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Abstract

In production economies with unequal labor skills, we study
axiomatic characterizations of Pareto subsolutions which are im-
plementable by sharing mechanisms in Nash, strong Nash, and
subgame perfect equilibria. The sharing mechanism allows agents
to work freely and distributes the produced output to the agents,
according to the profile of labor hours and the information on de-
mands, prices, and labor skills. Based on the characterizations,
we find that most fair allocation rules, which embody the ethical
principles of responsibility and compensation, cannot be imple-
mented when individuals’ labor skills are private information.
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1 Introduction

We consider the implementation of allocation rules in production economies
with possibly unequal labor skills among individuals. Varian (1994), Hurwicz
et al. (1995), Hong (1995), Suh (1995), Tian (1999, 2000), Yoshihara (1999),
and Kaplan and Wettstein (2000) have proposed simple or natural mech-
anisms (game forms) to implement particular rules such as the Walrasian
solution and the proportional solution [Roemer and Silvestre (1993)]. By
contrast, a few works such as Shin and Suh (1997) and Yoshihara (2000) have
discussed characterizations of allocation rules implementable by such simple
or natural mechanisms. However, in these works, two implicit assumptions
are made about the basic information structure among individuals and the
social planner (or mechanism coordinator).

The first one is that the coordinator knows individuals’ skills, or alterna-
tively that all individuals have the same skill. Thus, the problem of asymmet-
ric information is reduced to the possibility of an individual misrepresenting
his preference ordering,! and at most, the possibility of an individual under-
stating his endowment of material goods.? However, if individual skills differ,
it is more natural to consider an informational structure in which the planner
does not know each individual’s true skill, and an individual has an incentive
to overstate, or to understate, his own skill. The possibility of overstating
one’s skill is an essential feature of production economies with asymmetric
information, because the coordinator cannot require individuals to “place
the claimed endowments on the table” [Hurwicz et al. (1995)] in advance of
production. Our goal is to characterize the class of Pareto efficient allocation
rules that are implementable by a natural mechanism even when individuals’
skills are unknown to the planner.

What kind of mechanism is natural in this context? This issue is relevant
to our discussion of the second implicit assumption in the existing litera-
ture on implementation in production economies. Although Shin and Suh
(1997) and Yoshihara (2000) define conditions for characterizing “natural
mechanisms” in production economies, the list of these conditions® is not

Warian (1994), Suh (1995), Shin and Suh (1997), Yoshihara (1999, 2000), and Kaplan
and Wettstein (2000) discussed this type of problem.

2Hurwicz et al. (1995), Hong (1995), and Tian (1999, 2000) discussed this type of
problem.

3Those are feasibility, forthrightness, best response property, and simple strateqy spaces,
which were originally proposed by Dutta, Sen, and Vohra (1995) and Saijo, Tatamitani,



yet satisfactory, because they omit another important feature of production
economies with asymmetric information. Usually, a mechanism consists of
a pair of a list of strategy spaces and an outcome function, a function that
assigns an allocation to each profile of individuals’ strategies. This function
implies that in production economies, the planner is authorized to force in-
dividuals to supply the labor assigned by the outcome function.* However,
the planner may not have such authority.

To address this issue, we require of mechanisms that they satisfy labor
sovereignty [Kranich (1994)]. This is the requirement that every individual
should have the right to choose his own labor time. We call a sharing mecha-
nism a game form in which each individual can freely supply his labor time,
and is asked to state his skill and his demand for consumption goods. The
outcome function simply distributes the output produced, according to the
information they provided and the labor actually supplied.

Thus, the question this paper addresses is: what efficient rules are im-
plementable by sharing mechanisms? We consider three equilibrium notions,
Nash, strong Nash, and subgame perfect Nash, for the non-cooperative games
defined by sharing mechanisms.” We identify two axioms that character-
ize rules triply implementable by sharing mechanisms. The two axioms are
relevant to the ethical principles of responsibility and compensation [Fleur-
baey (1998)] in fair allocation problems. Thus, our characterization provides
insight into the implementability of fair allocation rules in terms of respon-
sibility and compensation.

The model is defined in Section 2. Section 3 provides a characterization of
triple implementation by sharing mechanisms. Section 4 gives some examples
of implementable and non-implementable rules. Concluding remarks appear
in Section 5. All proofs are relegated to the Appendix.

and Yamato (1996) to characterize “natural mechanisms” in pure exchange economies.
4Roemer (1989) pointed out this implicit assumption explicitly.
®Yamada and Yoshihara (2002) proposed a sharing mechanism that triply imple-
ments the proportional solution in these three equilibria, when the production function is
differentiable.



2 The Basic Model

There are two goods, one of which is an input (labor time) z € R, to be used
to produce the other good y € R, .5 There is a set N = {1,...,n} of agents,
where 2 < n < 4+00. Each agent i’s consumption is denoted by z; = (x;, y;),
where x; denotes his labor time, and y; his share of the output. All agents
face a common upper bound of labor time Z , where 0 < T < +o00, and so
have the same consumption set Z = [0, z] x R,.

Each agent i’'s preference is defined on Z and represented by a utility
function u; : Z — R, which is continuous and quasi-concave, and strictly
monotonic (decreasing in labor time and increasing in the share of output)

on 7= [0,Z) x R, ,." Let U denote the class of all such utility functions.

Each agent ¢ has a labor skill, s; € R,,. The universal set of skills
for all agents is denoted by S = R, ,.% The labor skill s; € S is agent i’s
effective labor supply per hour measured in efficiency units. It can also be
interpreted as agent i's labor intensity exercised in production.” Thus, if
agent i's labor time is x; € [0, Z] and his labor skill is s; € S, then s;z; € R,
denotes the agent’s effective labor contribution to production measured
in efficiency units. The production technology is a function f : R, — R,
which is continuous, strictly increasing, concave, and such that f (0) = 0.
For simplicity, we fix f. Thus, an economy is a pair of profiles e = (u, s)
with u = (u;),cy € U" and s = (5;),.5 € S™. Let £ = U™ x S™ denote the
class of all economies.

Given s € S", an allocation z = (z;,9;);,cy € Z" is feasible for s if
Yoy < f (O] six;). Let Z (s) denote the set of (feasible) allocations for s €
S". An allocation z = (z;),.y € Z" is Pareto efficient for e = (u,s) € £
if z € Z(s) and there does not exist 2’ = (z;),.y € Z () such that for each

5The symbol R, denotes the set of non-negative real numbers.

"The symbol R, ;. denotes the set of positive real numbers.

8For any two sets X and Y, X C Y if and only if any x € X also belongs to Y, and
X=Yifandonlyif X CY and Y C X.

9Tt might be more natural to define labor skill and labor intensity in a discriminative
way: for example, let 5; € S be i’s labor skill, and s; be i’s labor intensity such that
0 < s; <5;. In such a formulation, we may view the amount of s; as being determined
endogenously by the agent i. In spite of this more natural view, we will assume in the
following discussion that the labor intensity is a constant value, s; = §;, for the sake of
simplicity. The main theorems in the following discussion would remain valid with few
changes in the settings of the economic environments even if the labor intensity were
assumed to be varied.



i € N, u; () > u; (%), and for some i € N, u;(z)) > u;(2;). Let P(e)
denote the set of Pareto efficient allocations for e € £€. A solution is a
correspondence ¢ : &€ — Z" such that for each e = (u,s) € £, ¢ (e) C Z (s).
A solution ¢ is a Pareto subsolution if for each e € £, ¢ (e) C P (e).

Given ¢, z € Z" is p-optimal for e € £ if z € ¢ (e).

