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1 Introduction

In this paper, Nash implementation of desired resource allocations is dis-
cussed in production economies with possibly unequal labor skills. A typical
example of such economies is a fishery, where mechanism design for Nash
implementation is of practical interest: in fisheries, each individual’s free
operation may lead to an overexploitation of resources with little regard
to future sustainability, and so many countries with the fishery as one of
their major industries work on resource management, and employ incentive
schemes to control individuals’ operation. For instance, in Norway, the har-
vesting of marine resources is regulated to ensure that the capacity of the
(source) stocks are able to renew themselves.123 Given that the total allow-
able catch (TAC) in the Barents Sea is allocated through negotiations under
international agreements, the country’s quotas are distributed among differ-
ent groups of fishermen, and then subdivided and allocated among fishing
boats in each group, which constitutes desired resource allocations. With
this in mind, the resource management mechanism in Norway is expected
to implement such allocations of fishing by monitoring and punishing each
fishing boat’s overexploitation of resources.
Most of the vast literature on implementation theory presumes that the

social planner cannot know each individual’s preference but knows the set
of feasible alternatives. In economic environments, however, there are many
examples of resource allocation problems in which each individual’s private
information consists of not only her preferences but also her endowments
and/or human capital. In such problems, as Jackson (2001) pointed out, the
planner may not know in advance the set of feasible alternatives (feasible
allocations), since it is endogenously fixed due to individuals’ strategies on

1Sustainable management requires knowledge of the size of the stocks, their age com-
position, their distribution, and the environment in which they live. Every year, data from
Norwegian scientific surveys and from fishermen are compared with data from other coun-
tries (Norwegian marine scientists cooperate closely with researchers from other countries,
especially Russia) and assessed by the International Council for Exploration of the Sea
(ICES).

2This is in accordance with international agreements including the 1982 UN Law of the
Sea Convention, the 1995 UN Fish Stocks Agreement and the 1995 FAO Code of Conduct
for Responsible Fisheries.

3Recently, the ecosystem approach is increasingly being applied to Norwegian fisheries
management. It not only takes into account how harvesting affects fish stocks, but also
how the fisheries affect the marine environment for living marine resources in general.
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how to utilize their own endowments or human capital, which the social
planner may have no control over. Given this setting, it is necessary to extend
the classical framework of implementation theory into the framework with
endogenous feasible allocations that allows each individual to misrepresent
not only her preference but also her endowments or human capital.
It was Hurwicz et al. (1995) which provided a systematic analysis of

endogenous feasible allocations in Nash implementation under economic en-
vironments, and there is also some literature such as Tian and Li (1995);
Hong (1995); Tian (1999, 2000, 2009) which addresses the above issue in
designing a mechanism to implement a specific social choice correspondence
(SCC) like the Walrasian solution. In these works, each individual is allowed
to understate (or withhold) her own material endowments, but she is not al-
lowed to overstate them, since the planner is assumed to require individuals
to “place the claimed endowments on the table” [Hurwicz et al. (1995)].
In production economies with unequal skills, however, one of the essen-

tial features is that each individual is allowed to not only understate but also
overstate her endowment of labor skill, since here the planner cannot require
individuals to place the claimed endowments of their skills on the table in
advance of production. Among several papers4 on implementation in produc-
tion economies, there are a few works such as Yamada and Yoshihara (2007,
2008) which address this essential feature, and then discuss implementation
under some stringent restriction on available mechanisms.
In contrast to the above literature, this paper firstly imposes no restriction

on the available class of mechanisms and then provides a general (necessary
and sufficient) characterization of Nash-implementable (efficient) SCCs in
production economies with unequal skills. It is Monotonicity (M) [Maskin
(1999)] which is the necessary and sufficient condition for Nash implemen-
tation in production economies if the endowments of skills are known to the
planner, though this characterization no longer holds if they are unknown.
Thus, this paper introduces a new condition, called Non-manipulability of
Irrelevant Skills (NIS), which together with M fully characterize Nash-
implementable SCCs in such problems. The axiom NIS requires indepen-
dence of a particular change in individual skills, which is weak enough in the

4In addition to the above mentioned literature, for instance, Suh (1995), Yoshihara
(1999), Kaplan and Wettstein (2000), and Tian (2009) have proposed simple or natural
mechanisms to implement particular SCCs, whereas Shin and Suh (1997) and Yoshi-
hara (2000) have discussed characterizations of SCCs implementable by simple or natural
mechanisms.
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sense that any efficient SCC satisfies it in economies with strictly concave
production functions, but it is by no means trivial. Actually, as shown be-
low, there is an economically meaningful SCC, called the maximal workfare
solution, which satisfies M, but not NIS in economies with linear produc-
tion functions. Thus, though this solution is implementable in the classical
framework where the endowments of skills are known to the planner, it is
non-implementable in the extended framework where they are unknown.
Secondly, this paper defines a class of natural mechanisms applied to these

economies, and then provides a full characterization of SCCs implementable
by them. To define what natural mechanisms are in these economies, it is
worth mentioning the practical applicability of the above mentioned resource
management mechanism in Norway, which implements desired allocations of
fishing to preserve the living marine resources for future sustainability, while
letting the fishing boats operate freely within their quotas and claim as their
due share what they produced.5 Taking this property as primarily relevant in
production economies, the paper considers labor sovereignty [Kranich (1994);
Gotoh et al. (2005)] as a condition of natural mechanisms. This requires
each individual to have the right of choosing her own labor hours, and the
outcome functions of such mechanisms simply distribute the produced output
to agents, according to the information they provided and the record of their
labor hours completed. The paper also introduces forthrightness [Dutta et
al. (1995); Saijo et al. (1996, 1999)], and defines natural mechanisms as
feasible ones satisfying these two conditions and having strategy spaces of
price-quantity annoucements.
Note that the conditions of natural mechanisms are slightly weaker than

that of the restricted mechanisms (we call simple mechanisms here) dis-
cussed in Yamada and Yoshihara (2007). This is because one peculiar con-
dition imposed on simple mechanisms is not present in natural mechanisms.
Correspondingly, the necessary and sufficient conditions for naturally imple-

5In more detail, this mechanism requires ocean-going vessels to install and use satellite-
based tracking equipment that enables the authorities to continually monitor their opera-
tions, though the volume of each individual boat’s catch is not easily identified. Therefore,
the adherence to the government imposed harvest quota cannot reasonably be measured
by the government for each individual fisher’s catch, but rather measured by the increase
or decrease of the remaining fish resources. The following quota is then adjusted accord-
ingly up or down relevant to this change: if a decrease in the amount of the resource is
confirmed, then catch of the fish in question is partially or totally prohibited for a length
of time.

4



mentable SCCs in this paper are Supporting Price Independence (SPI) [Gas-
part (1998); Yoshihara (1998)] and Non-manipulability of Irrelevant Skills∗

(NIS∗) which is slightly stronger than NIS. Note that SPI and NIS∗ are
slightly weaker than SPI and Independence of Unused Skills (IUS) [Ya-
mada and Yoshihara (2007)], where the latter two conditions characterize
simple implementation as in Yamada and Yoshihara (2007). Surprisingly,
though most of the well-known fair allocation rules are non-implementable
in Yamada and Yoshihara (2007), they become implementable by the natural
mechanisms. Actually, as it is shown below, any efficient SCC satisfying
non-discrimination [Thomson (1983)] also satisfies NIS∗, though many of
them do not satisfy IUS, so that many of such SCCs are implementable by
the natural mechanisms.
The model is defined in Section 2. In section 3 and 4 we respectively

provide characterizations of Nash implementation and natural implementa-
tion, and in section 5 we give some examples of implemantable and non-
implementable SCCs. Concluding remarks appear in Section 6.

2 The Basic Model

There are two goods, one of which is an input (labor time) x ∈ R+ to be used
to produce the other good y ∈ R+.6 There is a set N = {1, . . . , n} of agents,
where 2 ≤ n < +∞. Each agent i0s consumption is denoted by zi = (xi, yi),
where xi denotes her labor time, and yi the amount of her output. All agents
face a common upper bound of labor time x̄ , where 0 < x̄ < +∞, and so
have the same consumption set Z ≡ [0, x̄]×R+.
Each i0s preference is defined on Z and represented by a utility func-

tion ui : Z → R, which is continuous and quasi-concave on Z, and strictly
monotonic (decreasing in labor time and increasing in the share of output)

on
◦
Z≡ [0, x̄)×R++.7 We use U to denote the class of such utility functions.

Moreover, we impose an additional condition on U as follows:
Assumption 1: ∀i ∈ N , ∀zi ∈

◦
Z, ∀z0i = (x0i, 0) ∈ Z, ui (zi) > ui (z0i).

Each i has a labor skill si ∈ R++. The universal set of skills for all
6The symbol R+ denotes the set of non-negative real numbers.
7The symbol R++ denotes the set of positive real numbers.
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agents is denoted by S = R++.8 The labor skill si ∈ S is i0s effective labor
supply per hour measured in efficiency units. It can also be interpreted as i0s
labor intensity exercised in production.9 Thus, if the agent’s labor time
is xi ∈ [0, x̄] and her labor skill si ∈ S, then sixi ∈ R+ denotes the agent’s
effective labor contribution to production measured in efficiency units.
The production technology is a function f : R+ → R+, that is continuous,
strictly increasing, concave, and such that f (0) = 0. For simplicity, we fix
f . Thus, an economy is a pair of profiles e ≡ (u,s) with u= (ui)i∈N ∈ Un
and s= (si)i∈N ∈ Sn. Denote the class of such economies by E ≡ Un × Sn.
Given s∈ Sn, an allocation z= (xi, yi)i∈N ∈ Zn is feasible for s ifP
yi ≤ f (

P
sixi). Denote by Z (s) the set of feasible allocations for s∈ Sn.

Given s∈ Sn, a feasible allocation z∈ Z (s) is interior if zi ∈
◦
Z for all

i ∈ N . Denote by ◦
Z (s) the set of interior feasible allocations for s∈ Sn.

