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1 Introduction
In this paper we consider resource allocation problems in production economies
with possibly unequal skills, as well as with variable commodities, in which
the change in the types of produced commodities is due to the change in
production technology. Assuming that the resource allocation is determined
via bargaining among individuals, we axiomatically characterize bargaining
solutions in those economies. However, in contrast to the classical bargaining
theory originating with Nash [16], we focus on allocation rules, each of which
maps each economy to a subset of feasible allocations whose utility values
are just the bargaining outcomes, by adopting the axioms which refer explic-
itly to concrete data on underlying economic environments, rather than just
to the geometric data of utility possibility sets. Such an approach is useful
to make clear non-welfaristic properties of bargaining solutions beyond the
welfaristic discussions in the Nash-type classical approach. For example, in
our setting of production economies, this approach may make it possible to
discuss the important issues of whether and/or how the inequality of individ-
uals’ production skills, the individuals’ developments of “expensive tastes”
(Dworkin [6, 7]) for which they should be responsible, and the effect of tech-
nological innovation respectively should influence the bargaining outcome.
Such issues disappear in the classical approach, because of its implicit impo-
sition of the axiom of Welfarism (Roemer [20]) which requires solutions to
assign the same utility allocation to all the economies giving rise to the same
utility possibility sets.
It was Roemer [18, 20] who studied characterizations of bargaining solu-

tions in pure exchange economies with possibly unequal consumption abil-
ities by using the axioms referring to economic information. Through this
approach, the non-welfaristic distributive justice was shown to be logically
connected with the ethically opposite welfaristic distributive justice. How-
ever, Roemer’s characterizations rely on a strong axiom, Consistency of Re-
source Allocation across Dimension (CONRAD) (Roemer [18, 20]), which
is logically implied by the axiom of Welfarism, but the converse relationship
also holds on the domain of solutions Roemer considers.
In their recent research, Chen and Maskin [3] characterized the egalitar-

ian solution (Kalai [12]) in economic environments with the possibility of
individual production without imposing CONRAD. Their characterization
constitutes a strengthening of Kalai’s (Kalai [12]) in the sense that their used
axioms are each weaker than their counterpart axioms in Kalai [12]. How-
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ever, their axioms are not only much stronger than their counterpart axioms
in Roemer [19, 20], but also rather inclined to welfarism in the sense that
they refer only to each individual’s payoff function, which is the composition
of each individual’s underlying production function and his underlying util-
ity function. So, their axioms have no interest in discriminating the change
in payoff functions due to a change in either production functions or utility
functions. Moreover, their characterization depends on their rather specific
settings of production economies and bargaining situations. In their eco-
nomic models, production is done individually with each one’s using his own
production function without using his own labor. Moreover, there is no bar-
gaining regarding distribution of outputs among individuals. So, their result
is irrelevant to ethically interesting bargaining problems in cooperative pro-
duction economies discussed by Moulin and Roemer [15] and Roemer [19].
In contrast to the above works, we model production economies in a

more general setting, which can be applied to both the individual produc-
tion and the cooperative production problems. Particularly, our model is
relevant to bargaining problems over the compensation for low skills. By
adopting the same axioms as ones in Roemer [19, 20], and introducing a new
axiom, Consistency with respect to Technological Innovation (CTI), instead
of adopting CONRAD, we provide full characterizations of three classical
bargaining solutions in such production economies: the Nash (Nash [16]);
the Kalai-Smorodinsky (Kalai and Smorodinsky [13]); and the egalitarian
solutions. CTI considers the situation in which a technological innovation
occurs, which only involves an invention of a new commodity, so that the
new commodity can be produced through the new production technology.
However, other characteristics of the economy remain essentially unchanged.
Moreover, the appearance of the new commodity does not lead to enhance the
potentiality of individuals’ welfare. Then, the allocation problem in the new
economy should be treated in the coherent way with the allocation problem
in the original economy. This is one motivation behind CTI. CTI also does
not imply the axiom of Welfarism even on the domain of solutions which is
similar to Roemer’s. Thus, all our characterizations provide non-welfaristic
foundations of classical bargaining solutions in production economies.
According to the obtained characterizations, we can classify the three

solutions from the viewpoint of responsibility and compensation (Fluerbaey
and Maniquet [8, 9]). As in Fluerbaey and Maniquets’ settings, here we
also assume that each individual is responsible not for his production skill,
but for his utility function. We can interpret one axiom as being relevant
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to responsibility for utility functions, and the other three axioms as being
relevant to compensation for low skills. Then, our characterizations show
that (1) there is no bargaining solution that meets both the responsibility
and the strongest compensation axioms, (2) the egalitarian solution meets
the strongest compensation, but no responsibility axiom, and (3) the Nash
and the Kalai-Smorodinsky solutions meet both the responsibility and the
weaker compensation axioms. From this insight, we may understand that
the egalitarian solution is essentially irrelevant to Dworkin’s [7] equality of
resources, while the Nash and the Kalai-Smorodinsky solutions share the
same properties with respect to responsibility and compensation.
We should note two points about our characterizations. First, our result

on the Nash solution is a strengthening of Roemer’s [20] corresponding re-
sult, since our characterization is obtained without relying on the stronger
version of CONRAD, which is essentially equivalent to Nash IIA (Nash
[16]), while Roemer’s relied on it. Second, we show that the characterization
of Kalai-Smorodinsky solution in more than two-person problems is different
from that in two-person problems even in the context of economic environ-
ments. It looks analogous to the arguments on the Kalai-Smorodinsky solu-
tion in two- and more than two-person problems under the classical fashion
(Kalai and Smorodinsky [13], Roth [21], and Thomson [22]).
For the rest of this paper, section 2 defines a basic model of economies,

allocation rules, and classical bargaining solutions. Section 3 introduces the
axioms on allocation rules. Section 4 provides the characterizations of the
three mentioned bargaining solutions. For the sake of expositional conve-
nience, all the involved proofs are relegated into Appendix.

2 Model
There are (possibly) infinitely many types of commodities and one type of
labor input, which is measured in efficiency units and denoted by x ∈ R+, to
be used to produce commodities, where R+ denotes the set of non-negative
real numbers.1 The universe of “potential commodities” is denoted by C,
and the class of non-empty and finite subsets of C is designated byM, with
generic elements, K, L, M ,. . .,. The cardinality of M ∈ M is denoted by
#M . Given M ∈ M, let Rm+ , where m = #M , designate the Cartesian
product of #M copies of R+ indexed by the numbers of M .

1As well, R++ denotes the set of positive real numbers.
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Given M ∈ M, one technology that can produce up to M -goods is de-
scribed by a production possibility set Y ⊆ R+ × Rm+ , where it is assumed
that:

A.1 0 ∈ Y .
A.2 Y is closed, convex, and comprehensive.
A.3 ∃t = (x, y) ∈ Y such that ∃ a commodity f ∈M s.t. yf > 0.

The universal set of such production possibility sets which produce up to
M -goods is denoted by YM . Let Y ≡ ∪

M∈M
YM . Let ∂Y ≡ {(x, y) ∈ Y |

@(x0, y0) ∈ Y s.t. (−x0, y0)À (−x, y)}.2
The population in the economy is given by the set N = {1, · · · , n}, where

2 ≤ n < +∞. Assume that all individuals have the same upper bound of
labor time x, 0 < x < +∞. Let UM be the set of all (real-valued) concave
and continuous utility functions defined on [0, x]×Rm+ , such that any u ∈ UM
is non-increasing in [0, x], non-decreasing in Rm+ , u(0,0) = u(x,0) = 0, and

for all (x, y) ∈ [0, x]×Rm+ , lim
t→∞

(1/t) · u(x, ty) = 0. (2.1)
Each individual i is also characterized by a production skill which is repre-
sented by a non-negative real number, si ∈ R+. The universal set of pro-
duction skills for all individuals is denoted by S ⊆ R+. The production skill
si ∈ S means i0s labor input per unit of labor time which is measured in effi-
ciency units. Thus, if his labor time is xi ∈ [0, x], then it is sixi ∈ R+ which
implies his labor input into production possibility set measured in efficiency
units.
Given M ∈ M, an economy with M -goods is described by a list e =

(M,u, s, Y ) = (M, (ui)i∈N , (si)i∈N , Y ), where M ∈M, u ∈UMn, s ∈Sn, Y ∈
YM , and UMn and Sn stand, respectively, for the n-fold Cartesian product of
UM and that of S. Let EM be the class of all such economies with M -goods.
Let E ≡ ∪

M∈M
EM . Given e = (M,u, s, Y ) ∈ EM , a vector z = (zi)i∈N ∈

([0, x] × Rm+)n is feasible for e ∈ EM if for all i ∈ N , zi = (xi, yi), and
(
P
sixi,

P
yi) ∈ Y .3 We denote by Z(e) the set of feasible allocations for

2For any two vectors a = (a1, . . . , ap) and b = (b1, . . . , bp), a ≥ b if and only if ai ≥ bi
(i = 1, . . . , p), a > b if and only if a ≥ b and not (b ≥ a), and aÀ b if and only if ai > bi
(i = 1, . . . , p).

3Since the profiles of labor time and of production skills are respectively (xi)i∈N and
(si)i∈N , the aggregate amount of labor input in efficiency units is

P
sixi, which is trans-

formed into M -commodities through the production possibility set Y .
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e ∈ EM . Let Z(E) ≡ ∪
e∈E

Z(e). Given e = (M,u, s, Y ) ∈ E and z ∈ Z(e),
z is a Pareto efficient allocation for e if there is no z0 ∈ Z(e) such that
ui(z

0
i) ≥ ui(zi) for all i ∈ N , and uj(z0j) > uj(zj) for some j ∈ N . Given

e = (M,u, s, Y ) ∈ E and z ∈ Z(e), z is a weakly Pareto efficient allocation
for e if there is no z0 ∈ Z(e) such that ui(z0i) > ui(zi) for all i ∈ N . Denote
the set of Pareto efficient (resp. weakly Pareto efficient) allocations for e by
PE(e) (resp. WPE(e)). Given e = (M,u, s, Y ) ∈ E, the utility possibility
set of e ∈ E is:
S(e) ≡ {u = (ui)i∈N ∈ Rn+ | ∃ z = (zi)i∈N ∈ Z(e),∀i ∈ N, ui = ui(zi)}.