2.1 Sharing Mechanisms

We are interested in mechanisms having the property of labor sovereignty,
and in particular, we focus on the following types of mechanisms. For each
i € N, let his strategy space be A; = M, x [0, Z|, with generic element (m;, x;).
Note that M; denotes agent i’s message space in general. Let M = X;enM;
and A = X;enA;. A sharing mechanism is a function g : A — R’} such
that for each (m,x) € A, there is y € R? such that g(m,z) = y. A
sharing mechanism ¢ is feasible if for each s € S™ and each (m,x) € A,
(x,9(m,x)) € Z(s). Note that a feasible sharing mechanism g needs not
refer to s in dividing the total output f (> s;z;). Let G denote the class of
all (feasible sharing) mechanisms.

Given g € G, a (feasible) sharing game is defined for each e € £ as a
non-cooperative game (N, A, g, e). Fixing N and A, let (g, e) simply denote
the sharing game (N, A, g, e).

Given a profile (m,x) € A, let (m),m_;,x,,x_;) € A be the profile
that is obtained by replacing the i-th component (m;,z;) of (m,x) with
(m},z). A profile (m*,x*) € A is a (pure-strategy) Nash equilibrium
of (g,e) if for each ¢ € N and each (m;,z;) € A;, u; (xf,g; (m*, x*)) >
U (xz-, Ji (mi, m*,, miz)) Let NE (g, e) denote the set of Nash equilibria
of (g,e). An allocation z = (z;,%;);cy € Z" is a Nash equilibrium allo-
cation of (g,e) if there exists m € M such that (m,x) € NE(g,e) and
y = g(m,x), where x = (7;),.y and y = (v;),cy- Let NA(g,e) denote
the set of these allocations. A mechanism g € G implements ¢ in Nash
equilibria if for each e € £, NA(g,e) = ¢ (e).

A profile (m*, x*) € A is a (pure-strategy) strong (Nash) equilib-
rium of (g, e) if for each ' C N and each (m;, z;),c; € (A;);op, there exists
j € T such that

IS

wj (25, g5 (m* %)) > wj (25,95 (M, 2)seq > (M T3 pere) ) -

0For each T C N, T° denotes the complement of T in N.




Let SNE (g, e) denote the set of strong equilibria of (g, e). An allocation z €
Z" is a strong equilibrium allocation of (g, e) if there exists m € M such
that (m,x) € SNE (g,e) and y = g(m,x). Let SNA (g, e) denote the set
of strong equilibrium allocations of (g, e). A mechanism g € G implements
¢ in strong equilibria, if for each e € £, SNA(g,e) = ¢ (e).

2.2 The Timing Problem with Sharing Mechanisms

Note that m and @ represent different kinds of strategic choices: m is the
list of agents’ announcements concerning their private information, whereas
x indicates their supplies of labor time. Thus, there may be a difference
between the point in time when m is announced and the point in time when
x is exercised. Two polar opposite time sequences can be distinguished:
the agents may announce m before they engage in production, or they may
announce m after supplying . The former enables each i to choose his labor
supply with knowledge of m, whereas the latter enables each i to choose m;
with knowledge of x.

Thus, we consider two types of two-stage game forms: Given g € G, the
first game form derived from g is the feasible mechanism I'j*** in which Stage
1 consists of selecting m € M, Stage 2 consists of selecting @ € [0,Z]", and
(x, g (m,x)) is the outcome. The second game form is the feasible mechanism
I'¥e™ in which Stage 1 consists of selecting = € [0,7]", Stage 2 consists of
selecting m € M, and (x, g (m,x)) is the outcome.

Given a two-stage game (F 5, e) and a strategy profile m € M in Stage
1, let (F;”O‘” (m) ,e) be the corresponding Stage 2 subgame. A strategy
mapping is a function x : M — [0,Z]" such that for each m € M, x (m)
is a strategy profile of the subgame (F;”Om (m), e). Let X be the set of all
such mappings. A profile (m*, x*) € M x X is a (pure-strategy) subgame
perfect (Nash) equilibrium of (F;’“’m, e) if for each i € N, each m; € M;,
each x € X with x = (Xi, Xii), and each m € M,

*
—1

U; (X;k (m’i7 m*—z)a Gi (mi7 m*—ia X*(mu m

u; (xi(m), gi (m, x(m))),

ui (x; (M), g; (m", x" (m”)))

>
and u; (x; (m),g; (m,x" (m))) >

where x7 (m) (resp. x; (m)) is the i-th component of x* (m) (resp. x (m))
in Stage 2 subgame induced by the choice m in Stage 1.

Given a two-stage game (I'**™, e) and a strategy profile ¢ € [0,z]" in
Stage 1, let (I'*°™ (x), e) be the corresponding Stage 2 subgame. A strategy
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mapping is a function p : [0, Z]" — M such that for each x € [0,z]", p (x)
is a strategy profile of the subgame (Fgom (x) ,e). Let M be the set of
all such mappings. A profile (u*, *) € M x [0,7]" is a (pure-strategy)
subgame perfect (Nash) equilibrium of (Fgom,e) if for each 7 € N,
each z; € [0,z], each p € M with p = (p;, p*;), and each x € [0, z]",

us (s (0 @), 2)) > g (s (i (0 s) s
and u; (2, 9; (L* (2) ,®)) > i (i, 9 (e (T), T)).

Let SPE (F?Ow, e) be the set of subgame perfect equilibria of (F;’”‘"c, e).
An allocation z € Z" is a subgame perfect equilibrium allocation of
(Tme= e) if there exists (m,x) € SPE (I'™** e) such that x (m) = @
and y = g(m,x (m)). Let SPA (F;’”m,e) be the set of subgame perfect
equilibrium allocations of (F i e). Given g € G, I'7"** implements ¢ in
subgame perfect equilibria if for each e € £, SPA (I";ww,e) = p(e).
Given g € G, I')"*® triply implements ¢ in Nash, strong, and sub-
game perfect equilibria if for each e € £, NA(g,e) = SNA(g,e) =
SPA (F;”O“”, e) = @ (e). Parallel definitions apply to (F;’Om, e).

3 Implementation by Sharing Mechanisms

We assume throughout that each agent prefers interior consumption vectors
to boundary consumption vectors.

Assumption 1 (boundary condition of utility functions): For each i € N,
each z; 6%, and each z, € 0Z = 7\ %, w; (z) > u; (2]).

Let p, € R, represent the price of labor (measured in efficiency units) and
py € Ry the price of output. The set of price vectors is the unit simplex A =
{p=(ps,py) €RZ | pz +py =1}. Let p = (p;);ey € A™ be a profile of price
vector announcements, o = (0;),.y € S™ a profile of skill announcements,
and w = (w;),.y € R a profile of demands for output. Let M = A™ x 8" x
R, with generic element (p, o, w).

Definition 1: A vector p € A is an efficiency price for z = (x,y) € Z™ at
e=(u,s) e if
(i) for each ' € Ry, p,f (2') — pot’ <> (pyYi — PuSi®i);



(ii) for each i € N and each 2, € Z, if u; (z}) > u; (z:), then pyy — pysx} >
PyYi — Pz SiZs-

Let A” (e, z) be the set of efficiency prices for z at e.

