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1 Introduction

We consider the implementation of allocation rules in production economies
with possibly unequal labor skills among individuals. Varian (1994), Hurwicz
et al. (1995), Hong (1995), Suh (1995), Tian (1999, 2000), Yoshihara (1999),
and Kaplan and Wettstein (2000) have proposed simple or natural mech-
anisms (game forms) to implement particular rules such as the Walrasian
solution and the proportional solution [Roemer and Silvestre (1993)]. By
contrast, a few works such as Shin and Suh (1997) and Yoshihara (2000) have
discussed characterizations of allocation rules implementable by such simple
or natural mechanisms. However, in these works, two implicit assumptions
are made about the basic information structure among individuals and the
social planner (or mechanism coordinator).
The first one is that the coordinator knows individuals’ skills, or alterna-

tively that all individuals have the same skill. Thus, the problem of asymmet-
ric information is reduced to the possibility of an individual misrepresenting
his preference ordering,1 and at most, the possibility of an individual under-
stating his endowment of material goods.2 However, if individual skills differ,
it is more natural to consider an informational structure in which the planner
does not know each individual’s true skill, and an individual has an incentive
to overstate, or to understate, his own skill. The possibility of overstating
one’s skill is an essential feature of production economies with asymmetric
information, because the coordinator cannot require individuals to “place
the claimed endowments on the table” [Hurwicz et al. (1995)] in advance of
production. Our goal is to characterize the class of Pareto efficient allocation
rules that are implementable by a natural mechanism even when individuals’
skills are unknown to the planner.
What kind of mechanism is natural in this context? This issue is relevant

to our discussion of the second implicit assumption in the existing litera-
ture on implementation in production economies. Although Shin and Suh
(1997) and Yoshihara (2000) define conditions for characterizing “natural
mechanisms” in production economies, the list of these conditions3 is not

1Varian (1994), Suh (1995), Shin and Suh (1997), Yoshihara (1999, 2000), and Kaplan
and Wettstein (2000) discussed this type of problem.

2Hurwicz et al. (1995), Hong (1995), and Tian (1999, 2000) discussed this type of
problem.

3Those are feasibility, forthrightness, best response property, and simple strategy spaces,
which were originally proposed by Dutta, Sen, and Vohra (1995) and Saijo, Tatamitani,
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yet satisfactory, because they omit another important feature of production
economies with asymmetric information. Usually, a mechanism consists of
a pair of a list of strategy spaces and an outcome function, a function that
assigns an allocation to each profile of individuals’ strategies. This function
implies that in production economies, the planner is authorized to force in-
dividuals to supply the labor assigned by the outcome function.4 However,
the planner may not have such authority.
To address this issue, we require of mechanisms that they satisfy labor

sovereignty [Kranich (1994)]. This is the requirement that every individual
should have the right to choose his own labor time. We call a sharing mecha-
nism a game form in which each individual can freely supply his labor time,
and is asked to state his skill and his demand for consumption goods. The
outcome function simply distributes the output produced, according to the
information they provided and the labor actually supplied.
Thus, the question this paper addresses is: what efficient rules are im-

plementable by sharing mechanisms? We consider three equilibrium notions,
Nash, strong Nash, and subgame perfect Nash, for the non-cooperative games
defined by sharing mechanisms.5 We identify two axioms that character-
ize rules triply implementable by sharing mechanisms. The two axioms are
relevant to the ethical principles of responsibility and compensation [Fleur-
baey (1998)] in fair allocation problems. Thus, our characterization provides
insight into the implementability of fair allocation rules in terms of respon-
sibility and compensation.
The model is defined in Section 2. Section 3 provides a characterization of

triple implementation by sharing mechanisms. Section 4 gives some examples
of implementable and non-implementable rules. Concluding remarks appear
in Section 5. All proofs are relegated to the Appendix.

and Yamato (1996) to characterize “natural mechanisms” in pure exchange economies.
4Roemer (1989) pointed out this implicit assumption explicitly.
5Yamada and Yoshihara (2002) proposed a sharing mechanism that triply imple-

ments the proportional solution in these three equilibria, when the production function is
differentiable.
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2 The Basic Model

There are two goods, one of which is an input (labor time) x ∈ R+ to be used
to produce the other good y ∈ R+.6 There is a set N = {1, . . . , n} of agents,
where 2 ≤ n < +∞. Each agent i0s consumption is denoted by zi = (xi, yi),
where xi denotes his labor time, and yi his share of the output. All agents
face a common upper bound of labor time x̄ , where 0 < x̄ < +∞, and so
have the same consumption set Z ≡ [0, x̄]×R+.
Each agent i0s preference is defined on Z and represented by a utility

function ui : Z → R, which is continuous and quasi-concave, and strictly
monotonic (decreasing in labor time and increasing in the share of output)

on
◦
Z≡ [0, x̄)×R++.7 Let U denote the class of all such utility functions.
Each agent i has a labor skill, si ∈ R++. The universal set of skills

for all agents is denoted by S = R++.8 The labor skill si ∈ S is agent i0s
effective labor supply per hour measured in efficiency units. It can also be
interpreted as agent i0s labor intensity exercised in production.9 Thus, if
agent i0s labor time is xi ∈ [0, x̄] and his labor skill is si ∈ S, then sixi ∈ R+
denotes the agent’s effective labor contribution to production measured
in efficiency units. The production technology is a function f : R+ → R+,
which is continuous, strictly increasing, concave, and such that f (0) = 0.
For simplicity, we fix f . Thus, an economy is a pair of profiles e ≡ (u, s)
with u = (ui)i∈N ∈ Un and s = (si)i∈N ∈ Sn. Let E ≡ Un × Sn denote the
class of all economies.
Given s ∈ Sn, an allocation z = (xi, yi)i∈N ∈ Zn is feasible for s ifP
yi ≤ f (

P
sixi). Let Z (s) denote the set of (feasible) allocations for s ∈

Sn. An allocation z = (zi)i∈N ∈ Zn is Pareto efficient for e = (u, s) ∈ E
if z ∈ Z (s) and there does not exist z0 = (z0i)i∈N ∈ Z (s) such that for each

6The symbol R+ denotes the set of non-negative real numbers.
7The symbol R++ denotes the set of positive real numbers.
8For any two sets X and Y , X ⊆ Y if and only if any x ∈ X also belongs to Y , and

X = Y if and only if X ⊆ Y and Y ⊆ X.
9It might be more natural to define labor skill and labor intensity in a discriminative

way: for example, let si ∈ S be i’s labor skill, and si be i’s labor intensity such that
0 < si ≤ si. In such a formulation, we may view the amount of si as being determined
endogenously by the agent i. In spite of this more natural view, we will assume in the
following discussion that the labor intensity is a constant value, si = si, for the sake of
simplicity. The main theorems in the following discussion would remain valid with few
changes in the settings of the economic environments even if the labor intensity were
assumed to be varied.
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i ∈ N , ui (z0i) ≥ ui (zi), and for some i ∈ N , ui (z0i) > ui (zi). Let P (e)
denote the set of Pareto efficient allocations for e ∈ E . A solution is a
correspondence ϕ : E ³ Zn such that for each e = (u, s) ∈ E , ϕ (e) ⊆ Z (s).
A solution ϕ is a Pareto subsolution if for each e ∈ E , ϕ (e) ⊆ P (e).
Given ϕ, z ∈ Zn is ϕ-optimal for e ∈ E if z ∈ ϕ (e).

2.1 Sharing Mechanisms

We are interested in mechanisms having the property of labor sovereignty,
and in particular, we focus on the following types of mechanisms. For each
i ∈ N , let his strategy space beAi ≡Mi×[0, x̄], with generic element (mi, xi).
Note that Mi denotes agent i’s message space in general. Let M ≡ ×i∈NMi

and A ≡ ×i∈NAi. A sharing mechanism is a function g : A → Rn+ such
that for each (m,x) ∈ A, there is y ∈ Rn+ such that g (m,x) = y. A
sharing mechanism g is feasible if for each s ∈ Sn and each (m,x) ∈ A,
(x, g (m,x)) ∈ Z (s). Note that a feasible sharing mechanism g needs not
refer to s in dividing the total output f (

P
sjxj). Let G denote the class of

all (feasible sharing) mechanisms.
Given g ∈ G, a (feasible) sharing game is defined for each e ∈ E as a

non-cooperative game (N,A, g,e). Fixing N and A, let (g,e) simply denote
the sharing game (N,A, g,e).
Given a profile (m,x) ∈ A, let (m0

i,m−i, x0i,x−i) ∈ A be the profile
that is obtained by replacing the i-th component (mi, xi) of (m,x) with
(m0

i, x
0
i). A profile (m

∗,x∗) ∈ A is a (pure-strategy) Nash equilibrium
of (g,e) if for each i ∈ N and each (mi, xi) ∈ Ai, ui (x∗i , gi (m∗,x∗)) ≥
ui
¡
xi, gi