Note that the utility possibility set S(e) is a compact, comprehensive, convex
set in Rn+ containing the origin.4 Let Σ ≡ {S ⊆ Rn+ | ∃ e ∈ E, S = S(e)} be
the class of all such utility possibility sets.
Let d = 0 ∈ Rn+ denote the disagreement point in this society. We identify

a pair of the utility possibility set, S, and the disagreement point d as a
bargaining game. Then, a bargaining solution is a function F : Σ×{d}→ Rn+
such that for every S ∈ Σ, F (S, d) ∈ S. Since d = 0 by the assumption
of ui(0,0) = 0 for all i ∈ N ,5 we write only F (S) instead of F (S, d). The
universal set of bargaining solutions is denoted by F .
An allocation rule is a correspondence ϕ : E ³ Z(E) which associates

to each e = (M,u, s, Y ) ∈ E , a non-empty subset ϕ(e) of Z(e). The
allocation rule ϕ is assumed to be essentially a function; that is, for all
e = (M,u, s, Y ) ∈ E, if z ∈ ϕ(e) and z0 ∈ ϕ(e), then u(z) = u(z0), where
u(z) = (ui(zi))i∈N and u(z0) = (ui(z

0
i))i∈N . Moreover, ϕ is assumed to be

a full correspondence; that is, for all e = (M,u, s, Y ) ∈ E, if z ∈ ϕ(e),
z0 ∈ Z(e), and u(z) = u(z0), then z0 ∈ ϕ(e). The allocation rule ϕ attains a
bargaining solution F if for all e = (M,u, s, Y ) ∈ E , µϕ(e) = F (S(e)), where
µϕ(e) ≡ u(ϕ(e)). Denote the class of all the allocation rules, each of which
attains some bargaining solution, by ΦF .

4Note that even if every utility function is assumed to be strictly monotonic, there is no
guarantee that every opportunity set S(e) in this paper is strictly comprehensive; that is,
the boundary of the opportunity set may in general include weakly Pareto efficient utility
allocations. This is because we consider production economies with possibilities of joint
productions. To guarantee strict comprehensiveness of all possible opportunity sets, we
should restrict the class of utility functions UM into the ones discussed in Diamantaras
and Wilkie [5].

5By this assumption of the fixed disagreement point, the following analyses of this
paper are free from the impossibility theorems in Conley, McLean, and Wilkie [4].
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3 Axioms using Economic Information
Let EM∗ ⊆ EM be the class of economies with M -goods, whose utility pos-
sibility sets are strictly comprehensive. Let E∗ ≡ ∪

M∈M
EM∗. The following

is a sufficient condition for e to belong to E∗, which is essentially due to
Diamantaras and Wilkie [5]:

Lemma 1: For any e = (M,u, s, Y ) ∈ EM , e ∈ EM∗ is guaranteed if
ui ∈ UM (∀i ∈ N) and Y ∈ YM have the following properties:
(1) [(x, y) ∈ Y and x0 > x]⇒ [∃y0 > y such that (x0, y0) ∈ Y ];
(2) for all (x, y), (x0, y0) ∈ [0, x]× Rm+ with y 6= 0 and y0 = 0, ui(x, y) >

ui(x
0, y0);
(3) for all (x, y), (x0, y) ∈ [0, x]×Rm+ with y 6= 0, if x < x0, then ui(x, y) >

ui(x
0, y)
(4) for all (x, y), (x0, y0) ∈ [0, x] × Rm+ with y 6= 0 and y0 6= 0, and all

λ ∈ (0, 1), if ui(x, y) ≥ ui(x0, y0) and (x, y) 6= (x0, y0), then
ui(λx+ (1− λ)x0,λy + (1− λ)y0) > ui(x0, y0).

Proof. To get e ∈ EM∗, it is sufficient to show that there is no weakly
Pareto efficient allocation z for e, which is weakly dominated by z0 ∈ Z(e)
with u(z0) À 0, since S(e) is convex. Suppose that there exists a weakly
Pareto efficient allocation z for e, which is weakly dominated by z0 ∈ Z(e)
with u(z0) À 0. Hence, for all i ∈ N , ui(z0i) ≥ ui(zi), and for some j ∈ N ,
uj(z

0
j) > uj(zj). Note that u(z

0)À 0 implies for all h ∈ N , y0h 6= 0. Suppose
y0 = y, that is, for all h ∈ N , y0h = yh. Then, 0 ≤ x0j < xj ≤ x. So, by (1),
some h0 ∈ N\{j} must be such that x0h0 > xh0 , so uh0(z0h0) < uh0(zh0) by (3),
a contradiction. Thus, y0 6= y. Let z00 ≡ λz + (1− λ)z0 for some λ ∈ (0, 1).
Since Y is convex, z00 ∈ Z(e). If yh = 0, then by (2), uh(z00h) > uh(zh), since
y00h 6= 0 by y0h 6= 0. If yh 6= 0, then by (4), uh(z00h) > uh(zh). Thus, z00 strictly
dominates z, which is a desired contradiction.

Since the class of utility functions UM has, as its elements, the utility func-
tions having the above properties in Lemma 1, it is shown by Lemma 1
that E∗ is non-empty.
From the next sections, we will provide characterizations of allocation

rules ϕ in E∗ as well as in E. The domain assumptions on ϕ are:

AxiomDE : The allocation rule ϕ is a full correspondence which is essentially
a function and is defined on the class of economies E .
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Axiom DE∗: The allocation rule ϕ is a full correspondence which is essen-
tially a function and is defined on the class of economies E∗.
The following are well-known axioms on allocation rules:

Welfarism (W): For all e = (M,u, s, Y ), e0 = (M 0,u0, s0, Y 0) ∈ E, if S(e) =
S(e0), then µϕ(e) = µϕ(e0).

Pareto Efficiency (PE): For all e = (M,u, s, Y ) ∈ E and z ∈ ϕ(e), z is a
Pareto efficient allocation for e.

Weak Pareto Efficiency (WPE): For all e = (M,u, s, Y ) ∈ E and all
z ∈ ϕ(e), z is a weak Pareto efficient allocation for e.

Weak Equal Treatment of Equals (WETE): For all e = (M,u, s, Y ) ∈
E, if ui = uj and si = sj for all i, j ∈ N , then for all z ∈ ϕ(e), ui(zi) =
uj(zj) for all i, j ∈ N .
Note that all allocation rules in ΦF satisfy Axiom DE and W. Moreover,
since most meaningful bargaining solutions recommend (weakly) Pareto ef-
ficient utility allocations, we should take notice of allocation rules in ΦF
satisfyingWPE (or PE). If we are interested in bargaining solutions having
the symmetric property in the sense that recommending equal utilities for
symmetric utility possibility sets, then we should pay attention to allocation
rules in ΦF satisfying at leastWETE.

3.1 Axioms on Technological Changes

In this section, we introduce five axioms, each of which stipulates the perfor-
mance of allocation rules, faced with a particular kind of change in production
technology.

Technological Monotonicity (TMON)6: For all e = (M,u, s, Y ), e0 =
(M,u, s, Y 0) ∈ E such that Y 0 ⊇ Y , and all z ∈ ϕ(e) and all z0 ∈ ϕ(e0),
ui(zi) ≤ ui(z0i) for all i ∈ N .
Given Y ∈ YM and f ∈M , let
Pf(Y ) ≡

©
(x, yf) ∈ R+ × R+ | ∃y−f ∈ Rm−1+ : (x, yf , y−f ) ∈ Y

ª
.

6This axiom was first introduced by Roemer [19].
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Individual Technological Monotonicity (ITMON): Let e = (M,u, s, Y ), e0 =
(M,u, s, Y 0) ∈ E be such that Y 0 ⊇ Y , where there exists a unique commod-
ity f ∈ M such that Pf(Y ) ⊆ Pf(Y

0) and, for any other f 0 ∈ M\{f},
Pf 0(Y ) = Pf 0(Y

0). Moreover, the commodity f is liked only by the agent
j ∈ N . Then, for all z ∈ ϕ(e) and all z0 ∈ ϕ(e0), uj(zj) ≤ uj(z0j).
Given e = (M,u, s, Y ) ∈ E and i ∈ N , let

mi(Z(e)) ≡
(
z0i ∈ [0, x]× Rm+ | z0i = argmax

z∈Z(e), zi is i-th component of z
ui(zi)

)
.

Weak Technological Monotonicity (WTMON): Let e = (M,u, s, Y ), e0 =
(M,u, s, Y 0) ∈ E be such that Y 0 ⊇ Y , and mi(Z(e))∩mi(Z(e0)) 6= ∅ for all
i ∈ N . Then, for all z ∈ ϕ(e) and all z0 ∈ ϕ(e0), we have ui(zi) ≤ ui(z0i) for
all i ∈ N .
Independence of Technological Contraction (ITC)7: For all e = (M,u, s, Y ), e0 =
(M,u, s, Y 0) ∈ E such that Y 0 ⊆ Y , and all z ∈ ϕ(e), if z ∈ Z(e0), then
z ∈ ϕ(e0).

Each of these four axioms on allocation rules has its bargaining theory
counterpart which is imposed upon utility possibility sets: Monotonicity
(Kalai [12]) for TMON; Individual Monotonicity (Kalai and Smorodin-
sky [13]) for ITMON andWTMON; and Nash IIA (Nash [16]) for ITC.
It is easy to see that the four axioms are each much weaker than their bar-
gaining theory counterparts.
The next axiom we introduce imposes coherence of allocation rules as we

vary the domain of production possibility sets. Given (x, y) ∈ [0, x] × Rm+
and ui ∈ UM , let there be K ( M such that for all y0K ≡ (y0f )f∈K ∈ Rk+,
ui(x, y

0
K, yM\K) = ui(x, yK, yM\K), where yK ≡ (yf )f∈K. Then, we say that

agent i ∈ N is indifferent to each good of K (M at (x, y). Given Y ∈ YM
and K (M , let

PM\K(Y ) ≡
©
(x, yM\K) ∈ R+ × Rm−k+ | ∃yK ∈ Rk+ : (x, yK, yM\K) ∈ Y

ª
.

Consistency w.r.t. Technological Innovation (CTI): Let e = (M,u, s, Y ) ∈
EM , and let bz = (bxi, byMi)i∈N ∈ ϕ(e) be weakly Pareto efficient.8 Let e0 =

7This axiom was first introduced by Moulin [14] with the name of IIA.
8When we discuss dimensional changes in consumption spaces, we often denote indi-

vidual i0s consumption vector of M -goods by yMi ∈ Rm+ .
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(M ∪ L,u0, s, Y 0) ∈ EM∪L, where M ∩ L = ∅, be such that (1) PM(Y 0) = Y ,
(2) for any z = (xi, yMi)i∈N ∈ WPE(e), there exists (yLi(z))i∈N ∈ Rnl+ such
that

u0i(xi, yMi, yLi(z)) = ui(xi, yMi) (∀i ∈ N)and (xi, yMi, yLi(z))i∈N ∈ WPE(e0),

and (3) every agent i ∈ N is indifferent to each good of L at (bxi, byMi,0).
Then, (bxi, byMi,0)i∈N ∈ ϕ(e0).