An allocation z= (zi)i∈N ∈ Zn is Pareto efficient for e = (u, s) ∈ E if
z∈ Z (s) and there does not exist z0 = (z0i)i∈N ∈ Z (s) such that for all
i ∈ N , ui (z0i) ≥ ui (zi), and for some i ∈ N , ui (z0i) > ui (zi). Let P (e)
denote the set of Pareto efficient allocations for e ∈ E. A social choice
correspondence (SCC) or solution is a correspondence ϕ : E ³ Zn such

that for each e = (u, s) ∈ E , ϕ (e) ⊆ ◦
Z (s) ∩ P (e). Given ϕ, z∈ Zn is

ϕ-optimal for e ∈ E if z∈ ϕ (e).
Let Ai, for each i ∈ N , denote the strategy space of agent i. We

call ai ∈ Ai a strategy of agent i ∈ N , and a ∈ A ≡ ×i∈NAi a strategy
profile. For any a ∈ A and i ∈ N , let a−i be the list (aj)j∈N\{i} ∈ ×j∈N\{i}Aj
of elements of the profile a for all agents except i. Denote the set of such
a−i by A−i for each i ∈ N . Given a list a−i ∈ A−i and a strategy ai ∈ Ai of
agent i, we denote by (ai,a−i) the profile consisting of these ai and a−i. A
mechanism or game form γ is a pair γ = (A, h), where h : A→ Zn is the
outcome function such that, for each a ∈ A, h (a) = (hi (a))i∈N ∈ Zn. Let

8For any two sets X and Y , X ⊆ Y whenever any x ∈ X also belongs to Y , and X = Y
if and only if X ⊆ Y and Y ⊆ X.

9It might be more natural to define labor skill and labor intensity in a discriminative
way: for example, if si ∈ S is i’s labor skill, then i’s labor intensity is a variable si, where
0 < si ≤ si. In such a formulation, we may view the amount of si as being determined
endogenously by the agent i. In spite of this more natural view, we will assume in the
following discussion that the labor intensity is a constant value, si = si, for the sake
of simplicity. The main theorems in the following discussion would remain valid with a
few changes in the settings of the economic environments even if the labor intensity were
assumed to be varied.
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hi (Ai,a−i) ≡ {hi (ai,a−i) | ai ∈ Ai}. Denote the unversal set of such game
forms by Γ.
Given γ ∈ Γ, for each economy e ∈ E , a (non-cooperative) game is given

by (N, γ,e). Fixing the set of players N , we simply denote a game (N, γ,e)
by (γ,e). Given a game (γ,e), a profile a∗ ∈ A is a (pure-strategy) Nash
equilibrium of (γ,e) if for each i ∈ N and each ai ∈ Ai, ui (hi (a∗)) ≥
ui
¡
hi
¡
ai,a

∗
−i
¢¢
. Let NE (γ,e) denote the set of Nash equilibria of (γ,e).

An allocation z = (xi, yi)i∈N ∈ Zn is a Nash equilibrium allocation of
(γ,e) if there exists a ∈ NE (γ,e) such that h (a) = z. Let NA (γ,e)
denote the set of Nash equilibrium allocations of (γ,e). A mechanism γ ∈ Γ
implements ϕ in Nash equilibria if for each e ∈ E , NA (γ,e) = ϕ (e).
An SCC ϕ is implementable if there exists a mechanism γ ∈ Γ which
implements ϕ in Nash equilibria.
Among various types of mechanisms in Γ, we are interested in mecha-

nisms having the property of labor sovereignty [Kranich (1994); Gotoh et.
al (2005)],10 which says that every agent can choose freely her own labor time.
As such, we focus on the following types of mechanisms. For each i ∈ N ,
let her strategy space be Ai ≡ Mi × [0, x̄], with generic element (mi, xi).
Note that here Mi stands for an abstract general message space as in clas-
sical mechanisms, while the members of [0, x̄], which represent i’s choice of
labor time as part of her observable action, are also considered as a strategic
variable for i. Let y ∈ R+ be the total output the coordinator observes after
production. Then, a sharing mechanism is a function g : A × R+ → Rn+
such that for each (m,x) ∈ A and each y ∈ R+, g (m,x, y) = y for some
y ∈ Rn+. A sharing mechanism g is feasible if for each (m,x) ∈ A and
each y ∈ R+,

P
gi (m,x, y) ≤ y. We denote by G (resp. G∗) the class of

all sharing (resp. feasible sharing) mechanisms. In the following discussion,
we assume that the production technology function f is known and the to-
tal output after production is observable to the coordinator. Thus, for each
s ∈ Sn and each x ∈ [0, x̄]n, y = f (P sjxj) is known to the coordinator after
production, without the true information about s.11 Then, g ∈ G∗ implies
10The previous mechanisms such as Suh (1995), Yoshihara (1999, 2000a), Tian (2000)

do not have this property.
11Since the coordinator also knows f and x, he can figure out that the true skill profile

belongs to the hyperplane
©
s ∈ Sn | s·x = f−1 (y)ª. However, the exact location of the

true skill profile in this hyperplane cannot be figured out. Note that, to see which of the
feasible allocations are true ϕ-optimal allocations, one needs to know the information of
the true skill profile.
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that for each s ∈ Sn and each (m,x) ∈ A, (x, g (m,x, f (P sjxj))) ∈ Z (s).
In the following discussion, for each g ∈ G, we simply write a value of g
as g (m,x) instead of g (m,x, f (

P
sjxj)) except for when we define new

mechanisms in G.
Given g ∈ G (resp. g ∈ G∗), a sharing game (resp. feasible shar-

ing game) is defined for each economy e ∈ E as a non-cooperative game
(N,A, g,e). Fixing the set of players N and their strategy sets A, we simply
denote a sharing game (resp. feasible sharing game) (N,A, g,e) by (g,e).
Given a profile (m,x) ∈ A, let (m0

i,m−i, x0i,x−i) ∈ A be another strategy
profile that is obtained by replacing the i-th component (mi, xi) of (m,x)
with (m0

i, x
0
i). A profile (m

∗,x∗) ∈ A is a (pure-strategy) Nash equilib-
rium of (g,e) if for each i ∈ N and each (mi, xi) ∈ Ai, ui (x∗i , gi (m∗,x∗)) ≥
ui
¡
xi, gi

¡
mi,m

∗
−i, xi,x

∗
−i
¢¢
. Let NE (g,e) denote the set of Nash equilibria

of (g,e). An allocation z = (xi, yi)i∈N ∈ Zn is a Nash equilibrium allo-
cation of (g,e) if there exists m ∈ M such that (m,x) ∈ NE (g,e) and
y = g (m,x), where x = (xi)i∈N and y = (yi)i∈N . Let NA (g,e) denote the
set of Nash equilibrium allocations of (g,e).

3 Implementation: A General Characteriza-
tion

We introduce two axioms as necessary conditions for Nash implementation.
The first axiom is the well-known monotonicity condition. Given ui ∈ U
and zi ∈ Z, let L (zi, ui) ≡ {z0i ∈ Z | ui (z0i) ≤ ui (zi)} be the weakly lower
contour set for ui at zi. Then:

Monotonicity (M): For each e= (u, s) ,e0 = (u0, s) ∈ E and each z∈ ϕ (e),
if L (zi, ui) ⊆ L (zi, u0i) for each i ∈ N , then z∈ ϕ (u0, s).

This condition is slightly weaker than Maskin Monotonicity (Maskin 1999),
since in the latter condition, the lower contour set of each agent is defined
over the set of feasible allocations.
The second axiom is relevant to the change in individual skills.

Non-manipulability of Irrelevant Skills (NIS): For each e= (u, s) ∈ E
and each z∈ ϕ (e), for each e0 = (u, s0) ∈ E where s0i = si for each i ∈ N
with xi > 0, if z∈ P (e0) \ϕ (e0), then for each i ∈ N with s0i 6= si, there is
no z0i ∈ Z such that (z 0i ,z−i) ∈ ϕ (e0).
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That is, suppose that the current economy changes, due to the change of
someone’s skill, where this agent supplies no labor hour in the current allo-
cation, but this allocation is still efficient after this change of economy. Then,
if this allocation is no longer ϕ-optimal, we can find no other ϕ-optimal al-
location just by replacing this agent’s consumption bundle.
If the profile of individual skills is known to the planner, then the frame-

work can be reduced to the classical framework of Maskin (1999). In this case,
it follows from Sjöström (1991) that, assuming that any SCC selects interior
feasible allocations, an SCC is implementable if and only if it satisfies M,
which is true even in n = 2. In contrast, if the profile of individual skills may
be unknown to the planner, this characterization no longer holds. However,
even in such an extended framework, we show that, under Assumption 1,
an SCC is implementable if and only if it satisfiesM and NIS.

Theorem 1: If an SCC ϕ is implementable, then ϕ satisfies M and NIS.

Proof. Let ϕ be an implementable SCC. Then, there exists a mechanism
γ = (A, h) such that for any e= (ui, si)i∈N ∈ E , NA (γ,e) = ϕ (e). The
necessity of M is shown as usual, so we focus on the necessity of NIS.
For each e= (u, s), e0 = (ui, s0i)i∈N ∈ E , and each z∈ ϕ (e), let sj = s0j

for each j ∈ N with xj > 0. Moreover, let z∈ P (e0) \ϕ (e0). Suppose for
some i ∈ N with s0i 6= si, there exists z0i ∈ Z such that (z 0i ,z−i) ∈ ϕ (e0).
Since z∈ P (e0) and (z 0i ,z−i) ∈ ϕ (e0) ⊆ P (e0), ui (zi) = ui (z

0
i) holds. By

implementability of ϕ, there exist a ∈ NE (γ,e) and a0 ∈ NE (γ,e0) such
that h (a) =z and h (a0) = (z 0i ,z−i). By definition of Nash equilibrium,
it follows that for any j 6= i, hj (Aj,a−j) ⊆ L (zj, uj) and hj

¡
Aj,a

0
−j
¢ ⊆

L (zj, uj); and for i, hi (Ai,a−i) ⊆ L (zi, ui) and hi
¡
Ai,a

0
−i
¢ ⊆ L (z0i, ui).

Since ui (zi) = ui (z 0i) holds, L (zi, ui) = L (z
0
i, ui). The last equation implies

that a ∈ NE (γ,e0), and so z∈ NA (γ,e0), which is a contradiction from
implementability of ϕ, since z /∈ ϕ (e0). Thus, ϕ satisfies NIS.

Theorem 2: Let Assumption 1 hold. Then, if an SCC ϕ satisfies M and
NIS, then ϕ is implementable by a sharing mechanism.