¡
mi,m

∗
−i, xi,x

∗
−i
¢¢
. Let NE (g,e) denote the set of Nash equilibria

of (g,e). An allocation z = (xi, yi)i∈N ∈ Zn is a Nash equilibrium allo-
cation of (g,e) if there exists m ∈ M such that (m,x) ∈ NE (g,e) and
y = g (m,x), where x = (xi)i∈N and y = (yi)i∈N . Let NA (g,e) denote
the set of these allocations. A mechanism g ∈ G implements ϕ in Nash
equilibria if for each e ∈ E , NA (g,e) = ϕ (e).
A profile (m∗,x∗) ∈ A is a (pure-strategy) strong (Nash) equilib-

rium of (g,e) if for each T ⊆ N and each (mi, xi)i∈T ∈ (Ai)i∈T , there exists
j ∈ T such that

uj
¡
x∗j , gj (m

∗,x∗)
¢ ≥ uj ¡xj, gj ¡(mi, xi)i∈T , (m

∗
k, x

∗
k)k∈T c

¢¢
.10

10For each T ⊆ N , T c denotes the complement of T in N .
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Let SNE (g,e) denote the set of strong equilibria of (g,e). An allocation z ∈
Zn is a strong equilibrium allocation of (g,e) if there existsm ∈M such
that (m,x) ∈ SNE (g,e) and y = g (m,x). Let SNA (g,e) denote the set
of strong equilibrium allocations of (g,e). A mechanism g ∈ G implements
ϕ in strong equilibria, if for each e ∈ E , SNA (g,e) = ϕ (e).

2.2 The Timing Problem with Sharing Mechanisms

Note that m and x represent different kinds of strategic choices: m is the
list of agents’ announcements concerning their private information, whereas
x indicates their supplies of labor time. Thus, there may be a difference
between the point in time whenm is announced and the point in time when
x is exercised. Two polar opposite time sequences can be distinguished:
the agents may announce m before they engage in production, or they may
announcem after supplying x. The former enables each i to choose his labor
supply with knowledge ofm, whereas the latter enables each i to choose mi

with knowledge of x.
Thus, we consider two types of two-stage game forms: Given g ∈ G, the

first game form derived from g is the feasible mechanism Γm◦xg in which Stage
1 consists of selecting m ∈ M , Stage 2 consists of selecting x ∈ [0, x̄]n, and
(x, g (m,x)) is the outcome. The second game form is the feasible mechanism
Γx◦mg in which Stage 1 consists of selecting x ∈ [0, x̄]n, Stage 2 consists of
selectingm ∈M , and (x, g (m,x)) is the outcome.
Given a two-stage game

¡
Γm◦xg ,e

¢
and a strategy profilem ∈M in Stage

1, let
¡
Γm◦xg (m) ,e

¢
be the corresponding Stage 2 subgame. A strategy

mapping is a function χ : M → [0, x̄]n such that for each m ∈ M , χ (m)
is a strategy profile of the subgame

¡
Γm◦xg (m) ,e

¢
. Let X be the set of all

such mappings. A profile (m∗,χ∗) ∈M×X is a (pure-strategy) subgame
perfect (Nash) equilibrium of

¡
Γm◦xg ,e

¢
if for each i ∈ N , eachmi ∈Mi,

each χ ∈ X with χ =
¡
χi,χ

∗
−i
¢
, and eachm ∈M ,

ui (χ
∗
i (m

∗) , gi (m∗,χ∗ (m∗))) ≥ ui
¡
χ∗i (mi,m

∗
−i), gi

¡
mi,m

∗
−i,χ

∗(mi,m
∗
−i)
¢¢

and ui (χ∗i (m) , gi (m,χ
∗ (m))) ≥ ui (χi(m), gi (m,χ(m))) ,

where χ∗i (m) (resp. χi (m)) is the i-th component of χ
∗ (m) (resp. χ (m))

in Stage 2 subgame induced by the choice m in Stage 1.
Given a two-stage game

¡
Γx◦mg ,e

¢
and a strategy profile x ∈ [0, x̄]n in

Stage 1, let
¡
Γx◦mg (x),e

¢
be the corresponding Stage 2 subgame. A strategy
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mapping is a function µ : [0, x̄]n →M such that for each x ∈ [0, x̄]n, µ (x)
is a strategy profile of the subgame

¡
Γx◦mg (x) ,e

¢
. Let M be the set of

all such mappings. A profile (µ∗,x∗) ∈ M× [0, x̄]n is a (pure-strategy)
subgame perfect (Nash) equilibrium of

¡
Γx◦mg ,e

¢
if for each i ∈ N ,

each xi ∈ [0, x̄], each µ ∈M with µ =
¡
µi,µ

∗
−i
¢
, and each x ∈ [0, x̄]n,

ui (x
∗
i , gi (µ

∗ (x∗) ,x∗)) ≥ ui
¡
xi, gi

¡
µ∗
¡
xi,x

∗
−i
¢
, xi,x

∗
−i
¢¢
,

and ui (xi, gi (µ∗ (x) ,x)) ≥ ui (xi, gi (µ (x) ,x)) .

Let SPE
¡
Γm◦xg ,e

¢
be the set of subgame perfect equilibria of

¡
Γm◦xg ,e

¢
.

An allocation z ∈ Zn is a subgame perfect equilibrium allocation of¡
Γm◦xg ,e

¢
if there exists (m,χ) ∈ SPE ¡Γm◦xg ,e

¢
such that χ (m) = x

and y = g (m,χ (m)). Let SPA
¡
Γm◦xg ,e

¢
be the set of subgame perfect

equilibrium allocations of
¡
Γm◦xg ,e

¢
. Given g ∈ G, Γm◦xg implements ϕ in

subgame perfect equilibria if for each e ∈ E , SPA ¡Γm◦xg ,e
¢
= ϕ (e).

Given g ∈ G, Γm◦xg triply implements ϕ in Nash, strong, and sub-
game perfect equilibria if for each e ∈ E , NA (g,e) = SNA (g,e) =
SPA

¡
Γm◦xg ,e

¢
= ϕ (e). Parallel definitions apply to

¡
Γx◦mg ,e

¢
.

3 Implementation by Sharing Mechanisms

We assume throughout that each agent prefers interior consumption vectors
to boundary consumption vectors.

Assumption 1 (boundary condition of utility functions): For each i ∈ N ,
each zi ∈

◦
Z, and each z0i ∈ ∂Z ≡ Z\ ◦

Z, ui (zi) > ui (z0i).

Let px ∈ R+ represent the price of labor (measured in efficiency units) and
py ∈ R+ the price of output. The set of price vectors is the unit simplex ∆ ≡©
p = (px, py) ∈ R2+ | px + py = 1

ª
. Let ρ = (ρi)i∈N ∈ ∆n be a profile of price

vector announcements, σ = (σi)i∈N ∈ Sn a profile of skill announcements,
and w = (wi)i∈N ∈ Rn+ a profile of demands for output. Let M ≡ ∆n×Sn×
Rn+, with generic element (ρ,σ,w).

Definition 1: A vector p ∈ ∆ is an efficiency price for z = (x,y) ∈ Zn at
e = (u, s) ∈ E if
(i) for each x0 ∈ R+, pyf (x0)− pxx0 ≤

P
(pyyi − pxsixi);
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(ii) for each i ∈ N and each z0i ∈ Z, if ui (z0i) ≥ ui (zi), then pyy0i− pxsix0i ≥
pyyi − pxsixi.

Let ∆P (e,z) be the set of efficiency prices for z at e.

Definition 2: A Pareto subsolution ϕ is triply labor sovereign implementable,
if there exists a feasible sharing mechanism g ∈ G such that :
(i) Γm◦xg (resp. Γx◦mg ) triply implements ϕ in Nash, strong, and subgame
perfect equilibria;
(ii) g is forthright: for each e = (u, s) ∈ E and each (x,y) ∈ ϕ (e), there
exists p ∈ ∆P (u, s,x,y) such that (ρ, s,x,y) ∈ NE (g,e) and g (ρ, s,x,y) =
y with ρ = (ρi)i∈N = (p, . . . , p);
(iii) for each e = (u, s) ∈ E, if (ρ, s,x,y) ∈ NE (g,e) and g (ρ, s,x,y) = y
such that ρ = (ρi)i∈N = (p, . . . , p) ∈

¡
∆P (u, s,x,y)

¢n
, then for each i ∈ N

and each (ρ0i,σ
0
i, x

0
i, w

0
i) ∈ ∆× S × [0, x̄]×R+,

gi
¡
ρ0i,σ

0
i, x

0
i, w

0
i,ρ−i, s−i,x−i,w−i

¢ ≤ max½0, yi + px
py
si (x

0
i − xi)

¾
;

(iv) for each e = (u, s) ∈ E, if (ρ, s,x,y) ∈ NE (g,e), then [for each i ∈ N
with xi > 0, s0i = si] implies [(ρ, s

0,x,w) ∈ NE (g,e) and g (ρ, s0,x,w) =
g (ρ, s,x,w)].

