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Abstract. Conditions α and β are two well-known rationality conditions in
the theory of rational choice. This paper examines the implications of weaker
versions of these two rationality conditions in the context of solutions to non-
convex bargaining problems. It is shown that, together with the standard
axioms of efficiency and strict individual rationality, they imply rationaliz-
ability of solutions to nonconvex bargaining problems. We then characterize
asymmetric Nash solutions by imposing a continuity and the scale invariance
requirements. These results make a further connection between solutions to
non-convex bargaining problems and rationalizability of choice function in
the theory of rational choice.
J.E.L. Classification Numbers: C71, C78, D63, D71
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1 Introduction

In this paper, we study solutions to non-convex bargaining problem by ex-
amining their connections to two well-known rationality conditions, namely
conditions α and β, in the theory of rational choice (see, for example, Sen
(1971)). Condition α says that, when a set A contracts to another set B, and
if an option x chosen from A continues to be available in B, then x must be
chosen from B. Condition β, on the other hand, says that, when two options
x and y are chosen from a set A and when A expands to another set B, then,
either both x and y are chosen from B or neither x nor y are chosen from
B.

In the literature on non-convex bargaining problems, a stronger version of
condition α, often called contraction independence, has been used for charac-
terizing the Nash solution (see, for example, Kaneko (1980), Mariotti (1998,
1999), Peters and Vermeulen (2010), and Xu and Yoshihara (2006)). Con-
traction independence requires that, when a bargaining problem A shrinks to
another bargaining problem B and if B contains some options of the solution
to A, then the solution to B coincides with the intersection of B and the solu-
tion to A. This version of contraction independence can also be regarded as a
natural generalization of Nash’s independence of irrelevant alternatives (IIA)
(Nash (1950)) introduced for convex bargaining problems where a solution
picks a single option from a bargaining problem.2

Building on the intuitions of conditions α and β, in this paper, we con-
sider weaker versions of conditions α and β, to be called binary condition α
and binary condition β, respectively. Binary condition α requires that, for
any two options x and y, if either x or y is part of the solution to a bar-
gaining problem A, then the solution to the bargaining problem given by the
comprehensive hull (see Section 2 for a formal definition) of x and y must
contain the intersection of {x, y} and the solution to A. Binary condition β
requires that, if two options x and y are the only chosen alternatives from
the problem of the comprehensive hull of x and y, then when the problem
is enlarged, either both belong to the solution to the enlarged problem or
neither do not belong to the solution to the enlarged problem.

We will then use these two weaker rationality conditions to first study

2There are other variations of the generalised Nash’s IIA. Mariotti (1998a) introduces
a weaker variant of the standard Nash IIA which is solely applicable to single-valued
solutions, whereas Thomson (1981) introduces a weaker variant of the contraction inde-
pendence discussed in Mariotti (1998, 1999) and Xu and Yoshihara (2006).
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rationalizability of solutions to nonconvex bargaining problems (see Section
3 for a formal definition). The interest of studying rationalizability of bar-
gaining solutions in the literature is two-fold. In the first place, a solution
can be interpreted as a fair arbitration scheme ratified by a committee (see
Mariotti (1999) and Lombardi and Mariotti (2009)), and as a consequence,
it represents the majority preferences of the committee. Secondly, as argued
by Peters and Wakker (1991), a solution to bargaining problems may be
thought to reveal the preferences of the players involved as a group, and thus
the behavior of a solution may be linked to ‘revealed group preference.’

