementation theory (see Lombardi and Yoshihara, 2011a)

and is similar to ConditionM (Sjöstrom, 1991). Yet, while the class of imple-

mentable SCC s is equivalent to the class of SCC s that are implementable by

s-mechanisms, this study also shows that Moore and Repullo (1990)’s charac-
terization result no longer holds if the message conveyed by each participant

to the planner involves the announcement of either her own preference or the

preference of her neighbor - in addition to an outcome and an agent index.

Before turning to the formal arguments, it may be worth mentioning that,

as is common in the mechanisms constructed in the literature on characteri-

zation theorems, the announcement of an agent index is also used to rule out

undesirable equilibria in an s-mechanism. This feature renders the mecha-
nism subject to information smuggling, that is, the announced index could

be used as an encoding device to smuggle information about preferences of

other participants. Therefore, for s-mechanisms to make sense, we introduce
a regularity condition for an s-mechanism to prevent information smuggling,
which is a variation of the forthrightness conditions introduced in economic

environments by Dutta et al. (1995) and Saijo et al. (1996), and in abstract

social choice contexts by Tatamitani (2001). Bolstered by this regularity

condition, it is no longer rendered trivial to reduce the message space from

the types of canonical mechanisms to those of s-mechanisms. In spite of
this, the results reported herein demonstrate that, under implementability,

an s-mechanism can be constructed from a canonical mechanism, and vice

versa, even if the s-mechanism is required to satisfy forthrightness.

The paper is organized as follows. Section 2 describes the formal envi-

ronment. Section 3 reports not only our main characterization result via

Condition μ, but also an alternative characterization result via Condition
Ms. Section 4 shows that the scope of implementation drastically reduces

when the planner requires each participant to report, inter alia, either her

own preference or that of her neighbor. Section 5 provides a short discussion

of strategy space reduction for implementation with asymmetric information.

Section 6 concludes briefly.
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2 Preliminaries

The set of (social choice) environments is (N,X,Rn), where N ≡ {1, ..., n} is
a set of n ≥ 3 agents, X ≡ {x, y, z, ...} is the set of attainable outcomes, and
Rn is the set of admissible preference profiles (or states of the world).3 Hence-

forth, we assume that the cardinality of X is #X ≥ 2. Let R (X) be the set
of all complete preorders onX.4 We assume thatRn ≡ R1×...×Rn is a non-

empty subset of the n-fold Cartesian productRn (X) ≡R (X)× ....×R (X)| {z }
n-times

.

An element of Rn is denoted by R ≡ (R1, ..., Rn), where its `-th component
is R` ∈ R` for each ` ∈ N . For any preference profile R ∈ Rn and any

` ∈ N , let R−` be the list of elements of R for all agents except `, i.e., R−` ≡
(R1, ..., R`−1, R`+1, ..., Rn) ∈ ×i∈N\{`}Ri. Given a list R−` and R` ∈ R`, we

denote by (R−`, R`) ∈ Rn the preference profile consisting of these R` and
R−`. Similarly, for any preference profile R ∈ Rn and any ∅ 6= S ⊂ N , let
R−S be the list of elements of R for all agents in N\S.5 Given a list R−S and
RS ∈ ×`∈SR`, we denote by (R−S, RS) the preference profile consisting of
these RS and R−S. For any (R`, x) ∈ R`×X, agent `’s weakly lower contour
set of R` at x is given by L (R`, x) ≡ {y ∈ X| (x, y) ∈ R`}. For each ` ∈ N
and each R` ∈ R`, maxR` X ≡ {x ∈ X| (x, y) ∈ R` for all y ∈ X}.
A social choice correspondence (SCC ) is a correspondence F : Rn ³ X

with F (R) 6= ∅ for all R ∈ Rn. An SCC F on Rn is (Maskin) monotonic

if for all R,R0 ∈ Rn with x ∈ F (R), x ∈ F (R0) holds whenever L (R`, x) ⊆
L (R0`, x) for all ` ∈ N .6 An SCC F on Rn satisfies no-veto power if for all

R ∈ Rn, x ∈ F (R) holds whenever x ∈ maxR` X for at least n − 1 agents.
Given an SCC F , an outcome x is F -optimal at a preference profile R ∈ Rn

if x ∈ F (R).
A mechanism (or game-form) is a pair γ ≡ (M, g), where M ≡ M1 ×

... ×Mn, and g : M → X is the outcome function. Denote a generic mes-

3We assume that N and X are fixed throughout the following discussion, so that the

set of environments is boiled down to Rn.
4A complete preorder R ∈ R (X) is a complete and transitive binary relation. A

relation R on X is complete if, for all x, x0 ∈ X, (x, x0) ∈ R or (x0, x) ∈ R; transitive if,
for all x, x0, x00 ∈ X, if (x, x0) ∈ R and (x0, x00) ∈ R , then (x, x00) ∈ R.

5Weak set inclusion is denoted by ⊆, while the strict set inclusion is denoted by ⊂.
6Saijo (1987) shows that a monotonic social choice function is a constant function,

provided that it is defined on the unrestricted domain of all profiles of complete preorders,

Rn (X). Therefore, the problem under study is interesting only for multi-valued social

choice solutions when Rn = Rn (X).
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sage (or strategy) for agent ` by m` ∈ M` and a generic message profile by

m = (m1, ...,mn) ∈M . For any m ∈M and ` ∈ N , let m−` be the list of el-
ements of m for all agents except `, i.e., m−` ≡ (m1, ...,m`−1,m`+1, ...,mn) ∈
×i∈N\{`}Mi ≡ M−`. Given m−` ∈ M−` and m` ∈ M`, denote by (m`,m−`)
the message profile consisting of these m` and m−`. Given an R ∈ Rn and a

mechanism γ = (M,g), the pair (γ, R) constitutes a (non-cooperative) game.
Given a game (γ, R),m ∈M is a (pure strategy) Nash equilibrium of (γ, R) if
and only if for all ` ∈ N , (g (m) , g (m0

`,m−`)) ∈ R` holds for allm0
` ∈M`. Let

NE (γ, R) denote the set of Nash equilibria of (γ, R), whereas the set of Nash
equilibrium outcomes of (γ, R) is denoted by NA (γ, R) ≡ g (NE (γ, R)).
A mechanism γ = (M, g) implements F in Nash equilibria, or simply

implements F , if and only if NA (γ, R) = F (R) for all R ∈ Rn. An SCC F
is (Nash-)implementable if there is such a mechanism.

Moore and Repullo (1990) show that, for a society with more than two

agents, the following condition is the necessary and sufficient condition for

any SCC to be implementable.

Condition μ (for short, μ). There exists a set Y ⊆ X; moreover, for all
R ∈ Rn and all x ∈ F (R), there is a profile of sets (C` (R, x))`∈N such that
x ∈ C` (R, x) ⊆ L (R`, x) ∩ Y for all ` ∈ N ; finally, for all R∗ ∈ Rn, the

following conditions (i)-(iii) are satisfied:

(i) if C` (R, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for each i ∈ N , if y ∈ Ci (R, x) ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).7
Condition μ(i) is equivalent to Maskin monotonicity, while Conditions μ(ii)
and μ(iii) are weaker versions of no-veto power.

3 Main Result

The basic idea behind Saijo (1988)’s strategy space reduction is to cover each

agent’s preference twice. For example, agent `’s preference may be covered by
her own announcement and by that of another agent involved in the mecha-

nism. A way to proceed is to arrange agents in a circular fashion numerically

7We refer to the condition that requires only one of the conditions (i)—(iii) in Condition

μ as Conditions μ(i)—μ(iii) respectively. Note that Condition μ implies Conditions μ(i)—
μ(iii), but the converse is not true. We use similar conventions below.
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clockwise facing inward, and require that each agent ` announces her own
preference together with the preference of the agent standing immediately to

her left, that is, of agent `+ 1. Following Saijo (1988), an s-mechanism can

be defined as follows.