Forthrightness requires that if a strategy profile is consistent with a ϕ-
optimal allocation, then it is a Nash equilibrium and the outcome coincides
with this allocation [Dutta et al. (1995); Saijo et al. (1996)]. That is, any
ϕ-optimal allocation should be realizable as an equilibrium outcome in a
forthright way.
Definition 2 (iii) is a kind of informational efficiency of the mechanism. It

says that in equilibrium, each agent’s attainable set is included in a half space
that is included in the lower contour set of the agent’s utility function when
the equilibrium allocation is Pareto efficient. An important point is that
this half space depends only on the production point and the production
possibility set. Thus, the coordinator does not need to know the entire
preference profile in order to obtain ϕ-optimal allocations in equilibria.
Definition 2 (iv) is another requirement of informational efficiency. It says

that the distribution of output is independent of the skill parameters stated
by “non-working” agents.
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We introduce two axioms as necessary conditions for labor sovereign im-
plementation. First, any ϕ-optimal allocation should remain ϕ-optimal if the
profile of the utility functions changes, without the Pareto efficiency of this
allocation being affected. It is a condition of informational efficiency.

Supporting Price Independence (SPI) [Yoshihara (1998); Gaspart (1998)]:
For each e = (u, s) ∈ E and each z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such
that for each e0 = (u0, s) ∈ E , if p ∈ ∆P (e0,z), then z ∈ ϕ (e0).

Let ∆SPI (u, s,z) ≡ ©p ∈ ∆P (u, s,z) | ∀u0 ∈ Un s.t. p ∈ ∆P (u0, s,z) , z ∈
ϕ (u0, s)}.
Secondly, any ϕ-optimal allocation should remain ϕ-optimal if the skills

of non-working agents change, without the Pareto efficiency of this allocation
being affected.

Independence of Unused Skills (IUS): For each e = (u, s) ∈ E and
each z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such that for each e0 = (u, s0) ∈ E
where s0i = si for each i ∈ N with xi > 0, if p ∈ ∆P (e0,z), then z ∈ ϕ (e0).

Let ∆IUS (u, s,z) ≡ {p ∈ ∆P (u, s,z) | ∀s0 ∈ Sn s.t. s0i = si for each
i ∈ N with xi > 0 and p ∈ ∆P (u, s0,z), z ∈ ϕ (u, s0)}.
The two axioms can also be interpreted in terms of responsibility and com-

pensation in fair allocation [Fleurbaey (1998)]. SPI represents a “stronger”
condition of responsibility, because it requires independence of particular
changes of individuals’ utility functions which are interpreted as factors
for which the individuals are responsible.11 It is “stronger” because SPI
is stronger than Maskin Monotonicity [Maskin (1999)], which is seen as a
relatively strong axiom of responsibility [Fleurbaey and Maniquet (1996)].
In contrast, IUS can be interpreted as a weaker condition of compensation,
because it requires independence of particular changes of individuals’ skills,
for which the individuals cannot be held responsible. It is “weaker” because
IUS is weaker than Independence of Skill Endowments [Yoshihara (2003)],
which is a relatively weak axiom of compensation.
Note that a Pareto subsolution ϕ satisfies SPI and IUS if and only if

for each e ∈ E and each z ∈ ϕ (e), ∆SPI (e,z) 6= ∅ and ∆IUS (e,z) 6= ∅.
Moreover, the following lemma shows that each p ∈ ∆SPI (e,z) is contained
in ∆IUS (e,z).

11There is another axiom closely related to SPI, Local Independence, although it is
applied only to economies with differentiable utility functions [Nagahisa (1991)].
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Lemma 0: Let ϕ satisfy SPI and IUS. Then, for each e = (u, s) ∈ E and
each z ∈ ϕ (e), ∆SPI (u, s,z) ⊆ ∆IUS (u, s,z).

Proof. Given (u, s) ∈ E , let z = (xi, yi)i∈N ∈ ϕ (u, s) and p ∈ ∆SPI (u, s,z).
W. l. o. g., suppose that x1 = 0 and xi > 0 for each i 6= 1. Let s0 = (s01, s−1)
be such that p ∈ ∆P (u, s0,z). If z ∈ ϕ (u, s0), then by the definition of
∆IUS, we have that p ∈ ∆IUS (u, s,z).
For (x2, y2) of z = (xi, yi)i∈N , let α ∈ (0, 1) satisfy −∂(x−x2)1−α·(y2)α/∂x

∂(x−x2)1−α·(y2)α/∂y =
pxs2
py
. The existence of α can be shown by the intermediate value theo-

rem, since −∂(x−x2)1−α·(y2)α/∂x
∂(x−x2)1−α·(y2)α/∂y = y2

x−x2
¡
1
α
− 1¢ → 0 as α → 1, whereas

−∂(x−x2)1−α·(y2)α/∂x
∂(x−x2)1−α·(y2)α/∂y → ∞ as α → 0. Let u∗2 ∈ U be, for each (x, y) ∈ Z,

u∗2(x, y) = (x− x)1−α · yα. Thus, u∗2 is compatible with Assumption 1.
Let u∗ = (u∗2,u−2). As ∆P (u∗, s,z) = {p} and ϕ satisfies SPI, z ∈

ϕ (u∗, s) and ∆SPI (u∗, s,z) = {p}. Consider moving from (u∗, s) to (u∗, s0).
From the definition of u∗, ∆P (u∗, s0,z) = {p}. As ϕ satisfies IUS, z ∈
ϕ (u∗, s0) and∆IUS (u∗, s0,z) = {p}. Consider moving from (u∗, s0) to (u, s0).
As p ∈ ∆P (u, s0,z) and ϕ satisfies SPI, z ∈ ϕ (u, s0).

SPI and IUS are necessary conditions for labor sovereign triple implemen-
tation.

Theorem 1: If a Pareto subsolution ϕ is triply labor sovereign imple-
mentable, then ϕ satisfies SPIand IUS.

Next, we show that SPI and IUS together are sufficient for labor sovereign
implementation. Given x ∈ [0, x̄]n and i ∈ N , let π (x−i) ≡ max

©xj+x̄
2
| xj < x̄ for j 6= i

ª
.

We construct the following two auxiliary mechanisms:

• Let gw be such that for each s ∈ Sn, each τ = (ρ,σ,x,w) ∈ 4n×Sn×
[0, x̄]n ×Rn+, and each i ∈ N ,

gwi (τ ) =

 f (
P
skxk)

if xi = π (x−i) and
wi > max {f (

P
σkx̄) , max {wj | j 6= i}} ,

0 otherwise.

• Let gσ be such that for each s ∈ Sn, each τ = (ρ,σ,x,w) ∈ 4n×Sn×
[0, x̄]n ×Rn+, and each i ∈ N ,
gσi (τ ) =

½
f (
P
skxk) if xi = 0, wi = 0, and σi > σj for each j 6= i,

0 otherwise.
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The mechanism gw ∈ G assigns all of the produced output12 to only one
agent, the agent who provides the maximal positive amount, but less than x̄,
of labor time and reports a maximal demand for the output. The mechanism
gσ ∈ G assigns all of the produced output to only one agent, the agent who
demands no output, reports the highest skill, and does not work.
Given p ∈ ∆ and (σ,x,w) ∈ Sn × [0, x̄]n × Rn+, let ϕ (p,σ,x,w)−1 ≡©

u ∈ Un | (x,w) ∈ ϕ (u,σ) and p ∈ ∆SPI (u,σ,x,w)
ª
. Given p ∈ ∆ and

(σ,x,w) ∈ Sn × [0, x̄]n × Rn+, let N (p,σ,x,w) ≡
n
i ∈ N | ∃ (x0i, w0i) ∈

◦
Z

s.t. ϕ (p,σ, (x0i,x−i) , (w
0
i,w−i))

−1 6= ∅ª.
A profile τ = (ρ,σ,x,w) ∈ 4n×Sn× [0, x̄]n×Rn+ is ϕ-consistent if for

some p ∈ ∆, ρi = p for each i ∈ N and ϕ (p,σ,x,w)−1 6= ∅. Given a profile τ
such that for each j, ρj = p, i ∈ N (p,σ,x,w) is called a “potential deviator,”
for the following reason. Suppose ϕ (p,σ,x,w)−1 = ∅ andN (p,σ,x,w) 6= ∅.
The first statement implies that τ is not ϕ-consistent. The second statement
implies that there is an agent i who can switch his strategy to another one
(ρi,σi, x

0
i, w

0
i) so that the new profile (ρ,σ, (x

0
i,x−i) , (w

0
i,w−i)) is consistent

with ϕ. That is, it may be the agent who makes the current profile τ incon-
sistent with ϕ. This means that i ∈ N (p,σ,x,w) is a “potential deviator.”
We define g∗ ∈ G as follows:

For each s ∈ Sn and each τ = (ρ,σ,x,w) ∈ 4n × Sn × [0, x̄]n ×Rn+,
Rule 1: if f (

P
σkxk) = f (

P
skxk), and

1-1: there exists p ∈ ∆ such that ρi = p for each i ∈ N and ϕ (p,σ,x,w)−1 6=
∅, then g∗ (τ ) = w,
1-2: there exist j ∈ N and p ∈ ∆ such that p = ρi for each i 6= j,
ϕ (ρj,σ,x,w)

−1 = ∅, and j ∈ N (p,σ,x,w), then g∗i (τ ) = 0 for each i 6= j,
and g∗j (τ ) =(
max

n
0,min

n
w0j +

px
py

¡
σjxj − σjx

0
j

¢
, f (

P
skxk)

oo
if wj > f (

P
σkx̄)

0 otherwise,

for (x0j, w
0
j) with ϕ

¡
p,σ,

¡
x0j,x−j

¢
,
¡
w0j,w−j

¢¢−1 6= ∅,
1-3: in any other case, g∗ (τ ) = gw (τ ),

Rule 2: if f (
P

σkxk) 6= f (
P
skxk), then g∗ (τ ) = gσ (τ ) .