A motivation for CTI is presented as follows: let, in an economy e with
M -producible commodities, bz = (bxi, byMi)i∈N be a recommendation by the
allocation rule ϕ, and be a (weakly) Pareto efficient allocation. Next, let the
economy change from e ∈ EM to e0 ∈ EM∪L, where the economy e0 inherits
from e the characteristics of agents’ preferences and production technology
on M -commodities in the intimate way that CTI postulates. The main dif-
ference between e and e0 comes from the technological change from Y to
Y 0 which makes it possible to consume the new commodities L, although
it is a useless innovation in the sense that nobody’s opportunity for wel-
fare is enlarged. Then, it may be reasonable that, in the new economy,
every agent is guaranteed at least his welfare which is enjoyed by consum-
ing M-commodities in the original economy. It follows from this view that
(bxi, byMi,0)i∈N is a recommendation of ϕ in e0. In fact, by this new recommen-
dation, nobody loses anything from the environmental change, since, in the
new economy, nobody wants to consume L-commodities, and (bxi, byMi,0)i∈N
is (weakly) Pareto efficient.

[Insert Figure 1]

Remark 1: The axiomW implies CTI under Axiom DE (resp. DE∗), but
CTI together with Axiom DE (resp. DE∗) does not implyW, as shown in
Examples 1, 2, and 3 later.

Since all allocation rules in ΦF satisfy W and Axiom DE , the rules in
ΦF also satisfy CTI by Remark 1.

3.2 Axioms on Responsibility and Compensation

In this section, we introduce axioms which are related to the arguments of
responsibility and compensation.

10



3.2.1 Axiom on Responsibility

The first axiom seems to be relevant to responsibility for individual’s utility
function. To define it, let us begin with introducing a few notions: Given
M ∈ M, note that for any utility function u ∈ UM , there is a utility-unit
bu ∈ R+, by which the level of utility assigned by the function u is measured:
that is, if u(z) = bu for some z, it implies that the level of utility u(z)
is just “one.”9 Then, for each utility-unit bu, there is a corresponding set
B(u) ( [0, x] × Rm+ of base-consumption for u such that for all z ∈ B(u),
u(z) = bu.
Now, let us take any two utility functions u, u0 ∈ UM for which there is a

positive scalar λ > 0 such that u0 = λ · u. If λ = bu
0

bu
, then u0 is just obtained

by a change in utility-units from bu to bu
0
, so that u and u0 are essentially

the same utility representation. In this case, note that B(u) = B(u0). In
contrast, if bu = bu

0
, then the change from u to u0 can be explained not by

the change in utility-units, but rather by a change in utility intensity. Note
that if the change from u to u0 comes from the change in utility intensity,
then we have B(u) 6= B(u0) and B(u) ∩B(u0) = ∅.10
One typical example of the above change in utility intensity is the case of

individual development of “expensive taste,” which was discussed by Dworkin
[6]. Consider a case in which an individual develops his expensive taste, so
that even if his underlying preference ordering and his risk attitude are in-
variant, he can no longer enjoy the same level of welfare as he did before
developing his expensive taste, without receiving a larger consumption vec-
tor than before.11 This case is simply formulated as a process of a linear
transformation of a utility function via a change in utility intensity.
Let us now introduce the first axiom. Given M ∈M and u ∈ UMn, let

bu ≡ (bui)i∈N . Then, the first axiom is defined as follows:

9The author owes the introduction of utility-units in defining the following two axioms
to one of the referees in this journal.
10We can start from listing B(u) instead of bu as primitive data. Then, by comparing

B(u) with B(u0), we can see which type of change occurs when u and u0 are correlated by
a linear transformation: if B(u) = B(u0), it is a change in utility-units, while otherwise,
it involves a change in utility intensity.
11In this explanation, it is not necessary to assume interpersonal comparability of utili-

ties. The notion of change in utility intensity only presumes intrapersonal comparison of
utilities, which seems to be a natural requirement whenever utility functions are cardinally
measurable.
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Independence of Utility Intensities (IUI): For all e = (M,u, s, Y ), e0 =
(M,u0, s, Y ) ∈ E with bu = bu0, if there exists a vector a = (ai)i∈N ∈ Rn++
such that u0i = ai · ui for all i ∈ N , then ϕ(e) = ϕ(e0).

Our motivation for this axiom as one of responsibility is presented as
follows: In production economies with differences in production skills, but
without differences in consumption abilities among agents, it seems to be
that the change in utility intensity of any agent is not a subject for social
compensation, but a matter of personal responsiblity. So, the allocation rule
should not take into account such an environmental change in determining
resource allocations.12

Note that there is a similar axiom, Cardinal Non-comparability, which was
first introduced by Roemer [20] as expressing exactly what Nash intended
with his axiom of Scale Invariance (Nash [16]). The motivation of Cardinal
Non-comparability can be formulated in our model as follows:

Utility-units Invariance (UUI): For all e = (M,u, s, Y ), e0 = (M,u0, s, Y ) ∈
E with bu 6= bu0 , if u0i = bu

0
i

bui
· ui for all i ∈ N , then ϕ(e) = ϕ(e0).

Although both IUI and UUI are respectively implied by Nash’s Scale In-
variance axiom, their motivations are completely different from each other.

3.2.2 Axioms on Compensation

In contrast with the above axiom, the following axioms are interpreted as
ones of compensation, where the motivation behind them should be clear:

Skill Solidarity (SS)13: For all e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈ E,
and all z ∈ ϕ(e) and all z0 ∈ ϕ(e0), either ui(zi) ≤ ui(z0i) for all i ∈ N , or
ui(zi) ≥ ui(z0i) for all i ∈ N .
Skill Monotonicity (SM)14: For all e = (M,u, s, Y ), e0 = (M,u, s0, Y ) ∈ E
such that s ≤ s0, and all z ∈ ϕ(e) and z0 ∈ ϕ(e0), ui(zi) ≤ ui(z

0
i) for all

i ∈ N .
12As discussed above, we may connect the situation that someone’s utility intensity de-

creases with the development of an “expensive taste.” Then, IUI requires that this person
should not be compensated by the allocation rule for his decrease of utility-productivity
because of his developed expensive taste.
13This axiom was originated by Fleurbaey and Maniquet [9].
14This axiom was also originated by Fleurbaey and Maniquet [9].
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Independence of Skill Endowments (ISE): Let e = (M,u, s, Y ), e0 =
(M,u, s0, Y ) ∈ E be such that Z(e) = Z(e0). Then, ϕ(e) = ϕ(e0).

Remark 2: Note thatW implies ISE under Axiom DE (resp. DE∗), but
not the converse.

4 Characterization Results
By using the axioms introduced in the previous sections, we will provide
characterizations of allocation rules in ΦF . First, we will provide a basic
lemma which is useful to show axiomatic characterizations of any allocation
rule in ΦF .

Lemma 2: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM∗ (resp.
EM), e2 = (L,u2, s, Y (l)) ∈ EL∗ (resp. EL), and S(e1) = S(e2). Then, the
allocation rule ϕ which satisfies DE∗ (resp. DE), PE (resp. WPE), and
CTI has the following property: µϕ(e1) = µϕ(e2).

Remark 3: The above result of Lemma 2 depends on imposition of PE
(resp. WPE). The following example shows that only DE∗ and CTI without
PE cannot lead to the result of Lemma 2:

Example 1: Let #N = 2. Let e41 = (K,v1, s, Y (#K)) ∈ EK∗ and e42 =
(K 0,v2, s, Y (#K

0)) ∈ EK0∗ such that K ∩K 0 = ∅, #K = #K 0 = 1, Y (#K) ≡
R+ × [0, 1], Y (#K0) ≡ R+ × [0, 1], and for all i ∈ N , the utility functions
v1i : [0, x]×R#K+ → R and v2i : [0, x]× R#K

0
+ → R are defined as follows:

∀(x, yK) ∈ [0, x]× R#K+ , v1i (x, yK) =
½
yK if yK ∈ [0, 1]
1 otherwise

,

∀(x, yK0) ∈ [0, x]× R#K0
+ , v2i (x, yK0) =

½
yK0 if yK0 ∈ [0, 1]
1 otherwise

.

Then, S(e41 ) = S(e
4
2 ).

Construct e∗ ≡ e41 ∧ e42 = (K ∪K 0,v∗, s, Y (#K) ⊕ Y (#K0)) where for all
i ∈ N , v∗i (x, yK , yK0) = min{v1i (x, yK), v2i (x, yK0)}, and Y (#K) ⊕ Y (#K0) ≡
R+ × ([0, 1]× [0, 1]). We can see that S(e∗) = S(e41 ).

13



Let ϕNW1 be an allocation rule satisfyingDE∗ andCTI, but not PE, such
that:

for e41 , ϕ
NW1(e41 ) ≡

½µµ
x1,
1

2

¶
,

µ
x2,
1

2

¶¶
∈ Z(e41 ) |xi ∈ [0, x] (∀i ∈ N)

¾
,

for e42 , ϕ
NW1(e42 ) ≡

½µµ
x1,
1

2

¶
,

µ
x2,
1

2

¶¶
∈ Z(e42 ) |xi ∈ [0, x] (∀i ∈ N)

¾
,

for e∗, ϕNW1(e∗) ≡
½³³

x1, y
K
1 , y

K0
1

´
,
³
x2, y

K
2 , y

K0
2

´´
∈ Z(e∗)

¯̄̄̄
min{yKi , yK

0
i } =

1

4

& xi ∈ [0, x] (∀i ∈ N)}.
Then, z =

¡¡
0, 1

2
, 1
4

¢
,
¡
0, 1

2
, 1
4

¢¢ ∈ ϕNW1(e∗) and z0 =
¡¡
0, 1

2

¢
,
¡
0, 1

2

¢¢ ∈
ϕNW1(e41 ). Thus, µϕNW1 (e

∗) =
¡
1
4
, 1
4

¢
and µϕNW1 (e

4
1 ) =

¡
1
2
, 1
2

¢
, so that

µϕNW1 (e
∗)¿ µϕNW1 (e

4
1 ). This implies ϕ

NW1 does not satisfyW.
It remains to show that ϕNW1 is surely consistent with CTI. First, ϕNW1

is consistent with CTI between e41 and e
∗, since both agents are not indiffer-

ent to K 0-good at
¡
xi,

1
2
, 0
¢
. The same result holds between e42 and e

∗. Next,
let be1 ≡ (K ∪K 0, bv1, s, Y (#K)⊕ Y (#K0)) where for all i ∈ N , bv1i (x, yK, yK0) =
v1i (x, yK). Then, by CTI and D

E∗, bz0 = ¡¡
0, 1

2
, 1
2

¢
,
¡
0, 1

2
, 1
2

¢¢ ∈ ϕNW1(be1).
Since bv1i ≥ v∗i , we can construct a new economy ebe41 ≡ (K∪K 0∪R, bw, s, Y (#K)⊕
Y (#K

0) ⊕ Y (#R)) with R ≡ {R(1), R(2)} by applying Howe’s theorem (Howe
[11, Proposition 3]),15 where there exist bwi ∈ UK∪K0∪R and byR(1), byR(2) ∈ R+
such that for each i ∈ N , for all (x, yK, yK0 , yR(j)) ∈ [0, x]×R#K+ ×R#K0

+ ×R+,bwi(x, yK, yK0, byR(i), yR(j)) = bv1i (x, yK, yK0)bwi(x, yK , yK0, 0, yR(j)) = v∗i (x, yK, yK0),

and Y (#K) ⊕ Y (#K0) ⊕ Y (#R) ≡ R+ ×
¡
[0, 1]× [0, 1]× [0, byR(1)]× [0, byR(2)]¢.