Definition 1. A mechanism γ = (M,g) is an s-mechanism if, for all ` ∈ N ,
M` ≡ R` ×R`+1 × Y ×N , with n+ 1 = 1 and Y ⊆ X.8
Thus, each agent ` announces her preference, R``, the preference of her neigh-
bor, R``+1, an outcome, x

`, and an agent index, k`. The reported indices in
an s-mechanism are used to rule out undesired outcomes as equilibria of the
mechanism. This type of device, common in the constructive proofs of the

literature, is subject to criticism on several fronts.9

An s-mechanism is said to implement the SCC F if for each admissible
profile of preferences, the set of equilibrium outcomes of the s-mechanism
coincides with the set of F -optimal outcomes. The implementability of an
SCC by an s-mechanism can be defined as follows.

Definition 2. An SCC F is implementable by an s-mechanism if there exists
an s-mechanism γ = (M,g) such that for all R ∈ Rn, F (R) = NA (γ, R).

In an s-mechanism, each agent is required to report her neighbor’s pref-
erence and an agent index. This feature generally renders the mechanism

subject to information smuggling, since there could be a case that the an-

nounced index or the announced preference can be used as an encoding device

to smuggle the direct information about preferences of other participants.10

8For each agent ` ∈ N , the message spaceM` ≡ R`×R`+1×Y ×N can be replaced by

M` ≡ R`×R`+1×Y ×Q, where Q is an arbitrary set. To deduce the necessary condition
for implementation by s-mechanisms below, the announcement of an agent index is not
needed.

9For a systematic criticism of the use of “modulo games” and “integer games” in the

literature, see Jackson (1992).
10For instance, if #X = 2 and #N = 3, agent `’s announced index in N can be used

to smuggle information about a preference of agent ` + 2 within an s-mechanism. Also,
we may consider a case that X is infinite and for each ` ∈ N , there exists a bijection
φ` : R` → [0, 1]. Note that the model of abstract environments presented herein does not

exclude such a case. Then, there also exists a bijection eφi : ×`∈N\{i}R` → [0, 1]n−1 for
each i ∈ N . Then, noting that there exists a bijection ϕ : [0, 1]n−1 → [0, 1], we can have a

bijection Φi : ×`∈N\{i}R` → Ri+1 for each i ∈ N , where Φi ≡ φ−1i+1 ◦ϕ ◦ eφi. Then, using a
similar reasoning in the proof of Dutta et al. (1995; Theorem 3.3), we can construct, from

any F -implementing canonical mechanism with the message space Mi = Rn ×X ×N for

any i ∈ N , an s-mechanism with the message space Mi = Ri × Ri+1 × X × N for any
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In this case, the problem of reducing the message space is immediately ren-

dered trivial, thus the objective of the present paper is defeated by such

mathematical tricks. Thus, for s-mechanisms to make sense, we require the
following regularity condition to exclude this possibility.

Forthrightness for s-mechanisms, FRs. For all R ∈ Rn and all x ∈ F (R), if
m` =

¡
R`, R`+1, x, k

`
¢ ∈ M` for all k

` ∈ N and all ` ∈ N , with n + 1 = 1,
then m ∈ NE (γ, R) and g (m) = x.
If an s-mechanism satisfies FRs, we say that it is an s-mechanism with FRs.
FRs requires that if the outcome x is F -optimal at the state R, each agent

announces truthfully her preference and that of her neighbor, and this x is
unanimously announced, then the message profile should be a Nash equilib-

rium of an s-mechanism regardless of the profile of announced indices, and

its equilibrium outcome should be the announced F -optimal outcome. Note
that the requirement of truthful announcement of (R`, R`+1) for every ` ∈ N
is to exclude the possibility of information smuggling via the announced pref-

erences as an encoding device, while the irrelevance property of the profile

of announced indices is to exclude the possibility of information smuggling

via the profile of announced indices as an encoding device. To exclude in-

formation smuggling, requirements similar to ours are imposed in economic

environments by Dutta et al. (1995) and Saijo et al. (1996), and in abstract

social choice contexts by Tatamitani (2001). Finally, mechanisms satisfying

these types of conditions are ‘simple’ in the sense that it is easy to compute

the outcome of an equilibrium strategy profile.

Before turning to the main result of this section, it may be instructive to

briefly discuss the class of s-mechanisms devised to guarantee that Condition
μ fully identifies the class of implementable SCC s. As in Saijo (1988)’s mech-
anism, in our s-mechanisms agents make a cyclic announcement of strategies
while the preference profile, especially the deviator’s preference relation, is

determined without relying upon the deviator’s announcement.11

Formally, let γ ≡ (M,g) be an s-mechanism. Fix any m ∈ M , R ∈ Rn,

and x ∈ X, and let m` =
¡
R``, R

`
`+1, x

`, k`
¢ ∈ M`, with n + 1 = 1. Let the

announcement of agent ` ∈ N about agent ` + 1’s preference be R``+1. We
say that the message profile m ∈M is:

i ∈ N , which also implements F .
11This type of construction is also used in Lombardi (in press) to prove that that any

weakly unanimous SCC is Maskin monotonic if and only if it is Nash implementable via

a simple stochastic mechanism endowed with Saijo’s message space specification.
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(i) consistent with R and x if for all ` ∈ N , R`` = R`−1` = R` and x
` = x;

(ii) m−i quasi-consistent with x and R, where i ∈ N , if for all ` ∈ N , x` = x,
and for all ` ∈ N\{i, i + 1}, R`` = R`−1` = R`, R

i−1
i = Ri, R

i+1
i+1 = Ri+1, and

[Rii 6= Ri or Rii+1 6= Ri+1];
(iii)m−i consistent with x and R, where i ∈ N , if for all ` ∈ N\{i}, x` = x 6=
xi, and for all ` ∈ N\{i, i+1}, R`` = R`−1` = R`, R

i−1
i = Ri, and R

i+1
i+1 = Ri+1;

where 1− 1 = n and n+ 1 = 1.
In words, a message profile m is consistent with an outcome x and a

preference profile R if there is no break in the cyclic announcement of prefer-
ences and all agents announce the outcome x. On the other hand, it is m−i
quasi-consistent with x and R if there are at most two consecutive breaks in
the cyclic announcement of preferences such that these breaks happen in cor-

respondence of the preferences announced by agent i, and x is unanimously
announced. Finally, a message profile m is m−i consistent with x and R
if agent i announces an outcome different from the outcome x announced
by the others, and there are no more than two consecutive breaks in the

cyclic announcement of preferences such that these breaks (if any) happen

in correspondence of the preferences announced by agent i.
Before defining the outcome function g of γ, some additional notation

is required. For any S ⊆ N , any R−S ∈ Rn−#S, and any x ∈ X, let
F−1 (R−S, x) ≡ {R0S ∈ RS|x ∈ F (R0S, R−S)}. Take any r = 1, .., n − 2, and
any SCC F which satisfies Condition μ. For any ` ∈ N , any R ∈ Rn, and

any x ∈ F (R), define the set C`
¡
R−{`+1,...,`+r}, x

¢
as follows:

C`
¡
R−{`+1,...,`+r}, x

¢ ≡ ∪
R0{`+1,...,`+r}∈F−1(R−{`+1,...,`+r},x)

C`
¡¡
R−{`+1,...,`+r}, R0{`+1,...,`+r}

¢
, x
¢
,

(1)

with the convention that n+ k = k.
Notice that if an SCC F satisfies Condition μ, the following properties

are assured by (1), for any r = 1, ..., n− 2.
Property I: The setC`

¡
R−{`+1,...,`+r}, x

¢
is well-defined and x ∈ C`

¡
R−{`+1,...,`+r}, x

¢ ⊆
L (R`, x) ∩ Y for each ` ∈ N ;
Property II: For all ` ∈ N , allR, R0 ∈ Rn, withR0−{`+1,...,`+r} = R−{`+1,...,`+r},
and all x ∈ F (R) ∩ F (R0), it holds that

C`
¡
R−{`+1,...,`+r}, x

¢
= C`

¡
R0−{`+1,...,`+r}, x

¢
.
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We are now in a position to define, for any r = 1, ..., n− 2, the outcome
function g :M → X of γ as follows. For any m ∈M ,
Rule 1: If m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢, then
g (m) = x.