12We implicitly assume that the mechanism coordinator can hold all of the produced
output after the production process, although he may not monitor that process perfectly.
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It is easy to see that g∗ is forthright, satisfies the best response property
[Jackson et al. (1994)], and is self-relevant [Hurwicz (1960)]. Note that the
total output f (

P
skxk) is observable at the end of production, even without

true information on labor skills.
Given τ = (ρ,σ,x,w) ∈ 4n×Sn×[0, x̄]n×Rn+, g∗ works as follows: First,

g∗ computes the amount f (
P

σkxk) and compares this with f (
P
skxk).

Suppose equality holds. Then, if τ is ϕ-consistent, g∗ distributes f (
P
skxk)

in accordance with w under Rule 1-1. Otherwise, and if there is a unique
potential deviator, then g∗ punishes this deviator according to Rule 1-2.
In any other case, g∗ selects the same outcome as gw under Rule 1-3. If
f (
P

σkxk) 6= f (
P
skxk), then g∗ selects the same outcome as gσ under

Rule 2.
We explain below how g∗ induces true revelation of skills at least for

working agents (A), and how it attains desirable allocations (B):
(A) g∗ distributes f (

P
skxk) according to τ . The problem is that true skills

are not observable. To solve this, a scheme of reward and punishment is set
up as follows. First, if f (

P
σkxk) 6= f (

P
skxk), then clearly σ 6= s, and

at least one agent, say j ∈ N whose labor supply is positive, xj > 0, has
misrepresented his skill, σj 6= sj. This agent is punished under Rule 2.
Second, suppose f (

P
σkxk) = f (

P
skxk) but σ 6= s. Then, at least two

agents have misrepresented their skills while supplying positive amounts of
labor, or someone, say j, has chosen “non-working” while misrepresenting
his skill. Let us put aside the latter case for the moment. In the former
case, suppose that one such misrepresenting agent, say j ∈ N , switches from
xj > 0 to x0j = 0, while announcing a higher number σ

0
j than any other in

σ−j, so as to induce f
³
σ0jx

0
j +

P
i6=j σixi

´
6= f

³
sjx

0
j +

P
i6=j sixi

´
. In this

case, j may be better off under Rule 2. Thus, the case may not correspond
to an equilibrium situation. The following lemma confirms this insight.

Lemma 1: Let Assumption 1 hold. Let g∗ ∈ G be as above. Given (u,s) ∈ E ,
let (ρ,σ,x,w) ∈ 4n × Sn × [0, x̄]n × Rn+ be a Nash equilibrium of (g∗,u,s)
such that f (

P
σkxk) = f (

P
skxk). Then, for each i ∈ N with xi > 0,

σi = si.

(B) We still need to explain how g∗ implements the Pareto subsolu-
tion ϕ when all agents report their true skills, σ = s. Then, the profile
τ = (ρ,σ,x,w) induces only Rule 1. Note that among the three subrules of
Rule 1, only Rule 1-1 can realize a desirable allocation in equilibrium, while

12



the other two are to punish agents who have deviated from the situation of
Rule 1-1. Suppose that τ is ϕ-consistent. Then, τ induces Rule 1-1 and
the corresponding outcome g∗ (τ ) = (x,w) is ϕ-optimal for some economy.
However, this does not necessarily imply that (x,w) is Pareto efficient for
the actual economy. If τ induces Rule 1-1, but (x,w) is not Pareto effi-
cient for the actual economy, there is an agent, say j, and a consumption
bundle

¡
x0j, w

0
j

¢
which is better than (xj, wj) for him, and is also available

to him within the budget set determined by the supporting price at (x,w).
Then, Rule 1-2 is applied to select such

¡
x0j, w

0
j

¢
. Therefore, if (x,w) is an

equilibrium allocation, then (x,w) is Pareto efficient for this actual economy.
We are now ready to discuss the full characterizations of labor sovereignty

triple implementation by examining the performance of g∗.

Theorem 2: Let Assumption 1 hold. Then, if a Pareto subsolution ϕ satis-
fies SPI and IUS, then ϕ is triply labor sovereign implementable by g∗.

This result holds even in economies of two agents.

Corollary 1: Let Assumption 1 hold. Then, a Pareto subsolution ϕ is triply
labor sovereign implementable if and only if ϕ satisfies SPI and IUS.

If each agent i can control his contribution by selecting esi ∈ [0, si], Corollary
1 still applies. In such a situation, the observable total output is given not
by f (

P
skxk), but by f (

Peskxk), where esk ∈ [0, sk] for each k ∈ N . Then,
the coordinator can still compare f (

P
σkxk) with f (

Peskxk).
From Corollary 1, we gain two new insights. First, we can classify which

solutions remain implementable if skills are unknown to the coordinator,
compared to when they are known.13 Second, Corollary 1 indicates that the
implementable solutions should satisfy a rather strong axiom of responsibility
such as SPI, and a rather weak axiom of compensation such as IUS.

4 Characterizations

By applying Corollary 1, let us examine which Pareto subsolutions are im-
plementable. First, we discuss three variants of the Walrasian solution:

13It is easy to see that any Pareto subsolution is labor sovereign implementable if and
only if it satisfies SPI, whenever skills are known to the coordinator.
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Definition 3: The Walrasian solution with profit shares θ = (θi)i∈N ∈
[0, 1]n satisfying

P
θi = 1, denoted W θ , assigns with each e = (u, s) ∈ E ,

z ∈ Z (s) such that: there exists p = (px, py) ∈ ∆ such that :
(i) for each x0 ∈ R+, pyf (x0)− pxx0 ≤

P
(pyyj − pxsjxj);

(ii) for each i ∈ N and each (x, y) ∈ Z, if ui (x, y) > ui (zi), then pyy −
pxsix > θi

P
(pyyj − pxsjxj).

Definition 4 [Roemer and Silvestre (1989, 1993)]: The proportional so-
lution, denoted PR, assigns with each e = (u, s) ∈ E , z ∈ P (e) such that
for each i ∈ N , yi = sixiP

sjxj

P
yj.

Definition 5 [Roemer and Silvestre (1989)]: The equal benefit solution,
denoted EB, assigns with each e = (u, s) ∈ E , z ∈ P (e) such that : there
exists p = (px, py) ∈ ∆P (e,z) such that for each i ∈ N , pyyi − pxsixi =
1
n

P
(pyyj − pxsjxj).

All three solutions above satisfy SPI [Yoshihara (2000)]. Thus, to confirm
their implementability, it suffices to examine IUS. Then:

Lemma 6: W θ , PR, and EB satisfy IUS.

Corollary 2: Let Assumption 1 hold. Then, W θ , PR, and EB are triply
labor sovereign implementable.

Is there any non-Walrasian type of allocation rule that is implementable?
To discuss this, let us consider the following types of rules:

Definition 6 [Yoshihara (2000a)]: The λ-effort-reward solution with pa-
rameter λ ∈ [0, 1], denoted ERλ, assigns with each e = (u, s) ∈ E , z ∈ P (e)
such that for each i ∈ N , yi =

n
λ xiP

xj
+ (1− λ) 1

n

o
f (
P
sjxj).

For each λ ∈ [0, 1], the solution ERλ is well defined [Yoshihara (2000a)]. It
also satisfies the equal-reward-for-equal-labor-time (EREL) principle [Kranich
(1994)]. Moreover, it satisfies SPI and IUS, since it distributes output com-
pletely independently of skills. Thus:

Corollary 3: Let Assumption 1 hold. Then, for any λ ∈ [0, 1], ERλ is
triply labor sovereign implementable.

14



As ERλ is not a Walrasian type, but satisfies the EREL principle, Corollary
3 indicates that implementable EREL-Pareto subsolutions exist.
Note that among Pareto subsolutions meeting the ethical principles of re-

sponsibility and compensation, proposed by Fleurbaey and Maniquet (1996),
the eu-reference welfare equivalent budget solution can be implementable by
sharing mechanisms if skills are known to the coordinator, because it satis-
fies SPI. However, even this solution cannot be implementable if skills are
unknown, because it does not satisfy IUS. Thus, the private information of
skills causes this non-implementability result.