Note that since S(ebe41 ) = S(be1) = S(e41 ), we see that ebe41 ∈ E∗. Since every
agent i is indifferent to R-goods at ebz0 = ¡¡0, 1

2
, 1
2
,0
¢
,
¡
0, 1

2
, 1
2
,0
¢¢
under ebe41 ,ebz0 ∈ ϕNW1(ebe41 ) by CTI. Thus, z00 = ¡¡

0, 1
2
, 1
4
, byR(1), 0¢ , ¡0, 12 , 14 , 0, byR(2)¢¢ ∈

ϕNW1(ebe41 ) by fullness of ϕNW1 . The relationship between z and z00 is vacu-
ously consistent with CTI, since every agent i is not indifferent to R-goods
at
¡¡
0, 1

2
, 1
4
,0
¢
,
¡
0, 1

2
, 1
4
,0
¢¢
under ebe41 .

15The Howe theorem used here is exactly the same version as that used in Roemer [18,
20].

14



Remark 4: Example 1 shows that DE∗ and CTI do not implyW unlike
the result of Roemer [20], in which DE∗ and CONRAD imply W in pure
exchange economies. Moreover, we can see that even DE∗ , CTI, and PE
(resp. WPE) together do not implyW. It is because CTI requires nothing
whenever e and e0 are different in production skills. In fact, Examples 2
and 3 discussed in section 4.4 give us allocation rules satisfying DE∗, PE,
and CTI, but notW.

4.1 Incompatibility between Responsibility and Strong
Compensation Axioms of Bargaining Solutions

Our first theorem is of impossibility of bargaining solutions which satisfy
both the responsibility and compensation requirements as follows:

Theorem 1: There is no allocation rule in ΦF which satisfies PE,WETE,
IUI, and SS.1617

In the above theorem, the axiom WETE is indispensable to keep the
implication of the result as incompatibility between responsibility and com-
pensation. Since if WETE is deleted, SS may have an implication opposite
to compensation, as shown in the following possibility result on undesirable
bargaining solutions:

Corollary 1: There is a unique class of allocation rules in ΦF which satisfy
PE, IUI, and SS. That is the class of dictatorial rules {ϕDi}i∈N , each of
which attains one of the dictatorial solutions (Roemer [20]).

These results encourage us to give up either IUI or SS to get “second
best” symmetric bargaining solutions rather than to stick to them leading to
the dictatorial rule.
16This impossibility result is relevant only to ΦF . Once we look at rules beyond ΦF , we

can see that the egalitarian-equivalent rule (Pazner and Schmeidler [17]) satisfies the above
four axioms. I thank F. Maniquet for pointing out this fact. Note that the egalitarian-
equivalent rule does not satisfy CTI, so it cannot attain any bargaining solution.
17We can strengthen this theorem as follows:

Theorem 1∗: There is no allocation rule in ΦF which satisfies PE,WETE, IUI, and
SM.
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4.2 Characterizations of the Egalitarian Solution

In this section, we will provide characterizations of the egalitarian solution
(Kalai [12]) in production economies.

Definition 1: A bargaining solution E ∈ F is the egalitarian if for any
S ∈ Σ, E(S) is a (weak) Pareto efficient outcome on S, and for any i, j ∈ N ,
Ei(S) = Ej(S).

Definition 2: An allocation rule ϕE is the egalitarian rule if it attains the
egalitarian solution: for all e ∈ E, µϕE(e) = E(S(e)).

The following three theorems are on characterizations of ϕE in E∗:

Theorem 2: The allocation rule ϕ satisfies DE∗,PE,WETE, ISE,TMON,
and CTI if and only if ϕ = ϕE.

Theorem 3: The allocation rule ϕ satisfies DE∗, PE, WETE, SS, and
CTI if and only if ϕ = ϕE.18

Theorem 4: The allocation rule ϕ satisfies DE∗,PE,WETE, SM,TMON,
and CTI if and only if ϕ = ϕE.

As shown in Theorem 3, the egalitarian rule ϕE is obtained by keep-
ing SS as well as by deleting IUI. In this sense, the egalitarian rule is in-
clined much more to compensation requirements than to responsibility ones.
Roemer [18] discussed that in pure exchange economies with difference in
consumption abilities, the egalitarian rule is equivalent to Dworkin’s [7] pro-
posal for equality of resources. However, once we mention that Dworkin’s
motivation for equality of resources was the viewpoint of responsibility and
compensation, we may not accept the Roemer view at least in the context of
production economies with skill differences, since the egalitarian rule has no
property relevant to responsibility as shown in Theorems 2, 3, and 4.

18We can strengthen this theorem as follows:

Theorem 3∗: The allocation rule ϕ satisfies DE
∗
, PE,WETE, SM, ISE, and CTI if

and only if ϕ = ϕE.
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4.3 Characterizations of the Nash and the Kalai-Smorodinsky
Solutions

In contrast to the previous subsection, here we will keep IUI, and replace SS
with a weaker compensation axiom, ISE. In such a way, we will character-
ize the Nash solution (Nash [16]) as well as the Kalai-Smorodinsky solution
(Kalai and Smorodinsky [13]).

Definition 3: A bargaining solution Na ∈ F is the Nash solution if for any
S ∈ Σ, Na(S) is equal to the maximizer in u ∈ S of the “Nash product”Q
i∈N

ui.

Definition 4: An allocation rule ϕNa is the Nash rule if it attains the Nash
solution: for all e ∈ E, µϕNa(e) = Na(S(e)).

The following theorem provides a characterization of ϕNa in E:

Theorem 5: The allocation rule ϕ satisfies DE , PE,WETE, ISE, ITC,
IUI, and CTI if and only if ϕ = ϕNa.

This theorem constitutes a strengthening of the characterization of the
Nash solution in Roemer [20], since Roemer’s result depends on SCONRAD
(Roemer [20]), which is equivalent to Nash IIA under DE , while which
implies ITC, ISE, and CTI under DE .19

Given S ∈ Σ and i ∈ N , let us definemi(S) ≡ max {ui ∈ R+ | u = (uh)h∈N ∈ S}.

Definition 5: A bargaining solution K ∈ F is the Kalai-Smorodinsky so-
lution if for any S ∈ Σ, K(S) is a (weak) Pareto efficient outcome on
S, and there exists a unique value λ ∈ (0, 1] such that K(S) = λ ·m(S),
m(S) ≡ (mi(S))i∈N .

Definition 6: An allocation rule ϕK is the Kalai-Smorodinsky rule if it
attains the Kalai-Smorodinsky solution: for all e ∈ E, µϕK(e) = K(S(e)).
19Binmore [2] showed that in two-person exchange economies, the only solution satisfy-

ing all the Nash-like economic axioms he defined is the Walrasian solution. Since his result
depends on a stronger domain restriction and a stronger economic version of Nash IIA
than ITC, we cannot obtain the same relationship between the Nash and the Walrasian
solutions in our economic domain.
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The following two theorems provide characterizations of ϕK in E and E∗:

Theorem 6: Let #N = 2. Then, the allocation rule ϕ satisfies DE , PE,
WETE, ISE, ITMON, IUI, and CTI if and only if ϕ = ϕK.

Theorem 7: Let #N ≥ 2. Then, the allocation rule ϕ satisfies DE∗ , PE,
WETE, ISE,WTMON, IUI, and CTI if and only if ϕ = ϕK.

Remark 5: It should be noted that, in contrast to other rules, there is a
difference in characterizations of ϕK between two or more persons allocation
problems. Since ϕK satisfies ITMON even when #N > 2, we can obtain a
full characterization of ϕK by the axioms in Theorem 7 plus ITMON, but
cannot only by the axioms in Theorem 6 without the help of WTMON
when #N > 2. The Figure 2 describes the necessity of WTMON for
characterizing ϕK in three-person problems:

[Insert Figure 2]

In the Figure 2, there are three economies whose corresponding utility pos-
sibility sets are S(e1), S(e2), and S(e3) respectively. Suppose that the econ-
omy changes from e1 to e2, moreover, to e3 as the result of technological
changes. Note that the performance of ϕK in the change from e1 to e3
results in µϕK2(e1) ≤ µϕK2(e3), which both ITMON and WTMON are
necessary to explain: First, the performance of ϕK in the change from e1
to e2 which results in µϕK2(e1) ≤ µϕK2(e2), should be explained by IT-
MON. Second, the performance of ϕK in the change from e2 to e3 which
results in µϕK2(e2) ≤ µϕK2(e3), should be explained not by ITMON, but
byWTMON. Such a change from e1 to e3 cannot occur in the two-person
problems.

By Theorems 5, 6, and 7, we can see that both the Nash and the Kalai-
Smorodinsky rules share the same characteristics regarding responsibility and
compensation. A unique element by which both rules are mutually discrim-
inated is the attitude of the rules toward the change in production technol-
ogy: the Nash rule behaves unconcerned about the contraction of production
technology, while the Kalai-Smorodinsky rule behaves sensitive to the weak
technological progress in the sense that ITMON andWTMON presume.
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4.4 Independence of Axioms

We can check the independence of axioms for each theorem (Theorem 2, 3,
4, 5, 6, and 7). First, the independence of DE∗ , PE, and CTI respectively is
clear in these theorems. Next, deletingWETE in these theorems, we have
ϕDi, while the independence of ISE in Theorem 2, of SS in Theorem 3,
and of SM in Theorem 4 is shown by the following example:

Example 2: Let {Snsy,Snas} be a partition of Sn such that Snsy has all sym-
metric profiles and Snas is its complement, and let E∗(Sni ) be the subset of E∗
such that for each e ∈ E∗(Sni ), its profile of production skills belongs to Sni
where i ∈ {sy, as}. Then, define an allocation rule ϕNW2 as follows:

ϕNW2(e) ≡
½

ϕE(e) if e ∈ E∗(Snsy)
ϕDi(e) if e ∈ E∗(Snas).