Rule 2: If for some i ∈ N , m−i is quasi-consistent with x and R̄ ∈ Rn, where

x ∈ F ¡R̄¢, then g (m) = x.
Rule 3: If for some i ∈ N , m is m−i consistent with x and R̄ ∈ Rn, where

x ∈ F ¡R̄¢, and Ci ¡R̄−{i+1,...,i+r}, x¢ 6= Y , with n+ k = k, then
g (m) =

½
xi if xi ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢
x otherwise.

Rule 4: Otherwise, g (m) = x`
∗(m) where `∗ (m) ≡ P

i∈N
ki (mod n).12

The above mechanism satisfies FRs. Moreover, in Rules 2-3, agent i is
a deviator. However, in Rule 2, agent i is not necessarily the only deviator
whenever there is exactly one break in the preference announcement profile

between agent i’s preference announcement and that of agent i − 1, i.e.,
Rii 6= Ri−1i = R̄i and R

i
i+1 = R

i+1
i+1 = R̄i+1. Indeed, agents i − 1 and i could

both be deviators if

x ∈ F ¡R̄¢ ∩ F ¡R̄−i, Rii¢ .
On the other hand, in Rule 3, since agent i is the only agent reporting an
outcome different from that reported by all other participants, the mechanism

identifies agent i as the only deviator.
The above mechanism is similar, but not identical, to that devised by

Saijo (1988). The essential difference lies in the definition of the outcome

function g when there is a single deviator. While in our mechanism the

outcome selected by g lies in Ci
¡
R̄−{i+1,...,i+r}, x

¢ 6= Y , in Saijo’s mechanism
the outcome function picks an element of the weak lower contour set of the

deviator i at x evaluated not by her own preference announcement Rii, but
by her neighbor’s announcement, that is, of L

¡
Ri−1i , x

¢
.

Another feature of our mechanism worth commenting on is that in the de-

finition of Rule 3, it is not possible to replace the set Ci
¡
R̄−{i+1,...,i+r}, x

¢
with

the set Ci
¡
R̄, x

¢
of outcomes specified in Condition μ. To explain this aspect,

12If the remainder is zero, the winner of the modulo game is agent n. Observe that
in Rule 4 if the modulo game is replaced with the integer game, the proof of Theorem 1

below will require only minor changes.
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suppose that F satisfies Condition μ. Let us replace Ci
¡
R̄−{i+1,...,i+r}, x

¢
with

Ci
¡
R̄, x

¢
in the definition of Rule 3 ; suppose that the true state is R and let

an equilibrium message profilem fall into Rule 2. Therefore, for a participant
i, the message profile m is m−i quasi-consistent with an outcome x and a
profile R̄, and x ∈ F ¡R̄¢. Moreover, suppose that m is such that there is

exactly one break in the preference announcement profile between agent i’s
preference announcement and that of agent i − 1, i.e., Rii 6= Ri−1i = R̄i and
Rii+1 = R

i+1
i+1 = R̄i+1, and that x ∈ F

¡
R̄
¢ ∩ F ¡R̄−i, Rii¢. Hence, under these

specifications, there are two potential deviators, agent i− 1 and agent i. To
conclude that x ∈ F (R), it must hold that Ci−1

¡¡
R̄−i, Rii

¢
, x
¢
= Ci−1

¡
R̄, x

¢
to fulfil the premises of μ(i). However, x ∈ F (R) is not assured in general
by means of Condition μ, since Ci−1

¡¡
R̄−i, Rii

¢
, x
¢
= Ci−1

¡
R̄, x

¢
does not

necessarily hold in general due to
¡
R̄−i, Rii

¢ 6= R̄. On the other hand, by
Property II and the definition of g, the premises of μ(i) are fulfilled. To
see this property, observe that the above s-mechanism and Property II
assure that the set of outcomes that agent i− 1 can attain is the same both
in the case where the preference announcement R̄ is taken as the true state
of the world and in the case where the preference announcement

¡
R̄−i, Rii

¢ ≡
R̄0 is taken as the true state of the world, i.e., Ci−1

¡
R̄−{i,...,i+r−1}, x

¢
=

Ci−1
³
R̄0−{i,...,i+r−1}, x

´
for any r = 1, ..., n − 2. Furthermore, definition (1)

assures not only that Ci−1
¡
R̄, x

¢ ⊆ Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
, but also that

Ci
¡
R̄, x

¢ ⊆ Ci ¡R̄−{i,...,i+r}, x¢. Therefore, since every other participant can
induceRule 4 and obtain any outcome in Y , it is easy to see that the premises
of μ(i) are met.
We are now in a position to prove that the class of SCC s that are imple-

mentable by an s-mechanism is fully identified by Condition μ.

Theorem 1. An SCC F defined onRn is implementable by an s-mechanism
if and only if it satisfies Condition μ.

Proof. For the necessary part, suppose that F defined on Rn is imple-

mentable by an s-mechanism. Then, it is implementable. By Moore and
Repullo (1990)’s result, it follows that F satisfies Condition μ.
Next, we prove sufficiency. Suppose that F satisfies μ. Let r = n − 2,

and consider the corresponding s-mechanism γ constructed above. We show
that γ = (M, g) implements F . Take any R ∈ Rn.

To show that F (R) ⊆ NA (γ, R), let x ∈ F (R) and suppose that for all
` ∈ N , m` = (R`, R`+1, x, k), where k ∈ N is an arbitrary agent index. Rule
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1 implies that g (m) = x. By the definition of g, we have that any deviation
of agent ` ∈ N will get her to an outcome in C`

¡
R−{`+1,...,`+r}, x

¢
, so that

g (M`,m−`) ⊆ C`
¡
R−{`+1,...,`+r}, x

¢
. Since C`

¡
R−{`+1,...,`+r}, x

¢ ⊆ L (R`, x)
by Property I, it follows that such deviations are not profitable, and so
m ∈ NE (γ, R).
Conversely, to show that NA (γ, R) ⊆ F (R), let m ∈ NE (γ, R). Con-

sider the following cases.

Case 1: m falls into Rule 1.

Then, m is consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. Thus,
g (m) = x. Take any ` ∈ N . Suppose that C`

¡
R̄−{`+1,...,`+r}, x

¢ 6= Y . For any
y ∈ C`

¡
R̄−{`+1,...,`+r}, x

¢ \ {x}, changing m` to m
∗
` =

¡
R``, R

`
`+1, y, k

`
¢ ∈ M`,

agent ` can obtain y = g (m∗` ,m−`) via Rule 3. When C`
¡
R̄−{`+1,...,`+r}, x

¢
=

Y , agent ` can attain any y ∈ Y via Rule 4, by appropriately choosing the

agent index k`. Therefore, C`
¡
R̄−{`+1,...,`+r}, x

¢
= g (M`,m−`) for all ` ∈ N .

Since m ∈ NE (γ, R), we have that C`
¡
R̄−{`+1,...,`+r}, x

¢ ⊆ L (R`, x) for all
` ∈ N . By (1), it follows that C`

¡
R̄, x

¢ ⊆ L (R`, x) for all ` ∈ N . Thus, μ(i)
implies x ∈ F (R).
Case 2: m falls into Rule 2.