Let us construct a feasible sharing mechanism, which is used in the
proof of Theorem 2 in Appendix A. Given x ∈ [0, x̄]n and i ∈ N , let
π (x−i) ≡ max

©xj+x̄
2
| xj < x̄ for j 6= i

ª
. We construct the following two

auxiliary outcome functions:
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• Let gy be such that for each s ∈ Sn, each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+,
and each i ∈ N ,

gyi (σ,x,y) =

⎧⎨⎩ f (
P
skxk)

if xi = π (x−i) and
yi > max {f (

P
σkx̄) , max {yj | j 6= i}} ,

0 otherwise.

• Let gσ be such that for each s ∈ Sn, each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+,
and each i ∈ N ,
gσi (σ,x,y) =

½
f (
P
skxk) if xi = 0, yi = 0, and σi > σj for each j 6= i,

0 otherwise.

The function gy assigns all of the produced output12 to only one agent who
provides the maximal positive amount, but less than x̄, of labor time and
reports a maximal demand for the output. The funciton gσ assigns all of
the produced output to only one agent who demands no output, reports the
highest skill, and does not work.

As a preliminary step, let pα (xi;x−i, s) ≡ limx0i→xi
f(
P
j 6=i sjxj+six

0
i)−f(

P
j 6=i sjxj+sixi)

six0i−sixi si,
where α = ‘+’ if x0i > xi; and α =‘−’ if x0i < xi. Given (u,σ,x,y) ∈
Un × Sn × [0, x̄]n ×Rn+, let

N (u,σ,x,y)

≡ ©
i ∈ N | ∃ (x0i, y0i) ∈ Z s.t.

¡
(x0i,x−i) ,

¡
y0i,y−i

¢¢ ∈ ϕ (u,σ)
ª
.

Note that if i ∈ N (u,σ,x,y), then it might be the case that there are
multiple (σ0i, x

0
i, y

0
i) such that

¡
(x0i,x−i) ,

¡
y0i,y−i

¢¢ ∈ ϕ (u, (σ0i,σ−i)). Then,
let

(σμ
i , x

μ
i , y

μ
i ) ≡ arg inf

{(σ0i,x0i,y0i)|((x0i,x−i),(y0i,y−i))∈ϕ(u,(σ0i,σ−i))}
σ0ix

0
i.

Note that yμi −p− (xμi ;x−i, (σμ
i ,σ−i))x

μ
i ≤ y0i−p− (x0i;x−i, (σ0i,σ−i))x0i holds

for any (σ0i, x
0
i, y

0
i) with

¡
(x0i,x−i) ,

¡
y0i,y−i

¢¢ ∈ ϕ (u, (σ0i,σ−i)).
Denote the upper boundary of L (zi, ui) by ∂L (zi, ui). We define g∗ ∈ G

with Mi ≡ Un × S × R+ , with generic element (ui,σ, y), for each i ∈ N , as
follows:

For each s ∈ Sn and each τ = ¡(ui)i∈N ,σ,x,y¢ ∈ (Un)n×Sn× [0, x̄]n×Rn+,
Rule 1: if f (

P
σkxk) = f (

P
skxk), and

12We implicitly assume that the mechanism coordinator can hold all of the produced
output after the production process, although he may not monitor that process perfectly.
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1-1: there exists u ∈ Un such that ui = u for each i ∈ N and
1-1-a): if (x,y) ∈ ϕ (u,σ), then g∗ (τ ) = y,
1-1-b): if (x,y) ∈ P (u,σ) \ϕ (u,σ), then g∗ (τ ) = 0,
1-2: there exists j ∈ N such that ui = u for each i 6= j, (x,y) /∈ ϕ (uj,σ),
and
1-2-a): if j ∈ N (u,σ,x,y), then g∗i (τ ) = 0 for each i 6= j, and g∗j (τ ) =½
y00j if yj > f (

P
σkx̄)

0 otherwise,
where y00j is given by¡
xj, y

00
j

¢ ∈ ½ ∂L
¡
z0j, uj

¢
if xj > 0©¡

0, yμj − p−
¡
xμj ;x−j,

¡
σμ
j ,σ−j

¢¢
xμj
¢ª

otherwise,
for z0j = (x

0
j, y

0
j) with

¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ (u,σ),
1-2-b): if j /∈ N (u,σ,x,y) and there exists (x0j, y0j) ∈ Z such that¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ P (uj,σ), then g∗i (τ ) = 0 for each i 6= j, and
g∗j (τ ) =

½
f (
P
skxk) if xj > 0 and yj > f (

P
σkx̄)

0 otherwise,
1-3: in any other case, g∗ (τ ) = gy (σ,x,y),

Rule 2: if f (
P

σkxk) 6= f (
P
skxk), then g∗ (τ ) = gσ (σ,x,y).

Note that this g∗ is not feasible, due to Rule 1-2-a).

Corollary 1: Let Assumption 1 hold. Then, an SCC ϕ is implementable if
and only if ϕ satisfies M and NIS.

4 Implementation by Natural Sharing Mech-
anisms

We define Nash implementation by natural sharing mechanisms. The set of
price vectors is the unit simplex∆ ≡ {p = (px, py) ∈ R+ ×R+ | px + py = 1},
where px represents the price of labor (measured in efficiency units) and py
the price of output.

Definition 1: A vector p ∈ ∆ is an efficiency price for z= (x,y) ∈ Zn at
e= (u, s) ∈ E if
(i) for each x0 ∈ R+, pyf (x0)− pxx0 ≤

P
(pyyi − pxsixi);

11



(ii) for each i ∈ N and each z0i ∈ Z, if ui (z0i) ≥ ui (zi), then pyy0i− pxsix0i ≥
pyyi − pxsixi.

The set of efficiency prices for z at e is denoted by ∆P (e,z). Given s∈ Sn,
z= (x,y) ∈ Zn, and p ∈ ∆, letB (p, si, zi) ≡ {z0i ∈ Z | pyy0i − pxsix0i ≤ pyyi − pxsixi}.

Definition 2: An SCC ϕ is naturally implementable, if there exists a feasi-
ble sharing mechanism g ∈ G∗ with Ai = ∆×S × [0, x̄]×R+ (∀i ∈ N) such
that:

(i) g implements ϕ in Nash equilibria;
(ii) g is forthright: for each e = (u, s) ∈ E and each (x,y) ∈ ϕ (e), there
exists p ∈ ∆P (u, s,x,y) such that (ρ, s,x,y) ∈ NE (g,e) and g (ρ, s,x,y) =
y with ρ = (ρi)i∈N = (p, . . . , p);
(iii) for each e = (u, s) ∈ E, if (ρ, s,x,y) ∈ NE (g,e) and g (ρ, s,x,y) = y
such that ρ = (ρi)i∈N = (p, . . . , p) ∈

¡
∆P (u, s,x,y)

¢n
, then for each i ∈ N

and each (ρ0i,σ
0
i, x

0
i, y

0
i) ∈ Ai,Ã

x0i, gi

Ã¡
ρ0i,σ

0
i, x

0
i, y

0
i,ρ−i, s−i,x−i,y−i

¢
, f

ÃX
j 6=i
sjxj + six

0
i

!!!
∈ B (p, si, zi) .

Let us call a feasible sharing mechanism satisfying Definition 2 a natural
sharing mechanism.
Two new axioms are introduced as necessary conditions for natural im-

plementation. As a preliminary step, given p ∈ ∆ and (s,z) ∈ Sn × Zn, let
P−1 (p, s,z) ≡ ©u ∈ Un | z ∈ P (u, s) and p ∈ ∆P (u, s,z)

ª
.

Supporting Price Independence (SPI) [Yoshihara (1998); Gaspart (1998)]:
For each e = (u, s) ∈ E and each z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such
that for each e0 = (u0, s) ∈ E , if p ∈ ∆P (e0,z), then z ∈ ϕ (e0).

Let ∆SPI (u, s,z) ≡ ©p ∈ ∆P (u, s,z) | ∀u0 ∈ Un s.t. p ∈ ∆P (u0, s,z) , z ∈
ϕ (u0, s)} for z ∈ ϕ (u, s).

Non-manipulability of Irrelevant Skills∗ (NIS∗): For each e = (u, s) ∈
E and each z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such that for each s0 ∈ Sn
where s0i = si for each i ∈ N with xi > 0, and each u0 ∈ P−1 (p, s0,z), if
z ∈ P (u0,s0) \ϕ (u0,s0), then for each i ∈ N with s0i 6= si, there is no z0i ∈ Z
such that (z 0i ,z−i) ∈ ϕ (u0,s0).

12



Note that NIS∗ implies NIS.

Theorem 3: If an SCC ϕ is naturally implementable, then ϕ satisfies SPI
and NIS∗.

Proof. Let ϕ be an SCC that is naturally implementable. Then, there
exists g ∈ G∗ that satisfies conditions (i)-(iii) in Definition 2. The necessity
of SPI is shown as in Yamada and Yoshihara (2007).
Show the necessity of NIS∗. Given e = (u, s) ∈ E and e0 = (u0, s0) =

(u0i, s
0
i)i∈N ∈ E , let z = (xi, yi)i∈N ∈ ϕ (e), s0i = si for each i ∈ N with xi > 0,

and there exist p ∈ ∆P (e,z)∩∆P (e0,z). Suppose that z ∈ P (e0) \ϕ (e0) and
there exists z0j ∈ Z such that

¡
z 0j,z−j

¢ ∈ ϕ (e0). Since ϕ satisfies SPI, z ∈
P (e0) \ϕ (e0) implies that there exists j ∈ N with xj = 0 and s0j 6= sj. From
(ii), for ρ = (ρi)i∈N with ρi = p for each i ∈ N , τ = (ρ, s,x,y) ∈ NE (g,e)
and g (τ ) = y. Therefore, from (iii), gi

³
(τ ∗i , τ−i) , f

³P
k 6=i skxk + six

∗
i

´´
≤

max
n
0, yi +

px
py
si (x

∗
i − xi)

o
for each i ∈ N and each τ ∗i ∈ Ai. Moreover,

from (ii), τ 0 = (ρ, s0,x0,y0) ∈ NE (g,e0) and g (τ 0) = y0, where x0i = xi and
y0i = yi for any i 6= j, and from (iii), gi

³¡
τ ∗i , τ

0
−i
¢
, f
³P

k 6=i s
0
kx
0
k + s

0
ix
∗
i

´´
≤

max
n
0, y0i +

px
py
s0i (x

∗
i − x0i)

o
for each i ∈ N and each τ ∗i ∈ Ai.

