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1 Introduction

Until recently, most formal political analyses of party competition have as-
sumed that both parties are Downsian [Downs (1957)]–that is, their objec-
tive is to maximize the probability of winning office. As an alternative, there
exists a growing body of literature concerning the competition between par-
tisan parties (those that have policy preferences)–see, e.g., Wittman (1973)
and Roemer (1997). Almost all of these analyses, however, have assumed that
the policy space is uni-dimensional. Moreover, it is well-known that neither
Downsian nor partisan party models can reliably produce a Nash equilibrium
(in pure strategies) whenever, as discussed in Roemer (2001), the policy space
is multi-dimensional. Importantly, in many real political competition con-
texts, we may naturally assume more than a single policy issue, and need
to address the issue of non-existence. Given this, there are perhaps at least
three possible ways forward: the first is to allow for mixed strategies, the
second is to change the game into a stage game and use some variant of a
subgame perfect equilibrium, and the third possibility is to adopt the Besley-
Coate-Osborne-Slivinski notion of citizen-candidate equilibrium [Besley and
Coate (1997); Osborne and Slivinski (1996)]. However, in the case of compet-
ing political parties, playing mixed strategies is difficult to interpret, and it is
not always the case that a policy contest takes place as a stage game between
a challenger and an incumbent. Moreover, in the model of citizen-candidate
equilibrium, the “citizen candidates” cannot commit to any policy but their
own ideal policy: there are essentially no parties in that model. Thus, in
multi-dimensional party competition games with simultaneous moves, it is
still important to investigate another solution for the non-existence of pure
strategy equilibrium.
It is Roemer (1998; 1999; 2001) who proposed a new equilibrium con-

cept, known as party-unanimity Nash equilibrium (PUNE) for these politi-
cal games. This is where the notion of a Nash equilibrium in a simultaneous
move game between the parties is retained, but their preferences are re-
placed with incomplete preferences: put differently, each party’s preference
is a quasi-ordering. The model introduces the idea that the decision makers
in parties have different interests. In this approach, the activists in each
party are divided into one of three factions: the Opportunist, the Militant,
and the Reformist. The Opportunist is solely concerned with winning office,
the Militant is only concerned with publicizing the party’s view, and the Re-
formist is concerned with the expected welfare of the party’s members. Given
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the structure of the three factions within a party, how then does the party
make policy decisions in the electoral context? Roemer (1998; 1999; 2001)
proposed the following scenario. The three factions of each party should bar-
gain on the policy proposal, given a policy proposal by its opponent party,
and if a policy proposal agreed on in this party is Pareto efficient for the three
factions, this is the solution for the bargaining problem within the party. A
PUNE is then a pair of policy proposals, each component of which is the
result of intra-party bargaining when facing the other party’s proposal.1 2

In this paper, we consider a general existence problem of PUNEs in
multi-dimensional political competition games. It is worth noting that there
are a few studies, such as Roemer (1998; 1999) and Yoshihara (2008), that
show the existence of PUNEs in some specific types of multi-dimensional
political games. Moreover, Roemer (2001: Section 13.7) discussed the ex-
istence of PUNEs in general multi-dimensional political games. However,
this existence theorem refers only to a specific type of PUNE in which the
Militants are assumed to have dictatorial powers in both parties. It is easy
to see the general existence of this sort of PUNE, because the pair of Mil-
itants’ ideal policies of both parties constitutes a PUNE (which we call an
M-PUNE below).
Thus, we still have the following open question concerning the general ex-

istence of PUNEs: If the Militants of both parties are not assumed to have
dictatorial powers, under what general conditions is the existence of PUNEs
guaranteed? This problem is worth investigating, because this premise ap-
pears to be more natural and general as far as real politics is concerned.
At the same time, however, the premise makes the problem more difficult.3

1A possible criticism against the notion of PUNE would be the following one: the con-
dition that every Pareto efficient outcome with respect to the factions within a party could
be an equilibrium strategy is not persuasive: a better approach would be to determine
relative bargaining powers endogenously in a non-cooperative bargaining framework, so
that an appropriate Pareto efficient outcome within the party is selected as an equilibrium
strategy. That approach, however, should be more difficult to guarantee the existence of
equilibrium than the case of the Wittman model. Note that the Wittman equilibrium is a
refinement of PUNE, in which the relative bargaining power is exogenously given as the
symmetric one.

2Another justification for PUNE is that there are a number of applications, as in
Roemer and Silvestre (2002) and in Roemer, Lee, and Van der Straeten (2007), in which
PUNEs are computed with real data, and those computations suggest that the PUNE
model can well explain real politics. For detail, see Roemer (2004).

3In fact, Roemer (2001; Section 13.7, pp. 277-279) also wrote: “is there an interesting
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One reason is that, proving the existence of a PUNE is not enough, be-
cause we already know, as discussed above, that an M-PUNE exists. So, we
need to construct an argument which proves the existence of another PUNE
(which we will call C-PUNE below) besides the M-PUNE. The second rea-
son is that we cannot adopt the strategy of finding a sufficient condition
of the model parameters to straightforwardly apply Kakutani’s fixed point
theorem. This is because if the Militants of both parties are not dictators,
then each party’s best response strategy should be a compromise among
the factions, particularly reflecting the Opportunists’ objectives. However,
the objective function of the Opportunist–the probability of winning the
election–is neither generally continuous nor quasi-concave.4

In this paper, we provide sufficient conditions for the existence of C-
PUNEs. In this existence problem, we apply the Urai-Hayashi fixed point
theorem [Urai and Hayashi (2000)], as it does not require the convex val-
uedness of correspondences. The sufficient condition contains the following:
Each party’s preference is represented by a continuous and strictly quasi-
concave function, and aggregate uncertainty over voters’ behavior is suffi-
ciently large. Such a condition appears natural and would be satisfied in
many political environments.
The paper is structured as follows. Section 2 defines a basic model of

multi-dimensional political games, and introduces the PUNE and its re-
finements (M-PUNE and C-PUNE). Section 3 discusses the existence of
C-PUNEs. Finally, section 4 provides some concluding remarks.