Then, m is m−i quasi-consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢.
Thus, g (m) = x. We proceed according to the following sub-cases: 1) Rii 6=
R̄i and R

i
i+1 6= R̄i+1; and 2) Rii 6= R̄i and Rii+1 = R̄i+1.13

Sub-case 2.1. Rii 6= R̄i and Rii+1 6= R̄i+1.
Since any ` ∈ N\ {i} can attain any y ∈ Y \ {x} by inducing Rule 4

and m ∈ NE (γ, R), we have that x ∈ maxR` Y . Next, take any y ∈
Ci
¡
R̄−{i+1,...,i+r}, x

¢ \ {x}. Suppose thatCi ¡R̄−{i+1,...,i+r}, x¢ 6= Y . By chang-
ing mi to m

∗
i =

¡
Rii, R

i
i+1, y, k

i
¢ ∈Mi, agent i can obtain y = g (m

∗
i ,m−i) via

Rule 3. When Ci
¡
R̄−{i,i+1}, x

¢
= Y , agent i can attain y = g (m∗i ,m−i) by

changing mi tom
∗
i =

¡
Rii, R

i
i+1, y, k

i
¢ ∈Mi with the appropriate choice of k

i.

It follows thatCi
¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i). Moreover, Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆
L (Ri, x) as m ∈ NE (γ, R). By (1), it follows that Ci

¡
R̄, x

¢ ⊆ L (Ri, x).
Therefore, we obtained that x ∈ maxR` Y for each ` ∈ N\ {i} and Ci

¡
R̄, x

¢ ⊆
L (Ri, x). Thus, μ(ii) implies x ∈ F (R).
Sub-case 2.2. Rii 6= R̄i and Rii+1 = R̄i+1.
13The sub-case Rii = R̄i and R

i
i+1 6= R̄i+1 is not explicitly considered, since it can be

proved similarly to the sub-case 2.2 shown below.
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Let Rii = R0i and R̄
0 ≡ ¡

R̄−i, R0i
¢
. We distinguish whether x ∈ F ¡R̄0¢

or not. Suppose that x /∈ F ¡R̄0¢. Then, the same reasoning used above
for sub-case 2.1 carries over into sub-case 2.2, so that x ∈ F (R). Oth-
erwise, let x ∈ F

¡
R̄0
¢
. Then, i − 1 and i are both deviators. Agent

` ∈ N\ {i− 1, i} can attain any y ∈ Y \ {x} by inducing Rule 4, so that
x ∈ maxR` Y as m ∈ NE (γ, R). Consider agent i− 1. Note that, by Prop-
erty II,Ci−1

¡
R̄−{i,...,i+r−1}, x

¢
= Ci−1

³
R̄0−{i,...,i+r−1}, x

´
holds. Take any y ∈

Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
= Ci−1

³
R̄0−{i,...,i+r−1}, x

´
with y 6= x. Suppose that

Ci−1
¡
R̄−{i,...,i+r−1}, x

¢ 6= Y . By changingmi−1 tom∗i−1 =
¡
Ri−1i−1, R

i−1
i , y, ki−1

¢ ∈
Mi−1, agent i − 1 can obtain y = g

¡
m∗i−1,m−(i−1)

¢
via Rule 3. When

y ∈ Ci−1
¡
R̄−{i,...,i+r−1}, x

¢
= Y with y 6= x, agent i − 1 can attain y =

g
¡
m∗i−1,m−(i−1)

¢
by changing mi−1 to m∗i−1 =

¡
Ri−1i−1, R

i−1
i , y, ki−1

¢ ∈ Mi−1
with the appropriate choice of ki−1. Sincem is an equilibrium message profile
of the game (γ, R), it follows thatCi−1

¡
R̄−{i,...,i+r−1}, x

¢ ⊆ g ¡Mi−1,m−(i−1)
¢ ⊆

L (Ri−1, x). Since a similar reasoning applies to agent i andm ∈ NE (γ, R), it
is easy to see that Ci

¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i) ⊆ L (Ri, x). Therefore,
x ∈ maxR` Y for each ` ∈ N\ {i− 1, i}, Ci−1

¡
R̄−{i,...,i+r−1}, x

¢ ⊆ L (Ri−1, x),
andCi

¡
R̄−{i+1,...,i+r}, x

¢ ⊆ L (Ri, x). SinceCi−1 ¡R̄, x¢ ⊆ Ci−1 ¡R̄−{i,...,i+r−1}, x¢
and Ci

¡
R̄, x

¢ ⊆ Ci ¡R̄−{i+1,...,i+r}, x¢ by (1), μ(i) implies that x ∈ F (R).
Case 3: m falls into Rule 3.

Then, m is m−i consistent with x and R̄ ∈ Rn, where x ∈ F ¡R̄¢. There-
fore, Ci

¡
R̄−{i+1,...,i+r}, x

¢ 6= Y . First, we show that Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆
g (Mi,m−i). For any xi ∈ Ci

¡
R̄−{i+1,...,i+r}, x

¢ \ {x}, considerm∗i = ¡Rii, Rii+1, xi, ki¢.
Then, Rule 3 implies that g (m−i,m∗i ) = x

i. On the other hand, to attain x,
agent i can induce Rule 1 by changing mi to m

∗
i =

¡
R̄i, R̄i+1, x, k

i
¢
. Hence,

Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i).
Next, we claim that g (M`,m−`) = Y for any ` ∈ N\ {i}. We proceed

according to whether #Y = 2 and n = 3 or not.

Sub-case 3.1. not[#Y = 2 and n = 3].
Take any ` ∈ N\ {i}. Suppose that #Y > 2. By the definition of g, we

have that Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}. Otherwise, let#Y = 2. Then,
n > 3. By replacing x with x` = xi, agent ` can make #

©
` ∈ N |x` = xª ≥ 2

and #
©
` ∈ N |x` 6= xª ≥ 2. Since the outcome is determined by Rule 4,

agent ` can attain any outcome in Y by appropriately choosing k`. Therefore,
Y ⊆ g (M`,m−`) for any ` ∈ N\ {i}.
Sub-case 3.2. #Y = 2 and n = 3.
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Then, let N = {i− 1, i, i+ 1} with n + 1 = 1 and 1 − 1 = n. Since
Ci
¡
R̄−{i+1,...,i+r}, x

¢ 6= Y , it follows that g (m) = x. We proceed accordingly
depending on whether or not there exist agents `, `0 ∈ N with ` 6= `0 such
that #R` 6= 1 and #R`0 6= 1 hold.
Sub-sub-case 3.2.1. For some `, `0 ∈ N with ` 6= `0, #R` 6= 1 and #R`0 6= 1.
In this case, agent i− 1 (resp., i+1) can always induce the modulo game

by appropriately changing the announcement of her own preference or that

of her successor, and by carefully choosing the outcome announcement. To

attain xi, agent i− 1 (resp., i+ 1) has only to adjust the integer index.
Sub-sub-case 3.2.2. For all `, `0 ∈ N with ` 6= `0, #R` = 1 or #R`0 = 1.
Suppose that, for all `∗ ∈ {i− 1, i, i+ 1}, #R`∗ = 1. Since m falls

into Rule 3, it follows that x ∈ F (R) = F
¡
R̄
¢
. Next, suppose that there

exists `∗ ∈ {i− 1, i, i+ 1} such that #R`∗ 6= 1. If either #Ri−1 > 1
or #Ri > 1, then agent i − 1 can induce the modulo game by changing
mi−1 to either m∗i−1 =