Note that ϕNW2 satisfies DE∗, PE, WETE, TMON, and CTI, but does
not satisfy ISE, SS, or SM.

The independence of TMON in Theorem 4 is shown by the following:

Example 3: Let M ∈ M with #M = 1, and let Y (m) ≡ R+ × [0, 1]
and s0 ≡ 0 ∈ Rn+. Then, let E∗(Y (m); s0) be the class of economies whose
production possibility sets and profiles of skills are respectively equal to Y (m)

and s0. Given e ∈ E∗(Y (m); s0) and ϕNa, let us say that e0 ≡ (M 0,u0, s0, Y 0) is
a CTI-extension economy of e w.r.t. ϕNa if PM(Y 0) = Y (m), and e0 satisfies
premises (2) and (3) of CTI when the rule is ϕNa. Let

E∗CTI(ϕNa)(Y (m); s0) ≡ {e0 ∈ E∗ | ∃e ∈ E∗(Y (m); s0) :
e0 is a CTI-extension economy of e w.r.t. ϕNa}.

Moreover, for each e ∈ E∗CTI(ϕNa)(Y (m); s0) and s ∈ Sn, we can define an
economy e0 which is obtained from e by replacing s0 with s. Denote the set
of such economies by E∗CTI(ϕNa)(Y (m);Sn(s0)). Then, define an allocation rule
ϕNW3 as follows: For all e ∈ E∗,

ϕNW3(e) ≡
(

ϕNa(e) if e ∈ E∗CTI(ϕNa)(Y (m);Sn(s0))
ϕE(e) if e ∈ E∗\E∗CTI(ϕNa)(Y (m);Sn(s0)).
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Note that ϕNW3 satisfies DE∗, PE, WETE, SM, and CTI, but does not
satisfy TMOM.

Next, without IUI in Theorems 5 and 6, ϕE is admissible. Deleting
ISE in Theorem 5 (resp. 6), the following rule is admissible: ϕNW4 (resp.
ϕNW5) where ϕNW4(e) ≡ ϕNa(e) (resp. ϕNW5(e) ≡ ϕK(e)) if e ∈ E∗(Snsy), and
ϕNW4(e) ≡ ϕNW2(e) (resp. ϕNW5(e) ≡ ϕNW2(e)) otherwise. Without ITC in
Theorem 5, ϕK is admissible, while without ITMON in Theorem 6, ϕNa

is admissible. Also, withoutWTMON in Theorem 7, ϕNa is admissible.

5 Concluding Remarks
In our characterizations, the assumption of the rather large class of economic
environments, where the domain of producible commodities is variable, is
crucial. In this point, our analysis entails the same property as that of Roe-
mer [18, 20]. In contrast, Gine and Marhuenda [10], as well as Chen and
Maskin [3], considered the economic models with finite dimensional commod-
ity spaces.20 Under these domain restrictions, they respectively characterized
the egalitarian solution by means of Pareto efficiency, weak symmetry, and
payoff monotonicity. Weak symmetry is essentially the same as theWETE
axiom of this paper, while payoffmonotonicity can be summarized as follows:
if everyone’s utility-productivity is improved, then everyone’s utility in the
bargaining outcome should be improved.
It is also interesting to consider whether or not the egalitarian solution

can be characterized by these three axioms even in the context of cooperative
production economies with a fixed production technology and no skill differ-
ence, when the domain of producible commodities is fixed to that of a finite
dimension. Unfortunately, in opposition to the works of Chen and Maskin
[3] and Gine and Marhuenda [10], that consideration is impossible in this
context, as Gine and Marhuenda [10] discussed.
Thus, we may conclude that, in our context of production economies, our

assumption of the larger class of economies is not superfluous in deriving a
unique bargaining solution. Moreover, I think that such an assumption of
the domain is not so inappropriate in bargaining problems under production

20In contrast to Chen andMaskin [3]’s specific production economies we discussed before,
Gine and Marhuenda [10] focussed on public goods economies with quasi-linear utility
functions.
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economies. This is because the occurrence of technological innovation which
the axiom CTI presumes is natural in production economies, and it is im-
portant in this context to take into account the problem of how to dispose
of the conflict among individuals which such an innovation may entail.

6 Appendix: Proofs of Theorems
Given Y (m) ∈ YM and Y (l) ∈ YL with M ∩ L = ∅, let
Y (m)⊕Y (l) ≡ {(x, yM , yL) ∈ R+×Rm+ ×Rl+ | (x, yM) ∈ Y (m), (x, yL) ∈ Y (l)}.
Proof of Lemma 2:
1. Given e1 = (M,u1, s, Y (m)) ∈ EM∗ and e2 = (L,u2, s, Y (l)) ∈ EL∗ such
that S(e1) = S(e2), we can find, by Billera and Bixby [1], some pure exchange
economy, whose corresponding utility possibility set is equal to S(e1), which
consists of initial endowments of one unit k = n(n − 1) commodities, that
is 1 = (1, · · · , 1) ∈ [0, 1]k, and a profile of utility function v = (vi)i∈N ,
where for each i ∈ N , vi : [0, 1]k → R+ is continuous, concave, monotonic,
and vi(0) = 0. Based upon this pure exchange economy, we construct a
production economy e4 = (K,v4, s, Y (k)) ∈ EK∗ with#K = k andK∩M =
K∩L = ∅, which is defined as follows: For each i ∈ N , let v4i : [0, x]×Rk+ →
R+ be that:

∀(x, yK) ∈ [0, x]× Rk+, v4i (x, yK) =
½
vi(yK) if yK ∈ [0, 1]k
vi((min{yf , 1})f∈K) otherwise .

The production possibility set Y (k) is defined as Y (k) ≡ R+ × [0, 1]k with
generic element (x, yK) ∈ Y (k). Clearly, v4i ∈ UK for each i ∈ N , and
S(e4) = S(e1) = S(e2).
2. In the following, we will show that, if ϕ satisfies DE∗, PE, and CTI, then
µϕ(e

4) = µϕ(e1). If this claim is shown, then we can show, in the same way,
that µϕ(e4) = µϕ(e2), so that µϕ(e1) = µϕ(e2).
2.1. Let e1 ∧ e4 ≡ (M ∪K,u∗, s, Y (m) ⊕ Y (k)) where
∀(x, yM , yK) ∈ [0, x]× Rm+ × Rk+, u∗i (x, yM , yK) = min{u1i (x, yM), v4i (x, yK)}.
Then, we will first show that S(e1 ∧ e4) = S(e1) = S(e4).
(1) S(e1 ∧ e4) ⊆ S(e1) = S(e4). Let u = (ui)i∈N ∈ S(e1 ∧ e4). Then, there
exists (xi, yMi, yKi)i∈N ∈ Z(e1∧e4) such that for all i ∈ N , u∗i (xi, yMi, yKi) =
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ui. By definition, (xi, yMi)i∈N ∈ Z(e1) and (xi, yKi)i∈N ∈ Z(e4). Thus,
(u1i (xi, yMi))i∈N ∈ S(e1) and (v4i (xi, yKi))i∈N ∈ S(e4). By definition, u∗i (xi, yMi, yKi) =
min{u1i (xi, yMi), v4i (xi, yKi)}. Thus, by comprehensiveness of S(e1) and S(e4),
u ∈ S(e1) ∩ S(e4).
(2) S(e1 ∧ e4) ⊇ S(e1) = S(e4). Let u = (ui)i∈N ∈ S(e1) ∩ S(e4).
Then, there exist (xi, yMi)i∈N ∈ Z(e1) and (xi, yKi)i∈N ∈ Z(e4) such that
(u1i (xi, yMi))i∈N = u = (v4i (xi, yKi))i∈N . Then, (xi, yMi, yKi)i∈N ∈ Z(e1 ∧
e4). Since u∗i (xi, yMi, yKi) = min{u1i (xi, yMi), v4i (xi, yKi)} = ui, we obtain
u ∈ S(e1 ∧ e4).
2.2. Now, we will show that µϕ(e1 ∧ e4) = µϕ(e1). In the same way, we
may show that µϕ(e1 ∧ e4) = µϕ(e4), so that µϕ(e4) = µϕ(e1).
Construct a new economy

be1 ≡ (M ∪K, bu1, s, Y (m) ⊕ Y (k))
where, for all i ∈ N ,

∀(x, yM , yK) ∈ R+ ×Rm+ × Rk+, bu1i (x, yM , yK) = u1i (x, yM).
Then, by construction, S(be1) = S(e1) = S(e1 ∧ e4).
Note that for any (x, yM , yK) ∈ [0, x]× Rm+ ×Rk+,

u∗i (x, yM , yK) = min{u1i (x, yM), v4i (x, yK)} ≤ bu1i (x, yM , yK).
So, Z(e1∧e4) = Z(be1) and S(be1) = S(e1∧e4) implies that WP (e1∧e4) ⊆
WP (be1), where WP (e) is the set of (weakly) Pareto efficient allocations
for e, and for all (x, yM , yK) ∈ WP (e1 ∧ e4) ⊆ WP (be1), u∗i (x, yM , yK) =bu1i (x, yM , yK).
Moreover, by applying Howe’s theorem (Howe [11, Proposition 3]),21 for

each i ∈ N , there exist wi ∈ UM∪K∪{R(i)} and byR(i) ∈ R+such that:
∀(x, yM , yK) ∈ [0, x]× Rm+ × Rk+,

wi(x, yM , yK, byR(i)) = bu1i (x, yM , yK)
& wi(x, yM , yK, 0) = u∗i (x, yM , yK).

21In the following discussion, when we talk about Howe’s theorem, it always refers
to Howe [11, Proposition 3]. Since we impose the condition (2.1) on admissible utility
functions, we can always apply the Howe theorem to any ui and u0i, whenever they are
defined on the same dimensional consumption space with ui ≥ u0i.
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Now construct the flat extension of wi for each i ∈ N :

∀(x, yM , yK , yR) ∈ [0, x]× Rm+ ×Rk+ × Rn+,bwi(x, yM , yK , yR) = wi(x, yM , yK, yR(i)),

where yR ≡ (yR(j))j∈N .