2 Model

Let the continuum of voter types be H ⊆ Rk, the policy space be T ⊆ Rn,
a continuous probability measure of voter types in the polity be F on H,
and the utility function of type h ∈ H over policies be v(·, h). Let v(·, h)
be a non-negative real valued function, which is continuous, concave, and

general existence theorem for party-unanimity Nash equilibrium? I conjecture there is not.
· · · What we really desire is a theorem asserting the existence of a PUNE in which no
faction is at its ideal point. But that appears to be hard to come by. · · · It is probably very
difficult to find interesting sufficient conditions for the existence of (non-trivial) PUNEs.”

4This is a problem similar to the existence of Wittman equilibrium. There are two ex-
istence theorems of Wittman equilibrium in uni-dimensional policy spaces, Roemer (1997)
and Terai (2006), but both of them depend upon unsatisfactory specific assumptions for
the distribution of voter types.
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strictly quasi-concave on T , for any h ∈ H. Let (t1, t2) ∈ T × T be a pair
of policies. The set of voters who prefer t1 to t2 is denoted by Ω(t1, t2) ≡
{h ∈ H | v(t1, h) > v(t2, h)}. Now, we impose the following assumption:

Assumption 1 (A1): The measure F is equivalent to Lebesgue measure on
H.

Assumption 2 (A2): For any t, t0 ∈ T with t 6= t0, the set of voters who
are indifferent between t and t0 is of F-measure zero.

Following Roemer (2001: Section 2.3; 2005), the fraction of the vote
going to policy t1 would be F (Ω(t1, t2)). We also assume that there is some
aggregate uncertainty in how people will vote, so that the probability of
victory depends on the fraction of the vote, and on a noise parameter ε
which is uniformly distributed over [−β,β], where β ∈ ¡0, 1

2

¢
. Thus, the

probability that t1 defeats t2 is:

π(t1, t2) =

⎧⎪⎨⎪⎩
0 if F (Ω(t1, t2)) + β ≤ 1

2
F(Ω(t1,t2))+β− 1

2

2β
if 1
2
∈ (F (Ω(t1, t2))− β,F (Ω(t1, t2)) + β)

1 if F (Ω(t1, t2))− β ≥ 1
2

,

whenever t1 6= t2, and π(t1, t2) = 1
2
whenever t1 = t2. Then, one political

environment is specified by a tuple hH,F, T, v, βi.
Let us suppose that exactly two parties will form. The two parties will

each represent a coalition of voter types such that A∪B ⊆ H and A∩B = ∅.
Moreover, we define the parties’ utility functions on T by V A : T → R and
V B : T → R. It may sometimes be assumed that V A and V B are given by:

V A(t) =

∙Z
h∈A

v(t, h)dF(h)
¸a
, and V B(t) =

∙Z
h∈B

v(t, h)dF(h)
¸b
,

where 0 < a < 1 and 0 < b < 1.
We are now ready to define an equilibrium notion of this multi-dimensional

political competition game, party-unanimity Nash equilibria (PUNEs), as
introduced by Roemer (1998; 1999; 2001).

Definition 1: Given a pair of parties, A and B, a pair of policies (tA, tB) ∈
T × T constitutes a party-unanimity Nash equilibrium (PUNE) if :
(tA, tB) satisfies the following:
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(a) given tB, there is no policy t ∈ T such that

π(t, tB) ≥ π(tA, tB)and V A(t) ≥ V A(tA), with at least one strict inequality;

(b) given tA, there is no policy t ∈ T such that

π(tA, t) ≤ π(tA, tB) and V B(t) ≥ V B(tB), with at least one strict inequality.

In Definition 1, condition (a) states that, facing the opponent’s proposal tB,
there is no policy in T that can improve the payoffs of all three factions in
party A, and condition (b) makes an analogous statement for the factions of
partyB. Note that in this definition, there is no statement for the Reformists’
payoffs, because (a) and (b) describe the conditions for the Opportunists’
payoffs, π(·, ·) and 1 − π(·, ·), and the Militants’ payoffs, V A(·) and V B(·),
only. However, as Roemer (2001: Chapter 8; Theorem 8.1(3)) showed, the
equilibrium set corresponding to this simpler definition of PUNE is equiv-
alent to that of the original definition of PUNE given in Roemer (2001:
Chapter 8; Definition 8.1).
This general definition admits the case in which tA = tB. To eliminate

such a case, let us define the following: given a pair of parties, A and B,
a pair of policies (tA, tB) ∈ T × T is called a non-trivial PUNE if it is a
PUNE such that tA 6= tB.
Among the various PUNEs, a polar case is where both parties only care

about satisfying their own preferences, such that both parties never care
about their probability of winning an election. In other words, the Militants
are assumed to be dictators in both parties. Such a specific PUNE is given
by the following:

Definition 2: Given a pair of parties, A and B, a pair of policies (tA, tB) ∈
T ×T is a Militant-dictatorial PUNE (M-PUNE) if this is a PUNE such
that tA = arg max

t∈T
V A(t) and tB = arg max

t∈T
V B(t).

Let tA ≡ arg max
t∈T

V A(t) and tB ≡ arg max
t∈T

V B(t). W. l. o. g., we assume

that tA 6= tB throughout the following discussion.
Finally, the most realistic and interesting type of PUNE is the case

where both parties offer different policies, and where no faction in either
party is assumed to have a dictatorial power. Such a PUNE is given by the
following:
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Definition 3: Given a pair of parties, A and B, a pair of policies (tA, tB) ∈
T × T is a pure-compromise PUNE (C-PUNE) if this is a PUNE with
( i) tA 6= tB, ( ii) tA 6= tA, and ( iii) tB 6= tB.
This definition assumes the existence of a real inter-faction bargaining process
within each party, so that the Opportunists in each party have a chance to
influence the party’s decision making.

3 Existence Theorem for C-PUNE

In the following discussion, we provide a rather general and reasonable con-
dition under which the existence of C-PUNEs is shown in multi-dimensional
political competition games. Note that, if the two parties’ utility functions
V A and V B are strictly quasi-concave, then the pair

³
t
A
, t
B
´
constitutes the

unique M-PUNE.
As the first preliminary step, let us introduce a generalization of the

Kakutani fixed point theorem, which was first discussed by Urai and Hayashi
(2000), and is useful where the correspondence is nonconvex-valued.