5 Concluding Remarks

We characterized implementation by sharing mechanisms in production economies
with unequal labor skills. The class of Pareto subsolutions implementable by
sharing mechanisms is characterized by two axioms, Supporting Price Inde-
pendence and Independence of Unused Skills. The Walrasian, proportional,
equal benefit, and λ-effort-reward solutions are implementable, whereas theeu-reference welfare equivalent budget solution is not implementable if skills
are unknown to the coordinator. This result indicates the impossibility of
implementing a Pareto subsolution that meets the ethical principles of re-
sponsibility and compensation, if skills are private information.
The workability of our proposed mechanism depends on two implicit as-

sumptions: First, although every individual i’s effective labor contribution,
sixi, is imperfectly observable and unverifiable by the coordinator, his la-
bor supply, xi, is observable. Second, despite such imperfect observability,
the coordinator can observe the total output, so that he can compare this
amount with the expected output based on the announcements of the indi-
viduals. We believe that these assumptions are reasonable. However, it is an
open question whether the implementation of Pareto subsolutions by natural
mechanisms in production economies with unequal skills holds without these.

6 Appendix

6.1 Proof of Theorem 1

Let ϕ be a Pareto subsolution that is triply labor sovereign implementable.
Then, there exists g ∈ G that satisfies conditions (i)-(iv) in Definition 2.
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Given e = (ui, si)i∈N ,e
0 = (u0i, si)i∈N ∈ E , suppose that z = (xi, yi)i∈N ∈

ϕ (e) and that there exists p ∈ ∆P (e,z) ∩ ∆P (e0,z). From (ii), for ρ =
(ρi)i∈N with ρi = p for each i ∈ N , τ = (ρ, s,x,y) ∈ NE (g,e) and g (τ ) =
y. Therefore, from (iii), gi (τ 0i , τ−i) ≤ max

n
0, yi +

px
py
si (x

0
i − xi)

o
for each

i ∈ N and each τ 0i ∈ ∆ × S × [0, x̄] × R+. As p ∈ ∆P (e0,z), this implies
τ ∈ NE (g,e0) and (x,y) ∈ NA (g,e0). Hence, z ∈ ϕ (e0) by (i). Thus, ϕ
satisfies SPI.
Given e = (ui, si)i∈N , e

0 = (ui, s0i)i∈N ∈ E , let z ∈ ϕ (e), where si = s0i for
each i ∈ N with xi > 0. Suppose that there exists p ∈ ∆P (e,z)∩∆P (e0,z).
From (ii), for ρ = (ρi)i∈N with ρi = p for each i ∈ N , τ ∈ NE (g,e) and
g (τ ) = y, which implies (ρ, s0,x,y) ∈ NE (g,e) and g (ρ, s0,x,y) = y by
(iv). Then, from (iii), gi (τ 0i , τ−i) ≤ max

n
0, yi +

px
py
si (x

0
i − xi)

o
for each

i ∈ N and each τ 0i ∈ ∆×S × [0, x̄]×R+. As p ∈ ∆P (e0,z), this implies that
(p, s0,x,y) ∈ NE (g,e0) and (x,y) ∈ NA (g,e0). Hence, z ∈ ϕ (e0) from (i).
Thus, ϕ satisfies IUS.

6.2 Proof of Theorem 2

Proof of Lemma 1. Suppose that there exists j ∈ N with σj 6= sj and
xj > 0. Let N (σ,x) be the set of all such j. As f (

P
σixi) = f (

P
sixi),

N (σ,x) is not a singleton. Moreover, under Rule 2, each j ∈ N (σ,x) can
obtain y0j = f

³P
i6=j sixi

´
> 0 by switching to σ0j > max {σi | i 6= j}, x0j = 0,

and w0j = 0. Note that:

X
j∈N(σ,x)

y0j =
X

j∈N(σ,x)
f

ÃX
i6=j

sixi

!
=

X
j∈N(σ,x)

f

 X
i∈N(σ,x)\{j}

sixi+
X

k/∈N(σ,x)
skxk


≥

X
j∈N(σ,x)

f

sjxj+ X
k/∈N(σ,x)

skxk

 (as N (σ,x) is not a singleton)

≥ f

 X
j∈N(σ,x)

sjxj+ X
k/∈N(σ,x)

skxk

 (as f is concave and f (0) ≥ 0)

≥ f

 X
j∈N(σ,x)

sjxj+
X

k/∈N(σ,x)
skxk
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= f
³X

skxk
´
≥

X
j∈N(σ,x)

yj ≡
X

j∈N(σ,x)
g∗j (ρ,σ,x,w) .

Hence, there is j ∈ N (σ,x) with y0j ≥ yj. Note that uj(0, y0j) ≥ uj(0, yj) ≥
uj(xj, yj) and uj(0, y0j) > uj(xj, 0) by Assumption 1, whereas uj(0, yj) >
uj(xj, yj) if yj > 0 from the strict monotonicity of uj. Hence, agent j has an
incentive to switch from xj to x0j = 0 to obtain y

0
j. Thus, (ρ,σ,x,w) does

not constitute a Nash equilibrium.

Lemma 2: Let Assumption 1 hold. Then, g∗ implements any Pareto subso-
lution ϕ satisfying SPI and IUS in Nash equilibria.

Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u,s) ∈ E .
(1) First, we show that ϕ (e) ⊆ NA (g∗,e). Let z = (x,y) ∈ ϕ (e). Let
τ = (ρ, s,x,y) ∈ (∆× S × [0, x̄]×R+)n be such that ρi = p for each i ∈ N
and p ∈ ∆SPI (u,s,z). Then, g∗ (τ ) = y from Rule 1-1. Suppose j ∈ N
deviates to τ 0j =

¡
ρ0j, s

0
j, x

0
j, w

0
j

¢ ∈ ∆ × S × [0, x̄] × R+. From Assumption
1 and the continuity of utility functions, if g∗j

¡
τ 0j, τ−j

¢
= 0, then j has no

incentive to switch to τ 0j.
If τ 0j induces Rule 2, then x

0
j > 0 and g

∗
j

¡
τ 0j, τ−j

¢
= 0. If τ 0j induces Rule

1-3, then ϕ
¡
ρ0j,
¡
s0j, s−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,y−j

¢¢−1 6= ∅ or
N
¡
p,
¡
s0j, s−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,y−j

¢¢
= ∅. The former implies s0j = sj and

w0j ≤ f
³P

i6=j six+ s
0
jx
´
, whereas the latter implies x0j = 0 and s0j 6= sj.

Thus, in either case, g∗j
¡
τ 0j, τ−j

¢
= 0. If τ 0j induces Rule 1-2, then either

x0j > 0 and s0j = sj or x0j = 0. If the former holds, then g∗j
¡
τ 0j, τ−j

¢ ≤
max

n
0, yj +

px
py

¡
sjx

0
j − sjxj

¢o
. If the latter holds, then there exists

¡
x00j , w

00
j

¢
such that ϕ

¡
p,
¡
s0j, s−j

¢
,
¡
x00j ,x−j

¢
,
¡
w00j ,y−j

¢¢−1 6= ∅. Since w00j − px
py
s0jx

00
j ≤

yj−pxpy sjxj by the concavity of f , g∗j
¡
ρ0j, s

0
j, 0, w

0
j, τ−j

¢ ≤ maxn0, yj − px
py
sjxj

o
.

Finally, if τ 0j induces Rule 1-1, then g
∗
j

¡
τ 0j, τ−j

¢
= w0j = f(

P
i6=j sixi +

sjx
0
j)−

P
i6=j
yi. Thus, since z ∈ P (e), uj

¡
x0j, w

0
j

¢ ≤ uj (xj, yj). In summary, j
has no incentive to switch to τ 0j.

(2) Second, we show that NA (g∗,e) ⊆ ϕ (e). Let τ = (ρ,σ,x,w) ∈
NE (g∗,e).
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Suppose that τ induces Rule 2. Then, eitherN0 (x) ≡ {i ∈ N | xi = 0} =
∅ or N0 (x) 6= ∅. If N0 (x) = ∅, then for each i ∈ N , g∗i (τ ) = 0. Then, if
for each k ∈ N , Pi6=k σixi =

P
i6=k sixi, then (n− 1) · (

P
σixi) = (n− 1) ·

(
P
sixi). This contradicts the fact that Rule 2 is induced. Thus, for some

j ∈ N , Pi6=j σixi 6=
P

i6=j sixi. Then, if j switches to τ 0j =
¡
ρ0j,σ

0
j, x

0
j, w

0
j

¢
with σ0j > max {σi | i 6= j}, x0j = 0, and w0j = 0, then g∗j

¡
τ 0j, τ−j

¢
> 0 under

Rule 2.
Let N0 (x) 6= ∅ with #N0 (x) ≥ 2. Then, for each j ∈ N0 (x), if j’s

deviating strategy τ 0j is such that for each i 6= j, σ0j > σi and
¡
x0j, w

0
j

¢
= (0, 0),

then g∗j
¡
τ 0j, τ−j

¢
= f (

P
skxk) under Rule 2.