Note that, for any i 6= j, gi (τ 0) = yi and gi
³¡

τ ∗i , τ
0
−i
¢
, f
³P

k 6=i s
0
kx
0
k + s

0
ix
∗
i

´´
≤

max
n
0, yi +

px
py
si (x

∗
i − xi)

o
for each τ ∗i ∈ Ai. For j, gj

³¡
τj, τ

0
−j
¢
, f
³P

k 6=j s
0
kx
0
k

´´
=

gj
³
(τj, τ−j) , f

³P
k 6=j skxk

´´
= yj and gj

³¡
τ ∗j , τ

0
−j
¢
, f
³P

k 6=j skxk + s
0
jx
∗
j

´´
≤

max
n
0, y0j +

px
py
s0j
¡
x∗j − x0j

¢o
for each τ ∗i ∈ Ai. Note that, since z ∈ P (e0) \ϕ (e0)

and
¡
z 0j,z−j

¢ ∈ ϕ (e0), u0j (zj) = u
0
j

¡
z0j
¢
holds. Moreover, since p ∈ ∆P (e,z)∩

∆P (e0,z), yj = y0j+
px
py
s0j
¡
xj − x0j

¢
= y0j− px

py
s0jx

0
j. In summary, these argu-

ments imply that
¡
τj, τ

0
−j
¢
= τ ∈NE (g,e0) and g

³¡
τj, τ

0
−j
¢
, f
³P

k 6=j s
0
kx
0
k

´´
=

g
³
τ , f

³P
k 6=j skxk

´´
= y. Hence, z ∈ NA (g,e0) = ϕ (e0), which is a con-

tradiction. Thus, z ∈ P (e0) \ϕ (e0) implies that there is no z0j ∈ Z such that¡
z 0j,z−j

¢ ∈ ϕ (e0).

Theorem 4: Let Assumption 1 hold. Then, if an SCC ϕ satisfies SPI and
NIS∗, then ϕ is naturally implementable.
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Given p ∈ ∆ and (σ,x,y) ∈ Sn × [0, x̄]n × Rn+, let ϕ−1 (p,σ,x,y) ≡©
u ∈ Un | (x,y) ∈ ϕ (u,σ) and p ∈ ∆SPI (u,σ,x,y)

ª
. Given p ∈ ∆ and

(σ,x,y) ∈ Sn×[0, x̄]n×Rn+, letN (p,σ,x,y) ≡ {i ∈ N | ∃ (x0i, y0i) ∈ [0, x̄]× R+
s.t. ϕ−1

¡
p,σ, (x0i,x−i) ,

¡
y0i,y−i

¢¢ 6= ∅ª.
Given a strategy profile (ρ,σ,x,y) such that for each j, ρj = p, i ∈

N (p,σ,x,y) is called a “potential deviator,” for the following reason. Sup-
pose ϕ−1 (p,σ,x,y) = ∅ and N (p,σ,x,y) 6= ∅. The first equation implies
that (ρ,σ,x,y) is inconsistent with ϕ. The second equationN (p,σ,x,y) 6= ∅
implies that there is an agent i who can switch his strategy to another one
(ρi,σi, x

0
i, y

0
i) so that the new profile

¡
ρ,σ, (x0i,x−i) ,

¡
y0i,y−i

¢¢
is consistent

with ϕ. That is, it may be this agent i who makes the current strategy
profile (ρ,σ,x,y) inconsistent with ϕ. This means that i ∈ N (p,σ,x,y) is a
“potential deviator.”
We define g∗∗ ∈ G∗ with Mi ≡ ∆× S × R+ for each i ∈ N , as follows:

For each s ∈ Sn and each τ = (ρ,σ,x,y) ∈ ∆n × Sn × [0, x̄]n ×Rn+,
Rule 1: if f (

P
σkxk) = f (

P
skxk), and

1-1: there exists p ∈ ∆ such that ρi = p for each i ∈ N and
1-1-a): if ϕ−1 (p,σ,x,y) 6= ∅, then g∗∗ (τ ) = y,
1-1-b): if ϕ−1 (p,σ,x,y) = ∅ and P−1 (p,σ,x,y) 6= ∅, then g∗∗ (τ ) = 0,
1-2: there exist j ∈ N and p ∈ ∆ such that ρi = p for each i 6= j,
ϕ−1 (p,σ,x,y) = ∅, and
1-2-a): if j ∈ N (p,σ,x,y), then g∗i (τ ) = 0 for each i 6= j, and g∗∗j (τ ) =(
max

n
0,min

n
y0j +

px
py

¡
σjxj − σjx

0
j

¢
, f (

P
skxk)

oo
if yj > f (

P
σkx̄)

0 otherwise,
for (x0j, y

0
j) with ϕ−1

¡
p,σ,

¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ 6= ∅,
1-2-b): if j /∈ N (p,σ,x,y) and there exists ¡x0j, y0j¢ ∈ [0, x̄]× R+ such that
P−1

¡
p,σ,

¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ 6= ∅, then g∗∗i (τ ) = 0 for each i 6= j, and
g∗∗j (τ ) =

½
f (
P
skxk) if xj > 0 and yj > f (

P
σkx̄)

0 otherwise,
1-3: in any other case, g∗∗ (τ ) = gy (σ,x,y),

Rule 2: if f (
P

σkxk) 6= f (
P
skxk), then g∗∗ (τ ) = gσ (σ,x,y).

This mechanism works well even in economies of two agents.

Corollary 2: Let Assumption 1 hold. Then, an SCC ϕ is naturally imple-
mentable if and only if ϕ satisfies SPI and NIS∗.
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If each agent i can control her contribution by selecting esi ∈ [0, si], Corollary
2 still applies. Though we only focus on Nash implementation, it can be
shown, by slightly reformulating g∗∗ as a two-stage mechanism, that any
SCC is triply naturally implementable in Nash, strong Nash, and subgame
perfect equilibria if and only if it satisfies SPI and NIS∗.
In the above characterization, the mechanism g∗∗ satisfies neither the

balancedness [Hurwicz et al. (1995)] nor the best response property [Jackson
et. al (1994)]. However, as shown in Appendix (B), no SCC is implementable
by balanced natural sharing mechanisms. This suggests that there is a trade-
off between labor sovereignty and balancedness of mechanisms. Given the
primary relevance of the former condition, the latter condition is not required
in this paper. Also, as shown in Appendix (C), no SCC is implementable by
a natural sharing mechanism satisfying the best response property.
Finally, let us define Nash implementation by simple mechanisms.

Definition 3: An SCC ϕ is simply implementable, if there exists a feasible
sharing mechanism g ∈ G∗ with Ai = ∆ × S × [0, x̄] × R+ (∀i ∈ N) such
that Definition 2-(i), (ii), and (iii), and
(iv) for each e = (u, s) ∈ E, if (ρ, s,x,y) ∈ NE (g,e), then for each
e0 = (u, s0) ∈ E where s0i = si for each i ∈ N with xi > 0, [(ρ, s0,x,y) ∈
NE (g,e0) and g (ρ, s0,x,y) = g (ρ, s,x,y)].

This additional condition (iv) requires that the sharing of outputs is inde-
pendent of the skill parameters stated by “non-working” agents. It simplifies
the sharing process, but it is not necessarily an indispensable condition.
The next axiom was introduced by Yamada and Yoshihara (2007) for

simple implementation.

Independence of Unused Skills (IUS) [Yamada and Yoshihara (2007)]:
For each e = (u, s) ∈ E and each z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such
that for each e0 = (u, s0) ∈ E where s0i = si for each i ∈ N with xi > 0, if
p ∈ ∆P (e0,z), then z ∈ ϕ (e0).

Note that SPI and IUS imply SPI and NIS∗, though IUS and NIS∗ are
independent of each other.
Using this condition, Yamada and Yoshihara (2007) gave the characteri-

zation for simple implementation as follows:

Proposition 1: Let Assumption 1 hold. Then, an SCC ϕ is simply imple-
mentable if and only if ϕ satisfies SPI and IUS.
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More precisely, Yamada and Yoshihara (2007) characterized triple implemen-
tation by simple mechanisms in Nash, strong, and subgame perfect equilibria.
However, in this model of economies, triple implementation by simple mecha-
nisms is equivalent to simple implementation, because both are characterized
by SPI and IUS.

5 Applications

As discussed in the present literature such as Maskin (1999) and Yamada
Yoshihara (2007), there are well-known SCCs which satisfyM and/or SPI.
Thus, to see which SCCs are implementable and/or implementable by nat-
ural mechanisms, it is sufficient to examine which of such SCCs satisfiesNIS
and/or NIS∗.
We show that most of equitable SCCs are non-implementable by simple

mechanisms. Remember that in production economies with unequal skills,
the no-envy and efficient solution [Foley (1967)] is not well-defined, though
the no-envy principle is compatible withM, while the egalitarian-equivalence
[Pazner and Schmeidler (1978)] is incompatible. Thus, we may need to con-
sider a weaker version of the no-envy principle for defining equitable SCCs.
As one such examples, consider the equal-opportunity-for-budget-set (EOB)
principle, which is a condition for the basic income policy (Van Parijs 1995),
and can be formulated as follows:

Set-inclusion Undomination (SIU):13 For each e= (u, s) ∈ E and each
z∈ ϕ (e), there exists p ∈ ∆P (e,z) such that for each i, j ∈ N , neither
B (p, si, zi) ( B (p, sj, zj) nor B (p, si, zi) ) B (p, sj, zj).

Any SCC satisfying the no-envy principle also satisfies SIU. Pareto effi-
ciency and SIU are compatible. For instance, the eu-reference welfare equiv-
alent budget solution [Fleurbaey and Maniquet (1996)] satisfies SIU.