Lemma 1 (Urai and Hayashi fixed point theorem: Urai and Hayashi
(2000)):5 Consider, for each player i ∈ N = {1, . . . , n}, the set Xi is a
compact convex subset of Rl. Suppose that there is a family of non-empty
valued correspondences φi : X ³ Xi, where i ∈ N and X ≡ Q

j∈N Xj,
satisfying the following condition:

(LDV1) For each x ∈ X such that x /∈ Qj∈N φj(x), there exist a player i,
a vector pi(x) ∈ Rl and an open neighborhood N(x) of x such that pi(x) ·
(wi − zi) > 0 for all z ∈ N(x) and wi ∈ φi(z).

Then,
Q
j∈N φj has a fixed point x∗ ∈ X such that x∗i ∈ φi(x

∗) for all i ∈ N .
Note that in the Urai and Hayashi fixed point theorem, the correspondenceQ
j∈N φj need not be convex-valued nor upper hemi-continuous. In the exis-

tence problems of our PUNE discussed below, the best response correspon-
dence will not be necessarily convex-valued. Thus, Lemma 1 will play a
crucial role.

5The original statement of the Urai-Hayashi fixed point is more general than this ver-
sion: the domain of the correspondence need not be the product space as here. To discuss
our own issue, however, a simplier version as this lemma is sufficient.
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As the second preliminary step, let us introduce the following equilibrium
notion:

Definition 1’: Given a pair of parties, A and B, a pair of policies (tA, tB) ∈
T × T constitutes a quasi-PUNE (q-PUNE) if :
(1) (tA, tB) satisfies the following:
(a) given tB, there is no policy t ∈ T such that

F
¡
Ω(t, tB)

¢ ≥ F ¡Ω(tA, tB)¢ and V A(t) ≥ V A(tA), with at least one strict inequality;
(b) given tA, there is no policy t ∈ T such that

F
¡
Ω(tA, t)

¢ ≤ F ¡Ω(tA, tB)¢ and V B(t) ≥ V B(tB), with at least one strict inequality.
Definition 3’: Given a pair of parties, A and B, a pair of policies (tA, tB) ∈
T × T constitutes a quasi-C-PUNE (q-C-PUNE) if it is a q-PUNE with
(i) tA 6= tB, (ii) tA 6= tA, and (iii) tB 6= tB.

The notion of q-PUNE has another interesting implication regarding the
real political competition. The difference of q-PUNE from PUNE is that
the Opportunists are modeled to maximize vote share instead of maximizing
the probability of victory. So, this notion can be relevant to a Proportional
representation system.
In the following discussion, we will first show an existence theorem of

q-C-PUNE, as a corollary of which, an existence theorem of C-PUNE will
be discussed later. First, we impose the following additional assumptions:

Assumption 3 (A3): For any tB ∈ T , there exists t0 ∈ T such that Ω(t0, tB)
is non-empty and F

¡
Ω(t0, tB)

¢
> 0. Also, for any tA ∈ T , there exists t00 ∈ T

with t00 6= tA such that H\Ω(tA, t00) is non-empty and F ¡H\Ω(tA, t00)¢ > 0.
A3 eliminates a situation that party B (resp. A) has a dominant strategy in
terms of its opportunist objective. In fact, if A3 fails, it implies that party
B (resp. A) has a policy by which the party wins the election with certainty
regardless of what strategy party A (resp. B) employs. In such a type of
game, there may exist only the trivial PUNE (tA, tB) with tA = tB other
than M-PUNE.
Given ε > 0 and ti ∈ T for i = A,B, let U i (ti, ε) ≡ {t ∈ T | 0 5 V i(ti)− V i(t) 5 ε}.

Let us use the notation coX as the convex hull of X for any set X. Then:
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Assumption 4 (A4): For any non-trivial M-PUNE,
³
t
A
, t
B
´
, there ex-

ists sufficiently small εA > 0 (resp. εB > 0) such that for any t0A ∈
UA
³
t
A
, εA
´
(resp. t0B ∈ UB

³
t
B
, εB
´
), any tB ∈ T\UA

³
t
A
, εA
´
(resp.

tA ∈ T\UB
³
t
B
, εB
´
), and any t ∈ co{t0A, tB} with t 6= t0A, tB (resp. t ∈

co{tA, t0B} with t 6= tA, t0B), we have Ω(t, tB) ) Ω(t0A, tB) and F
¡
Ω
¡
t, tB

¢¢
>

F
¡
Ω
¡
t0A, tB

¢¢
(resp. H\Ω(tA, t) ) H\Ω(tA, t0B) and F ¡H\Ω(tA, t)¢ > F ¡H\Ω(tA, t0B)¢).

A4 is reasonable, if every voter’s utility function is concave. In fact, for
any t, t0 ∈ T and any t00 ∈ co{t, t0} with t00 6= t and t00 6= t0, it follows that
Ω(t, t0) ⊆ Ω(t00, t0), since any h ∈ Ω(t, t0) has v(t, h) > v(t0, h), and also
v(t00, h) > v(t0, h) by the concavity of v. In addition to this property, there
may be another type of voter h0 ∈ H\Ω(t, t0) such that v(t, h0) < v(t0, h0)
and v(t00, h0) > v(t0, h0). Note that these two inequalities are compatible

with the concavity of v. A4 only requires that, if t ∈ UA
³
t
A
, εA
´
and

t0 ∈ T\UA
³
t
A
, εA
´
, the voters such as h0 exist in H\Ω(t, t0), and the measure

of such voters is non-negligible. In other words, A4 requires a variety of
voter types. This assumption eliminates a trivial case that tA is the best
strategy against tB or another t0B, not only for the Militant, but also for the
Opportunist of party A. In fact, if such a trivial case holds in some political
game, then there may be only the types of PUNEs

©
(tA, tB)

ª
with tA = tA

besides the trivial PUNE (tA, tB) with tA = tB in this game.
For each (tA, tB) ∈ T × T , let

UA(tA) ≡ ©etA ∈ T | V A(etA) ≥ V A(tA)ª
and

UB(tB) ≡ ©etB ∈ T | V B(etB) ≥ V B(tB)ª .
Note that UA(tA) (resp. UB(tB)) is convex. Let us define a mapping F :
T ×T → [0, 1] as: for any (tA, tB) ∈ T ×T , F (tA, tB) = F ¡Ω ¡tA, tB¢¢. Given
(tA, tB) ∈ T × T , the collection of t0A ∈ T such that F (t0A, tB) = F (tA, tB)
constitutes the iso-fraction curve of F (·, tB) at tA. Then, the last assumption
requires a kind of ‘local quasi-concavity’ of F .