Let #N0 (x) = 1 and #N\N0 (x) ≥ 2. Then, there exists j ∈ N\N0 (x)
such that

P
i∈N\(N0(x)∪{j}) σixi 6=

P
i∈N\(N0(x)∪{j}) sixi. Thus, j can switch

to τ 0j such that g
∗
j

¡
τ 0j, τ−j

¢
> 0 under Rule 2. This can be shown in a similar

way to the case N0 (x) = ∅.
Let N0 (x) = {i} and N\N0 (x) = {j}. If wi > 0, then switching i’s

strategy to σ0i > σj, x0i = 0, andw
0
i = 0 implies g

∗
i (ρ

0
i,σ

0
i, x

0
i, w

0
i, ρj,σj, xj, yj) =

f (sjxj) under Rule 2. If wi = 0, then switching j’s strategy to ρ0j = ρi, σ0j =
sj, x0j =

x
2
, and w0j > f (sjx+ σix) implies g∗j

¡
ρi,σi, xi, wi, ρ

0
j,σ

0
j, x

0
j, w

0
j

¢
=

f
¡
sjx

0
j

¢
under Rule 1-3. In summary, τ does not induce Rule 2.

Suppose that τ induces Rule 1-2 or 1-3. Then, there exists j ∈ N such
that g∗j (τ ) = 0. By Lemma 1, σj = sj or xj = 0. Suppose τ induces Rule
1-2, and for each k, l 6= j, ρk = ρl = p. Then, g∗j (τ ) = 0 implies that either
j ∈ N (p,σ,x,w) and wj ≤ f (

P
σkx) or j /∈ N (p,σ,x,w). If the former

holds, then there exists τ 0j such that g
∗
j

¡
τ 0j, τ−j

¢
> 0 under Rule 1-2. If the

latter holds, then there exists τ 0j such that ρ
0
j 6= p, σ0j = sj, x0j = π (x−j) < x,

and w0j > max
n
f
³P

i6=j σix̄+ σ0jx̄
´
, max {wi | i 6= j}

o
. Such a deviation

induces either Rule 1-2 or 1-3, and results in g∗j
¡
τ 0j, τ−j

¢
> 0. Suppose

τ induces Rule 1-2, and there exist k, l 6= j such that ρk 6= ρl. Then, if
j’s deviation is such that ρk 6= ρ0j 6= ρl, σ0j = sj, x0j = π (x−j) < x, and

w0j > max
n
f
³P

i6=j σix̄+ σ0jx̄
´
, max {wi | i 6= j}

o
, then g∗j

¡
τ 0j, τ−j

¢
> 0

under Rule 1-3. Suppose τ induces Rule 1-3. Then, there exists τ 0j such that
g∗j
¡
τ 0j, τ−j

¢
> 0 under Rule 1-3. In summary, τ induces neither Rule 1-2 nor

1-3.
Thus, τ induces Rule 1-1, and g∗ (τ ) = w. Then, there exists u0 ∈ Un

such that for each i ∈ N , ρi = p ∈ ∆SPI (u0,σ,x,w). Moreover, p ∈
∆P (u, s,x,w) and (x,w) ∈ P (u, s), because otherwise, some j has an in-
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centive to deviate to Rule 1-2. Let (u0, s0) ∈ E be such that for each i ∈ N
with xi = 0, s0i = min {σi, si}, and for each i ∈ N with xi > 0, s0i =
σi (= si by Lemma 1). First, from the definition of s0, (x,w) ∈ P (u0,σ)
implies (x,w) ∈ P (u0, s0). Hence, from IUS, (x,w) ∈ ϕ (u0,σ) implies
(x,w) ∈ ϕ (u0, s0). Next, from the definition of s0, (x,w) ∈ P (u, s) implies
(x,w) ∈ P (u, s0). Note here p ∈ ∆SPI (u0,σ,x,w) ∩ ∆P (u0, s0,x,w) and
p ∈ ∆P (u, s,x,w) ∩∆P (u, s0,x,w). Thus, from SPI, (x,w) ∈ ϕ (u0, s0) im-
plies (x,w) ∈ ϕ (u, s0). Finally, since (x,w) ∈ P (u, s) and s0i = si for each
i ∈ N with xi > 0, (x,w) ∈ ϕ (u, s0) implies (x,w) ∈ ϕ (u, s) from IUS.

Lemma 3: Let Assumption 1 hold. Then, g∗ implements any Pareto subso-
lution ϕ satisfying SPI and IUS in strong equilibria.

Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u,s) ∈ E be given. As NA (g∗,e) = ϕ (e), we only have to show that
NA (g∗,e) ⊆ SNA (g∗,e). Suppose that there exists τ = (ρ,σ,x,w) ∈
NE (g∗,e) such that for some T ⊆ N with 2 ≤ #T < n,14 some τ 0T =
(ρ0i,σ

0
i, x

0
i, w

0
i)i∈T ∈ (∆× S × [0, x̄]×R+)#T , and each j ∈ T , uj

¡
xj, g

∗
j (τ )

¢
<

uj
¡
x0j, g

∗
j

¡
τ 0T , τN\T

¢¢
. Note that τ induces Rule 1-1, and g∗ (τ ) = w, as is

shown in the proof of Lemma 2. Moreover, (x,w) ∈ P (u, s).
From the construction of g∗, there is at most one agent who obtains

a positive share of output under Rules 1-2, 1-3, and Rule 2. Thus, from
Assumption 1, the deviation by T induces Rule 1-1. Then, g∗

¡
τ 0T , τN\T

¢
=¡

(w0i)i∈T , (wk)k∈T c
¢
. Hence, (x,w) /∈ P (u, s), a contradiction. Thus,NA (g∗,e) ⊆

SNA (g∗,e).

Lemma 4: Let Assumption 1 hold. Then, Γx◦mg∗ implements any Pareto
subsolution ϕ satisfying SPI and IUS in subgame perfect equilibria.

Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u,s) ∈ E be given. From Lemma 2, we only have to show that ϕ (e) ⊆
SPA

¡
Γx◦mg∗ ,e

¢
.

First, we show that in each Stage 2 subgame, there is a Nash equilibrium.
Let NE

¡
Γx◦mg∗ (x),e

¢
denote the set of Nash equilibria of

¡
Γx◦mg (x),e

¢
. Let

µ∗ : [0, x̄]n → ∆n × Sn × Rn+ be such that for each
¡
Γx◦mg∗ (x),e

¢
, µ∗ (x) =

14For each T ⊆ N , #T denotes the number of agents in T .
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(ρ,σ,w), where for each i ∈ N

(ρi,σi, wi) =

½
((0, 1) , si, f (

P
skx̄) + 1) if xi 6= π (x−i)

((0, 1) , si, f (
P
skx̄) + 2) otherwise.

Note that g∗ (ρ,σ,x,w) corresponds to Rule 1-3. As ρi = (0, 1) for each i ∈
N , we have for any

¡
ρ0j,σ

0
j, x

0
j, w

0
j

¢
, ϕ
¡
(0, 1) ,

¡
σ0j, s−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,w−j

¢¢−1
=

∅. This implies that no individual can induce Rule 1-1 by deviating. If¡
ρ0j,σ

0
j, w

0
j

¢
induces Rule 1-2, j receives no output, because

j /∈ N ¡(0, 1) , ¡σ0j, s−j¢ , ¡x0j,x−j¢ , ¡w0j,w−j¢¢ .
If
¡
ρ0j,σ

0
j, w

0
j

¢
induces Rule 1-3, then g∗j

¡
ρ0j,σ

0
j, w

0
j,ρ−j,σ−j,x,w−j

¢ ≤ g∗j (ρ,σ,x,w).
This is because whether xj = π (x−j) holds or not is already fixed in Stage
1 game. If

¡
ρ0j,σ

0
j, w

0
j

¢
induces Rule 2, then xj > 0, so that j receives no

output. Thus, for any x ∈ [0, x]n, µ∗ (x) ∈ NE ¡Γx◦mg∗ (x),e
¢
.

Now, we show that if bz = (bx, by) ∈ ϕ (e), then there exists (µ, bx) ∈
SPE

¡
Γx◦mg∗ ,e

¢
such that g∗ (µ (bx) , bx) = by. Define the strategy profile in¡

Γx◦mg∗ ,e
¢
as follows.

(1) In Stage 1, each i ∈ N supplies bxi.
(2) In Stage 2, µ : [0, x̄]n → ∆n × Sn × Rn+ is such that µ (x) = (ρ,σ,w),
which is defined as follows:
(2-1): if x = bx in Stage 1, then for some p ∈ ∆SPI (u, s, bx, by) and each
i ∈ N , µi (x) = (p, si, byi);
(2-2): if x =

¡
x0j, bx−j¢, where x0j 6= bxj, in Stage 1, then for j ∈ N , µj (x) =

((0, 1) , sj, f (
P
skx̄) + 1), and for some p ∈ ∆SPI (u, s, bx, by) and each i 6= j,

µi (x) =

½
(p, si, byi) if xi 6= π (x−i) ,
((1, 0) , si, f (

P
skx̄) + 2) otherwise;

(2-3): in any other case, µ (x) = µ∗ (x).
If
¡
Γx◦mg∗ (x),e

¢
corresponds to (2-1), then µ (x) ∈ NE

¡
Γx◦mg∗ (x),e

¢
.