Thus, for each i ∈ N , bwi ∈ UM∪K∪R, where R ≡ {R(j)}j∈N .
Let Y (r) ≡ R+ ×

µ
×
j∈N

[0, byR(j)]¶. Then, Y (m) ⊕ Y (k) ⊕ Y (r) ∈ YM∪K∪R.
Thus,

ebe1 ≡ (M ∪K ∪ R, bw, s, Y (m) ⊕ Y (k) ⊕ Y (r)) ∈ EM∪K∪R∗.
Note that S(ebe1) = S(be1) = S(e1 ∧ e4). So, by construction of ebe1,
[∀(yRi)i∈N ∈ Rnn+ , (bwi(xi, yMi, yKi, yRi))i∈N = ( bwi(xi, yMi, yKi,0))i∈N ∈ ∂S(ebe1)]

⇔ (bu1i (xi, yMi, yKi))i∈N = (u∗i (xi, yMi, yKi))i∈N ∈ ∂S(be1) = ∂S(e1 ∧ e4).

Suppose that µϕ(e1∧e4) 6= µϕ(e1) and (bxi, byMi, byKi)i∈N ∈ ϕ(e1∧e4). ByPE
(resp. WPE) of ϕ, we have (u∗i (bxi, byMi, byKi))i∈N = (bu1i (bxi, byMi, byKi))i∈N ∈
∂S(e1 ∧ e4) = ∂S(be1). Thus, under ebe1, every agent is indifferent to each
good of R at (bxi, byMi, byKi,0)i∈N . By CTI, (bxi, byMi, byKi,0)i∈N ∈ ϕ(ebe1).
Let (bx0i, by0Mi)i∈N ∈ ϕ(e1). By PE (resp. WPE) of ϕ, (u1i (bx0i, by0Mi))i∈N ∈

∂S(e1). Then, by CTI, (bx0i, by0Mi,0)i∈N ∈ ϕ(be1). By PE (resp. WPE)
of ϕ, (bu1i (bx0i, by0Mi,0))i∈N ∈ ∂S(be1). Since ∂S(e1 ∧ e4) = ∂S(be1), there exists
(bx00i , by00Mi, by00Ki)i∈N ∈ Z(e1∧e4) such that (u∗i (bx00i , by00Mi, by00Ki))i∈N = (bu1i (bx0i, by0Mi,0))i∈N ∈
∂S(e1∧ e4). Then, (u∗i (bx00i , by00Mi, by00Ki))i∈N = (bu1i (bx00i , by00Mi, by00Ki))i∈N . By fullness
of ϕ, (bx00i , by00Mi, by00Ki)i∈N ∈ ϕ(be1). Since every agent is indifferent to each good
of R at (bx00i , by00Mi, by00Ki,0)i∈N under ebe1, (bx00i , by00Mi, by00Ki,0)i∈N ∈ ϕ(ebe1) by CTI.
Since µϕ(e1 ∧ e4) 6= µϕ(e1), ( bwi(bx00i , by00Mi, by00Ki,0))i∈N = (u1i (bx0i, by0Mi))i∈N , and
(bwi(bxi, byMi, byKi,0))i∈N = (u∗i (bxi, byMi, byKi))i∈N , we have (bwi(bx00i , by00Mi, by00Ki,0))i∈N 6=
(bwi(bxi, byMi, byKi,0))i∈N , which is a contradiction, because ϕ is essentially a
function. Thus, µϕ(e1 ∧ e4) = µϕ(e1) holds.

Lemma 3: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM∗ (resp.
EM), e2 = (L,u2, s, Y (l)) ∈ EL∗ (resp. EL), and S(e1) ⊇ S(e2). Then, if the
allocation rule ϕ satisfies DE∗ (resp. DE), PE (resp. WPE), TMON, and
CTI, then µϕ(e1) ≥ µϕ(e2).
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Proof. Given e1 = (M,u1, s, Y (m)) ∈ EM∗ and e2 = (L,u2, s, Y (l)) ∈ EL∗
such that S(e1) ⊇ S(e2), there exist other economies e41 = (K,v1, s, Y (#K)) ∈
EK∗ and e42 = (K 0,v2, s, Y (#K

0)) ∈ EK0∗ such that K ∩ K 0 = ∅, S(e41 ) =
S(e1), and S(e

4
2 ) = S(e2), which are guaranteed in the same way as in

step 1. of the proof of Lemma 2. Note that Y (#K) ≡ R+ × [0, 1]#K with
generic element (x, yK) ∈ Y (#K) and Y (#K0) ≡ R+ × [0, 1]#K0

with generic
element (x, yK0) ∈ Y (#K0). Moreover, for each i ∈ N , the utility function
v1i : [0, x]×R#K+ → R+ is defined as:

∀(x, yK) ∈ [0, x]× R#K+ , v1i (x, yK) =
½
vi(yK) if yK ∈ [0, 1]#K
vi((min{yf , 1})f∈K) otherwise ,

and the utility function v2i : [0, x]×R#K
0

+ → R+ is defined as:

∀(x, yK0) ∈ [0, x]×R#K0
+ , v2i (x, yK0) =

½
v0i(yK0) if yK0 ∈ [0, 1]#K0

v0i((min{yf 0 , 1})f 0∈K0) otherwise
,

where the existence of utility functions vi : [0, 1]#K → R+ and v0i : [0, 1]#K
0 →

R+ are guaranteed by Billera and Bixby [1].
Let us construct a new economy e∗ ≡ e41 ∧e42 . Let be1 ≡ (K∪K 0, bv1, s, Y (#K)⊕

Y (#K
0)) where bv1 is the flat extension of v1. Note that we can show that

S(e∗) = S(e41 ) ∩ S(e42 ) in the same way as in step 2.1. of the proof of
Lemma 2, so that S(e∗) = S(e41 ) ∩ S(e42 ) = S(e42 ). Exactly as in the proof
of Lemma 2, construct the Howe’s extension economies ebe1 of be1 and ee∗ of e∗
by: ebe1 ≡ (K ∪K 0 ∪ R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r))ee∗ ≡ (K ∪K 0 ∪ R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r)∗ ),

where Y (r)∗ ≡ R+ × {0} and 0 ∈ Rn+.

By TMON, µϕ(ebe1) ≥ µϕ(ee∗). It follows that S(ebe1) = S(e41 ) = S(e1) and
S(ee∗) = S(e∗) = S(e2). Since ϕ satisfies DE∗ (resp. DE), PE (resp. WPE),
CTI, by Lemma 2, µϕ(e1) = µϕ(e

4
1 ) = µϕ(ebe1) and µϕ(e∗) = µϕ(ee∗) =

µϕ(e2). Thus, µϕ(e1) ≥ µϕ(e2).
Lemma 4: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM and
e2 = (L,u2, s, Y (l)) ∈ EL. Moreover, S(e1) ⊇ S(e2) with µϕ(e1) ∈ S(e2)
holds. Then, if the allocation rule ϕ satisfies DE , PE, ITC, and CTI, then
µϕ(e1) = µϕ(e2).
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Proof. As in the proof of Lemma 3, let us construct e41 = (K,v1, s, Y (#K)) ∈
EK and e42 = (K 0,v2, s, Y (#K

0)) ∈ EK0
such thatK∩K 0 = ∅, S(e41 ) = S(e1),

and S(e42 ) = S(e2). Let us also construct e∗ ≡ e41 ∧ e42 and be1 ≡ (K ∪
K 0, bv1, s, Y (#K) ⊕ Y (#K0)) where bv1 is the flat extension of v1. Then, as in
the proof of Lemma 3, let us construct

ebe1 ≡ (K ∪K 0 ∪R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r)) ∈ EK∪K0∪R.

Construct, also,

ee∗ ≡ (K ∪K 0 ∪ R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r)∗ )

and assume that each agent j ∈ N likes the only R(j) in R. By Lemma 2,
µϕ(ebe1) = µϕ(e1) and µϕ(ee∗) = µϕ(e2).
Since S(be1) = S(ebe1), there exists (bxi, byKi, byK0i)i∈N ∈ ϕ(be1) such that

(bv1i (bxi, byKi, byK0i))i∈N = ( bwi(bxi, byKi, byK0i, (byR)i))i∈N = µϕ(ebe1). Since µϕ(e1) =
µϕ(be1) ∈ S(e2) = S(ee∗), there exists ζ = (bxi, byKi, byK0i,0)i∈N ∈ Z(ee∗) such
that ( bwi(ζi))i∈N = µϕ(e1) = µϕ(ebe1). But, ζ is also a feasible allocation inebe1. Since ϕ is a full correspondence, ζ ∈ ϕ(ebe1). By ITC, ζ ∈ ϕ(ee∗). Thus,
(bwi(ζi))i∈N = µϕ(ee∗) = µϕ(e2). This implies µϕ(e1) = µϕ(e2).
Lemma 5: Let e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈ EM and e2 =
(L,u2, s, Y (l)) ∈ EL with bu1 = bu2. Moreover, there exists a = (ai)i∈N ∈ Rn+
such that

u = (ui)i∈N ∈ S(e1)⇔ a · u = (ai · ui)i∈N ∈ S(e2).

Then, if the allocation rule ϕ satisfies DE , PE, IUI, and CTI, then µϕ(e2) =
a · µϕ(e1).

Proof. Construct e∗ = (M,u∗, s, Y (m)) ∈ EM as u∗i = ai · u1i for all i ∈ N .
Then, S(e∗) = S(e2). By Lemma 2, µϕ(e∗) = µϕ(e2). Since ϕ satisfies IUI,
we obtain ϕ(e1) = ϕ(e∗). Since µϕ(e∗) = a · µϕ(e1), we obtain the desired
result.