Assumption 5 (A5): For any non-trivial M-PUNE,
³
t
A
, t
B
´
, there ex-

ists sufficiently small ε∗A > 0 (resp. ε∗B > 0) such that for each tB ∈
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T\UA
³
t
A
, ε∗A
´
(resp. tA ∈ T\UB

³
t
B
, ε∗B
´
), and for each tA ∈ UA

³
t
A
, ε∗A
´

(resp. tB ∈ UB
³
t
B
, ε∗B
´
), there is a sufficiently small neighborhood of tA

(resp. tB), on which F (·, tB) is quasi-concave (resp. 1 − F (tA, ·) is quasi-
concave).

This assumption also seems reasonable. This is because, though the function
F (·, tB) is not globally quasi-concave in general, it seems reasonable to assume
that it is locally quasi-concave if the ‘locality’ is taken as a sufficiently small
subset of the domain.6 In fact, as we argue below, if F (·, tB) is differentiable
at each tA ∈ T\©tBª, and each V i is also differentiable and its Hessian
matrix is non-singular, A5 is supported.7 Then, if parties’ utility functions
are strictly quasi-concave, since UA

³
t
A
, ε∗A
´
is a sufficiently small, strict

convex set, it follows from A5 that, for each tB ∈ T\UA
³
t
A
, ε∗A
´
and each

tA ∈ UA
³
t
A
, ε∗A
´
, there is a unique point t0A ∈ UA(tA) at which the iso-

fraction curve of F (·, tB) is tangent to UA(tA). The same argument is also
applied to 1− F (tA, ·).
Then:

Theorem 1: Suppose T is a compact and convex subset in Rn, and each
party’s utility function V i, where i ∈ {A,B}, is continuous and strictly quasi-
concave on T . Let A1, A2, A3, A4, and A5 hold. Then, there exists a
q-C-PUNE for the environment hH,F, T, v, βi.

Proof. Given
³
t
A
, t
B
´
∈ T × T with tA 6= tB, we can appropriately choose

(tA∗, tB∗) ∈ T×T\
n³
t
A
, t
B
´o

with tA∗ 6= tB∗ such that UA(tA∗)∩UB(tB∗) =
∅. Note that tA ∈ UA(tA∗) and tB ∈ UB(tB∗). Note that for any pair
(tA, tB) ∈ UA(tA∗) × UB(tB∗), tA 6= tB holds. For each i = A,B, let

U i(ti; t
i
, εi) ≡ U i(ti) ∪ U i

³
t
i
, εi
´
, where U i

³
t
i
, εi
´
is given by A4. Then,

for each t = (tA, tB) ∈ UA(tA∗)×UB(tB∗), let ¡t0A, t0B¢ ∈ UA(tA∗)×UB(tB∗)
have the following property:

6In fact, all of the works on PUNEs by John Roemer and others have implicitly used
this assumption.

7Note that the differentiability of F (·, tB) is not so strong an assumption, since F is
equivalent to the Lebesgue measure by A1.
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(1-a) t0A is a solution of the following problem:

max
t∈UA(tA;tA,εA)

F
¡
t, tB

¢− F ³tA, tB´ , (1)
(1-b) t0B is a solution of the following problem:

max
t∈UB(tB ;tB ,εB)

F
³
tA, t

B
´
− F ¡tA, t¢ . (2)

Denote the set of such t0A by GA
¡
tA, tB

¢
. In the same way, denote the

set of such t0B by GB
¡
tA, tB

¢
. Note that either U i(ti; ti, εi) = U i(ti) or

U i(ti; t
i
, εi) = U i

³
t
i
, εi
´
holds for each i = A,B. This implies that U i(ti; ti, εi)

is continuous at each ti ∈ T for each i = A,B. Since F is continuous at each
(tA, tB) ∈ T × T with tA 6= tB by A1, ¡GA ×GB¢ is upper hemi-continuous
on UA(tA∗)× UB(tB∗), by Berge’s maximum theorem.
Let intX (resp. ∂X) be the interior (resp. boundary) of the set X.

Define a correspondence ϕA : UA(tA∗) × UB(tB∗) ³ UA(tA∗) as follows:
for each (tA, tB) ∈ UA(tA∗)×UB(tB∗), ϕA(tA, tB) = GA

¡
tA, tB

¢
. Also, define

ϕB : U
A(tA∗)×UB(tB∗)³ UB(tB∗) as: for each (tA, tB) ∈ UA(tA∗)×UB(tB∗),

ϕB(t
A, tB) = GB

¡
tA, tB

¢
. Finally, let ϕ ≡ ϕA × ϕB. It is clear that

ϕ(tA, tB) 6= ∅ for every (tA, tB) ∈ UA(tA∗)× UB(tB∗).
We show below that ϕ also satisfies LDV1 of Lemma 1. Let (tA, tB) /∈

ϕ(tA, tB). This implies

ϕ(tA, tB) ⊆
³
UA(tA; t

A
, εA)× UB(tB; tB, εB)

´
\©(tA, tB)ª .

Insert Figure 1 around here.

By LDV1, it suffices to discuss the case of tA /∈ ϕA(t
A, tB). Suppose that

tA /∈ UA
³
t
A
, εA
´
. Take co

£
ϕA(t

A, tB)
¤
. Since UA(tA; tA, εA) is convex,

co
£
ϕA(t

A, tB)
¤ ⊆ UA(tA; t

A
, εA). Moreover, since UA(tA; t

A
, εA) is strictly

convex by the strict quasi-concavity of V A, we can guarantee that tA /∈
co
£
ϕA(t

A, tB)
¤
holds. This implies that, by the separating hyperplane the-

orem, there exists pA
¡
tA
¢ ∈ Rn such that pA ¡tA¢ · ¡t0A − tA¢ > 0 holds for

any t0A ∈ ϕA
¡
tA, tB

¢
.

Insert Figure 2 around here.
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Consider a neighborhood N
¡
ϕA(t

A, tB)
¢
of ϕA(tA, tB), which is small

enough and satisfies co
£
ϕA(t

A, tB)
¤ ⊆ N ¡ϕA(tA, tB)¢ and tA /∈ N ¡ϕA(tA, tB)¢.