Definition 2: A Pareto subsolution ¢ is triply labor sovereign implementable,
if there exists a feasible sharing mechanism g € G such that:

(i) Te® (resp. I'g°™) triply implements ¢ in Nash, strong, and subgame
perfect equilibria;

(ii) g is forthright: for each e = (u,s) € € and each (x,y) € ¢ (e), there
exists p € A (u, s,x,y) such that (p, s, z,y) € NE(g,e) and g(p, s, z,y) =
y with p = (pi)jey = (b, - - -, D);

(iii) for each e = (u,s) € &, if (p,s,x,y) € NE(g,€e) and g (p,s,x,y) =y
such that p = (pi);ey = (0, --.,p) € (A" (u,s,m,y))n, then for each i € N
and each (p,ol, zi,w)) € A xS x[0,7] x Ry,

17 “71)

p
9 (pia 0-2737;711)27 P_i»S—i, L—i, wfi) < max {073/1 =+ _21787; (Q?; - xz)} )
Y

(iv) for each e = (u,s) € &, if (p,s,x,y) € NE (g,e), then [for eachi € N
with x; > 0, s, = s;| implies [(p,s',x,w) € NE(g,€e) and g (p,s’ x,w) =
g(p,s,x,w).

Forthrightness requires that if a strategy profile is consistent with a -
optimal allocation, then it is a Nash equilibrium and the outcome coincides
with this allocation [Dutta et al. (1995); Saijo et al. (1996)]. That is, any
p-optimal allocation should be realizable as an equilibrium outcome in a
forthright way.

Definition 2 (iii) is a kind of informational efficiency of the mechanism. It
says that in equilibrium, each agent’s attainable set is included in a half space
that is included in the lower contour set of the agent’s utility function when
the equilibrium allocation is Pareto efficient. An important point is that
this half space depends only on the production point and the production
possibility set. Thus, the coordinator does not need to know the entire
preference profile in order to obtain ¢-optimal allocations in equilibria.

Definition 2 (iv) is another requirement of informational efficiency. It says
that the distribution of output is independent of the skill parameters stated
by “non-working” agents.



We introduce two axioms as necessary conditions for labor sovereign im-
plementation. First, any p-optimal allocation should remain p-optimal if the
profile of the utility functions changes, without the Pareto efficiency of this
allocation being affected. It is a condition of informational efficiency.

Supporting Price Independence (SPI) [Yoshihara (1998); Gaspart (1998)]:
For each e = (u,s) € £ and each z € ¢ (e), there exists p € AT (e, z) such
that for each € = (u',s) € &, if p € AP (€, z), then z € p(€).

Let AP (u,s,2) = {pe AP (u,s,2) | Vo' eU" st. pe AP (u/,s,2), z €
p(u',8)}.

Secondly, any (p-optimal allocation should remain @-optimal if the skills
of non-working agents change, without the Pareto efficiency of this allocation
being affected.

Independence of Unused Skills (IUS): For each € = (u,s) € £ and
each z € o (e), there exists p € AP (e, z) such that for each € = (u,s') € £
where s, = s; for each i € N with x; > 0, if p € AP (€/,2), then z € p(€).

Let AUS (u,s,2z) = {p € AF(u,s,2) | V' € 8" st. s, = s; for each
i € N with z; >0 and p € A" (u,d,2), z € ¢ (u,s)}.

The two axioms can also be interpreted in terms of responsibility and com-
pensation in fair allocation [Fleurbaey (1998)]. SPI represents a “stronger”
condition of responsibility, because it requires independence of particular
changes of individuals’ utility functions which are interpreted as factors
for which the individuals are responsible.!! It is “stronger” because SPI
is stronger than Maskin Monotonicity [Maskin (1999)], which is seen as a
relatively strong axiom of responsibility [Fleurbaey and Maniquet (1996)].
In contrast, IUS can be interpreted as a weaker condition of compensation,
because it requires independence of particular changes of individuals’ skills,
for which the individuals cannot be held responsible. It is “weaker” because
IUS is weaker than Independence of Skill Endowments [Yoshihara (2003)],
which is a relatively weak axiom of compensation.

Note that a Pareto subsolution ¢ satisfies SPI and TUS if and only if
for each e € £ and each z € ¢ (e), AT (e,2) # @ and AV (e,2) # 2.
Moreover, the following lemma shows that each p € ASF! (e, z) is contained
in ATUS (e, z).

N There is another axiom closely related to SPI, Local Independence, although it is
applied only to economies with differentiable utility functions [Nagahisa (1991)].
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Lemma 0: Let ¢ satisfy SPI and IUS. Then, for each e = (u,8) € € and
each z € ¢ (e), AT (u,8,2) C AV (u, s,2).

Proof. Given (u,s) € &,let z = (z;,y;);cn € ¢ (u,8) andp € AP (u, 5,2).
W. 1L o. g., suppose that 1 = 0 and z; > 0 for each i # 1. Let s = (s}, s_1)
be such that p € AF (u,s',z). If z € p(u,s'), then by the definition of
AU we have that p € ATV (u, s,2).

For (z9,y2) of 2 = (@i, ¥i);cn, let a € (0,1) satisfy —

Dz S2
Py :

rem, since

O@T—w2)' " *-(y2)*/0x _
4 ] 8(z—x2)" " (y2)* /9y
The existence of o can be shown by the intermediate value theo-
_9@—x)' " (y2)* /O Y2 (l

O(@T—w2)' " (y2)* /Oy Tox2 \o
_0@—x2)' " (y2)* /O

O(T—w2)' " (y2)* /Oy
wi(z,y) = (T —2)' - y*. Thus, u} is compatible with Assumption 1.

Let u* = (uy,u_). As AP (u*,s,2) = {p} and ¢ satisfies SPI, z €

¢ (u*, s) and ASFT (u*, 8,2) = {p}. Consider moving from (u*, s) to (u*, s).
From the definition of uw*, Af (u*,s',z) = {p}. As @ satisfies IUS, z €
o (u*, ') and AV5 (u* s',z) = {p}. Consider moving from (u*, s') to (u, ).
As p € AP (u, s z) and ¢ satisfies SPI, z € ¢ (u,s'). B

—1) — 0 as a — 1, whereas

— 00 as a — 0. Let uj € U be, for each (z,y) € Z,

SPI and TUS are necessary conditions for labor sovereign triple implemen-
tation.

Theorem 1: If a Pareto subsolution ¢ is triply labor sovereign imple-
mentable, then ¢ satisfies SPIand IUS.

Next, we show that SPI and IUS together are sufficient for labor sovereign
implementation. Given @ € [0,Z]" andi € N, let 7 (x_;) = max {mg‘r | z; <z for j #i}.

We construct the following two auxiliary mechanisms:

e Let g* be such that for each s € 8", each 7 = (p, o,x,w) € A" xS™ X
0,z]" x R", and each i € N,
if x; = m(x_;) and
SET _ .,
g (1) =4 T ( (D o), i {5 # 1)}

0 otherwise.

e Let g% be such that for each s € 8", each T = (p, o,x,w) € A" x §™ X
0,z]" x R, and each i € N,

7 (1) = f O skxy) if 2, =0, w; =0, and 0; > o; for each j # i,
95 \T) =19 0 otherwise.

10



The mechanism ¢% € G assigns all of the produced output!? to only one
agent, the agent who provides the maximal positive amount, but less than z,
of labor time and reports a maximal demand for the output. The mechanism
9% € G assigns all of the produced output to only one agent, the agent who
demands no output, reports the highest skill, and does not work.