Lemma 6: Let e = (M,u, s, Y (m)) ∈ E be such that S(e) is a symmet-
ric utility possibility set. Then, if the allocation rule ϕ satisfies DE , PE,
WETE, ISE, and CTI, then µϕi(e) = µϕj(e) for all i, j ∈ N .
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Proof. Let T be a symmetric utility possibility set arising from the economic
environment e = (M,u, s, Y (m)). It suffices to show that T = S(e∗), where
e∗ = (K,u∗, s, Y (k)) ∈ E such that u∗i = u∗j for all i, j ∈ N . By Billera and
Bixby [1], we can construct a production economy e4 = (K,v4, s, Y (k)) ∈ EK
with k = n(n − 1), Y (k) ≡ R+ × [0, 1]k, and T = S(e4) exactly as in step
1. of the proof of Lemma 2. However, e4 does not necessarily have a profile
of symmetric utility functions. Now, by using the data of v4 in e4, we will
construct a new economy e∗ with a profile of symmetric utility functions, by
which T = S(e∗) is guaranteed.
Since S(e4) is symmetric, the economy e4{1,2} ≡ (K, (v42 , v41 ,v4−{1,2}), s, Y (k))

is that T = S(e4{1,2}). (Because of the definition of Y
(k), we need not take

into account the influence of the profile of production skills in determining
S(e4{1,2}).) Let us define e12 ≡ e4 ∧ e4{1,2} = (K, (v12, v12, bv4−{1,2}), s, Y12)
where v12 ≡ min{v41 , v42 }, bv4i is the flat extension of v4i for i ∈ N\{1, 2},
and Y12 ≡ Y (k) ⊕ Y (k). Clearly, T = S(e12). Consider economies e12{1,3} ≡
(K, (bv43 , v12, v12, bv4−{1,2,3}), s, Y12) and e12{2,3} ≡ (K, (v12, bv43 , v12, bv4−{1,2,3}), s, Y12).
Since S(e12) is symmetric, so are both S(e12{1,3}) and S(e

12
{2,3}). Consider

e12 ∧ e12{1,3} and e12 ∧ e12{2,3}, then construct

(e12 ∧ e12{1,3}) ∧ (e12 ∧ e12{2,3}) = (K, (v123, v123, v123, ebv4−{1,2,3}), s, Y123),
where v123 ≡ min{v12, v43 },ebv4i is the flat extension of v4i for i ∈ N\{1, 2, 3}, and Y123 ≡ (Y12 ⊕ Y12)⊕ (Y12 ⊕ Y12).

Let e123 ≡ (e12 ∧ e12{1,3}) ∧ (e12 ∧ e12{2,3}). Clearly, T = S(e123). By repeating
such a procedure to n, we obtain e1···n ≡ (K, (v1···n, · · · , v1···n), s, Y1···n) such
that T = S(e1···n).
Let e∗ ≡ e1···n with u∗i = v1···n for all i ∈ N . Then, T = S(e∗). Let

e∗∗ = (K,u∗, s∗, Y1···n) ∈ E be such that s∗i = s∗j for all i, j ∈ N . By definition
of Y1···n, we can see that Z(e∗) = Z(e∗∗). Thus, by ISE, ϕ(e∗) = ϕ(e∗∗). By
the way, the definition of e∗∗ implies that for all i, j ∈ N , µϕi(e∗∗) = µϕj(e∗∗)
byWETE. So, we obtain that, for all i, j ∈ N , µϕi(e∗) = µϕj(e∗). Thus, by
Lemma 2, µϕi(e) = µϕj(e) for all i, j ∈ N , which is the desired result.

Lemma 7: Let #N = 2, and e1, e2 ∈ E be such that e1 = (M,u1, s, Y (m)) ∈
EM and e2 = (L,u2, s, Y (l)) ∈ EL. Moreover, S(e1) ⊇ S(e2), and there exists
a unique agent j ∈ N such that for all i ∈ N\{j}, mi(S(e1)) = m

i(S(e2)).
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Then, if the allocation rule ϕ satisfies DE , PE, ITMON, and CTI, then
µϕj(e1) ≥ µϕj(e2).
Proof. 1. Construct e01 = (M

0,u10, s, Y (m
0)) ∈ EM 0

where #M 0 = 1, Y (m
0) ≡

R+ × [0, 1]. Moreover, for each i ∈ N , u10i : [0, x]× R+ → R is defined by:

u10i (xi, yM 0i) = p10i (yM 0i) for all (xi, yM 0i) ∈ [0, x]× [0, 1], and
u10i (xi, yM 0i) = p10i (1) for all (xi, yM 0i) ∈ [0, x]× [1,+∞),

where p10 : 4n−1 → S(e1) is a homeomorphism such that for each yM 0 =
(yM 0i)i∈N ∈ 4n−1, there exists a unique u ∈ S(e1) such that u = (p10i (yM 0i))i∈N
and λyM0 ·yM 0 = u for some λyM0 > 0. Such u10i surely belongs to UM 0

even in
the case that S(e1) is not symmetric, since #N = 2. In the same way, we can
construct e02 = (L

0,u20, s, Y (l
0)) ∈ EL0 where #L0 = 1, Y (l0) ≡ R+× [0, 1], and

each u20i is defined by using a homeomorphism p20 : 4n−1 → S(e2), which
is defined in the same way as p10. Then, S(e01) = S(e1) and S(e

0
2) = S(e2).

Thus, µϕ(e1) = µϕ(e01) and µϕ(e2) = µϕ(e
0
2) by Lemma 2.

2. Construct the flat extension economy of e01:

be01 =
³
M 0 ∪ L0, bu10, s, Y (m0) ⊕ Y (l0)

´
with bu10i (x, yM 0, yL0) = u10i (x, yM 0), ∀(x, yM 0, yL0) ∈ [0, x]×Rm0

+ × Rl0+.
Since S(e01) = S(be01), µϕ(e01) = µϕ(be01) by Lemma 2.
3. Construct the convolution e∗ = e01∧ e02 = (M 0∪L0,u∗, s, Y (m0)⊕Y (l0)). In
the same way as in step 2.1. of the proof of Lemma 2, S(e∗) = S(e01)∩S(e02) =
S(e02), so µϕ(e

∗) = µϕ(e02) by Lemma 2.
4. Construct be011 = (M 0 ∪ L0, (bu10j , u∗i ), s, Y (m0) ⊕ Y (l0)). Note S(be01) ⊇ S(be011).
5. To show S(be01) ⊆ S(be011): Let z = ¡(xj , yM 0j), (xi, yM 0i)

¢
be an allocation

in e01. Consider in be011 the allocation η =
¡
(xj, yM 0j , 0), (xi, yM 0i, yL0i)

¢
such

that for all i 6= j, yL0i ≥ yM 0i,

bu10j (xj , yM 0j, 0) = u10j (xj, yM 0j) and

u∗i (xi, yM 0i, yL0i) = min
©
u10i (xi, yM 0i), u

20
i (xi, yL0i)

ª
= u10i (xi, yM 0i) ≤ u20i (xi, yL0i).

The existence of such an allocation as η is checked by setting yL0i = 1,
since #N = 2 and mi(S(e1)) = mi(S(e2)). Thus, u10(z) ∈ S(be01) implies
u10(z) ∈ S(be011).
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6. From steps 4 and 5, S(be01) = S(be011) so µϕ(be01) = µϕ(be011) by Lemma 2.
7. Compare be011 with e∗. They differ only in the utility function of the agent j
and bu10j ≥ u∗j . By applying the Howe theorem, there exist w0j ∈ UM 0∪L0∪{R(j)}

and byR(j) ∈ R+ such that, for all (x, yM 0, yL0) ∈ [0, x]×Rm0
+ × Rl0+,

w0j(x, yM 0 , yL0, byR(j)) = bu10j (x, yM 0 , yL0) and w0j(x, yM 0 , yL0 , 0) = u
∗
j(x, yM 0, yL0).

Moreover, for i 6= j, define w∗i (x, yM 0, yL0, yR(j)) = u∗i (x, yM 0 , yL0) for all
(x, yM 0 , yL0 , yR(j)) ∈ [0, x]×Rm0

+ × Rl0+ × R+. Then, w∗i ∈ UM 0∪L0∪{R(j)}.
8. Constructebe011 = (M 0 ∪ L0 ∪ {R(j)}, (w0j ,w∗−j), s, Y (m

0) ⊕ Y (l0) ⊕ Y R(j)) andee∗ = (M 0 ∪ L0 ∪ {R(j)}, (w0j ,w∗−j), s, Y (m
0) ⊕ Y (l0) ⊕ Y R(j)0 )

where Y R(j) ≡ R+×[0, byR(j)] and Y R(j)0 ≡ R+×{0}. Note that S(ebe011) = S(be011)
and S(ee∗) = S(e∗). By Lemma 2, µϕ(ebe011) = µϕ(be011) and µϕ(ee∗) = µϕ(e∗).
9. The environment ebe011 and ee∗ differ only in PR(j)(·), which only the agent
j likes. Thus, ITMON applies, and so µϕj(ebe011) ≥ µϕj(ee∗), which implies
µϕj(e1) ≥ µϕj(e2) by Lemma 2.
Lemma 8: Let #N ≥ 2, and e1, e2 ∈ E∗ be such that e1 = (M,u1, s, Y (m)) ∈
EM∗ and e2 = (L,u2, s, Y (l)) ∈ EL∗. Moreover, S(e1) ⊇ S(e2), and for all
i ∈ N , mi(S(e1)) = m

i(S(e2)). Then, if the allocation rule ϕ satisfies DE∗ ,
PE,WTMON, and CTI, then µϕ(e1) ≥ µϕ(e2).

Proof. 1. As in the proof of Lemma 3, let us construct e41 = (K,v1, s, Y (#K)) ∈
EK∗ and e42 = (K 0,v2, s, Y (#K

0)) ∈ EK0∗ such that K ∩ K 0 = ∅, S(e41 ) =
S(e1), and S(e

4
2 ) = S(e2). Construct the convolution e∗ = e41 ∧ e42 =

(K ∪K 0,v∗, s, Y (#K)⊕Y (#K0)) ∈ EK∪K0∗. In the same way as in step 2.1. of
the proof of Lemma 2, S(e∗) = S(e41 ) ∩ S(e42 ) = S(e2), so µϕ(e∗) = µϕ(e2)
by Lemma 2.
2. Construct the flat extension economy of e41 :

be41 =
³
K ∪K 0, bv1, s, Y (#K) ⊕ Y (#K0)

´
with bv1i (x, yK, yK0) = v1i (x, yK), ∀(x, yK, yK0) ∈ [0, x]× R#K+ × R#K0

+ .

Since S(e1) = S(be41 ), µϕ(e1) = µϕ(be41 ) by Lemma 2. Compare e∗ with be41 .
By definition, bv1i ≥ v∗i for all i ∈ N . Since mi(S(e1)) = m

i(S(e2)) for all i ∈
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N and S(e1) = S(be41 ) ⊇ S(e∗) = S(e2), we obtain mi(S(be41 )) = mi(S(e∗))
for all i ∈ N .
3. By applying the Howe theorem, for each i ∈ N , there exist wi ∈
UK∪K0∪{R(i)} and byR(i) ∈ R+ such that, for all (x, yK, yK0) ∈ [0, x] × R#K+ ×
R#K

0
+ ,

wi(x, yK , yK0 , byR(i)) = bv1i (x, yK, yK0) and wi(x, yK , yK0 , 0) = v∗i (x, yK , yK0).