Since ϕA is upper hemi-continuous at (tA, tB), there is a neighborhoodN(tA, tB)
of (tA, tB) such that, for thisN

¡
ϕA(t

A, tB)
¢
, we have ϕA(t0A, t0B) ⊆ N

¡
ϕA(t

A, tB)
¢

for any (t0A, t0B) ∈ N(tA, tB). Consider N(tA, tB) ( N(tA, tB), which is small
enough, so that for any

¡
tA0, tB0

¢ ∈ N(tA, tB), tA0 /∈ N ¡ϕA(tA, tB)¢. Since
N
¡
ϕA(t

A, tB)
¢ ⊇ co £ϕA(tA, tB)¤, and tA /∈ co £ϕA(tA, tB)¤, we can find such

a small set N(tA, tB). Thus, we have ϕA(t
0A, t0B) ⊆ N ¡ϕA(tA, tB)¢ for any

(t0A, t0B) ∈ N(tA, tB).
By the construction of N

¡
ϕA(t

A, tB)
¢
and N(tA, tB), we can see that for

any (t0A, t0B) ∈ N(tA, tB) and any t00A ∈ N ¡ϕA(tA, tB)¢, pA ¡tA¢·¡t00A − t0A¢ >
0. This implies that for any (t0A, t0B) ∈ N(tA, tB) and any t00A ∈ ϕA(t

0A, t0B),
we have pA

¡
tA
¢ · ¡t00A − t0A¢ > 0.

Next, let tA ∈ UA
³
t
A
, εA
´
. Then, UA(tA; tA, εA) is reduced toUA

³
t
A
, εA
´
.

Note that for a given tB, GA
¡
tA, tB

¢
is invariable for any tA ∈ UA

³
t
A
, εA
´
.

This means that, for any tA, t0A ∈ UA
³
t
A
, εA
´
, GA

¡
tA, tB

¢
= GA

¡
t0A, tB

¢
.

Also, by A4, for any t0A ∈ GA ¡tA, tB¢ and any t ∈ co©t0A, tBª with t 6= t0A,
t /∈ UA

³
t
A
, εA
´
, which implies GA

¡
tA, tB

¢ ⊆ ∂UA
³
t
A
, εA
´
. Moreover, we

can assume by A5 and the strong quasi-concavity of V A that GA(tA, tB) =©etAª holds without loss of generality. Thus, if tA ∈ ∂UA
³
t
A
, εA
´
, then

we can apply the same argument as in the case of tA /∈ UA
³
t
A
, εA
´
, so

that there exist a neighborhood N(tA, tB) of (tA, tB) and pA
¡
tA
¢ ∈ Rn

such that for any (t0A, t0B) ∈ N(tA, tB) and any t00A ∈ ϕA(t
0A, t0B), we have

pA
¡
tA
¢ · ¡t00A − t0A¢ > 0. If tA ∈ intUA

³
t
A
, εA
´
, there exist pA

¡
tA
¢ ∈ Rn

and a sufficiently small neighborhoodN(tA) ⊆ intUA
³
t
A
, εA
´
of tA such that

pA
¡
tA
¢ ·¡etA − t0A¢ > 0 holds for any t0A ∈ N(tA). Moreover, for a sufficiently

small neighborhood N(tB) of tB, for any t0B ∈ N(tB), GA(tA, t0B) is also
single-valued by A5 and the strong quasi-concavity of V A, so that we can
find

©et0Aª = ϕA(t
A, t0B). Then, by the upper hemi-continuity of GA, we can

see that, for some sufficiently small neighborhood N(tA, tB) ≡ N(tA)×N(tB)
of (tA, tB), pA

¡
tA
¢ · ¡et0A − t0A¢ > 0 holds for any (t0A, t0B) ∈ N(tA, tB).

In summary, ϕ satisfies LDV1 of Lemma 1. Thus, by Lemma 1, ϕ has
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a fixed point (btA,btB) ∈ ϕ(btA,btB). By the definition of ϕ, btA 6= btB holds.
For the fixed point (btA,btB) ∈ ϕ(btA,btB), we have:
F
¡
Ω
¡btA,btB¢¢ ≥ F

¡
Ω
¡
tA,btB¢¢ for any tA ∈ UA(btA; tA, εA), (3)

F
¡
Ω
¡btA, tB¢¢ ≥ F

¡
Ω
¡btA,btB¢¢ for any tB ∈ UB(btB; tB, εB). (4)

Thus,
¡btA,btB¢ is a q-PUNE. Moreover, by A3, 0 < F ¡Ω ¡btA,btB¢¢ < 1.

Suppose that
¡btA,btB¢ is a q-PUNE with btA = t

A or btB = t
B. LetbtA = tA. Since UA ³tA, εA´ ) ntAo, there exists tA ∈ UA ³tA, εA´ such that

F
³
Ω
³
tA, t

B
´´
> F

³
Ω
³
t
A
, t
B
´´
by A4, which is a contradiction. The same

argument is applied to btB = t
B. Thus, the above fixed point (btA,btB) hasbtA 6= tA and btB 6= tB. This implies that (btA,btB) is a q-C-PUNE.

Corollary 1: Suppose T is a compact and convex subset in Rn, and each
party’s utility function V i, where i ∈ {A,B}, is continuous and strictly quasi-
concave on T . Let the error term β ∈ ¡0, 1

2

¢
be close enough to 1

2
, and let

A1, A2, A3, A4, and A5 hold. Then, there exists a C-PUNE for the
environment hH,F, T, v,βi.

Proof. By Theorem 1, there exists a q-C-PUNE (btA,btB). Let us take
an error term β ∈ ¡0, 1

2

¢
, which is sufficiently close to 1

2
. Then, since 0 <

F
¡
Ω
¡btA,btB¢¢ < 1, F ¡Ω ¡btA,btB¢¢− β < 1

2
< F

¡
Ω
¡btA,btB¢¢+ β holds. Then,

by the definition, 0 < π
¡btA,btB¢ < 1 holds, so that (btA,btB) is a C-PUNE for

hH,F, T, v, βi.