Given p € A and (o,x,w) € S" x [0,z]" x R, let ¢(poxzw) ' =
{ueU"| (xw) € ¢(u,o) and p € AS! (u,0,x,w)}. Given p € A and

(o,x,w) € 8" x[0,z]" x RY, let N (p,o,x,w) = {z € N |3 (z}, w)) €7

s.t. ¥ <p7 o, (QZ;, mfi) ’ (U)g, w*i))_l 7é Q}

A profile T = (p, o,x,w) € A" x §" x [0,z]" x R} is p-consistent if for
some p € A, p; = pforeachi € N and ¢ (p, o',a:,w)f1 =+ &. Given a profile 7
such that for each j, p; = p, i € N (p, o,x,w) is called a “potential deviator,”
for the following reason. Suppose ¢ (p, a,al:,w)_1 =gand N (p,o,xz,w) # 2.
The first statement implies that 7 is not p-consistent. The second statement
implies that there is an agent ¢+ who can switch his strategy to another one
(ps, 04, 2, wh) so that the new profile (p, o, (2}, x_;), (w, w_;)) is consistent
with (. That is, it may be the agent who makes the current profile 7 incon-
sistent with ¢. This means that ¢ € N (p, o,x,w) is a “potential deviator.”

We define g* € G as follows:

For each s € §" and each T = (p, o, x,w) € A" x §" x [0,z]" x R,
Rule 1: if f (> opzr) = f O sgrr), and
1-1: there exists p € A such that p; = p for each i € N and ¢ (p, a,w,w)_l -+
@, then ¢* (1) = w,
1-2: there exist 7 € N and p € A such that p = p; for each i # j,
¢ (pj,0,2,w) " =@, and j € N (p,o,@,w), then g (1) = 0 for each i # j,
and g7 (1) =

max {O, min {w; + z-z (o525 — o), f (O skxk)}} if w; > f (> oxZ)

0 otherwise,
for (x4, w}) with ¢ (p, o, (x;-,m_j) , (w;,w_j))_l + O,
1-3: in any other case, ¢g* (T) = g* (1),

Rule 2: if f (3 owar) # f (32 swww), then g (1) = g7 (7).

12We implicitly assume that the mechanism coordinator can hold all of the produced
output after the production process, although he may not monitor that process perfectly.
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It is easy to see that g¢* is forthright, satisfies the best response property
[Jackson et al. (1994)], and is self-relevant [Hurwicz (1960)]. Note that the
total output f (> spxy) is observable at the end of production, even without
true information on labor skills.

Given T = (p,o,x,w) € A"xS"x[0,z]" xR, g* works as follows: First,
g* computes the amount f (> oxr) and compares this with f (> sgzy).
Suppose equality holds. Then, if 7 is @-consistent, g* distributes f (> spxy)
in accordance with w under Rule 1-1. Otherwise, and if there is a unique
potential deviator, then g¢g* punishes this deviator according to Rule 1-2.
In any other case, g* selects the same outcome as ¢ under Rule 1-3. If
O okrr) # f (O skxk), then g* selects the same outcome as g under
Rule 2.

We explain below how ¢* induces true revelation of skills at least for
working agents (A), and how it attains desirable allocations (B):

(A) ¢g* distributes f (> srxx) according to 7. The problem is that true skills
are not observable. To solve this, a scheme of reward and punishment is set
up as follows. First, if f (> orxr) # f (O skxk), then clearly o # s, and
at least one agent, say j € N whose labor supply is positive, z; > 0, has
misrepresented his skill, o; # s;. This agent is punished under Rule 2.
Second, suppose f (> oxxi) = f (O skxx) but o # s. Then, at least two
agents have misrepresented their skills while supplying positive amounts of
labor, or someone, say j, has chosen “non-working” while misrepresenting
his skill. Let us put aside the latter case for the moment. In the former
case, suppose that one such misrepresenting agent, say j € IV, switches from
z; > 0 to z; = 0, while announcing a higher number o} than any other in

o_j, so as to induce f <0;m; + D iz Ji$i> # f (sjm; + D iz szxz) In this
case, j may be better off under Rule 2. Thus, the case may not correspond
to an equilibrium situation. The following lemma confirms this insight.

Lemma 1: Let Assumption 1 hold. Let g* € G be as above. Given (u,s) € &,
let (p,o,x,w) € A" x 8" x [0,z]" X R" be a Nash equilibrium of (g*,u,s)
such that f (> oxzr) = f (O] skxr). Then, for each i € N with z; > 0,

g; = S;.

(B) We still need to explain how g¢* implements the Pareto subsolu-
tion ¢ when all agents report their true skills, & = s. Then, the profile
T = (p,o,x,w) induces only Rule 1. Note that among the three subrules of
Rule 1, only Rule 1-1 can realize a desirable allocation in equilibrium, while
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the other two are to punish agents who have deviated from the situation of
Rule 1-1. Suppose that 7 is @p-consistent. Then, 7 induces Rule 1-1 and
the corresponding outcome g* (7) = (@, w) is p-optimal for some economy.
However, this does not necessarily imply that (x,w) is Pareto efficient for
the actual economy. If 7 induces Rule 1-1, but (x,w) is not Pareto effi-
cient for the actual economy, there is an agent, say j, and a consumption
bundle (x;,w;) which is better than (x;,w;) for him, and is also available
to him within the budget set determined by the supporting price at (x, w).
Then, Rule 1-2 is applied to select such (:U;,w;) Therefore, if (z,w) is an
equilibrium allocation, then (x, w) is Pareto efficient for this actual economy.

We are now ready to discuss the full characterizations of labor sovereignty
triple implementation by examining the performance of g*.

Theorem 2: Let Assumption 1 hold. Then, if a Pareto subsolution ¢ satis-
fies SPI and IUS, then ¢ is triply labor sovereign implementable by g*.

This result holds even in economies of two agents.

Corollary 1: Let Assumption 1 hold. Then, a Pareto subsolution ¢ is triply
labor sovereign implementable if and only if ¢ satisfies SPI and IUS.

If each agent ¢ can control his contribution by selecting s; € [0, s;], Corollary
1 still applies. In such a situation, the observable total output is given not
by f (O skxk), but by f (> Sgxy), where si € [0, sg] for each k € N. Then,
the coordinator can still compare f (> opxy) with f (O Spzy).

From Corollary 1, we gain two new insights. First, we can classify which
solutions remain implementable if skills are unknown to the coordinator,
compared to when they are known.!* Second, Corollary 1 indicates that the
implementable solutions should satisfy a rather strong axiom of responsibility
such as SPI, and a rather weak axiom of compensation such as TUS.

4 Characterizations

By applying Corollary 1, let us examine which Pareto subsolutions are im-
plementable. First, we discuss three variants of the Walrasian solution:

BTt is easy to see that any Pareto subsolution is labor sovereign implementable if and
only if it satisfies SPI, whenever skills are known to the coordinator.
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Definition 3: The Walrasian solution with profit shares 0 = (0;),. €
[0,1]" satisfying " 0; = 1, denoted W, assigns with each e = (u,s) € &,
z € Z (s) such that: there exists p = (py,py) € A such that:

(i) for each ' € Ry, p,f (') — por’ < 37 (Dyys — Pasjzy);

(ii) for each i € N and each (x,y) € Z, if w;(x,y) > u; (z), then p,y —
Pesi® > 0; 3 (Dyyj — PaSiTs)-

Definition 4 [Roemer and Silvestre (1989, 1993)]: The proportional so-
lution, denoted PR, assigns with each e = (u,s) € £, z € P (e) such that

for each i € N, y; = ¥ > Yj-

Definition 5 [Roemer and Silvestre (1989)]: The equal benefit solution,
denoted EB, assigns with each e = (u,s) € £, z € P (e) such that: there
exists p = (pz,py) € AL (e, z) such that for each i € N, p,y; — pzsiv; =
5 2 (s — Pasjz)-

All three solutions above satisfy SPI [Yoshihara (2000)]. Thus, to confirm
their implementability, it suffices to examine IUS. Then:

Lemma 6: W°, PR, and EB satisfy IUS.

Corollary 2: Let Assumption 1 hold. Then, W, PR, and EB are triply
labor sovereign implementable.