Definition 4: An SCC is the eu-reference welfare equivalent budget solution
ϕeu-RWEB if for each e= (u, s) ∈ E , z∈ ϕeu-RWEB (e) implies that z∈ P (e);
and there exists p = (px, py) ∈ ∆P (e,z) for z at e= (u, s) ∈ E such that for
any i, j ∈ N , maxz0∈B(p,si,zi) eu (z0) = maxz0∈B(p,sj ,zj) eu (z0).
13Van Parijs (1995) formulated the EOB principle as Undominated Diversity [Parijs

(1995)], which is stronger than SIU.
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The following corollary shows that ϕeu-RWEB is not simply implementable:

Corollary 3: No SCC satisfying SIU is simply implementable.

Proof. W.l.o.g., suppose that ϕ satisfies SPI. Let (u, s) ∈ E and z∈ ϕ (u, s)
such that for some i ∈ N , xi = 0. Let p ∈ ∆P (u, s,z) and for any j ∈ N ,
neither B (p, si, zi) ( B (p, sj, zj) nor B (p, si, zi) ) B (p, sj, zj).
If si > mink∈N {sk | k ∈ N}, then consider (u, s0) such that s0−i =s−i

and s0i = mink∈N {sk | k ∈ N}. Let mink∈N {sk | k ∈ N} = sj. Then, p ∈
∆P (u, s0,z), but B (p, s0i, zi) ( B (p, sj, zj). Thus, z /∈ ϕ (u, s0), which im-
plies that ϕ dose not satisfy IUS.
If si ≤ mink∈N {sk | k ∈ N}, then consider (u, s0) such that s0−i =s−i

and s0i > mink∈N {sk | k ∈ N} \ {si}. Consider u0 ∈ Un such that p ∈
∆P (u0, s0,z) with u0−i =u−i. Then, p ∈ ∆P (u0, s,z), which implies that z∈
ϕ (u0, s), because ϕ satisfies SPI. Note that there existsmink∈N {sk | k ∈ N} \ {si} =
sj. Then, B (p, s0i, zi) ) B (p, sj, zj), so that z /∈ ϕ (u0, s0). As p ∈ ∆P (u0, s0,z),
this implies that ϕ dose not satisfy IUS.

Thus, if SIU is requested as a minimal condition of equity, then no eq-
uitable SCC is simply implementable. However, as we see, the condition
of simple mechanisms is stringent, and it seems sufficient to consider nat-
ural mechanisms. Actually, in contrast to the case of simple implementation,
there are many equitable SCC s which are naturally implementable.
To see this, let ϕ be an SCC. This ϕ meets non-discrimination if, for any

(u, s) ∈ E , any z∈ ϕ (u, s), and any z0 ∈ P (u, s) such that ui (zi) = ui (z0i)
for each i ∈ N , z0 ∈ ϕ (u, s) holds. We have:

Lemma 1: If an SCC satisfies non-discrimination, then it satisfies NIS∗.

Proof. Let ϕ be an SCC not satisfying NIS∗. For each e= (u, s), e0 =
(u0i, s

0
i)i∈N ∈ E , and each z∈ ϕ (e), let sj = s0j for each j ∈ N with xj > 0,

and let there exist p ∈ ∆P (e,z)∩∆P (e0,z). Moreover, let z∈ P (e0) \ϕ (e0).
Suppose for some i ∈ N with s0i 6= si, there exists z0i ∈ Z such that (z 0i ,z−i) ∈
ϕ (e0). Since z∈ P (e0) and (z 0i ,z−i) ∈ ϕ (e0) ⊆ P (e0), u0i (zi) = u0i (z 0i) holds.
Thus, since ϕ satisfies non-discrimination, z∈ ϕ (e0), which demonstrates a
contradiction.

Note that there is an SCC which does not satisfy non-discrimination, but
satisfies NIS∗. For instance, the proportional solution [Roemer and Silvestre
(1993); Roemer (1996; Chapter 5)] is such an SCC.
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Corollary 4: Any SCC satisfying non-discrimination is implementable if it
satisfies M. Moreover, it is naturally implementable if it satisfies SPI.

Thus, an equitable solution satisfying non-discrimination is naturally imple-
mentable if it satisfies SPI. There are many such SCCs, one such example
is ϕeu-RWEB.
Is there an SCC which satisfiesM but does not satisfy NIS? First of all,

let us consider the case that the production function f is strictly concave.
Then:

Lemma 2: Let f be strictly concave. Then, any SCC satisfies NIS∗.

Proof. Take any e= (u, s), e0 = (u0, s0) ∈ E such that (i) sj = s0j for each
j ∈ N\ {1}, and s1 6= s01. Let z∈ ϕ (e) with z1 = (0, y1), and let there
exist p ∈ ∆P (e,z) ∩ ∆P (e0,z). Suppose z∈ P (e0) \ϕ (e0). Then, given
z−1, there is no other consumption bundle z01 such that (z

0
1,z−1) ∈ P (e0)

holds. This is because f is strictly concave, so that for any efficiency price
p ∈ ∆P (e0,z), z1 is the unique intersection point of ∂B (p, s01, z1) and the setn
(x, y) ∈ Z | y = f

³P
j 6=1 sjxj + s

0
1x
´o
. Thus, ϕ satisfies NIS∗.

Corollary 5: Let f be strictly concave. Then, an SCC is implementable if
and only if it satisfies M. Moreover, it is naturally implementable if and
only if it satisfies SPI.

Second, consider the case that the production function f is not strictly
concave. In this case, we can find an SCC which satisfies M but does not
satisfyNIS. Given s∈ Sn, there exists an agent whose skill level is the lowest
at s within the population. Denote such an agent at s by i (s). Then:

Definition 5: An SCC is the maximal workfare solution ϕWF if for each
e= (u, s) ∈ E , z∈ ϕWF (e) implies that there exists an efficiency price p ∈ ∆
of z at e such that z ∈ argmaxz0∈P (e) pyy0i(s) − pxsi(s)x0i(s) and there is no
z00i(s) ∈ Z with x00i(s) > xi(s) and

³
z00i(s),z−i(s)

´
∈ P (e).

To see an implication of this solution, let us assume that f is linear.
Then, let p∗ be the efficiency price of any Pareto efficient allocation, which
has the property that p∗y

p∗x
= f(x)

x
holds for any x > 0. Given this p∗, if¡¡

xi(s), yi(s)
¢
,z−i(s)

¢
,
³³
0, y∗i(s) (e)

´
,z−i(s)

´
∈ P (e) with yi(s) = y∗i(s) (e) +
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p∗x
p∗y
si(s)xi(s) are such that ui(s)

¡
xi(s), yi(s)

¢
= ui(s)

³
0, y∗i(s) (e)

´
, then ϕWF never

selects
³³
0, y∗i(s) (e)

´
,z−i(s)

´
, since the welfare payment y∗i(s) (e) via ϕWF is

to urge the lowest skill agent to work. In other words, ϕWF provides the
lowest skill agents with the maximal welfare payment if and only if they
work as much as possible, which is the reason why we call ϕWF the workfare
solution.
It is easy to see that ϕWF does not satisfy non-discrimination. Moreover:

Lemma 3: Let f be linear. Then, ϕWF is an SCC which satisfies M, but
does not satisfy NIS.

Proof. It is easy to check that ϕWF satisfies M. Let us check that ϕWF

does not satisfy NIS. Take e= (u, s), e0 = (u, s0) ∈ E such that (i) sj = s0j
and s1 < s01 < sj for each j ∈ N\ {1}; (ii) there is z∈ P (e) such that
z= argmaxz0∈P (e) pyy01 − pxs1x01 and z1 = (0, y1), where

py
px
= f(x)

x
holds

for any x > 0, by linearity of f . Without loss of generality, let this z1 be
the unique solution to maximize u1 (z) subject to z ∈ B (p, s1, z1). Such
uniqueness is guaranteed if s1 is sufficiently small. Furthermore, (iii) let us
assume under e0 that there is an interval [0, x01] such that for any x ∈ [0, x01],³
x, y1 +

px
py
s01x
´
∈ argmaxz∈B(p,s01,z1) u1 (z).

By definition, z∈ ϕWF (e). Note z∈ P (e0). Then, z1 ∈ argmaxz00∈P (e0) pyy001−
pxs

0
1x
00
1. To see this, let us take any z

∗
1 ≡

³
x∗1, y

∗
1 +

px
py
s01x

∗
1

´
∈ argmaxz00∈P (e0) pyy001−

pxs
0
1x
00
1, and suppose y

∗
1 > y1. Let z

∗ ∈ P (e0), whose 1st component is z∗1 .
Then,

¡
(0, y∗1) ,z

∗
−1
¢ ∈ P (e0) is also Pareto efficient for e, which implies that

z /∈ ϕWF (e), thus a contradiction. Therefore, y∗1 = y1 holds, which implies
the desired result.
By (iii), z01 ≡

³
x01, y1 +

px
py
s01x

0
1

´
∈ argmaxz00∈P (e0) pyy001 −pxs01x001, and x01 >

0, which implies that z /∈ ϕWF (e0) whereas (z01,z−1 ) ∈ ϕWF (e0). Thus, ϕWF

does not satisfy NIS.

Corollary 6: Let f be linear. Then, ϕWF is not implementable.

Note that ϕWF is Nash-implementable if skills are not private information,
since ϕWF satisfiesM. Thus, Corollary 6 implies that, introducing the private
information of skills makes the set of implementable SCCs properly shrink.
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6 Concluding Remarks

We have characterized Nash implementation in production economies with
unequal labor skills. Firstly, without any restriction of available mecha-
nisms, we have characterized the class of efficient SCCs which are Nash-
implementable in such economies. Then, we have seen thatMaskinmonotonic-
ity alone is no longer sufficient for Nash implementation, and there is a
Maskin-monotonic efficient SCC which is not implementable in these economies.
Secondly, we have defined natural mechanisms in these economies, and then
characterized the class of efficient SCCs which are Nash-implementable by
natural mechanisms. By this characterization, many efficient and equitable
SCCs are shown to be naturally implementable, though most of them were
known to be non-implementable by simple mechanisms in the present liter-
ature. The definition of natural mechanisms in this paper allows that the
mechanisms satisfy neither the balancedness nor the best response property.
However, the loss of the former property is inevitable when we are interested
in mechanisms having the labor sovereign property, whereas the loss of the
latter property is also inevitable for implementation by natural mechanisms.
This paper presumes a simple setting of one-input and one-output economies

with unequal skills among agents, and workability of the constructed mech-
anisms depends on this simple model. However, the main conclusions of this
paper can be generalized to more complicated models of multi-input and
multi-outputs economies with unequal skills, albeit at the cost of a substan-
tial increase in unessential technicalities.