¡
Ri−1i−1, R̄i, x, k

i−1¢ with Ri−1i−1 6= R̄i−1 (if #Ri−1 > 1)
or m∗i−1 =

¡
R̄i−1, Ri−1i , xi, ki−1

¢
with Ri−1i 6= Rii (if #Ri > 1). To at-

tain xi, agent i − 1 has only to choose an appropriate ki−1 so that i =
`∗
¡
m−(i−1),m∗i−1

¢
. Therefore, Y ⊆ g

¡
Mi−1,m−(i−1)

¢
. Then, let #Ri−1 =

#Ri = 1. Agent i− 1 can change mi−1 to m∗i−1 =
¡
R̄i−1, R̄i, xi, ki−1

¢
. Sup-

pose that xi /∈ F ¡R̄i−1, R̄i, Rii+1¢. Then, Rule 4 applies and agent i− 1 can
attain xi by adjusting ki−1 so that i− 1 = `∗ ¡m−(i−1),m∗i−1¢. Next, suppose
that xi ∈ F ¡R̄i−1, R̄i, Rii+1¢. If Ci+1 ¡R̄i, Rii+1, xi¢ = {xi}, Rule 3 implies
g
¡
m−(i−1),m∗i−1

¢
= xi. When Ci+1

¡
R̄i, R

i
i+1, x

i
¢
= Y , the outcome is deter-

mined by Rule 4. In this case, by adjusting ki−1, agent i − 1 can attain xi.
By a similar reasoning, it can be shown that agent i + 1 can attain xi ∈ Y .
Therefore, Y ⊆ g (M`,m−`) for ` ∈ {i− 1, i+ 1}.
From the above arguments, we obtained Y ⊆ g (M`,m−`) for all ` ∈

N\ {i} and Ci
¡
R̄−{i+1,...,i+r}, x

¢ ⊆ g (Mi,m−i). Since m ∈ NE (γ, R), it
follows thatCi

¡
R̄−{i+1,...,i+r}, x

¢ ⊆ L (Ri, g (m)) and g (m) ∈ maxR` Y for any
` ∈ N\ {i}. Furthermore, since F satisfies μ, Ci

¡
R̄, x

¢ ⊆ L (Ri, g (m)) holds
by the definition of Ci

¡
R̄−{i+1,...,i+r}, x

¢
given by (1). Thus, μ(ii) implies that

g (m) ∈ F (R).
Case 4: m falls into Rule 4.

Then, Y ⊆ g (M`,m−`) for all ` ∈ N . Since m ∈ NE (γ, R), it follows
that g (m) ∈ maxR` Y for each ` ∈ N . μ(iii) implies that g (m) ∈ F (R).
From Theorem 1 and the definition of g provided above, the following corol-
laries are easily obtained.
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Corollary 1. An SCC F defined onRn is implementable by an s-mechanism
with FRs if and only if it is implementable.

Corollary 2. An SCC F defined onRn is implementable by an s-mechanism
with FRs if and only if it satisfies Condition μ.

Note that it is also easy to see that implementation by a canonical mech-

anism satisfying forthrightness14 is equivalent to Condition μ. Together with
this fact, Corollary 2 gives us the following interesting observation: under im-

plementability, (i) an s-mechanism satisfying FRs can be constructed from

a canonical mechanism satisfying forthrightness, and (ii) a canonical mecha-

nism satisfying forthrightness can be constructed from an s-mechanism sat-

isfying FRs. Remember that without forthrightness, there could be a case

that an s-mechanism can be constructed from a canonical mechanism, and

vice versa, because information can be smuggled. On the other hand, the

forthrightness condition makes the possibility of this equivalence quite un-

clear. Yet, Corollary 2 implies that this equivalence always holds even under

the forthrightness condition.

Note that we can also show that for any intermediate strategy space

reduction mechanism between a canonical mechanism and an s-mechanism,
implementation by such an intermediate strategy space reduction mechanism

is equivalent to implementation. Indeed, let us consider any intermediate

strategy space reduction mechanism, say q-mechanism, with the strategy
space M` ≡ R` × R`+1 × . . . × R`+q × Y × N for all ` ∈ N , where q =
2, . . . , n− 2.15 Then, by a similar way as in the proofs of Theorem 1, it can

be shown that an SCC satisfies Condition μ if and only if it is implementable
by a q-mechanism.
Before closing this section, it may be worth introducing an alternative im-

plementing condition, the study of which seems relevant to characterizing the

scope of implementation by s-mechanisms in a non-conventional framework.
The condition can be stated as follows.

Condition Ms (for short, Ms). There exists a set Z ⊆ X; moreover, for all
R ∈ Rn and for all x ∈ F (R), there is a profile of sets (C∗` (R`, x))`∈N such
14The definition of forthrightness for canonical mechanisms is analogous to the definition

of FRs, though there is a minor difference.
15According to this terminology, q = 1 corresponds to s-mechanisms while q = n − 1

corresponds to canonical mechanisms. Both cases are excluded from the naming of q-
mechanisms, since we are interested solely in intermediate strategy space reduction.
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that x ∈ C∗` (R`, x) ⊆ L (R`, x)∩Z for all ` ∈ N ; finally, for all R∗ ∈ Rn, the

following conditions (i)-(iii) are satisfied:

(i) if C∗` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ C∗i (Ri, x) ⊆ L (R∗i , y) and Z ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Z ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗).
The above condition is simple, easy to check, and very similar to Condi-

tion M (Sjöström, 1991).16 Moreover, it has a central role in identifying the

class of SCC s that are implementable by an s-mechanism when some of the

participants uphold an intrinsic motivation toward honesty. Indeed, a weaker

variant of Condition Ms is the unique necessary and sufficient condition for

implementation by s-mechanisms when some of the participants are partially
honest (Lombardi and Yoshihara, 2011).17 In this regard, Condition Ms is

more interesting than Condition μ. Yet, Condition Ms is indeed equivalent

to Condition μ in the standard set-up.

Lemma 1. Condition Ms is equivalent to Condition μ.

Proof. Let F onRn be an SCC. First, suppose that F satisfiesMs. Then, it

is obvious that F also satisfies Condition μ by taking Y ≡ Z and C` (R, x) ≡
C∗` (R`, x) for any ` ∈ N , any R ∈ Rn, and any x ∈ F (R). Conversely,
suppose that F satisfies μ. For any ` ∈ N , R ∈ Rn, and x ∈ F (R), let

F−1 (R`, x) ≡
©
R0−` ∈ Rn

−`|x ∈ F
¡
R`, R

0
−`
¢ª

where Rn
−` ≡ R1× ...×R`−1×R`+1× ...×Rn. For any ` ∈ N , R ∈ Rn and

x ∈ F (R), define the set C∗` (R`, x) as follows

C∗` (R`, x) ≡ ∪R0−`∈F−1(R`,x)C`
¡¡
R`, R

0
−`
¢
, x
¢
. (2)

We prove that F satisfies Ms. Let Z ≡ Y . Moreover, take any R ∈ Rn and

x ∈ F (R). From (2) and μ, it follows that for each ` ∈ N , the set C∗` (R`, x)
is well-defined and x ∈ C∗` (R`, x) ⊆ L (R`, x) ∩ Z. Next, we show that F
meets Ms(i)-Ms(iii). To do this, take any R∗ ∈ Rn.