Is there any non-Walrasian type of allocation rule that is implementable?
To discuss this, let us consider the following types of rules:

Definition 6 [Yoshihara (2000a)]: The \-effort-reward solution with pa-

rameter \ € [0,1], denoted ER*, assigns with each e = (u,s) € £, z € P (e)
such that for each i € N, y; = {)\Zx—jrj + (1= %} O sjx;).

For each X € [0, 1], the solution ER* is well defined [Yoshihara (2000a)]. It
also satisfies the equal-reward-for-equal-labor-time (EREL) principle [Kranich
(1994)]. Moreover, it satisfies SPI and IUS, since it distributes output com-
pletely independently of skills. Thus:

Corollary 3: Let Assumption 1 hold. Then, for any X € [0,1], ER® is
triply labor sovereign implementable.
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As ER? is not a Walrasian type, but satisfies the EREL principle, Corollary
3 indicates that implementable EREL-Pareto subsolutions exist.

Note that among Pareto subsolutions meeting the ethical principles of re-
sponsibility and compensation, proposed by Fleurbaey and Maniquet (1996),
the u-reference welfare equivalent budget solution can be implementable by
sharing mechanisms if skills are known to the coordinator, because it satis-
fies SPI. However, even this solution cannot be implementable if skills are
unknown, because it does not satisfy IUS. Thus, the private information of
skills causes this non-implementability result.

5 Concluding Remarks

We characterized implementation by sharing mechanisms in production economies
with unequal labor skills. The class of Pareto subsolutions implementable by
sharing mechanisms is characterized by two axioms, Supporting Price Inde-
pendence and Independence of Unused Skills. The Walrasian, proportional,
equal benefit, and M-effort-reward solutions are implementable, whereas the
u-reference welfare equivalent budget solution is not implementable if skills

are unknown to the coordinator. This result indicates the impossibility of
implementing a Pareto subsolution that meets the ethical principles of re-
sponsibility and compensation, if skills are private information.

The workability of our proposed mechanism depends on two implicit as-
sumptions: First, although every individual ¢’s effective labor contribution,
s;x;, is imperfectly observable and unverifiable by the coordinator, his la-
bor supply, x;, is observable. Second, despite such imperfect observability,
the coordinator can observe the total output, so that he can compare this
amount with the expected output based on the announcements of the indi-
viduals. We believe that these assumptions are reasonable. However, it is an
open question whether the implementation of Pareto subsolutions by natural
mechanisms in production economies with unequal skills holds without these.

6 Appendix

6.1 Proof of Theorem 1

Let ¢ be a Pareto subsolution that is triply labor sovereign implementable.
Then, there exists g € G that satisfies conditions (i)-(iv) in Definition 2.
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Given e = (u;, 5;);cn € = (U, $i);en € &, suppose that z = (2, 4;),cn €

¢ (e) and that there exists p € AP (e,z) N AP (€/,z). From (ii), for p =
(pi);ey With p; = p for each i € N, 7 = (p,s,x,y) € NE(g,e) and g (T) =
y. Therefore, from (iii), ¢; (7/,7_;) < max {O, Yi + Z_zsi (xf — xz)} for each
i € Nand each 77 € A x S x [0,7] x Ry. As p € AP (€, z), this implies
T € NE(g,€) and (x,y) € NA(g,€e’). Hence, z € p(€') by (i). Thus, ¢
satisfies SPI.

Given e = (u;, 8;);cn» € = (Ui, 5);en € &, let z € ¢ (e), where s; = s for
each i € N with z; > 0. Suppose that there exists p € A (e, z) VAP (€, 2).
From (ii), for p = (p;);cy With p; = p for each i € N, 7 € NE(g,e) and
g9(7) = y, which implies (p,s',x,y) € NE(g,e) and g (p,s’,x,y) = y by
(iv). Then, from (iii), g; (7/,7_;) < maX{O,yi + z—zsi (x} — xz)} for each
i€ Nandeach 7/ € AxSx[0,7] xR,. Asp € AP (€, z), this implies that
(p,s',x,y) € NE (g,€') and (x,y) € NA(g,€'). Hence, z € ¢ (€') from (i).
Thus, ¢ satisfies IUS. R

6.2 Proof of Theorem 2

Proof of Lemma 1. Suppose that there exists j € N with o; # s; and
xz; > 0. Let N (o, ) be the set of all such j. As f (> oiz;) = f (O sizi),
N (o, ) is not a singleton. Moreover, under Rule 2, each j € N (o, x) can
obtain y; = f (Zi# sixi) > 0 by switching to o’ > max{o; [ i # j}, 7} =0,
and w; = 0. Note that:

> - T (Te)- T i T e 3o

JEN(o,x) JEN(o,x) i#j JEN(o,x) 1€N(o,x)\{j} k¢N(o,x)

v

Z | sjzi+ Z sgxr | (as N (o, @) is not a singleton)

JEN(o,x) k¢N(o,x)

> f Z ST+ Z SkTp (as f is concave and f (0) > 0)

jEN(o,x) k¢N(o,x)
2 f Z Sj!lfj—i— Z STk
JEN(o,) kgN(o,z)
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= f(ZSkSCk)Z Z yj = Z g; (p,o,z,w).

JEN(o,x) jEN(o,x)

Hence, there is j € N (o, @) with y; > y;. Note that u;(0,;) > u;(0,y;) >
uj(wj,y;) and u;(0,y5) > uj(z;,0) by Assumption 1, whereas u;(0,y;) >
w;(x;,y;) if y; > 0 from the strict monotonicity of u;. Hence, agent j has an
incentive to switch from z; to m; = ( to obtain y; Thus, (p, o, x, w) does
not constitute a Nash equilibrium. B

Lemma 2: Let Assumption 1 hold. Then, g* implements any Pareto subso-
lution o satisfying SPI and IUS in Nash equilibria.

Proof. Let ¢ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u,s) € €.

(1) First, we show that p(e) C NA(g*,e). Let z = (x,y) € p(e). Let
T=(p,s,xz,y) € (A xS x[0,Z] x Ry)" be such that p; = p for each i € N
and p € ASP! (u,s,2). Then, g* () = y from Rule 1-1. Suppose j € N
deviates to 7; = (p;-,s;-,x;-,w;) € A xS x|[0,z] x Ry. From Assumption
1 and the continuity of utility functions, if g; (TJ, ,T_j) = 0, then 7 has no
incentive to switch to 7.

If 77 induces Rule 2, then z/; > 0 and g (7']’ , T,j) = 0. If 7} induces Rule

-1

1-3, then ¢ (p;-, (s;-, s_j) , (m;,a:_j) , (w},y_j)) #+ & or
N (p, (s;,s_j) , (x;-,m_j) , (w;-,y,j)) = @. The former implies s = s; and
wi < f (Zl £ ST + séf), whereas the latter implies z; = 0 and s} # s;.
Thus, in either case, g7 (7_]/',7'_]') = 0. If 7} induces Rule 1-2, then either
z; > 0 and s; = s; or 27 = 0. If the former holds, then g} (Tj’-,T,j) <
max {O, yj + i—z (sjm;- — ijj)}. If the latter holds, then there exists (x;.’, wg/)
such that ¢ (p, (s;-, s_j) , (903-’, m_j) , (wg-’, y_j))_1 # J. Since w} — z—zs;x;’ <
yj—g—zijj by the concavity of f, g5 (,09, st O,w;,T,j) < max {O,yj — ﬁ_ﬁsﬂj}-
Finally, if 7/ induces Rule 1-1, then g} (7},7—;) = w} = f(Q iz simi +

s;z)— > yi. Thus, since z € P (e), u; (2}, w}) < u; (z;,y;). In summary, j
7]
has no incentive to switch to /.