7 Appendix A

1. Proof of Theorem 2.
Lemma A1: Let Assumption 1 hold. Let g∗ ∈ G be as above. Given
(u,s) ∈ E , let ¡(ui)i∈N ,σ,x,y¢ ∈ (Un)n × Sn × [0, x̄]n × Rn+ be a Nash
equilibrium of (g∗,u,s) such that f (

P
σkxk) = f (

P
skxk). Then, for each

i ∈ N with xi > 0, σi = si.

This proof is given as of Lemma 1 in Yamada and Yoshihara (2007).

Lemma A2: Let Assumption 1 hold. Then, g∗ implements any SCC ϕ
satisfying M and NIS in Nash equilibria.
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Proof. Let ϕ be an SCC satisfyingM and NIS. Let e = (u,s) ∈ E .

(1) First, we show that ϕ (e) ⊆ NA (g∗,e). Let z = (x,y) ∈ ϕ (e). Let
τ =

¡
(ui)i∈N , s,x,y

¢ ∈ (Un × S × [0, x̄]×R+)n be such that ui = u for
each i ∈ N . Then, g∗ (τ ) = y from Rule 1-1. Suppose j ∈ N deviates
to τ 0j =

¡
uj0, s0j, x

0
j, y

0
j

¢ ∈ Un × S × [0, x̄] × R+. From Assumption 1 and
the continuity of utility functions, if g∗j

¡
τ 0j, τ−j

¢
= 0, it implies the worst

outcome for j.
If τ 0j induces Rule 2, then x

0
j > 0 and g∗j

¡
τ 0j, τ−j

¢
= 0. If τ 0j induces

Rule 1-3, then either
¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ
¡
uj,
¡
s0j, s−j

¢¢
or x0j = 0 and

s0j 6= sj. The former implies s0j = sj and y0j ≤ f
³P

i6=j six+ s
0
jx
´
. Thus,

in either case, g∗j
¡
τ 0j, τ−j

¢
= 0. If τ 0j induces Rule 1-2-b, then xj = 0 and

s0j 6= sj. Thus, g∗j
¡
τ 0j, τ−j

¢
= 0.

If τ 0j induces Rule 1-2-a), then either x
0
j > 0 or x

0
j = 0 and s

0
j 6= sj. In

the former case, since s0j = sj, Rule 1-2-a) implies that
¡
x0j, g

∗
j

¡
τ 0j, τ−j

¢¢ ∈
L (zj, uj). In the latter case, there exists

¡
σμ
j , x

μ
j , y

μ
j

¢
such that

¡¡
xμj ,x−j

¢
,
¡
yμj ,y−j

¢¢ ∈
ϕ
¡
u,
¡
σμ
j , s−j

¢¢
and yμj − p−

¡
xμj ;x−j,

¡
σμ
j , s−j

¢¢
xμj ≤ yj − p− (xj;x−j, s)xj

hold. Let p = (px, py) be the efficiency price which supports z as a ϕ-
optimal allocation at e. Then, yj − px

py
sjxj ≥ yj − p− (xj;x−j, s)xj, so

that g∗j
¡
τ 0j, τ−j

¢
= yμj − p−

¡
xμj ;x−j,

¡
σμ
j , s−j

¢¢
xμj ≤ yj − px

py
sjxj. This

implies
¡
x0j, g

∗
j

¡
τ 0j, τ−j

¢¢ ∈ L (zj, uj). Finally, if τ 0j induces Rule 1-1, then
g∗j
¡
τ 0j, τ−j

¢
= y0j = f(

P
i6=j sixi + sjx

0
j)−

P
i 6=j

yi. Thus, since z ∈ P (e),
uj
¡
x0j, y

0
j

¢ ≤ uj (zj). In summary, j has no incentive to switch to τ 0j.

(2) Second, showNA (g∗,e) ⊆ ϕ (e). Let τ =
¡
(vi)i∈N ,σ,x,y

¢ ∈ NE (g∗,e).
Suppose that τ induces Rule 2. Then, eitherN0 (x) ≡ {i ∈ N | xi = 0} =

∅ or N0 (x) 6= ∅. If N0 (x) = ∅, then for each i ∈ N , g∗i (τ ) = 0. Then, if
for each k ∈ N , Pi6=k σixi =

P
i6=k sixi, then (n− 1) · (

P
σixi) = (n− 1) ·

(
P
sixi), which contradicts from Rule 2. Thus, for some j ∈ N ,

P
i6=j σixi 6=P

i6=j sixi. If j switches to τ 0j =
¡
vj0,σ0j, x

0
j, y

0
j

¢
with σ0j > max {σi | i 6= j},

x0j = 0, and y
0
j = 0, then g

∗
j

¡
τ 0j, τ−j

¢
> 0 under Rule 2.

Let N0 (x) 6= ∅ with #N0 (x) ≥ 2. Then, for each j ∈ N0 (x), if j’s
deviating strategy τ 0j is such that for each i 6= j, σ0j > σi and

¡
x0j, y

0
j

¢
= (0, 0),

then g∗j
¡
τ 0j, τ−j

¢
= f (

P
skxk) under Rule 2.

Let #N0 (x) = 1 and #N\N0 (x) ≥ 2. Then, there exists j ∈ N\N0 (x)
such that

P
i∈N\(N0(x)∪{j}) σixi 6=

P
i∈N\(N0(x)∪{j}) sixi. Thus, j can switch
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to τ 0j such that g
∗
j

¡
τ 0j, τ−j

¢
> 0 under Rule 2. This can be shown in a similar

way to the case of N0 (x) = ∅.
Let N0 (x) = {i} and N\N0 (x) = {j}. If yi > 0, then switching i’s

strategy to σ0i > σj, x0i = 0, and y
0
i = 0 implies g

∗
i (v

i0,σ0i, x
0
i, y

0
i,v

j,σj, xj, yj) =
f (sjxj) under Rule 2. If yi = 0, then switching j’s strategy to vj0 =vi, σ0j =
sj, x0j =

x
2
, and y0j > f (sjx+ σix) implies g∗j

¡
vi,σi, xi, yi,v

j0,σ0j, x
0
j, y

0
j

¢
=

f
¡
sjx

0
j

¢
under Rule 1-3. In summary, τ does not induce Rule 2.

Suppose that τ induces Rule 1-2 or 1-3. Then, there exists j ∈ N
such that g∗j (τ ) = 0. By Lemma A1, σj = sj or xj = 0. Suppose τ
induces Rule 1-2. Then, g∗j (τ ) = 0 implies that yj ≤ f (

P
σkx). Then,

j can either deviate to Rule 1-3 with σ0j = sj, x0j = π (x−j) < x, and

y0j > max
n
f
³P

i6=j σix̄+ σ0jx̄
´
, max {yi | i 6= j}

o
or get g∗j

¡
τ 0j, τ−j

¢
> 0

under Rule 1-2 by y0j > f
³P

i6=j σix̄+ σ0jx̄
´
. Suppose τ induces Rule 1-3.

Then, there exists τ 0j such that g
∗
j

¡
τ 0j, τ−j

¢
> 0 under Rule 1-3. In summary,

τ induces neither Rule 1-2 nor 1-3.
Suppose that τ induces Rule 1-1-b). Then, g∗ (τ ) = 0. Then, some

j ∈ N can deviate to induce Rule 1-2, so that g∗j
¡
τ 0j, τ−j

¢
> 0, which is a

contradiction.
Thus, τ induces Rule 1-1-a), and g∗ (τ ) = y. By definition of Rule 1-1-a),

(x,y) ∈ ϕ (u0,σ) where u0 =vi for all i ∈ N . Since τ ∈ NE (g∗,e), σi = si
holds for any i ∈ N with xi > 0 by Lemma A1. Assume, without loss of
generality, that there exists at most one unique individual j such that xj = 0.
Let us consider the following two cases below:
Case 1: Let (x,y) ∈ P (u0, s). Then, we can show that (x,y) ∈ ϕ (u0, s).
Suppose that (x,y) /∈ ϕ (u0, s). Then, for the individual j ∈ N with xj = 0,
σj 6= sj. Then, if j takes the strategy τ 0j =

¡
u0, sj, x0j, y

0
j

¢
with x0j > 0,

y0j > f (
P
skx), then NIS implies j /∈ N (u0, s,x,y), so that Rule 1-2-b)

can be applied. Then, if x0j > 0 is sufficiently small, uj
¡
x0j, g

∗
j

¡
τ 0j, τ−j

¢¢
=

uj
³
x0j, f

³P
i6=j sixi + sjx

0
j

´´
> uj (0, yj) = uj

¡
xj, g

∗
j (τ )

¢
. This implies

(x,y) /∈ NA (g∗, (u, s)), which is a contradiction. Thus, (x,y) ∈ ϕ (u0, s).
Then, (x,y) ∈ NA (g∗, (u, s)) implies that L ((xi, yi) , u0i) ⊆ L ((xi, yi) , ui)
holds for each i ∈ N by Rule 1-2-a). Thus, (x,y) ∈ ϕ (u, s) byM.
Case 2: Let (x,y) /∈ P (u0, s). Since (x,y) ∈ P (u0,σ), we have for the
individual j ∈ N with xj = 0, σj < sj. Then, there exists

¡
u00j ,u

0
−j
¢ ∈ Un

such that L ((xi, yi) , u00i ) ) L ((xi, yi) , u0i) and (x,y) ∈ P
¡¡
u00j ,u

0
−j
¢
, s
¢
. Let
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u00 ≡ ¡u00j ,u0−j¢. Note that by M, (x,y) ∈ ϕ (u00,σ). Then, by Rule 1-1-a),
for τ 00 =

¡
(v00i)i∈N ,σ,x,y

¢
with v00i = u00 (∀i ∈ N), g∗ (τ 00) = y, which im-

plies τ 00 ∈ NE (g∗,e). Suppose (x,y) /∈ ϕ (u00, s). Then, by the same argu-
ment as in Case 1, j can induce Rule 1-2-b), so that (x,y) /∈ NA (g∗, (u, s)),
a contradiction. Thus, (x,y) ∈ ϕ (u00, s). Then, τ 00 ∈ NE (g∗,e) and
(x,y) ∈ NA (g∗, (u, s)) imply that L ((xi, yi) , u00i ) ⊆ L ((xi, yi) , ui) holds
for each i ∈ N by Rule 1-2-a). Thus, (x,y) ∈ ϕ (u, s) byM.