16The above condition introduces the profile (C∗` (R`, x))`∈N , which corresponds to the
profile

¡
C`
¡
R−{`+1,...,`+r}, x

¢¢
`∈N with r = n − 1. Note that the profile (C∗` (R`, x))`∈N

is similar to the profile specified in Condition M .
17A partially honest agent is an agent who strictly prefers to tell the truth when lying

has no better material consequences for her.
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Let C∗` (R`, x) ⊆ L (R∗` , x) for all ` ∈ N . Since x ∈ F (R), it follows from
μ and (2) that C` (R, x) ⊆ C∗` (R`, x) for all ` ∈ N . Then, μ(i) implies that
x ∈ F (R∗). Hence, Ms(i) holds. Let y ∈ C∗i (Ri, x) ⊆ L (R∗i , y) for some
i ∈ N and Z ⊆ L (R∗` , y) for all ` ∈ N\ {i}. As y ∈ C∗i (Ri, x), it follows from
(2) and μ that y ∈ Ci

¡
Ri, R

0
−i, x

¢ ⊆ C∗i (Ri, x) for some R0−i ∈ F−1 (Ri, x).
Then, μ(ii) implies that y ∈ F (R∗). Therefore, Ms(ii) is satisfied. Finally,

let y ∈ Z ⊆ L (R∗` , y) for all ` ∈ N . Then, μ(iii) implies that y ∈ F (R∗), and
so Ms(iii) holds. We conclude that F satisfies Ms if it satisfies μ.

From the above lemma, the next result is readily obtained.

Theorem 2. An SCC F defined on Rn satisfies Condition Ms if and only

if it is implementable by an s-mechanism.

4 On ‘one less’ preference announcement mech-

anisms

The result of the previous section shows that the ‘strategy space reduction’

from the canonical mechanisms up to s-mechanisms does not have any effect
on the class of implementable SCC s. The purpose of this section is to show

that such a property can no longer hold if the message conveyed by each

participant to the planner involves the announcement of either her own pref-

erence or the preference of her neighbor - in addition to an outcome and an

agent index.18 Indeed, if each participant only reports her own preference, an

outcome, and an agent index (self-relevant mechanisms; Tatamitani, 2001),

it can be shown that the class of implementable SCC s by self-relevant mech-

anisms is a proper subset of the class of implementable SCC s. Then, the aim

of this section is to show that exactly the same conclusion can be drawn when

a strategy space reduction action from an s-mechanism consists of removing

18Observe that exactly the same conclusion can be drawn when a strategy space re-

duction from an s-mechanism consists of removing either the set N or the set Y from

each participant’s strategy space. As far as the elimination of the set N is concerned,

Jackson (1992) shows that there are environments where some SCC s can be implemented

only if the integer games (or some essentially similar schemes) are employed. As far as

the elimination of the set Y is concerned, if the domain of an SCC is such that Y is

uncountable, this SCC cannot be implemented by a type of mechanism with an appro-

priate forthrightness condition, whose strategy space is reduced from an s-mechanism by

eliminating Y .
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the announcement of her own preference from each participant’s message

space. Therefore, in what follows, we only focus on neighbor’s preference

mechanisms.

Definition 3. A mechanism γ = (M,g) is a neighbor’s preference mechanism
(np-mechanism) if for any ` ∈ N , M` ≡ R`+1 × Y × N , where Y ⊆ X and

n+ 1 = 1.

Definition 4. An SCC F is implementable by an np-mechanism if there exists
an np-mechanism γ = (M, g) such that for all R ∈ Rn, F (R) = NA (γ, R).

Forthrightness for np-mechanisms, FRnp. For all R ∈ Rn and all x ∈ F (R),
if m` =

¡
R`+1, x, k

`
¢ ∈M` for all k

` ∈ N and all ` ∈ N , with n+1 = 1, then
m ∈ NE (γ, R) and g (m) = x.
If an np-mechanism satisfies FRnp, we say that it is an np-mechanism with

FRnp.

Using the approach developed by Moore and Repullo (1990), we now

introduce a condition, Condition μnp, which turns out to be necessary for
implementation by np-mechanisms.19 Before describing the condition and

proving its necessity, some additional notation is required.

Given (R, x) ∈ Rn×X, defineDF (R, x) ≡ ©` ∈ N |F−1 ¡R−{`+1}, x¢ 6= ∅ª
as the set of potential deviators. The condition can be stated as follows.

Condition μnp (for short, μnp): There exists a set Y ⊆ X; moreover, for all
R ∈ Rn and all x ∈ F (R), there is a profile of sets ¡C` ¡R−{`+1}, x¢¢`∈N such
that x ∈ C`

¡
R−{`+1}, x

¢ ⊆ L (R`, x)∩Y for all ` ∈ N , with n+1 = 1; finally,
for all R∗ ∈ Rn, the following conditions (i)-(iv) are satisfied:

(i) if C`
¡
R−{`+1}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N , then x ∈ F (R∗);
(ii) for all i ∈ N , if y ∈ Ci

¡
R−{i+1}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for all
` ∈ N\ {i}, then y ∈ F (R∗);
(iii) if y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then y ∈ F (R∗),
(iv) if x /∈ F (R∗) and DF (R∗, x) 6= ∅, then there exists an outcome
p (R∗, x) ∈ X such that:

(a) p (R∗, x) ∈ C`
³
R∗−{`+1}, x

´
for any ` ∈ DF (R∗, x); and

(b) for all R∗∗ ∈ Rn, if Ci
³
R∗−{i+1}, x

´
⊆ L (R∗∗i , p (R

∗, x)) for all i ∈
DF (R∗, x), and Y ⊆ L (R∗∗` , p (R∗, x)) for all ` ∈ N\DF (R∗, x), then p (R∗, x) ∈
F (R∗∗).

19Indeed, Condition μnp is also sufficient (details available on request).
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The following proposition shows that Condition μnp is a necessary condi-
tion for implementation by np-mechanisms with FRnp.

Proposition 1. An SCC F defined on Rn satisfies Condition μnp if it is
implementable by an np-mechanism with FRnp.

Proof. Let an SCC F on Rn be implementable by an np-mechanism with

FRnp. Let γ = (M, g) be such an np-mechanism with FRnp. Define Y ≡
g (M). For all R ∈ Rn and x ∈ F (R), there exists an m ∈ NE (γ, R) such
that g (m) = x and m` =

¡
R`+1, x, k

`
¢
for all ` ∈ N by FRnp. Take any

` ∈ N . For any R0`+1 ∈ F−1
¡
R−{`+1}, x

¢
, there exists an m0

` =
¡
R0`+1, x, k

`
¢

such that g (m0
`,m−`) = x ∈ NA

¡
γ,
¡
R0`+1, R−{`+1}

¢¢
by FRnp. Thus, for any

R0`+1 ∈ F−1
¡
R−{`+1}, x

¢
, g (M`,m−`) ⊆ L (R`, x). Moreover, g (m0

`,m−`) =
x ∈ NA (γ, R) also holds for any R0`+1 ∈ F−1

¡
R−{`+1}, x

¢
and any m0

` =¡
R0`+1, x, k

`
¢
.

Define C`
¡
R−{`+1}, x

¢ ≡ g (M`,m−`). Then, x ∈ C`
¡
R−{`+1}, x

¢ ⊆
L (R`, x)∩Y . Next, we show that F satisfies Conditions μnp(i)-μnp(iv). Take
any R∗ ∈ Rn.

Suppose that C`
¡
R−{`+1}, x

¢ ⊆ L (R∗` , x) for all ` ∈ N . Then, from

C`
¡
R−{`+1}, x

¢
= g (M`,m−`), it follows that g (M`,m−`) ⊆ L (R∗` , x) for all

` ∈ N . We conclude that g (m) = x ∈ NA (γ, R∗) = F (R∗). Hence, μnp(i)
holds.