Construct

ebe41 =
³
K ∪K 0 ∪ R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r)

´
and

ee∗ =
³
K ∪K 0 ∪ R, bw, s, Y (#K) ⊕ Y (#K0) ⊕ Y (r)∗

´
where R ≡ {R(i)}i∈N , Y (r) and Y (r)∗ are defined exactly as in the proof of Lemma 3,

and, for each i ∈ N ,
bwi(x, yK , yK0 , yR) = wi(x, yK , yK0 , (yR)i) for all (x, yK , yK0 , yR) ∈ [0, x]×R#K+ ×R#K0

+ ×Rn+.

Then, S(be41 ) = S(ebe41 ) ⊇ S(ee∗) = S(e∗).
4. Since mi(S(be41 )) = mi(S(ebe41 )) and mi(S(ee∗)) = mi(S(e∗)) for all i ∈ N ,
we havemi(S(ebe41 )) = mi(S(ee∗)) for all i ∈ N . This implies that mi(Z(ebe41 ))∩
mi(Z(ee∗)) 6= ∅ for all i ∈ N , since Y (#K) ⊕ Y (#K0) ⊕ Y (r) ⊇ Y (#K) ⊕
Y (#K

0) ⊕ Y (r)∗ . Then, byWTMON, µϕ(ebe41 ) ≥ µϕ(ee∗). Thus, by Lemma 2,
µϕ(e1) = µϕ(be41 ) = µϕ(ebe41 ) ≥ µϕ(ee∗) = µϕ(e∗) = µϕ(e2).
Proof of Theorem 1: Note that any allocation rule which attains a bar-
gaining solution should satisfy DE∗ and CTI. By Theorem 3, we see that ϕE

is a unique allocation rule which satisfies DE∗ , PE,WETE, SS, and CTI.
However, ϕE does not satisfy IUI, so the theorem is proved.

Given s ∈ Sn, let E(s) ( E (resp. E∗(s) ( E∗) be the class of economies
with the profile of production skills s fixed.

Proof of Theorem 2: (1) It is easy to see that ϕE satisfies DE∗, PE,
WETE, ISE, TMON, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE∗, PE, WETE, ISE,
TMON, and CTI. Then, for any s ∈Sn, µϕ satisfies, on E∗(s), all three
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axioms which together characterize the egalitarian solution E (Kalai [12]),
which is followed by Lemmas 3 and 6. Thus, for any s ∈Sn, µϕ on E∗(s) is
always the outcome of the egalitarian solution E. This implies that ϕ attains
E, so that ϕ = ϕE.

To prove Theorem 3, we need the following two lemmas:

Lemma 9: If ϕ satisfies DE ,WPE, ISE, and CTI, then ϕ satisfies W.

Proof. Let e1 = (M,u1, s1, Y (m)) ∈ EM and e2 = (L,u2, s2, Y (l)) ∈ EL be
such that S(e1) = S(e2). Let ϕ satisfy DE , WPE, ISE, and CTI. We will
show that µϕ(e1) = µϕ(e2).
Let us define e41 = (K,v4, s1, Y (k)) ∈ EK and e42 = (K,v4, s2, Y (k)) ∈

EK as defining e4 in step 1. of the proof of Lemma 2. Then, S(e41 ) = S(e1) =
S(e2) = S(e

4
2 ). By Lemma 2, µϕ(e

4
1 ) = µϕ(e1) and µϕ(e

4
2 ) = µϕ(e2). Thus,

it suffices to show µϕ(e
4
1 ) = µϕ(e

4
2 ). Note that, by construction of Y

(k),
Z(e41 ) = Z(e

4
2 ). Thus, by ISE, ϕ(e

4
1 ) = ϕ(e42 ), so that µϕ(e

4
1 ) = µϕ(e

4
2 ).

Lemma 10: If ϕ satisfies DE∗, PE, SS, and CTI, then ϕ satisfies TMON.22

Proof. Let e1 = (M,u, s, Y
(m)
1 ) ∈ EM∗ and e2 = (M,u, s, Y (m)2 ) ∈ EM∗ be

such that Y (m)1 ⊇ Y (m)2 . Let ϕ satisfy DE∗, PE, SS, and CTI. We will show
that µϕ(e1) ≥ µϕ(e2).
Note that S(e1) ⊇ S(e2). Let e41 = (K,v1, s, Y (#K)) ∈ EK∗ be such that

S(e41 ) = S(e1), which is defined as in step 1. of the proof of Lemma 2. In the
same way, let e42 = (K 0,v2, s, Y (#K

0)) ∈ EK∗ be such that S(e42 ) = S(e2),
where K ∩ K 0 = ∅. Let e∗ = e41 ∧ e42 = (K ∪ K 0,v∗, s, Y (#K) ⊕ Y (#K0)).
Let be1 ≡ (K ∪ K 0, bv1, s, Y (#K) ⊕ Y (#K0)) where bv1 is the flat extension of
v1. Note that S(e∗) = S(e42 ). Thus, by Lemma 2, µϕ(e

∗) = µϕ(e
4
2 ) and

µϕ(be1) = µϕ(e41 ).
By Howe’s theorem, for each i ∈ N , there exist wi ∈ UK∪K0∪{R(i)} andbyR(i) ∈ R+ such that:

∀(x, yK, yK0) ∈ [0, x]× R#K+ × R#K0
+ ,

22We can strengthen this lemma as follows:

Lemma 10∗: If ϕ satisfies DE ,WPE, SM, ISE, and CTI, then ϕ satisfies TMON.

In fact, the proof of Lemma 10 can directly apply to the proof of Lemma 10∗. By
replacing Lemma 10 with Lemma 10∗, we can derive the proofs of Theorems 1∗ and 3∗.
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wi(x, yK, yK0, byR(i)) = bv1i (x, yK, yK0)

& wi(x, yK , yK0 , 0) = v∗i (x, yK, yK0).

Now construct the flat extension of wi for each i ∈ N :

∀(x, yK , yK0 , yR) ∈ [0, x]×R#K+ ×R#K0
+ × Rn+,bwi(x, yK , yK0 , yR) = wi(x, yK, yK0, yR(i)),

where yR = (yR(j))j∈N .

Let s1 = (s1i )i∈N be a new profile of production skills such that for all i ∈ N ,
s1i = 1. Also, let s

∗ = (s∗i )i∈N be a new profile of production skills such that
for all i ∈ N , s∗i = 0. Let, for each R(i),

Y R(i) ≡
½
(x, yR(i)) ∈ R2+

¯̄̄̄
yR(i) ≤ min

½byR(i)
nx

x, byR(i)¾¾ .
Now, define

ebe1 ≡ (K ∪K 0 ∪R, bw, s1, Y (#K) ⊕ Y (#K0) ⊕ Y R)ee∗ ≡ (K ∪K 0 ∪R, bw, s∗, Y (#K) ⊕ Y (#K0) ⊕ Y R)
where Y R ≡ Y R(1) ⊕ · · ·⊕ Y R(i) ⊕ · · ·⊕ Y R(n).

By this definition, S(ebe1) = S(be1) and S(ee∗) = S(e∗). By Lemma 9, µϕ(ebe1) =
µϕ(be1) and µϕ(ee∗) = µϕ(e

∗), since SS together with DE∗ and PE imply
ISE. Since ϕ satisfies PE and SS, we have µϕ(ebe1) ≥ µϕ(ee∗). This implies
µϕ(e

4
1 ) ≥ µϕ(e42 ), so that, by Lemma 2, µϕ(e1) ≥ µϕ(e2).

Proof of Theorem 3: (1) It is easy to see that ϕE satisfies SS.
(2) If ϕ satisfies DE∗, PE,WETE, SS, and CTI, then ϕ satisfies TMON
and ISE by Lemma 10. Thus, by Theorem 2, ϕ = ϕE.

Proof of Theorem 4: (1) It is easy to see that ϕE satisfies SM.
(2) By Fleurbaey and Maniquet [9], PE, SM, and TMON together imply
SS. Thus, by Theorem 2, if ϕ satisfies DE∗, PE,WETE, SM, TMON, and
CTI, then ϕ = ϕE.

Let {Un(bλ)}λ∈Λ be a partition of Un such that for every λ ∈ Λ, every
n-tuple utility functions in Un(bλ) has the same profile of utility-units bλ .
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Given s ∈Sn, let E(s;bλ) ( E(s) be the class of economies with the profiles
of production skills s and of utility-units bλ fixed.

Proof of Theorem 5: (1) It is easy to see that ϕNa satisfies DE , PE,
WETE, ISE, ITC, IUI, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE , PE,WETE, ISE, ITC,
IUI, and CTI. Then, for any s ∈Sn and any bλ, µϕ satisfies, on E(s;bλ), all
four axioms which together characterize the Nash solution Na (Nash [16]),
which is followed by Lemmas 4, 5, and 6. Thus, for any s ∈Sn and any bλ ,
µϕ on E(s;bλ) is always the outcome of the Nash solution Na. This implies
that ϕ attains Na, so that ϕ = ϕNa.

Proof of Theorem 6: (1) It is easy to see that ϕK satisfies DE , PE,
WETE, ISE, ITMON, IUI, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE , PE,WETE, ISE, IT-
MON, IUI, and CTI. Then, for any s ∈Sn and any bλ, µϕ satisfies, on
E(s;bλ), all four axioms which together characterize the Kalai-Smorodinsky
solution K when #N = 2 (Kalai and Smorodinsky [13]), which is followed
by Lemmas 5, 6, and 7. Thus, for any s ∈Sn and any bλ, µϕ on E(s;bλ) is
always the outcome of the Kalai-Smorodinsky solution K. This implies that
ϕ attains K, so that ϕ = ϕK.

Proof of Theorem 7: (1) It is easy to see that ϕK satisfies DE∗ , PE,
WETE, ISE,WTMON, IUI, and CTI.
(2) Suppose that the allocation rule ϕ satisfies DE∗, PE, WETE, ISE,
WTMON, IUI, and CTI. Then, for any s ∈Sn and any bλ, µϕ satisfies, on
E∗(s;bλ), all four axioms which together characterize the Kalai-Smorodinsky
solution K when #N ≥ 2 (Thomson [22, Proposition 1, Remark 2]), which
is followed by Lemmas 5, 6, and 8. Thus, for any s ∈Sn and any bλ, µϕ on
E∗(s;bλ) is always the outcome of the Kalai-Smorodinsky solution K. This
implies that ϕ attains K, so that ϕ = ϕK.
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