We may provide a characterization of a subset of ‘local’ PUNEs. Note
that if

¡
tA, tB

¢
is a PUNE, it implies that, under the assumption that V A,

V B, and F are differentiable, the following condition holds: there exist ap-
propriate numbers

¡
αA,αB

¢ ∈ [0, 1]× [0, 1] such that for this (tA, tB),
αA

⎛⎝ V A
¡
tA
¢− V A ¡tB¢

F (tA, tB)− F
³
t
A
, tB
´
⎞⎠∇AF ¡tA, tB¢+ ¡1− αA

¢∇AV A ¡tA¢ = 0, (5)

and − αB

⎛⎝ V B
¡
tB
¢− V B ¡tA¢

F
³
tA, t

B
´
− F (tA, tB)

⎞⎠∇BF ¡tA, tB¢+ ¡1− αB
¢∇BV A ¡tB¢ = 0, (6)
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where∇iF
¡
tA, tB

¢ ≡ µ∂F(tA,tB)
∂ti1

, . . . ,
∂F(tA,tB)

∂tin

¶
and∇iV i (ti) ≡

µ
∂V i(ti)

∂ti1
, . . . ,

∂V i(ti)
∂tin

¶
for i = A,B. That is, the above 2× n equations (5) and (6) with ¡αA,αB¢
constitute the necessary condition for (tA, tB) to be a PUNE. Note that
these (5) and (6) are of the form

GA
¡
tA, tB;αA,αB

¢
= 0, (5a)

GB
¡
tA, tB;αA,αB

¢
= 0. (6a)

Now, denote the Jacobian matrix of these 2× n equations (5a) and (6a) by
J
£
GA, GB;

¡
tA, tB;αA,αB

¢¤
.

We know that a M-PUNE
³
t
A
, t
B
´
exists, so that (5a) and (6a) hold

at
¡
αA,αB

¢
= (0, 0). Evaluate the Jacobian of (5a) and (6a) at

¡
αA,αB

¢
=

(0, 0), so that we have

J
h
GA, GB;

³
t
A
, t
B
; 0, 0

´i
=

⎡⎣ J h∇AV A ³tA´i 0

0 J
h
∇BV B

³
t
B
´i ⎤⎦ ,

where J
h
∇iV i

³
t
i
´i
≡

⎡⎢⎢⎢⎣
∂2V i(ti)
∂ti1∂t

i
1

· · · ∂2V i(ti)
∂tin∂t

i
1

...
. . .

...
∂2V i(ti)
∂ti1∂t

i
n

· · · ∂2V i(ti)
∂tin∂t

i
n

⎤⎥⎥⎥⎦ for each i = A,B. Then,
if det

³
J
h
GA, GB;

³
t
A
, t
B
; 0, 0

´i´
6= 0, then by the implicit function theorem,

there is a neighborhoodNA×NB ⊆ [0− ε, 1]×[0− ε, 1] of (0, 0) such that for
each

¡
αA,αB

¢ ∈ NA×NB, there is a unique value
¡
tA
¡
αA
¢
, tB

¡
αB
¢¢ ∈ T×T

which constitutesGA
¡
tA
¡
αA
¢
, tB

¡
αB
¢
;αA,αB

¢
= 0 andGB

¡
tA
¡
αA
¢
, tB

¡
αB
¢
;αA,αB

¢
=

0. This implies that if J
h
GA, GB;

³
t
A
, t
B
; 0, 0

´i
is non-singular, there will

be a two-dimensional manifold of the solutions©¡
tA
¡
αA
¢
, tB

¡
αB
¢¢ | ¡αA,αB¢ ∈ NA ×NB

ª
of the equations (5a) and (6a). The solutions do not necessarily constitute
PUNEs, but they are at least ‘local’ PUNEs, since (5a) and (6a) constitute
the necessary condition of PUNE, but not the sufficient condition.
Therefore, our concern is under what natural conditions, the non-singular

of J
h
GA, GB;

³
t
A
, t
B
; 0, 0

´i
is guaranteed. We have the following:
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Proposition 1: Suppose T is a compact and convex subset in Rn, and each
party’s utility function V i, where i ∈ {A,B}, is continuously differentiable
and strictly quasi-concave on T . Let A1, A2, A3, and A4 hold. Let F be
continuously differentiable. If det

³
J
h
∇iV i

³
t
i
´i´

6= 0 for i = A,B, then

J
h
GA, GB;

³
t
A
, t
B
; 0, 0

´i
is non-singular.

Note that det
³
J
h
∇iV i

³
t
i
´i´

is equal to det
³
H
h
V i
³
t
i
´i´

, the determinant

of the Hessian matrix of V i (ti) evaluated at ti. So, there are many cases

such that det
³
J
h
∇iV i

³
t
i
´i´

6= 0 holds when V i is strictly concave. For

instance, if for both i = A,B,
∂2V i(ti)
∂tij∂t

i
j
< 0 and

∂2V i(ti)
∂tij∂t

i
k
= 0 for any j, k =

1, . . . , n with j 6= k, then det
³
J
h
∇iV i

³
t
i
´i´

6= 0 for both i = A,B. Such a
condition is satisfied if every party’s utility function is separable and strictly
concave. In most concrete examples of political competition games, parties’
utility functions have these properties, such as quasi-linear utility function
or Euclidean preference. Thus, the sufficient condition of Proposition 1 is
reasonable.
Proposition 1 also indicates that, if V A, V B, and F are differentiable,

and the Hessian matrices of V A and V B are non-singular, then A5 can be
supported. This is because, by the implicit function theorem, the solution¡
tA
¡
αA
¢
, tB

¡
αB
¢¢
of the equations (5) and (6) is uniquely determined within

a neighborhood of
³
t
A
, t
B
´
, which implies that F should be at least lo-

cally quasi-concave within a neighborhood of
³
t
A
, t
B
´
. Also, for any given

t0B ∈ T\UA
³
t
A
, εA
´
, the implicit function theorem can be applied to the

equation (5), so that the solution tA
¡
αA
¢
of (5) is uniquely determined within

a neighborhood of tA. These arguments imply that A5 holds. Thus:

Corollary 2: Suppose T is a compact and convex subset in Rn, and each
party’s utility function V i, where i ∈ {A,B}, is continuously differentiable
and strictly quasi-concave on T . Let the error term β ∈ ¡0, 1

2

¢
be close enough

to 1
2
, and A1, A2, A3, and A4 hold. Let F be continuously differentiable,

and det
³
H
h
V i
³
t
i
´i´

6= 0 for i = A,B. Then, there exists a C-PUNE for
the environment hH,F, T, v, βi.
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Note that the combination of A1, A2, A3, A4, and A5 with β close
enough to 1