For each i ∈ N , let y ∈ Ci
¡
R−{i+1}, x

¢ ⊆ L (R∗i , y) and Y ⊆ L (R∗` , y) for
all ` ∈ N\ {i}. Then, y = g (m0

i,m−i) ∈ g (Mi,m−i) ⊆ L (R∗i , y) for some
m0
i ∈Mi. Moreover, g (M) ⊆ L (R∗` , y) for all ` ∈ N\ {i}. We conclude that

y ∈ NA (γ, R∗) = F (R∗). Hence, F satisfies μnp(ii).
If y ∈ Y ⊆ L (R∗` , y) for all ` ∈ N , then there exists m∗ ∈ M such that

y = g (m∗) ∈ g (M) ⊆ L (R∗` , y) for each ` ∈ N . Therefore, y ∈ NA (γ, R∗) =
F (R∗). Hence, μnp(iii) holds.
Suppose that x /∈ F (R∗) and DF (R∗, x) 6= ∅, and let us consider the

strategy profile m∗` =
¡
R∗`+1, x, k

`
¢ ∈ M` for all ` ∈ N . Let p (R∗, x) ≡

g (m∗). Take any i ∈ DF (R∗, x) and any R0i+1 ∈ F−1
³
R∗−{i+1}, x

´
. Let R0 ≡³

R∗−{i+1}, R
0
i+1

´
. Then, from the previous discussion, it follows that there

exists a profile
³
C`
³
R0−{`+1}, x

´´
`∈N

with C`
³
R0−{`+1}, x

´
≡ g ¡M`,m

0
−`
¢
for

each ` ∈ N , where m0
` = m∗` for each ` ∈ N\ {i} and m0

i =
¡
R0i+1, x, k

i
¢
.

Since it holds for any i ∈ DF (R∗, x), it follows that g (m∗) ∈ Y and g (m∗) ∈
Ci
³
R∗−{i+1}, x

´
≡ g ¡Mi,m

∗
−i
¢
for any i ∈ DF (R∗, x). Therefore, μnp(iv.a)
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is met. Finally, take any R∗∗ ∈ Rn, and suppose that Ci
³
R∗−{i+1}, x

´
⊆

L (R∗∗i , p (R
∗, x)) for all i ∈ DF (R∗, x) and Y ⊆ L (R∗∗` , p (R

∗, x)) for all
` ∈ N\DF (R∗, x). Then, since g

¡
Mi,m

∗
−i
¢ ⊆ L (R∗∗i , g (m

∗)) for all i ∈
DF (R∗, x) and g (M) ⊆ L (R∗∗` , g (m∗)) for all ` ∈ N\DF (R∗, x), it follows
that p (R∗, x) = g (m∗) ∈ NA (γ, R∗∗) = F (R∗∗). Thus, μnp(iv.b) holds. We
conclude that F satisfies μnp.

The above proposition implies that implementation by an np-mechanism
with FRnp is not equivalent to implementation, since the punishment con-

dition, Condition μnp(iv), makes Condition μnp stronger than Condition μ.
That is, Condition μnp implies Condition μ, but the converse does not hold.
Therefore, Proposition 1 implies that the class of implementable SCC s by

np-mechanisms with FRnp is a proper subset of the class of implementable
SCC s.20 Finally, observe that the class of implementable SCC s by self-

relevant mechanisms is not equivalent to the class of SCC s that are imple-

mentable by np-mechanisms with FRnp. This is because even though it can
be easily seen that the former is contained by the latter, the converse relation

does not hold. To see this, let us consider the standard problem of allocating

an infinitely divisible commodity among a group of three or more agents with

single-peaked preferences. Within this class of problems, it can be shown that

the individually rational from equal division and efficient correspondence sat-

isfies Condition μnp, while it violates the self-relevant implementing condition
devised by Tatamitani (2001).21

5 Toward message space reduction for imple-

mentation with asymmetric information: A

discussion

The results of the previous sections rely on the assumption of complete in-

formation. That is, agent preferences and feasible outcomes were assumed

to be common knowledge among the agents. However, the issue of devis-

ing informational efficient mechanisms pertains not only to implementation

20To see this, for instance, consider classical economic environments as the domain of

SCC s. Then, as shown in Saijo et al. (1999), the no-envy and efficient correspondence

does not satisfy μnp(iv), though it satisfies μ.
21Details available on request.
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problems with complete information, but also to problems with asymmet-

ric information (see Jackson (1991; p. 473), for instance). For the latter

problems, the present section briefly puts forward some ideas and guidelines

needed to address this issue.

Implementation problems with asymmetric information have been stud-

ied in a series of papers including Postlewaite and Schmeidler (1986), Palfrey

and Srivastava (1987, 1989), Jackson (1991), and Hahn and Yannelis (2001).

The basic model to study implementation problems with asymmetric infor-

mation consists of a set, N , of n agents, a (fixed) set, X, of feasible outcomes,
a set of types, Θi, for each agent i ∈ N , a collection of conditional proba-
bility distributions {pi(θ−i|θi)}, for each i ∈ N and each θi ∈ Θi, and a von

Neumann-Morgenstern utility function for each agent i, ui : Θ × X → R,
where Θ ≡ Θ1 × . . .×Θn denotes the set of states. Thus, one environment

is given by a list hN,X, (Θi, pi, ui)i∈Ni. The classic assumption is that each
agent knows her own type when she comes to participate in the mechanism.

This is her sole informational advantage over the mechanism designer, be-

cause the latter does not know the types of all agents while the former does

not know the types of the other agents. However, the mechanism designer

knows the structure of the environment hN,X, (Θi, pi, ui)i∈Ni as the agents
do. Most implementation problems with asymmetric information discussed

in the literature are organized around the solution concept of Bayesian equi-

librium.

In what follows, our discussion of the Baysian approach is based on Jack-

son (1991), who devises an implementing mechanism which is finite in finite

environments - the reader can consult that paper for more details. Moreover,

the mechanism devised by this author differs considerably from mechanisms

designed for Nash implementation. The main difference is that in the case of

asymmetric information, where each agent’s type is her private information,

the mechanism designer must provide the agent with incentives to report

that information, in contrast to the case of complete information in which

the preference stated by an agent can be checked against another agent’s

report of that preference. Thus, while the construction of our s-mechanism
under problems with complete information relies heavily on the possibility

to devise an auditing scheme of announced preferences, which is due to the

condition that participants stand in a circle and each of them states her

own preference and that of her neighbor, such a construction of mechanism

is impossible in problems with asymmetric information, where the agents’

types constitute private information. Nonetheless, the idea of cyclic an-
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nouncements of messages proposed in Hurwicz (1979) can still be useful in

achieving a significant reduction in the size of the message space required for

Bayesian implementation.

Before outlining how the strategy space reduction can be achieved, some

additional notation is needed. An outcome rule is a function x from the set

of states Θ to X, that is, x(θ) ∈ X for each θ ∈ Θ, while a social choice set
(SCS) F specifies a set of optimal outcome rules {x | x : Θ → X} rather
than a collection of desirable outcomes.22

In Jackson’s mechanism, each participant i is required to announce, inter
alia, an element of F . Our suggestion is based on the following idea. As
the first step of construction of a mechanism by the mechanism designer,

she partitions the set of states Θ into n non-empty sets {Θi}i∈N , and then
she assigns only one element Θi of this partition to each participant i ∈ N .
Given an outcome rule x, let x|Θi denote the restriction of x to the set Θi.