Proof of Theorem 2. From Lemma A2, we obtain the desired result.

2. Proof of Theorem 4.
Lemma A3: Let Assumption 1 hold. Let g∗∗ ∈ G∗ be as previously defined.
Given (u,s) ∈ E , let (ρ,σ,x,y) ∈ ∆n×Sn×[0, x̄]n×Rn+ be a Nash equilibrium
of (g∗∗,u,s) such that f (

P
σkxk) = f (

P
skxk). Then, for each i ∈ N with

xi > 0, σi = si.

The proof of Lemma A3 is given in a similar way to that of Lemma A1.

Lemma A4: Let Assumption 1 hold. Then, g∗∗ implements any SCC ϕ
satisfying SPI and NIS∗ in Nash equilibria.

Proof. Let ϕ be a SCC satisfying SPI and NIS∗. Let e = (u,s) ∈ E .
(1) First, we show that ϕ (e) ⊆ NA (g∗∗,e). Let z = (x,y) ∈ ϕ (e). Let
τ = (ρ, s,x,y) ∈ (∆× S × [0, x̄]×R+)n be such that ρi = p = (px, py) for
each i ∈ N and p ∈ ∆SPI (u,s,z). Then, g∗∗ (τ ) = y from Rule 1-1. Suppose
j ∈ N deviates to τ 0j =

¡
ρj0,σ0j, x

0
j, y

0
j

¢ ∈ ∆× S × [0, x̄]×R+.
If τ 0j induces Rule 1-1-b), Rule 1-3, or Rule 2, then g

∗∗
j

¡
τ 0j, τ−j

¢
= 0, as

similarly shown in the corresponding part of the proof of Lemma A2. If τ 0j in-
duces Rule 1-2-b), then σ0j = sj does not hold, sinceN

¡
p,
¡
σ0j, s−j

¢
,
¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢
=

N
¡
p, s,

¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢
= N (p, s,x,y) and j ∈ N (p, s,x,y). Thus, if

τ 0j induces Rule 1-2-b), σ
0
j 6= sj and x0j = 0 hold, so that g∗∗j

¡
τ 0j, τ−j

¢
= 0. If

τ 0j induces Rule 1-2-a) or Rule 1-1, then g
∗∗
j

¡
τ 0j, τ−j

¢ ≤ yj+ px
py

¡
sjx

0
j − sjxj

¢
.

In summary, j has no incentive to switch to τ 0j.

(2) Second, show NA (g∗∗,e) ⊆ ϕ (e). Let τ = (ρ,σ,x,y) ∈ NE (g∗∗,e).
Note that τ can induce neither of Rule 1-1-b), Rule 1-2, Rule 1-3, or Rule

2, which is shown by almost the same way as the corresponding cases of Rule
1-1-b), Rule 1-2, Rule 1-3, and Rule 2 in the proof of Lemma A2.
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Thus, τ induces Rule 1-1-a), and g∗∗ (τ ) = y. By definition of Rule 1-1-
a), there exists u 0 ∈ Un such that for each i ∈ N , ρi = p ∈ ∆SPI (u0,σ,x,y)
and (x,y) ∈ ϕ (u0,σ). Since τ ∈ NE (g∗∗,e), σi = si holds for any i ∈ N
with xi > 0 by Lemma A3. Assume, without loss of generality, that there
exists at most one unique individual j such that xj = 0. Let us consider the
following two cases below:
Case 1: Let (x,y) ∈ P (u0, s). Then, we can show that (x,y) ∈ ϕ (u0, s).
Suppose that (x,y) /∈ ϕ (u0, s). Then, for the individual j ∈ N with xj = 0,
σj 6= sj. In this case, j /∈ N (p, s,x,y) follows from NIS∗. This is because,
first of all, by SPI, (x,y) /∈ ϕ (u0, s) together with p ∈ ∆P (u0, s,x,y) im-
ply that p /∈ ∆SPI (u00, s,x,y) holds for any u00 with p ∈ ∆P (u00, s,x,y).
In fact, if p ∈ ∆P (u0, s,x,y) and p ∈ ∆SPI (u00, s,x,y) for some u00, then
(x,y) ∈ ϕ (u0, s) by SPI, which is a contradiction. Thus, ϕ−1 (p, s,x,y) = ∅.
Hence, for any u00 ∈ P−1 (p, s,x,y), (x,y) /∈ ϕ (u00, s). Then, it follows
from NIS∗ that, for any u00 ∈ P−1 (p, s,x,y), there is no ¡x0j, y0j¢ ∈ Z such
that

¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ (u00, s). Suppose that there is
¡
x0j, y

0
j

¢ ∈
Z such that

¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ (u00, s) and u00 /∈ P−1 (p, s,x,y).
Then, consider u000 =

¡
u000j ,u

00
−j
¢ ∈ Un such that p ∈ ∆P (u000, s,x,y) ∩

∆P
¡
u000, s,

¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢
. By SPI,

¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ (u000, s).
However, since u000 ∈ P−1 (p, s,x,y), ϕ−1 (p, s,x,y) = ∅ and NIS∗ imply
that

¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢
/∈ ϕ (u000, s), which is a contradiction. Thus,

j /∈ N (p, s,x,y) holds.
Given this argument, if j takes the strategy τ 0j =

¡
p, sj, x

0
j, y

0
j

¢
with y0j >

f (
P
skx), then j /∈ N

¡
p, s,

¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢
= N (p, s,x,y), so that

Rule 1-2-b) is induced. If x0j > 0 is sufficiently small, then uj
³
x0j, f

³P
k 6=j skxk + sjx

0
j

´´
>

uj (0, yj), which implies uj
¡
x0j, g

∗∗
j

¡
τ−j, τ 0j

¢¢
> uj

¡
xj, g

∗∗
j (τ )

¢
, a contradic-

tion from τ ∈ NE (g∗∗,e). Thus, (x,y) ∈ ϕ (u0, s). Note thatB (p, si, (xi, yi)) ⊆
L ((xi, yi) , ui) holds for each i ∈ N with xi > 0 by Rule 1-2-a). Moreover,
if it does not hold B (p, sj, (xj, yj)) ⊆ L ((xj, yj) , uj) for j ∈ N with xj = 0,
then j can choose the strategy

¡
p, sj, x

0
j, y

0
j

¢
with sufficiently small x0j > 0

and y0j > f (
P
skx), so that

¡
x0j, g

∗∗
j

¡
τ 0j, τ−j

¢¢
/∈ L ((xj, yj) , uj) under Rule

1-2-a), which is again a contradiction from τ ∈ NE (g∗∗,e). Thus, (x,y) ∈
P (u, s), and (x,y) ∈ ϕ (u, s) by SPI.
Case 2: Let (x,y) /∈ P (u0, s). Since (x,y) ∈ P (u0,σ), for the individual
j ∈ N with xj = 0, we have σj < sj. Then, there exists

¡
u00j ,u

0
−j
¢ ∈ Un

such that L ((xi, yi) , u00i ) ) L ((xi, yi) , u0i) and (x,y) ∈ P
¡¡
u00j ,u

0
−j
¢
, s
¢
. Let
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u00 ≡ ¡u00j ,u0−j¢. Note that since ϕ satisfies SPI which implies M, (x,y) ∈
ϕ (u00,σ). Then, by the same argument as in Case 1, (x,y) ∈ ϕ (u00, s).
Since (x,y) ∈ NA (g∗∗, (u, s)) with (ρ,σ,x,y) ∈ NE (g∗∗,e), we have, by
Rule 1-1-a) and 1-2-a), that (x,y) ∈ P (u, s) with p as the corresponding
efficiency price. Thus, since p ∈ ∆SPI (u00, s,x,y), we have (x,y) ∈ ϕ (u, s)
by SPI.

Proof of Theorem 4. By the construction of g∗∗, it is a feasible sharing
mechanism having the property of forthrightness. Thus, it satisfies Definition
2. From Lemma A4, we obtain the desired result.

8 Appendix B

Given s ∈ Sn, a feasible allocation (x,y) ∈ Z (s) for s is balanced if P yi =
f (
P
sixi). Given s ∈ Sn, (x,y) ∈ Zn, and i ∈ N , let Zi (s, (x,y) , p) ≡©

(x0i, y
0
i) ∈ Z | ϕ−1

¡
p, s, (x0i,x−i) ,

¡
y0i,y−i

¢¢ 6= ∅ª.
Condition PQP: For each e = (u, s) ∈ E and each (p,x,y) ∈ ∆ × Zn
such that f (

P
sjxj) 6=

P
yj and N (p, s,x,y) = N , there exists a balanced

feasible allocation z∗ ∈ Z (s) such that:
(1) for all i ∈ N , x∗i = xi;
(2) for all i ∈ N , z∗i ∈ ∩(x0i,y0i)∈Zi(s,(x,y),p)B (p, si, (x

0
i, y

0
i));

(3) if there exists u∗ ∈ Un such that for all i ∈ N ,
∩(x0i,y0i)∈Zi(s,(x,y),p)B (p, si, (x

0
i, y

0
i)) ⊆ L (z∗i , u∗i ), then z∗ ∈ ϕ (u∗, s).

Proposition B1: If an SCC ϕ is implementable by a balanced natural
sharing mechanism, then ϕ satisfies PQP.