This is because (bx, by) ∈ NA (g∗,e) by Lemma 2. Also, by the above argu-
ment, µ (x) ∈ NE ¡Γx◦mg∗ (x),e

¢
in the subgame (2-3) of Stage 2. Suppose

that
¡
Γx◦mg∗ (x),e

¢
corresponds to (2-2). Then, g∗ (µ (x) ,x) does not cor-

respond to Rule 1-1. If for each i 6= j, xi 6= π (x−i), then g∗ (µ (x) ,x)
corresponds to Rule 1-2. Then, {j} = N (p,σ,x,w). Suppose an agent
h ∈ N switches to (ρ0h,σ

0
h, w

0
h). If h 6= j, then h induces only Rule 1-3 or

Rule 2 and receives no output. This is because xh 6= π (x−h) is already fixed
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in Stage 1, and inducing Rule 2 implies xh > 0. If h = j, then j induces
only Rule 1-1 or Rule 1-2. In either case, as in the proof (1) of Lemma 2,
it is shown that j receives no more than byj + px

py

¡
sjx

0
j − sjbxj¢. Finally, sup-

pose g∗ (µ (x) ,x) corresponds to Rule 1-3. Then, there exists l ∈ N\ {j}
such that xl = π (x−l). Thus, g∗l (µ (x) ,x) = f (

P
skxk). Then, if an agent

h 6= l switches to any (ρ0h,σ0h, w0h), then h receives no output. Also if l devi-
ates, he receives at most f (

P
skxk) by such a deviation. Since x is already

fixed in Stage 1, the above arguments imply µ (x) ∈ NE ¡Γx◦mg∗ (x),e
¢
in the

subgame (2-2) of Stage 2.
We show that (µ, bx) ∈ SPE ¡Γx◦mg∗ ,e

¢
. In accordance with (1)-(2-1)

of (µ, bx), g∗ (µ (bx) , bx) = by. Suppose that an agent j deviates from bxj to
x0j 6= bxj in Stage 1. Then, from (2-2), g∗j

¡
µ
¡
x0j, bx−j¢ , ¡x0j, bx−j¢¢ ≤ byj +

px
py

¡
sjx

0
j − sjbxj¢. Thus, since bz ∈ P (e), bz ∈ SPA ¡Γx◦mg∗ ,e

¢
.

Lemma 5: Let Assumption 1 hold. Then, Γm◦xg∗ implements any Pareto
subsolution ϕ satisfying SPI and IUS in subgame perfect equilibria.

Proof. Let ϕ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u, s) ∈ E be given. From Lemma 2, we only show ϕ (e) ⊆ SPA ¡Γm◦xg∗ ,e

¢
.

First, we show that in each Stage 2 subgame, there exists a Nash equilib-
rium. LetNE

¡
Γm◦xg∗ (m) ,e

¢
denote the set of Nash equilibria of

¡
Γm◦xg∗ (m) ,e

¢
.

Let I (p,σ,0,w) ≡ ©i ∈ N | ∃x0i s.t. ϕ (p,σ, (x0i,0−i) ,w)−1 6= ∅
ª
. Let χ∗ :

∆n×Sn×Rn+ → [0, x̄]n be such that for each
¡
Γm◦xg∗ (ρ,σ,w) ,e

¢
, χ∗ (ρ,σ,w) ∈

[0, x̄]n is: for each i ∈ N ,
(i) if σi = si, and there exists p such that for each j ∈ N , ρj = p and i =
min I (p,σ,0,w), then χ∗i (ρ,σ,w) = x

0
i such that ϕ (p,σ, (x

0
i,0−i) ,w)

−1 6=
∅;
(ii) if σi = si, wi > f (

P
σkx̄), and there exists p such that for each j 6= i, ρj =

p and i ∈ N (p,σ,0,w), then for (x0i, w0i)with ϕ (p,σ, (x0i,0−i) , (w0i,w−i))−1 6=
∅,
χ∗i (ρ,σ,w) = arg max

xi
ui
³
xi,max

n
0,min

n
w0i +

px
py
σi (xi − x0i) , f (σixi)

oo´
;

(iii) if σi = si, wi > max {f (
P

σkx̄) ,max {wj | j 6= i}}, and
[{∃p s.t. ρj = p (∀j 6= i)}⇒ i /∈ N (p,σ,0,w)], then χ∗i (ρ,σ,w) =

x
2
;

(iv) otherwise, χ∗i (ρ,σ,w) = 0.
To simplify the notation, let us use x∗ to denote χ∗ (ρ,σ,w) in the following
discussion. Since xi = 0 for each i with σi 6= si, g∗ (ρ,σ,x∗,w) corresponds
to one of the subrules of Rule 1. Suppose an agent h switches to x0h.
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If x0h induces Rule 2, then x
0
h > 0, so g

∗
h

¡
ρ,σ,

¡
x0h,x

∗
−h
¢
,w
¢
= 0. Suppose

that g∗ (ρ,σ,x∗,w) corresponds to Rule 1-1. Then, as (ρ,σ,w) is already
fixed, no unilateral deviation from x∗ can induce Rule 1-1. Moreover, wi ≤
f (
P

σkx̄) for any i. Thus, if x0h induces Rule 1-2 or Rule 1-3, then h receives
no output. Suppose that g∗ (ρ,σ,x∗,w) corresponds to Rule 1-2. Then,
there exists j ∈ N (p,σ,x∗,w) such that for each i 6= j, ρi = p. This
implies wi ≤ f (

P
σkx̄) for each i 6= j. Thus, under Rule 1-2, for each i 6= j,

χ∗i corresponds to the case (iv) solely, whereas for j ∈ N (p,σ,x∗,w), χ∗j
corresponds to the case (ii). Hence, if h 6= j and the deviation x0h induces
Rule 1-2, Rule 1-3, or Rule 2, then g∗h

¡
ρ,σ,

¡
x0h,x

∗
−h
¢
,w
¢
= 0. Moreover,

as wj > f (
P

σkx̄), for any h ∈ N , x0h cannot induce Rule 1-1. If h = j, then
h ∈ N ¡p,σ, ¡x0h,x∗−h¢ ,w¢. Thus, x0h cannot induce Rule 1-3. Moreover,
since (ii) of χ∗j is the best response for j, if h = j and x

0
h induces Rule 1-2,

then g∗h
¡
ρ,σ,

¡
x0h,x

∗
−h
¢
,w
¢ ≤ g∗h (ρ,σ,x∗,w). Suppose that g∗ (ρ,σ,x∗,w)

corresponds to Rule 1-3. Then, x∗ is either x∗j =
x
2
and x∗i = 0 for each i 6= j,

or x∗ = 0. If the latter holds, then for each i ∈ N , χ∗i corresponds to the
case (iv). Then, for any x0h, g

∗
h

¡
ρ,σ,

¡
x0h,x

∗
−h
¢
,w
¢
= 0. If the former holds,

then there exists j ∈ N whose χ∗j corresponds to the case (iii). Note that
x∗j =

x
2
is the best response for j ∈ N to x∗−j = 0−j. If h 6= j, then no x0h

induces Rule 1-1, since wj > f (
P
skx̄). Moreover, if x0h induces Rule 1-2,

Rule 1-3, or Rule 2, then g∗h
¡
ρ,σ,

¡
x0h,x

∗
−h
¢
,w
¢
= 0. Thus, in summary,

χ∗ (ρ,σ,w) ∈ NE ¡Γm◦xg∗ (ρ,σ,w) ,e
¢
holds.

Now, we show that for e ∈ E , if bz = (bx, by) ∈ ϕ (e), then there exists
(ρ, s, by,χ) ∈ SPE ¡Γm◦xg∗ ,e

¢
such that g∗ (ρ, s, by,χ (ρ, s, by)) = by. Define a

strategy profile in
¡
Γm◦xg∗ ,e

¢
as follows.

(1) In Stage 1, for p ∈ ∆SPI (u, s, bx, by), each i ∈ N announces (ρi,σi, wi) =
(p, si, byi).
(2) In Stage 2, χ : ∆n × Sn ×Rn+ → [0, x̄]n is given as follows:
(2-1): if (ρ,σ,w) = (ρ, s, by) is such that for each i ∈ N , ρi = p in Stage 1,
then each i ∈ N supplies χi (ρ,σ,w) = bxi;
(2-2): if (ρ,σ,w) =

¡¡
ρ0j,ρ−j

¢
, s,
¡
w0j, by−j¢¢ is such that for each i 6= j,

ρi = p and w0j > f (
P
skx̄) in Stage 1, then for j ∈ N ,

χj (ρ,σ,w) = arg max
x0j

uj
³
x0j,min

nbyj + px
py
sj
¡
x0j − bxj¢ , f ³Pi6=j sibxi + sjx0j´o´,

and for each i 6= j, χi (ρ,σ,w) = bxi;
(2-3): if (ρ,σ,w) =

¡¡
ρ0j,ρ−j

¢
, s,
¡
w0j, by−j¢¢ is such that for each i 6= j, ρi =

p,
¡
ρ0j, w

0
j

¢ 6= (p, byj), and w0j ≤ f (P skx̄) in Stage 1, then χ (ρ,σ,w) = x;
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(2-4): if (ρ,σ,w) =
¡¡
ρ0j,ρ−j

¢
,
¡
s0j, s−j

¢
,
¡
w0j, by−j¢¢ is such that for each

i 6= j, ρi = p and s0j 6= sj in Stage 1, then for j ∈ N , χj (ρ,σ,w) = x
2
, and

for each i 6= j, χi (ρ,σ,w) = 0;
(2-5): in any other case, χ (ρ,σ,w) = χ∗ (ρ,σ,w).
To simplify the notation, let us use x to denote χ (ρ,σ,w) in the fol-

lowing discussion. If
¡
Γm◦xg∗ (ρ,σ,w),e

¢
corresponds to (2-1), then x ∈

NE
¡
Γm◦xg∗ (ρ,σ,w),e

¢
. This is because (bx, by) ∈ NA (g∗,e) by Lemma 2.