Similarly, given a SCS F , F |Θi denotes the set of optimal outcome rules

restricted to the set Θi. Like in our s-mechanism, assume that all agents
are put in a circle, facing toward its center. Then, assuming that agents are

arranged clockwise, our idea is that part of the strategy for participant i is
to announce an element of F |Θi and an element of F |Θi+1, with n+ 1 = 1,
rather than an element of F (Θ). Therefore, a typical message of participant
i will be of the form

mi = (θ
i
i, x

i
i|Θi, xii+1|Θi+1, si) ∈ Θi × F |Θi × F |Θi+1 × Si ≡Mi,

where the announcement of participant i about participant i+1’s restriction
of an F -optimal outcome rule x to Θi+1 is xii+1|Θi+1, and Si denotes the other
components of Jackson’s message space for participant i.
The above reduction of the message space poses a challenge in the con-

struction of a Bayesian implementing mechanism. The main difficulty is the

definition of the outcome function for the case in which there is exactly one

break in the cyclic announcements of restricted outcome rules. In particular,

we are referring to the case in which:

[1] the announcements of the restricted outcome rules are such that xjj|Θj =

xj−1j |Θj for every participant j except for participant i, and the announce-

ment of participant i is such that xii+1|Θi+1 = xi+1i+1|Θi+1 and xi−1i |Θi 6= xii|Θi;

22It is known that if the closure condition is satisfied and the information is complete,

then an SCC is equivalent to an SCS.
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[2] if we remove the restricted outcome rule announced by agent i and replace
it with the announcement of her immediate neighbor i− 1, we find that the
outcome rule y defined as

y|Θj = xjj|Θj for all j 6= i and y|Θi = xi−1i |Θi

is F -optimal; and,

[3] if we remove the restricted outcome rule announced by agent i − 1 and
replace it with the announcement of her immediate neighbor i − 2, we find
that the outcome rule y0 defined as

y0|Θj = xjj|Θj for all j 6= i− 1 and y0|Θi−1 = xi−2i−1|Θi−1

is F -optimal.23

In this case, agent i and agent i − 1 can both be identified as potential
deviators.

In Section 3, we show that the canonical mechanism can be suitably

modified for the case in which part of the strategy for each participant i is to
announce her own preference and that of her neighbor. We conjecture that

analogous modifications can be made for the mechanism devised by Jackson

(1991) when part of the strategy for each participant i is to announce an
element of (F |Θi, F |Θi+1) rather than an optimal outcome rule in F .
It cannot be emphasized enough that our discussion so far is based on

the assumption that agents adopt Bayesian-Nash behavior, which requires a

great deal of ability from the part of agents24: Each agent forms Bayesian

beliefs about the types of the other participants and seeks the maximiza-

tion of her expected utility with respect to those beliefs. To the extent that

agents themselves are not behaving as Bayesian with well-formed priors, the

Bayesian approach to implementation with asymmetric information must be

brought into question. Non-Bayesian models of behavior have received rel-

atively little attention not only in implementation theory with asymmetric

information, but, until recently, in resource allocation problems in general.

In this regard, de Castro et al. (2011) show a quite surprising result that

the maximin expected utility preferences introduced by Gilboa and Schmei-

dler (1989) guarantee that in economic environments with ambiguity, effi-

ciency and incentive compatibility are consistent. Indeed, several interesting

23Note that the outcome rule y differs from the outcome rule y0 only for the type profiles
in Θi, that is, y(θ) = y0(θ) for each θ ∈ Θ\Θi, and y(θ) 6= y0(θ) for some θ ∈ Θi.
24In this regard, see Machina et al. (2011), for instance.
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and surprising results are reported by a burgeoning literature which studies

both experimentally and theoretically economic problems with asymmetric

information when agents have maximin expected utility preferences. Some

of these results can be found in Cerreia-Vioglio et al. (2011), Condie and

Ganguli (2011), de Castro and Chateauneuf (2011), Dickhaut et al. (2011),

Dominiak and Schnedler (2011), Eichberger and Kelsey (2011), Jungbauer

and Ritzberger (2011), Klibanoff et al. (2011), Machina (2011), Nau (2011),

Ozsoylev and Werner (2011), and Vergopoulos (2011). In line with this re-

search, there may be important potential for a non-Bayesian approach to

implementation in asymmetric information settings.

Indeed, analogical to the definition of maximin (individual) incentive com-

patibility given by de Castro et al. (2011), we may define the notion of max-

imin Nash equilibrium by using the maximin expected utility preferences.

Then, we may consider abstract social choice environments with ambiguity

and examine what types of SCCs are implementable in maximin Nash equi-
libria. Furthermore, we may ask a further question of whether it is possible

to construct a mechanism with as small message space as possible in this

context. For instance, given that the framework of de Castro et al. (2011)

presumes that the information of a “differential information exchange econo-

my” is common knowledge among agents, but this information is not shared

by the mechanism designer, it would be interesting to devise an implementing

mechanism in which part of the strategy for each participant i is to announce
her information set and that of her neighbor i+1,25 analogical to the strategy
space reduction mechanism in Nash implementation developed in this paper.

These are open questions that are worthwhile to examine in the future.

6 Concluding Remarks

In this paper, we deal with the informational efficiency issue pertaining to

Maskin’s Theorem (Maskin, 1999). We focus on s-mechanisms in which each
agent reports to the planner solely her own preference and her neighbor’s

preference, in addition to a feasible social outcome and an integer. We show

25Each agent can announce her neighbor’s information set after receiving a common sig-

nal from the nature, since Definition 5.14(i) of de Castro et al. (2011) implicitly presumes

that a profile of each agent’s partition of the state space is common knowledge among

agents - otherwise, an agent who intends to misrepresent her observed state cannot be

convinced of whether this type of behavior is beneficial to her or not.
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that the class of SCC s that are implementable by s-mechanisms is fully
identified by Condition μ of Moore and Repullo. We achieve it in two ways.
Firstly, we show this result by directly employing the classical Condition μ.
Secondly, in the framework developed by Moore and Repullo, we introduce a

new condition, Condition Ms, which is shown to be equivalent to Condition

μ.
With regard to the implementation theory, several implications of our

analysis are worthwhile mentioning. First, the class of implementable SCC s

is equivalent to the class of SCC s implementable by s-mechanisms with forth-
rightness. Second, even though our conditions are stated in terms of the exis-

tence of certain sets, they can easily be checked in practice by the algorithm

provided by Sjöström (1991). Last but not least, under implementability,

a canonical mechanism satisfying forthrightness can be constructed by an

s-mechanism satisfying forthrightness, and vice versa.

Note that our results are in line with other well known results of im-

plementation in economic environments. In particular, the equivalence re-

lationship between implementation by s-mechanisms and implementation in
general social choice environments is analogous to the equivalence relation-

ship between implementation by natural allocation mechanisms and imple-

mentation by natural quantity2 mechanisms (Saijo et al., 1996). Moreover,

Tatamitani (2001) provides a full characterization of implementation by self-

relevant mechanisms. This result, together with our Proposition 1, indicates

that any ‘strategy space reduction’ from s-mechanisms consisting of requir-
ing each participant to announce a ‘one less preference relation’ drastically

decreases the class of implementable SCC s. This is parallel to the case of nat-

ural implementation in economic environments, in which the class of SCC s

implementable by natural quantity mechanisms is much smaller than that of

SCC s implementable by natural allocation mechanisms.

Before closing the paper, we should make one last comment about the

results presented herein. The results of the paper are built on the implicit

assumption that agents participating in a mechanism are perfectly rational.

Dissatisfaction with this classical assumption is mounting.26 Attempts to

replace it with alternative decision models as engines of inquiry into basic

economic questions are growing.27 In the light of this recent trend, the equiv-

alence relationship reported herein may not necessarily hold when a small

26In this regard, see, for instance, Glycopantis et al. (2005).
27In this regard, see, for instance, de Castro et al. (2011).
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departure from the “perfect rational man” paradigm is considered. With

regard to implementation, Matsushima (2008) and Dutta and Sen (2012) in-

troduce the notion of partial honesty in implementation theory and consider

implementation problems with partially-honest agents. A partially-honest

agent is an agent who has a preference over message profiles and displays

concerns over two dimensions in lexicographic order: (1) her outcome and

(2) her truth-telling behavior. In the presence of partially-honest agents, the

equivalence relationship between implementation and implementation by s-
mechanisms with forthrightness no longer holds, as Lombardi and Yoshihara

(2011a) show.28 This suggests that the equivalence relationship indispens-

ably relies on the assumption that agents act purely on their own self-interest

and are not inclined to attach (moral) rights and duties to their actions.
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