(2) Second, we show that NA(g*,e) C p(e). Let 7 = (p,o,x,w) €
NE (g%, e).
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Suppose that 7 induces Rule 2. Then, either N° (z) = {i € N | z; =0} =
@ or N°(x) # @. If N°(x) = @, then for each i € N, gf () = 0. Then, if
for each k € N, 37, oiw; = >,y siwi, then (n—1) - (3 o) = (n—1) -
(>~ six;). This contradicts the fact that Rule 2 is induced. Thus, for some
j €N, Zz# oy # Z#]smz Then, if j switches to 7} = (pj,aj,mj,wj)
with o > max{o; | i # j}, ¥ = 0, and w} = 0, thengj(J 7_;) > 0 under
Rule 2.

Let N°(x) # @ with #N°(x) > 2. Then, for each j € N°(x), if j’s
deviating strategy 7/ is such that for each i # j, 07 > 0; and (x;, ;) = (0,0),
then g% (77, 7—;) = f (3 sk)) under Rule 2.

Let #N°(x) =1 and #N\N° () > 2. Then, there exists j € N\N° (x)
such that ZieN\(No(m)U{j}) oix; F ZieN\(No(z)u{j}) s;x;. Thus, j can switch
to 7} such that g; (T]I-, ‘r_j) > 0 under Rule 2. This can be shown in a similar
way to the case NV (z) = @.

Let N°(x) = {i} and N\N°(x) = {j}. If w; > 0, then switching i’s
strategy to o} > 0, z; = 0, and w; = 0 implies g; (,0;, o, bWk, pj, 0], T;,Y;) =

f (ijj) under Rule 2. If w; = 0, then switching j’s strategy to p; = ,0@, o}
S35 x] = 7207 and U)] > f(ij"i_o-z ) implies g] (szazaxuwupg;%; W )

f (ij;-) under Rule 1-3. In summary, 7 does not induce Rule 2.

Suppose that 7 induces Rule 1-2 or 1-3. Then, there exists j € N such
that g7 (1) = 0. By Lemma 1, 0; = s; or z; = 0. Suppose T induces Rule
1-2, and for each k,l # j, pr = pi = p. Then, g} (7) = 0 implies that either
j€N(po,xz,w)and w; < f (D oxT) or j ¢ N (p,o,z,w). If the former
holds, then there exists 7; such that g} (TJ/ , T_]‘) > 0 under Rule 1-2. If the
latter holds, then there exists 7} such that p}; # p, 0} = s;, 2 = 7 (x_;) <7,

and wj > max {f (Zi# o T + a&a‘c) , max {w; | i # j}} Such a deviation
induces either Rule 1-2 or 1-3, and results in g7 (7']’.,7',]-) > 0. Suppose

7 induces Rule 1-2, and there exist k,l # j such that p, # p;. Then, if

j's deviation is such that py # pj # pi, 0 = 55, ¥; = w(x_;) < T, and

wh > max{f <Zi¢j 0;T —|—O';»f> , max {w; | i # j}}, then g7 (T;,T_j) >0
under Rule 1-3. Suppose T induces Rule 1-3. Then, there exists 7; such that
g; (T;, T,j) > 0 under Rule 1-3. In summary, 7 induces neither Rule 1-2 nor
1-3.

Thus, 7 induces Rule 1-1, and ¢g* (7) = w. Then, there exists u’' € U™
such that for each i € N, p; = p € ASPT(u/,0, 2z, w). Moreover, p €
AP (u, s,z,w) and (z,w) € P (u,s), because otherwise, some j has an in-
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centive to deviate to Rule 1-2. Let (u/, s") € £ be such that for each i € N
with z; = 0, s, = min{o;,s;}, and for each i € N with z; > 0, s, =
o; (= s; by Lemma 1). First, from the definition of s, (z,w) € P (v, o)
implies (x,w) € P (v, s’). Hence, from IUS, (z,w) € ¢ (u/,o) implies
(x,w) € p(u,s). Next, from the definition of &', (¢, w) € P (u, 8) implies
(z,w) € P (u,s'). Note here p € AP (u/ o, z,w) N AP (v, s',z,w) and
p € AP (u,s,2,w) N AP (u, s ,x,w). Thus, from SPIL, (z,w) € ¢ (u/,s') im-
plies (x,w) € ¢ (u,s'). Finally, since (z,w) € P (u,s) and s, = s; for each
i€ N with z; > 0, (z,w) € ¢ (u,s’) implies (x,w) € ¢ (u,s) from IUS. W

Lemma 3: Let Assumption 1 hold. Then, g* implements any Pareto subso-
lution ¢ satisfying SPI and IUS in strong equilibria.

Proof. Let ¢ be a Pareto subsolution satisfying SPI and TUS. Let e =
(u,s) € &€ be given. As NA(g*,e) = ¢(e), we only have to show that
NA(g*,e) € SNA(g*,e). Suppose that there exists 7 = (p, o, z,w) €
NE (g*,e) such that for some T' C N with 2 < #T < n,'* some 7 =
(0}, 0, i, w;)er € (A X S x [0,7] X R+)#T, andeach j € T, u; (xj,g; (T)) <
U (m;,g; (T’T,TN\T)). Note that 7 induces Rule 1-1, and ¢* (1) = w, as is
shown in the proof of Lemma 2. Moreover, (z,w) € P (u, s).

From the construction of g*, there is at most one agent who obtains
a positive share of output under Rules 1-2, 1-3, and Rule 2. Thus, from
Assumption 1, the deviation by T induces Rule 1-1. Then, g* (T’T, T N\T) =
((w));er » (W) gepe ) Hence, (z, w) ¢ P (u, s), a contradiction. Thus, NA (g*, e) C
SNA(g*,e). R

Lemma 4: Let Assumption 1 hold. Then, I';o™ implements any Pareto
subsolution ¢ satisfying SPI and IUS in subgame perfect equilibria.

Proof. Let ¢ be a Pareto subsolution satisfying SPI and IUS. Let e =
(u,s) € € be given. From Lemma 2, we only have to show that ¢ (e) C
SPA (%™ e).

First, we show that in each Stage 2 subgame, there is a Nash equilibrium.
Let NE (I'%™(x),e) denote the set of Nash equilibria of (I'**™(x),e). Let
pr 2 [0,z]" — A" x 8" x R" be such that for each (T2 (x),e), p* (x) =

1For each T C N, #T denotes the number of agents in 7.
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(p, o, w), where for each i € N

0, 1) s, fFOoskT) + 1) ifxy # ()
(pi 01, wi) = { ((0,1), 84, f O sx) +2) otherwise.

Note that g* (p, o, &, w) corresponds to Rule 1-3. As p; = (0,1) for each i €

-1
N, we have for any (o}, o}, 2, w}), ¢ ((0,1), (o}, 5—;) , (2}, xz—;) , (W, w_;)) =
@. This implies that no individual can induce Rule 1-1 by deviating. If
(p;-, ol w;) induces Rule 1-2, j receives no output, because

J i N ((07 1) ) (U;"s—j) ) (m;'7m—j) ) (w;’w—j)) :

If (,0;-, ol wé) induces Rule 1-3, then g; (p;-, 0% Wiy P_jy O, T, w,j) <g;j(p,o,z,w).
This is because whether z; = 7 (x_;) holds or not is already fixed in Stage
1 game. If (pj, wj) induces Rule 2, then z; > 0, so that j receives no
output. Thus, for any « € [0,7]", p* (x) € NE (T2 (x), e).