2
is nonvacuous, and the condition, β close enough to 1

2
, is in-

dispensable for the existence of C-PUNE. Note also, though Berinsky and
Lewis (2007) empirically found that voters’ utility functions are close to lin-
ear rather than strictly concave, Corollary 1 relies not on strict concavity,
but only on strict quasi-concavity of parties’ utility functions.
To illustrate the above first point, for instance, consider the Euclidean

model with a two-dimensional policy space given by Roemer (2001: Section
8.7), where the two-dimensional policy space is a disc and the probability
distribution defined on the disc is the uniform distribution. We can see
that, in this model, A1, A2, A3, A4, and A5 with β close enough to 1

2

are satisfied, so that a C-PUNE exists. There is yet another example of
multi-dimensional political games, which meets A1, A2, A3, A4, and A5
with β close enough to 1

2
. This model is based on Roemer (1998), though

the modeling of uncertainty differs from Roemer (1998), which is given as
follows:

Example 1: Consider a political environment hH,F, T, v,βi such that H =
{(w, a) ∈W ×A |W ≡ [w,w] ( R+ & A ≡ [a, a] ( R}, where W is the set
of income levels, andA is the set of religious views, T = {(τ, z) | τ ∈ [0, 1] and z ∈ A},
where τ is a uniform tax rate on income, and z is a religious position of the
government, and v (τ, z;w, a) = (1− γ) [(1− τ)w + τμ] − γ

2
(z − a)2, where

μ is the mean income of this society. Moreover, F has its associated density
function f (w, a) = g (w) r (a;w) such that bF (a0) ≡ R

W

R a0
a
g (w) r (a;w)dadw

is strictly increasing at every a0 ∈ A. Finally, F is assumed to satisfy A1
and A2, and β is close enough to 1

2
.

Note that for any h ∈ H, if his or her income wh > μ, then τ = 0 is the
ideal tax rate for him or her, whereas if wh ≤ μ, then τ = 1 is the ideal tax
rate for him or her. Let A ≡ {h ∈ H | wh ≤ μ} and B ≡ {h ∈ H | wh > μ}.
Let aA be the ideal religious view of A and aB be the median ideal view of
B. Moreover, let aH be the median religious view over H. Assume aA 6= aB.
Then, F also satisfies A3. Let

³
t
A
(γ) , t

B
(γ)
´
be a non-trivial M-PUNE

for each γ ∈ [0, 1].
If γ = 1, then a non-trivial M-PUNE for γ = 1 implies zA (1) 6= zB (1).

Thus, if γ < 1 is close to one, then zA (γ) 6= zB (γ) holds. Then, for such
γ < 1 close to one, A4 holds. This is because for any a ∈ £zA (γ) , zB (γ)¤,
there are some voters whose ideal religious policies are identical to a, and
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the F-measure of those voters is positive. The last condition follows from the
strictly increasing bF (a0). Note in the case where γ < 1 is sufficiently close to
one, the effect of the tax policy τ on the voters’ welfare is negligible relative
to that of the religious policy z. Finally, since each party’s utility function is
given by V i (τ, z) = (1− γ) [(1− τ)wi + τμ]

1
2 − γ

2
(z − ai)2 for each i = A,B,

and F
¡
Ω
¡
tA, tB

¢¢
is differentiable by assumption, A5 also holds.

Thus, Corollary 2 tells us that there exists a C-PUNE. In fact, for
γ = 1, there exists a non-trivial M-PUNE

³
t
A
(1) , t

B
(1)
´
such that tA (1) =

(0, aA) and t
B
(1) = (0, aB). Then, for γ = 1, consider any profile¡btA (1) ,btB (1)¢ = ((0, bzA) , (0, bzB))

such that aA < bzA < aH < bzB < aB with bzA+bzB
2

= aH . This profile constitutes
a C-PUNE when β is close enough to 1

2
. Moreover, assume that the mean

income of the cohort of voters with the median religious view aH is higher
than the mean income, μ, of the population. Then, for any γ < 1 close
enough to one, any profile

¡btA (γ) ,btB (γ)¢ = ¡btA (1) ,btB (1)¢ still constitutes
a C-PUNE when β is close enough to 1

2
.

To see that the condition, β close enough to 1
2
, is indispensable for the

existence of C-PUNE, let us consider the following example of political
games in which there only exist one non-trivial M-PUNE and one trivial
PUNE under β close enough to 0:

Example 2: Consider a political environment hH,F, T, v, βi such that H =
W ≡ [w,w] ( R++, where W is the set of income levels, T = {(τ,α) | τ ∈
[0, 1] and α ∈ [0, 1]}, where τ is a uniform tax rate on income, and α is the
ratio of public good expenditure over tax revenue, and the citizen w’s utility
function is:

v (τ,α;w) = [(1− τ)w + (1− α) τμ] + max
nμ

w
, 1
o
σ (ατμ) ,

where μ is the mean income of this society. In this environment, if the society
chooses (τ,α), then its tax revenue is τμ per capita, and its public good
expenditure becomes ατμ per capita. Then, (1− α) τμ is the subsidy that
every citizen receives through the income redistribution policy. Thus, the
choice of (τ,α) implies the choice of redistribution and public good provision
in this society. In every citizen’s utility function v, the term (1− τ)w +
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(1− α) τμ represents the citizen w’s after-tax income when the policy (τ,α) is
implemented; the term max

©
μ
w
, 1
ª
σ (ατμ) represents the citizen w’s benefit

from the public good provision. Assume that lim
λ→0

∂σ(λμ)
∂λμ

= +∞, and for
some λ∗ ∈ (0, 1), ∂σ(λ∗μ)

∂λ∗μ = 1. Finally, F is assumed to satisfy A1 and A2,
which is characterized by a density function f (w) over W . Moreover, since
Ω(tA, tB) = {w ∈W | v (τA,αA;w)− v (τB,αB;w) > 0}, it is easy to see that
F satisfies A3. Let F be a cumulative distribution function on W . It is
assumed that F (μ) > 1

2
.