Proof. Given s ∈ Sn, let (p,x,y) ∈ ∆×Zn be such that N (p, s,x,y) = N .
Then, for each i ∈ N and each (x0i, y

0
i) ∈ Zi (s, (x,y) , p), let ai ∈ A be such

that aii ≡ (p, si, x0i, y0i) and aij ≡ (p, sj, xj, yj) for any j 6= i. Then, for any u∈
ϕ−1

¡
p, s, (x0i,x−i) ,

¡
y0i,y−i

¢¢
, g (ai) =

¡
y0i,y−i

¢
and

¡
(x0i,x−i) ,

¡
y0i,y−i

¢¢ ∈
NA (g, (u,s)) hold by Definition 2-(ii). Then, by Definition 2-(iii), for each
i ∈ N and each (ρ00i ,σ

00
i , x

00
i , y

00
i ) ∈ Ai,Ã

x00i , gi

Ã¡
(ρ00i ,σ

00
i , x

00
i , y

00
i ),a

i
−i
¢
, f

ÃX
j 6=i
sjxj + six

00
i

!!!
∈ B (p, si, (x0i, y0i)) .
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Let z∗ ≡ ¡(xi)i∈N , g (a∗)¢ for a∗ = (p, si, xi, yi)i∈N . Then, z∗ ∈ Z (s) is bal-
anced, since g is a balanced feasible sharing mechanism. Moreover, from the
property of a∗ ∈ A, it follows that z∗i =

¡
xi, g

¡
a∗i ,a

i
−i
¢¢ ∈ B (p, si, (x0i, y0i))

for all (x0i, y
0
i) ∈ Zi (s, (x,y) , p) and all i ∈ N . Finally, if there exists u∗ ∈ Un

such that for all i ∈ N , ∩(x0i,y0i)∈Zi(s,(x,y),p)B (p, si, (x
0
i, y

0
i)) ⊆ L (z∗i , u∗i ), then

a∗ ∈ NE (g, (u∗,s)). Thus, by implementability, z∗ ∈ ϕ (u∗, s).

Proposition B2: There is no SCC ϕ which satisfies PQP.

Proof. Take any ϕ and an economy e = (u, s) ∈ E such that si = 1 for all
i ∈ N . Moreover, let N (p, s,x,y) = N . Suppose that there exists z∗ ∈ Z (s)
which satisfies the requirements of Condition PQP.

Fristly, consider
P
yi > f (

P
xi). In this case, for each i ∈ N , y∗i ≤

y0i +
px
py
(x∗i − x0i) for (x0i, y0i) ∈ Zi (s, (x,y) , p). Note that x∗i = xi for each

i ∈ N . Note also that there is some xN such that p being the support-
ing price of (xN , f (xN)), and moreover, for each i ∈ N , y0i + px

py
(x∗i − x0i) =h

f (xN)−
P

h6=i yh
i
+ px

py

³
xi − xN +

P
h6=i xh

´
. The latter equation follows

from the fact that, for each i ∈ N , y0i = f
³P

h6=i xh + x
0
i

´
−Ph6=i yh andh

f (xN)−
P

h6=i yh
i
+px
py

³
xi − xN +

P
h6=i xh

´
=
h
f
³P

h6=i xh + x
0
i

´
−Ph6=i yh

i
+

px
py
(xi − x0i). Thus, y∗i ≤ f (xN)−

P
h6=i yh+

px
py

³
xi − xN +

P
h6=i xh

´
for each

i ∈ N . Let us sum this up over i, so thatP y∗i ≤ n
h
(f (xN)−

P
yi) +

px
py
(
P
xi − xN)

i
+P

yi. Since
P
y∗i = f (

P
xi) by the balanced feasible allocation of z∗,

f (
P
xi) −

P
yi ≤ n

h
(f (xN)−

P
yi) +

px
py
(
P
xi − xN)

i
. Note, in general,

f (xN) +
px
py
(
P
xi − xN) ≥ f (

P
xi). Now, let f be such that f (xN) +

px
py
(
P
xi − xN) and f (

P
xi) are sufficiently close or even equal. For instance,

the latter is available if f is linear in the interval [min {Pxi, xN}− ε,max {Pxi, xN}+ ε]

for some ε > 0. Thus, we have f (
P
xi)−

P
yi ≤ n

h
(f (xN)−

P
yi) +

px
py
(
P
xi − xN)

i
≈

n [f (
P
xi)−

P
yi]. However, f (

P
xi) −

P
yi > n [f (

P
xi)−

P
yi] holds

from
P
yi > f (

P
xi) and n ≥ 2, which is a contradiction.

Secondly, consider
P
yi < f (

P
xi). In this case, we see that even ifP

yi < f (
P
xi) forN (p, s,x,y) = N , there is always anotherN (p, s,x0,y0) =

N such that
P
y0i > f (

P
x0i) for n = 2. By N (p, s,x,y) = N , for each

i ∈ N , there is (x0i, y0i) ∈ Zi (s, (x,y) , p), so that y0i = f (xh + x0i)− yh. Then,
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y0i+ y
0
j > f

¡
x0i + x

0
j

¢
, and N (p, s,x0,y0) = N still holds. Then, we can apply

the argument for the case of
P
yi > f (

P
xi).

9 Appendix C

Definition C1: A natural sharing mechanism g ∈ G∗ has the best re-
sponse property, if for each e = (u, s) ∈ E, each (ρ, s,x,y) ∈ A, and each
i ∈ N , there is (ρ∗i ,σ∗i , x∗i , y∗i ) ∈ Ai such that for each (ρ0i,σ0i, x0i, y0i) ∈ Ai,³
x0i, gi

³¡
ρ0i,σ

0
i, x

0
i, y

0
i,ρ−i, s−i,x−i,y−i

¢
, f
³P

j 6=i sjxj + six
0
i

´´´
∈ L ((x∗i , y∗i ) , ui),

where y∗i = gi
³¡

ρ∗i ,σ
∗
i , x

∗
i , y

∗
i ,ρ−i, s−i,x−i,y−i

¢
, f
³P

j 6=i sjxj + six
∗
i

´´
.

Proposition C1: If a natural sharing mechanism g ∈ G∗ implements an
SCC satisfying SPI and NIS∗, it does not have the best response property.

Proof. Let ϕ be an SCC satisfying SPI and NIS∗ which has the following
property: for some s = (si)i∈N ∈ Sn and s∗ =

¡
s∗j , s−j

¢ ∈ Sn and for some
z = (xi, yi)i∈N ∈ Z (s) ∩ Z (s∗) with xj = 0, there exists p ∈ ∆ such that
ϕ−1 (p, s,z) 6= ∅, ϕ−1 (p, s∗,z) = ∅, and P−1 (p, s∗,z) 6= ∅. Let g ∈ G∗
be a natural sharing mechanism which implements ϕ. Take any u ∈ Un
such that p ∈ ∆P ((u, s) ,z) ∩ ∆P ((u, s∗) ,z). Then, z ∈ ϕ (u, s) and
z ∈ P (u, s∗) \ϕ (u, s∗). Since g implements ϕ, z ∈ NA (g, (u, s)) and z /∈
NA (g, (u, s∗)). By Definition 2-(ii), τ = (p, si, xi, yi)i∈N ∈ NE (g, (u, s)) \NE (g, (u, s∗)).
To guarantee the last equation, j ∈ N has to have an alternative strategy τ 0j =¡
p0j, s0j, x

0
j, y

0
j

¢
in the game (g, (u, s∗)) such that

³
x0j, g

³
τ 0j, τ−j, f

³P
k 6=j skxk + s

∗
jx
0
j

´´´
∈

U (zj, uj), where U (zj, uj) is the strictly upper-contour set of uj at zj. The
same argument should apply to any other u0 ∈ Un with p ∈ ∆P ((u0, s∗) ,z).
Denote the attainable set of g for j at τ under s∗ by gj (Aj, τ−j; s∗) ≡n³
x0j, gj

³
τ 0j, τ−j, f

³P
k 6=j skxk + s

∗
jx
0
j

´´´
∈ Z | τ 0j =

¡
p0j, s0j, x

0
j, y

0
j

¢ ∈ Ajo. Note
that, for each u0 ∈ Un with p ∈ ∆P ((u0, s∗) ,z), gj (Aj, τ−j; s∗)∩U

¡
zj, u

0
j

¢ 6=
∅. In contrast, for any τ 0j ∈ Aj with x0j = 0, gj

³
τ 0j, τ−j, f

³P
k 6=j skxk

´´
≤ yj

holds, since z ∈ NA (g, (u, s)) and τ ∈ NE (g, (u, s)). Thus, for each
u0 ∈ Un with p ∈ ∆P ((u0, s∗) ,z),

¡
x0j, y

0
j

¢ ∈ gj (Aj, τ−j; s∗) ∩ U ¡zj, u0j¢
implies x0j > 0 and y

0
j > yj.

Consider a sequence
©
utj
ª ⊂ U such that p ∈ ∆P

¡¡¡
ut

0
j ,u

0
−j
¢
, s∗
¢
,z
¢

for each ut
0
j ∈

©
utj
ª
and U

¡
zj, u

t
j

¢ ⊃ U
¡
zj, u

t+1
j

¢
for each t. For each
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ut
0
j ∈

©
utj
ª
, let us take

¡
x
¡
ut

0
j

¢
, y
¡
ut

0
j

¢¢ ∈ Z such that
¡
x
¡
ut

0
j

¢
, y
¡
ut

0
j

¢¢ ∈
gj (Aj, τ−j; s∗) ∩ U

¡
zj, u

t0
j

¢
. Then, by the property of the sequence

©
utj
ª
,

x
¡
ut

0
j

¢ → 0 as t0 → ∞ while limt0→∞ y
¡
ut

0
j

¢
> yj holds. The former follows

from ∩u0∈Un:p∈∆P ((u0,s∗),z)U
¡
zj, u

0
j

¢
= {(0, y0) | y0 > yj}. The latter follows

from the following reason: if limt0→∞ y
¡
ut

0
j

¢ ≤ yj holds, then there is u00j ∈ U
such that p ∈ ∆P

¡¡¡
u00j ,u

0
−j
¢
, s∗
¢
,z
¢
and gj (Aj, τ−j; s∗) ∩ U

¡
zj, u

00
j

¢
= ∅,

which is a contradiction. Thus, limt0→∞
¡
x
¡
ut

0
j

¢
, y
¡
ut

0
j

¢¢
/∈ gj (Aj, τ−j; s∗),

since limt0→∞ x
¡
ut

0
j

¢
= 0 and gj

³
τ 0j, τ−j, f

³P
k 6=j skxk

´´
≤ yj for any τ 0j ∈

Aj with x0j = 0. This implies that gj (Aj, τ−j; s
∗) is not closed. Then, con-

sider u∗j ∈ U such that, for
¡
0, y∗j

¢
with y∗j ≡ limt0→∞ y

¡
ut

0
j

¢
, the correspond-

ing indifference curve of u∗j at
¡
0, y∗j

¢
has no intersection with gj (Aj, τ−j; s∗).

In this case, there is no best response strategy for j against τ−j, thus g does
not have the best response property.
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