In the literature on bargaining problems, the rationalizability of solutions
to convex bargaining problems has been fruitfully studied (see, among others,
Peters and Wakker (1991), Bossert (1994), and Sanchez (2000)), and there
is little research on the rationalizability of solutions to nonconvex bargain-
ing problems (see, however, Denicolò and Mariotti (2000), for an exception,
where they consider single-valued solutions to nonconvex bargaining prob-
lems). We show that if we restrict a solution (possibly multi-valued) to be
efficient and strict individually rational, then the rationalizability of a solu-
tion is equivalent to the combination of our two weaker rationality conditions.
It is worth noting an interesting feature of the revealed preference relation
defined in our context for establishing our result: for any two distinct alter-
natives x and y that are both strictly positive, x is revealed to be preferred
to y if and only if x is the only solution to the bargaining problem of the
comprehensive hull of x and y. Note that, under efficiency, the solution can-
didates of the problem of the comprehensive hull of x and y are just x and
y. Therefore, the revealed preference relation defined this way is based on
‘pairwise comparisons’ of alternatives.

After establishing the result on rationalizability of a solution, we point
out that neither efficiency nor strict individual rationality is necessary for
a solution to be rationalizable: there is a solution that is rationalizable but
fails to satisfy either efficiency or strict individual rationality. Meanwhile,
we also show that each of the axioms, efficiency, strict individual rationality,
binary α and binary β, is indispensable for a solution to be rationalizable.

Next, we examine the consequences of imposing scale invariance on solu-
tions to nonconvex bargaining problems. We observe that the imposition of
scale invariance on a rationalizable solution to nonconvex bargaining prob-
lems in our context is not sufficient to characterize asymmetric Nash solu-
tions. It turns out that a continuity property on part of a solution is needed.
The continuity axiom we use is fairly weak as it only restricts to behaviors
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of solutions to problems given by comprehensive hulls of two alternatives.
This is in sharp contrast with the results obtained for convex problems (see,
for example, Roth (1977)) and for nonconvex problems where solutions are
restricted to be single-valued (see, for example, Zhou (1997)).

The remainder of the paper is organized as follows. In the following
section, Section 2, we present notation and definitions. Section 3 studies
the rationalizability of solutions to nonconvex bargaining problems, while
Section 4 is devoted to the study of asymmetric Nash solutions. We conclude
in Section 5.

2 Notation and definitions

Let N = {1, 2, . . . , n} be the set of all individuals in the society. Let R+ be
the set of all non-negative real numbers, and R++ be the set of all positive
numbers. Let Rn

+ (resp. Rn
++) be the n-fold Cartesian product of R+ (resp.

R++). For any x, y ∈ Rn
+, we write x ≥ y to mean [xi ≥ yi for all i ∈ N ],

x > y to mean [xi ≥ yi for all i ∈ N and x 6= y], and x� y to mean [xi > yi
for all i ∈ N ]. For any x ∈ Rn

+ and any non-negative number q, we write
z = (q; x−i) ∈ Rn

+ to mean that zi = q and zj = xj for all j ∈ N \ {i}.
For any subset A ⊆ Rn

+, A is said to be (i) non-trivial if there exists
a ∈ A such that a � 0, and (ii) comprehensive if for all x, y ∈ Rn

+, [x ≥ y
and x ∈ A] implies y ∈ A. For all A ⊆ Rn

+, define the comprehensive hull of
A, to be denoted by compA, as follows:

compA ≡
{
z ∈ Rn

+ | z ≤ x for some x ∈ A
}
.

Let Σ be the set of all non-trivial, compact and comprehensive subsets
of Rn

+. Elements in Σ are interpreted as (normalized) bargaining problems.
A bargaining solution F assigns a nonempty subset F (A) of A for every
bargaining problem A ∈ Σ.

3 Rationalizable solutions

In this section, we study the problem of rationalizability of solutions to non-
convex problems. First, we define the notion of rationalizable solutions in
our context.
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Definition 1: A bargaining solution F over Σ is rationalizable if there exists
a reflexive, complete and transitive binary relation R over Rn

+ such that, for
all A ∈ Σ, F (A) = {x ∈ A | xRy for all y ∈ A}.