Also, by the above argument, x ∈ NE ¡Γm◦xg∗ (ρ,σ,w),e
¢
in the subgame

(2-5) of Stage 2.
Suppose in

¡
Γm◦xg∗ (ρ,σ,w),e

¢
, an agent h ∈ N switches to x0h. If

¡
Γm◦xg∗ (ρ,σ,w),e

¢
corresponds to (2-2), then g∗ (ρ,σ,x,w) corresponds to Rule 1-2. Then, if
h 6= j, then x0h cannot induce Rule 1-1 or Rule 2. Moreover, by wh = byh ≤
f (
P
skx̄), if x0h induces Rule 1-2 or Rule 1-3, then g

∗
h (ρ,σ, (x

0
h,x−h) ,w) = 0.

If h = j, then x0h cannot induce Rule 1-1, Rule 1-3, or Rule 2. Thus,
g∗h (ρ,σ, (x

0
h,x−h) ,w) ≤ g∗h (ρ,σ,x,w). If

¡
Γm◦xg∗ (ρ,σ,w),e

¢
corresponds

to (2-3), then g∗ (ρ,σ,x,w) corresponds to Rule 1-3, because x = x. Then,
since for any h ∈ N , wh ≤ f (

P
skx̄), if x0h induces Rule 1-2 or Rule 1-

3, then g∗h (ρ,σ, (x
0
h,x−h) ,w) = 0. Moreover, x0h cannot induce Rule 1-1

or Rule 2. If
¡
Γm◦xg∗ (ρ,σ,w),e

¢
corresponds to (2-4), then g∗ (ρ,σ,x,w)

corresponds to Rule 2. If h 6= j, then x0h can induce Rule 2 only, and
g∗h (ρ,σ, (x

0
h,x−h) ,w) = 0. If h = j, then x0h = 0 can induce Rule 1-3.

Moreover, x0h > 0 induces Rule 2. In any case, g
∗
h (ρ,σ, (x

0
h,x−h) ,w) = 0.

Thus, in summary, x ∈ NE ¡Γm◦xg∗ (ρ,σ,w),e
¢
.

We show that (ρ, s, by,χ) ∈ SPE ¡Γm◦xg∗ ,e
¢
. In accordance with (1)-

(2-1) of (ρ, s, by,χ), g∗ (ρ, s, by,χ) = by. Suppose that an agent j devi-
ates from (p, sj, byj) to ¡ρ0j, s0j, w0j¢ in Stage 1. If s0j = sj, then, from (2-2)
and (2-3), g∗j

¡¡
ρ0j, s

0
j, w

0
j,ρ−j, s−j, by−j¢ ,χ ¡ρ0j, s0j, w0j,ρ−j, s−j, by−j¢¢ ≤ byj +

px
py
sj (xj − bxj), where xj = χj

¡
ρ0j, s

0
j, w

0
j,ρ−j, s−j, by−j¢. If s0j 6= sj, then, from

(2-4), j receives no output under Rule 2. Thus, bz ∈ SPA ¡Γm◦xg∗ ,e
¢
.

Proof of Theorem 2. Let ϕ be a Pareto subsolution satisfying SPI and
IUS. From Lemmas 2, 3, 4, and 5, Γm◦xg∗ (resp. Γx◦mg∗ ) triply implements ϕ
in Nash, strong, and subgame perfect equilibria. Moreover, g∗ is forthright,
as is shown in the proof of Lemma 2. Thus, it suffices to show that g∗ meets
(iii) and (iv) of Definition 2.
1.Definition 2 (iii). The proof of Lemma 2 shows that if τ = (ρ,σ,x,w) ∈

NE (g∗,e), then Rule 1-1 applies and g∗ (τ ) = w. Given j ∈ N and

23



τ 0j =
¡
ρ0j,σ

0
j, x

0
j, w

0
j

¢ ∈ ∆ × S × [0, x̄] × R+, if
¡
τ 0j, τ−j

¢
induces Rules 1-1

or 1-2, then g∗j
¡
τ 0j, τ−j

¢ ≤ yj+
px
py
sj
¡
x0j − xj

¢
. If

¡
τ 0j, τ−j

¢
induces Rule

1-3, then either (i) ϕ
¡
ρ0j,
¡
σ0j,σ−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,w−j

¢¢ 6= ∅ and j ∈
N
¡
p,
¡
σ0j,σ−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,w−j

¢¢
; or (ii) j /∈ N ¡p, ¡σ0j,σ−j¢ , ¡x0j,x−j¢ , ¡w0j,w−j¢¢,

where p = ρk for each k 6= j. Case (i) implies g∗j
¡
τ 0j, τ−j

¢
= 0 by w0j ≤

f (
P
skx). Consider case (ii). Since (x,w) ∈ ϕ (e) and p ∈ ∆SPI (e,x,w)

from Lemma 2, if σ0j = sj, then j ∈ N
¡
p,
¡
σ0j,σ−j

¢
,
¡
x0j,x−j

¢
,
¡
w0j,w−j

¢¢
.

Thus, σ0j 6= sj. This implies x0j = 0, so that g∗j
¡
τ 0j, τ−j

¢
= 0. If

¡
τ 0j, τ−j

¢
induces Rule 2, then x0j > 0 by Lemma 1 and g∗j

¡
τ 0j, τ−j

¢
= 0. Thus, g∗

meets Definition 2 (iii).
2.Definition 2 (iv). Note again that if τ = (ρ,σ,x,w) ∈ NE (g∗,e), then

τ induces Rule 1-1, or there exists u ∈ Un such that (x,w) ∈ ϕ (u,σ) and
for each i ∈ N , ρi = p ∈ ∆SPI (u,σ,x,w). Moreover, if (x,w) ∈ ϕ (u,σ)
for some u ∈ Un, then p ∈ ∆P (u,σ,x,w) implies that for each σ0 ∈ Sn
such that σ0i = σi for each i ∈ N with xi > 0, there exists some u0 ∈ Un
such that p ∈ ∆P (u0,σ,x,w) ∩∆P (u0,σ0,x,w). By SPI, (x,w) ∈ ϕ (u,σ)
and p ∈ ∆P (u,σ,x,w) ∩∆P (u0,σ,x,w) together imply (x,w) ∈ ϕ (u0,σ).
By IUS, (x,w) ∈ ϕ (u0,σ) and p ∈ ∆P (u0,σ,x,w) ∩ ∆P (u0,σ0,x,w) to-
gether imply (x,w) ∈ ϕ (u0,σ0). Thus, (ρ,σ0,x,w) induces Rule 1-1. Hence,
g∗ (ρ,σ0,x,w) = g∗ (τ ) = w, and (ρ,σ0,x,w) ∈ NE (g∗,e).

6.3 Proofs of Lemma 6 in Section 4

Proof of Lemma 6. Let (u, s) ∈ E be such that (x,y) ∈ W θ (u, s). Let
p ∈ ∆ be a competitive equilibrium price for (x,y) at (u, s). Let (u, s0) ∈ E
be such that for each i ∈ N with xi > 0, s0i = si, and p ∈ ∆P (u, s0,x,y).
Then, by the definition of ∆P (u, s0,x,y) and strict monotonicity of utility
functions, (i) for each z0 ∈ Z (s0), P (pyy

0
i − pxs0ix0i) ≤

P
(pyyi − pxs0ixi);

and (ii) for each i ∈ N and each (x, y) ∈ Z, if ui (x, y) > ui (zi), then
pyy − pxs0ix > θi

P
(pyyk − pxs0kxk). Therefore, (x,y) ∈ W θ (u, s0). Thus,

W θ satisfies IUS. Similarly, EB also satisfies IUS.
Let (u, s) ∈ E be such that (x,y) ∈ PR (u, s). Let p ∈ ∆P (u, s,x,y).

Let (u, s0) ∈ E be such that for each i ∈ N with xi > 0, s0i = si, and
p ∈ ∆P (u, s0,x,y). Then, as (x,y) ∈ PR (u, s), for each i ∈ N , yi =
sixiP
skxk

P
yk =

sixiP
j∈N,xj>0 sjxj

P
yj =

s0ixiP
j∈N,xj>0 s

0
jxj

P
yj =

s0ixiP
s0kxk

P
yk. There-

fore, (x,y) ∈ PR (u, s0). Thus, PR satisfies IUS.
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