Now, we show that if 2 = (2,y) € ¢ (e), then there exists (u, &) €
SPE (T2™ e) such that g* (u (2),2) = Define the strategy profile in
(F;fm, e) as follows.

(1) In Stage 1, each i € N supplies Z;.

(2) In Stage 2, p : [0,Z]" — A" x 8" x R" is such that p () = (p, o, w),
which is defined as follows:

(2-1): if * = Z in Stage 1, then for some p € AP (u,s,Z,y) and each
i €N, pi(®) = (p, 8i; Ui);

(2-2): if @ = (), 2_;), where 2 # Z;, in Stage 1, then for j € N, p; (x) =
((0,1),s5, f O skx) + 1), and for some p € ASFT (u s,x,y) and each i # j,

_ (pv Siv@\i) if Z; # W(CC,Z-),
pi (@) = { (1,0, 55, f (3 sx%) + 2) otherwise:

A
y.

(2-3): in any other case, p (x) = p* ().

If (TZ™(x),e) corresponds to (2-1), then p(x) € NE (I'%™(z),e).
This is because (x,y) € NA(g*,e) by Lemma 2. Also, by the above argu-
ment, p () € NE (F%™(x), e) in the subgame (2-3) of Stage 2. Suppose
that (PZ™(x),e) corresponds to (2-2). Then, g* (u (), ) does not cor-
respond to Rule 1-1. If for each i # j, x; # w(x_;), then ¢* (u(x),x)
corresponds to Rule 1-2. Then, {j} = N (p,o,x,w). Suppose an agent
h € N switches to (p,, 0, w)). If h # j, then h induces only Rule 1-3 or
Rule 2 and receives no output. This is because z, # 7w (x_},) is already fixed
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in Stage 1, and inducing Rule 2 implies z;, > 0. If A = j, then j induces
only Rule 1-1 or Rule 1-2. In either case, as in the proof (1) of Lemma 2,
it is shown that j receives no more than y; + z—z (ij;- — sjﬁfj). Finally, sup-
pose ¢g* (i (x) ,x) corresponds to Rule 1-3. Then, there exists | € N\ {j}
such that z; = 7 (z_;). Thus, ¢/ (u (), x) = f (O skrx). Then, if an agent
h # 1 switches to any (p},, 0,, w},), then h receives no output. Also if [ devi-
ates, he receives at most f (> sgxx) by such a deviation. Since z is already
fixed in Stage 1, the above arguments imply pu (x) € NE (Fgfm (), e) in the
subgame (2-2) of Stage 2.

We show that (u,%) € SPE (I'%™ e). In accordance with (1)-(2-1)
of (u, @), g* (u(Z),x) = y. Suppose that an agent j deviates from Z; to
x; # T; in Stage 1. Then, from (2-2), g; (p, (x;-,ﬁ,j) , (m;,ﬁ,j)) <7y +
f}—: (ij;- - sj@-). Thus, since z € P(e), z € SPA (Fg,?m, e).

Lemma 5: Let Assumption 1 hold. Then, I':°® implements any Pareto
subsolution ¢ satisfying SPI and IUS in subgame perfect equilibria.

Proof. Let ¢ be a Pareto subsolution satisfying SPI and IUS. Let e =

(u, s) € € be given. From Lemma 2, we only show ¢ (e) C SPA (I'>" e).
First, we show that in each Stage 2 subgame, there exists a Nash equilib-

rium. Let NE (I72° (m) , e) denote the set of Nash equilibria of (I'2°® (m) , e).

Let I (p,o,0w) = {i € N |3z} s.t. ¢(p,o,(2},0-) w) A @}, Let x* :

A" xS" xR — [0, z]" be such that for each (F;’iom (p,o,w) ,e), xX* (p,o,w) €

[0, Z]" is: for each i € N,

(i) if o; = s;, and there exists p such that for each j € N, p; = p and ¢ =

min [ (p, o, 0,w), then x; (p, o, w) = z} such that ¢ (p, o, (x},0_;) ,w)_1 -+

9;

(ii) if o; = s, w; > f (O oxT), and there exists p such that for each j # ¢, p; =

pandi € N (p,o,0,w), then for (z}, w!) with ¢ (p, &, (},0_;) , (w}, w_;)) " #

®7

X (p,o,w) = arg max u; (xi, max {0, min {wg + g—zai (x;— ), f (a,xﬂ}}),

(iii) if 0; = 84, w; > max {f (O] 0%) , max {w; | j #i}}, and

{Fpst. pj=p (Vj#i)} =i¢ N(p,o,0w), then x; (p, 0, w) = 3;

(iv) otherwise, x (p, o, w) = 0.

To simplify the notation, let us use &* to denote x* (p, o, w) in the following

discussion. Since z; = 0 for each i with o; # s;, ¢* (p, o, *, w) corresponds

to one of the subrules of Rule 1. Suppose an agent h switches to z;,.
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If x}, induces Rule 2, then x}, > 0, so g}, (p, o, (x}L, mih) ,’w) = 0. Suppose
that ¢* (p, o, *, w) corresponds to Rule 1-1. Then, as (p, o, w) is already
fixed, no unilateral deviation from x* can induce Rule 1-1. Moreover, w; <
f (O oxz) for any i. Thus, if z}, induces Rule 1-2 or Rule 1-3, then h receives
no output. Suppose that ¢* (p, o, x*, w) corresponds to Rule 1-2. Then,
there exists j € N (p,o,x*, w) such that for each i # j, p; = p. This
implies w; < f (3 ox%) for each i # j. Thus, under Rule 1-2, for each i # j,
X; corresponds to the case (iv) solely, whereas for j € N (p,o,x*, w), X
corresponds to the case (ii). Hence, if h # j and the deviation zj induces
Rule 1-2, Rule 1-3, or Rule 2, then gj, (p,a, (x?l,mjh) ,'w) = 0. Moreover,
as w; > f (> oxZ), for any h € N, z}, cannot induce Rule 1-1. If A = j, then
h € N (p,a', (xﬁl,:v”;h) ,'w). Thus, zj, cannot induce Rule 1-3. Moreover,
since (ii) of xj is the best response for j, if h = j and zj, induces Rule 1-2,
then g; (p, o, (x’h, a:*_h) ,w) < g; (p,o,z*, w). Suppose that g* (p, o, *, w)
corresponds to Rule 1-3. Then, x* is either 27 = 7 and x7 = 0 for each ¢ # j,
or x* = 0. If the latter holds, then for each 7 e N, x} corresponds to the
case (iv). Then, for any =}, g; (p, , (#},,2*,) ,w) = 0. If the former holds,
then there exists j € N whose x; corresponds to the case (iii). Note that
x; = § is the best response for j € N to *; = 0_;. If h # j, then no z},
induces Rule 1-1, since w; > f (> s,x). Moreover, if z} induces Rule 1-2,
Rule 1-3, or Rule 2, then gj (p,a’, (mz,mih) ,'w) = 0. Thus, in summary,
x* (p,o,w) e NE (FZ’;‘“ (p,o,w),e) holds.

Now, we show that for e € &, if 2 = (Z,y) € ¢ (e), then there exists
(p,s,Y,x) € SPE (F;’;‘O‘”,e) such that ¢g* (p, s,y,x (p,s,y)) = y. Define a
strategy profile in (FZ’:O”, e) as follows.