Note that there exists h∗ ∈ H withwh∗ > μ such thatA = {h ∈ H | wh < wh∗}
and B = {h ∈ H | wh ≥ wh∗} with wB =

R
h∈B whdF(h) > μ, so that wA =R

h∈AwhdF(h) < μ. It is assumed that F (wA) = 1
2
. Then, by means of the as-

sumptions on ∂σ(λμ)
∂λμ

and the facts that wA < μ < wB, there exist α∗ ∈ (0, 1)
and τ ∗ ∈ (0, 1) such that ∂σ(α∗μ)

∂ατμ
= wA

μ
and ∂σ(τ∗μ)

∂ατμ
= wB

μ
. Since wA

μ
< wB

μ
,

α∗ > τ ∗ holds. We can see that (1,α∗) is the ideal policy for party A, while
(τ ∗, 1) is the ideal policy for party B.
Given this setting, if β is close enough to 1

2
, then

¡
tA, tB

¢
= ((1,α0) , (τ 0, 1))

with wA
μ
< ∂σ(α0μ)

∂ατμ
< 1 and wB

μ
> ∂σ(τ 0μ)

∂ατμ
> 1 constitutes a C-PUNE with

0 < π ((1,α0) , (τ 0, 1)) < 1. However, since F (wA) = 1
2
, F
¡
Ω(tA, tB)

¢
> 1

2

holds for the pair of ideal policies
¡
tA, tB

¢
= ((1,α∗) , (τ ∗, 1)). Thus, if β is

close enough to 0, then π ((1,α∗) , (τ ∗, 1)) = 1, and every PUNE
¡
tA, tB

¢
is

either
¡
tA, tB

¢
= ((1,α∗) , (τ ∗, 1)) or

¡
tA, tB

¢
= ((1,α∗) , (1,α∗)).

Before ending this section, it is worthwhile to point out the following two
remarks: First, one may well wonder if the method using Urai-Hayashi fixed
point theorem could also be applied to the existence problem of Wittman
equilibrium in multi-dimensional political games with uncertainty. For in-
stance, let us consider the problems (1) and (2) with the weights αA = 1

2
=

αB, and then apply the Urai-Hayashi fixed point theorem as in the proof of
Theorem 1. Though this method seems to be useful for the existence prob-
lem of Wittman equilibrium, the resulting fixed point is not necessarily a
Wittman equilibrium, but definitely a PUNE. This is because such a fixed
point is a pair of the solutions for the constrained Nash bargaining prob-
lems subject to the upper contour sets of themselves, whereas any Wittman
equilibrium should be a pair of the solutions for the non-constrained Nash
bargaining problems.
Second, though we have focussed on C-PUNE, there might well be an-
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other interesting refinement of PUNE: that is, PUNE with endogenous
party formations. Though there may be various possible ways to formulate
it, one way was proposed by Roemer (2005, p.225), in which it is given by a
well-known condition of endogenous party formations [Baron (1993); Caplin
and Nalebuff (1997); Gomberg (2004); Gomberg et al. (2004)], in addition to
Definition 1 of this paper. The condition requires that the voting partition
resulting from a profile of policy proposals is identical in equilibrium to the
membership partition inducing this pair of policy proposals. There are two
comments on this specific type of PUNE. First, showing even the general ex-
istence of M-PUNE is quite difficult in the endogenous party models. Note
that M-PUNE with the endogenous party formations is a specific type of
sorting equilibrium [Gomberg (2004)], and, as has been discussed by Caplin
and Nalebuff (1997), Gomberg (2004), and Gomberg et al. (2004), the general
existence of such an equilibrium is faced with difficulty when the dimension
of policy space is even.8 Second, in the context of endogenous parties, it
seems hard to give a natural interpretation to Militant (and also Reformist)
factions. In this context, Militants advocate the average platform, integrated
over the space of voters who prefer this party to another, but one may won-
der what kind of people in real life uncompromisingly adhere to a platform
that often frivolously changes with the decisions of other voters. Of course,
Militants may understand that the party is an instrument for representing
its members. However, in the above endogenous party models, the left-wing
party (or its Militant) may possibly propose a more right-wing policy than
the opponent if it happens to collect right-wing citizens as its membership.
This paradoxical phenomenon is due to a lack of argument on preserving
party members’ loyalty in determining their platforms: the bureaucracy of
the left-wing party would propose a more left-wing policy than the opposing
party so as to preserve the loyalty of all left-wing members. Roemer (2005,
p.226) proposed an alternative formulation of PUNE in endogenous party
models with this extra consideration,9 and the general existence of such an
equilibrium can be obtained by modifying the proof method of this paper’s
Theorem 1, as discussed in Yoshihara (2008a).

8Though, as Gomberg, et. al (2004) showed, this does not necessarily imply that
the existence of sorting equilibrium is impossible in any political game with the even
dimensionality of policy space.

9Roemer (2005) called this quasi -PUNE.
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4 Concluding Remarks

In this paper, we introduced, in general multi-dimensional political games,
a refinement of PUNEs, C-PUNEs, and provided sufficient conditions for
the existence of C-PUNEs. The sufficient conditions appear natural and
plausible, and this implies that there are many reasonable models of multi-
dimensional political games in which this refinement exists.
In this paper, we focussed on a specific modeling of party uncertainty,

which Roemer (2001: Chapter 2) called the Error-Distribution Model of Un-
certainty. However, Roemer (2001: Chapter 2) also proposed other types
of uncertainty models. We have not considered the existence problems in
alternative uncertainty models.
The existence theorems in this paper depend on the assumption of strictly

quasi-concave utility functions. However, there are some examples of political
games with only weakly quasi-concave utility functions, such as set out by
Roemer (1999). The existence of the refined PUNEs in political games with
only weakly quasi-concave utility functions remains an open question.
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Figure 2: ϕ  satisfies 1LDV  

( ),A B
A t tϕ

( )( ),A B
AN t tϕ

( ),A A B
At t tϕ′′ ′ ′∈

( ),A B
Ap t t

( )A
Ap t=

( )A AU t

•

( ),A B
Aco t tϕ

( )A AU t′

( ),A B
A t tϕ ′ ′

At
At′

( )BN t

••

Bt

Bt′

••

At
•

( ),A A
AU t ε

Bt
•

( ),B B
BU t ε

( )AN t


	existenceofpunes;version20b-1c,2008.pdf
	existenceofpunes;version20b-1c,2008(withFigures)
	existenceofpunes;version20b-1c,2008.pdf
	2008.11.06_Figures_for_Existence_of_PUNE_