(1) In Stage 1, for p € ASP! (u, s, Z,7y), each i € N announces (p;, 0;, w;) =
(P, 80, Ui)-

(2) In Stage 2, x : A" x 8" x R — [0,Z]" is given as follows:

(2-1): if (p,o,w) = (p, s,¥y) is such that for each i € N, p; = p in Stage 1,
then each i € N supplies y; (p, o, w) = T;

(2-2): if (p,o,w) = ((p;-,p_j) , S, (w},@_j)) is such that for each i # j,
pi =pand wj > f (3 s,T) in Stage 1, then for j € N,

X;j (p,o,w) = arg max u; (x;, min {y] + —sj ( ), f (Zi#j $;T; + ij;) }),
and for each i # j, x; (p, o, w) = T;;

(2-3): if (p, o, w) = ((p;-,p_j) , S, (w;,@_j)) is such that for each i # j, p; =
P, (p},w;-) # (p,7;), and wj < f (3 sx7) in Stage 1, then x (p, 0, w) = T;
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(2-4): if (p,o,w) = ((p;-,pfj) , (sg,s_j) , (w},@,j)) is such that for each
i # j, pi = p and s; # s; in Stage 1, then for j € N, x; (p, 0, w) = 3, and
for each i # j, x; (p, o, w) = 0;

(2-5): in any other case, x (p, o, w) = x* (p, o, w).

To simplify the notation, let us use x to denote x (p, o, w) in the fol-
lowing discussion. If (T'72°*(p,o,w),e) corresponds to (2-1), then x €
NE (Tm°®(p,o,w),e). This is because (Z,y) € NA(g*, e) by Lemma 2.
Also, by the above argument, € € NFE (F’;low(p,a,'w),e) in the subgame
(2-5) of Stage 2.

Suppose in (F;’iom (p,o,w), e), an agent h € N switches to z},. If (F;’iom (p,o,w), e)
corresponds to (2-2), then ¢g* (p, o, ¢, w) corresponds to Rule 1-2. Then, if
h # j, then zj, cannot induce Rule 1-1 or Rule 2. Moreover, by w;, = yp, <
f (O sgZ), if 2}, induces Rule 1-2 or Rule 1-3, then g (p, o, (z},, _p) ,w) = 0.
If h = j, then 2} cannot induce Rule 1-1, Rule 1-3, or Rule 2. Thus,
g (p,o, (), x_p),w) < g (p,o,x,w). If (F;’iow(p,a,'w),e) corresponds
to (2-3), then ¢g* (p, o, x, w) corresponds to Rule 1-3, because & = E. Then,
since for any h € N, w, < f (> sx%), if z, induces Rule 1-2 or Rule 1-
3, then g; (p, o, (2}, x_p),w) = 0. Moreover, zj cannot induce Rule 1-1
or Rule 2. If (ngow(p,a,w),e) corresponds to (2-4), then ¢* (p, o, x, w)
corresponds to Rule 2. If h # j, then 2} can induce Rule 2 only, and
gr (p,o, (), x_p),w) = 0. If h = j, then z}, = 0 can induce Rule 1-3.
Moreover, zj > 0 induces Rule 2. In any case, g; (p, o, (z),,z_p),w) = 0.
Thus, in summary, € € NE (F;’}"w(p, o,w),e).

We show that (p,s,y,x) € SPE (I'°*",e). In accordance with (1)-
(2-1) of (p,s,Y,Xx), g°(p,s,Yy,x) = y. Suppose that an agent j devi-
ates from (p, s;,y;) to (p;-,sg-,w;-) in Stage 1. If s} = s;, then, from (2-2)
and (2-3), g; (0} 5 ), P85, Y 5) X (0 85w p_jy 85,0 5)) < T +
g—:sj (x; — T;), where z; = x; (p;-, S, Wy, P, s,j,@_j). If s # s;, then, from
(2-4), j receives no output under Rule 2. Thus, z € SPA (F;’iom, e). [ |

Proof of Theorem 2. Let ¢ be a Pareto subsolution satisfying SPI and
IUS. From Lemmas 2, 3, 4, and 5, T'72°" (resp. Fgfm) triply implements ¢
in Nash, strong, and subgame perfect equilibria. Moreover, g* is forthright,
as is shown in the proof of Lemma 2. Thus, it suffices to show that ¢* meets
(iii) and (iv) of Definition 2.

1. Definition 2 (iii). The proof of Lemma 2 shows that if 7 = (p, o, x, w) €
NE (g*,e), then Rule 1-1 applies and ¢* () = w. Given j € N and
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T = (pj,aj,xj,w) € A xS x[0,z] xRy, if (7],7_;) induces Rules 1-1
/

or 1-2, then g7 ( T ,j) < y;+ —sj (x mj) If (Tj,T,j) induces Rule
1-3, then either (i) go(p;,(a;-, _) (2f,2_j), (w),w_;)) # @ and j €
N (b (0}s7) (S (w0 ()7 ¢ N (o, (01005 () (),
where p = p; for each k # j. Case (i) implies g (7/,7_;) = 0 by w; <
f (3" sxT). Consider case (ii). Since (@, w) € go(e) and p € ASPI (e x w)
/

from Lemma 2, if o} = s;, then j € N(p,( ! ), _j ( ))
Thus, o} # s;. Thls implies z/; = 0, so that g7 (T ( ! ) = 0. If (7‘ T_;
induces Rule 2, then z§ > 0 by Lemma 1 and g (TJ, T J) . Thus, ¢*

meets Deﬁnition 2 (iii).

2. Definition 2 (iv). Note again that if 7 = (p, o, ¢, w) € NE (¢*, e), then
7 induces Rule 1-1, or there exists u € U™ such that (z,w) € ¢ (u,o) and
for each i € N, p; = p € ASPI (u,0,2,w). Moreover, if (z,w) € ¢ (u,o)
for some u € U™, then p € AP (u,o,z,w) implies that for each o/ € S™
such that o/ = o; for each i € N with z; > 0, there exists some u' € U"
such that p € A? (v, o,z,w) N AP (v, o', z,w). By SPIL, (z,w) € ¢ (u, o)
and p € AP (u,0,2,w) N AP (v, o,x,w) together imply (z,w) € ¢ (u/,0).
By IUS, (z,w) € ¢(u/,0) and p € AF (v, 0,xz,w) N AP (v/, 0’ ,x,w) to-
gether imply (z,w) € ¢ (v, 0’). Thus, (p,o’, x, w) induces Rule 1-1. Hence,
g (p,o’,x,w)=g" (1) =w, and (p,0’,x,w) € NE(¢*,e). B

6.3 Proofs of Lemma 6 in Section 4

Proof of Lemma 6. Let (u,s) € € be such that (x,y) € W? (u,s). Let
p € A be a competitive equilibrium price for (z,y) at (u, s). Let (u,s’) € £
be such that for each i € N with z; > 0, s, = s;, and p € AF (u, s, z,y).
Then, by the definition of AF (u,s’, x,y) and strict monotonicity of utility
functions, (i) for each 2’ € Z(¢), Z(pyyz — paSixy) < D (pyYi — PaSiTs);
and (ii) for each ¢ € N and each (z,y) € Z, 1f w; (x,y) > u;(z), then
Py — pesix > 0; Y (pyyr — puSixi). Therefore, (z,y) € W (u,s’). Thus,
W satisfies IUS. Similarly, EB also satisfies IUS.

Let (u,s) € € be such that (z,y) € PR (u,s). Let p € AP (u,s,z,y).
Let (u,s’) € £ be such that for each ¢ € N with x; > 0, s = s;, and
p € AP (u,s,z,y). Then, as (z,y) € PR(u,s), for eachi €N,y =

%Zyk = AZy] = ¢/Zy] = 25 kayk There-

ZjEN,zj>O S5 T4 Z]EN,:E]->O S;Tj

fore, (x,y) € PR (u,s’). Thus, PR satisfies IUS. &
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