Under what condition is a solution F over Σ rationalizable? To answer
this question, we begin by introducing some axioms to be imposed on a
solution to nonconvex bargaining problems. The first two, Efficiency and
Strict Individual Rationality, are well-known in the literature.

Efficiency (E): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such
that x > a.

Strict Individual Rationality (SIR): For all A ∈ Σ, x ∈ F (A)⇒ x� 0.

In the literature on Nash bargaining problems and on rational choice
theory, various contraction independence properties have been proposed. The
idea behind a contraction independence property is the following: given two
bargaining problems, A and B, in which A is a subset of B, and suppose
that a point x chosen from B as a solution to B continues to be available in
A, then x should continue to be a solution to A provided certain restrictions
are satisfied. The following axiom, to be called (BCα), is a weaker version
of the contraction independence used in nonconvex bargaining problems. It
requires that, for any two points x and y in a bargaining problem A, if either
x or y is part of the solution to A, then the common points in {x, y} and the
solution to A must be contained in the solution to the problem given by the
comprehensive hull of x and y. It may be noted that the origin of (BCα) goes
back to Herzberger (1973) (see also Sen (1977)) where a similar condition is
introduced for finite choice problems: if an option x is chosen from a set
A then x must be chosen from any two-element set {x, y} as long as y is
contained in A as well. Clearly, (BCα) is also weaker than condition α in the
literature on rational choice theory (also known as the Chernoff condition,
see Chernoff (1954) and Sen (1971)). Formally, (BCα) is stated as follows.

Binary Condition α (BCα): For all A ∈ Σ and all x, y ∈ A, if {x, y} ∩
F (A) 6= ∅ then F (A) ∩ {x, y} ⊆ F (comp{x, y}).

It may be noted that (BCα) is specific to non-convex bargaining problems
and is not applicable to convex bargaining problems. We next introduce a
weaker version of condition β (see Sen (1971)).
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Binary Condition β (BCβ): For all A ∈ Σ and all x, y ∈ A, if {x, y} =
F (comp{x, y}), then [x ∈ F (A)⇔ y ∈ F (A)].

Thus, (BCβ) requires that, whenever the solution to the problem comp{x, y}
consists of both x and y, then, for any problem A containing both x and y,
either [x and y are both chosen as solutions to A] or [neither x nor y is chosen
as a solution to A]. In a way, (BCβ) stipulates that whenever two alterna-
tives, x and y, are “informationally equivalent” in a pairwise comparison,
then they must be treated “equally”.

It may be checked that, in our context, (i) (BCα) is strictly weaker than
condition α, (ii) (BCβ) is strictly weaker than condition β, and (iii) in the
presence of (E), (BCα) and (BCβ) are equivalent to conditions α and β.

With the help of the above axioms, we now state and prove our first main
result.

Theorem 1. Let a solution F over Σ satisfy (E) and (SIR). Then, F satisfies
(BCα) and (BCβ) if and only if F is rationalizable.

Before presenting the formal proof of Theorem 1, the informal reasoning
involved in the proof can be outlined as follows. By using the information
of F (comp{x, y}), a binary relation R is defined in a standard way as done
in the theory of revealed preference. Then, R is shown to be well-defined by
means of (E) and (SIR), and complete and transitive by means of (BCα) and
(BCβ). Finally, by using (BCα) and (BCβ), it is shown that F is rationalized
by R.

Proof of Theorem 1. We note that if a solution F over Σ is rationalizable,
then F satisfies both (BCα) and (BCβ). Therefore, we need only to show
that if a solution F over Σ satisfies (E), (SIR), (BCα) and (BCβ), then it
must be rationalizable.

Let a solution F over Σ satisfy (E), (SIR), (BCα) and (BCβ). Define a
binary relation R over Rn

+ as follows: for all x, y ∈ Rn
+,

if x = y, then xRx;

if x 6= y, then xRy ⇔ [x ∈ F (comp{x, y})] or [y /∈ F (A) for all
A ∈ Σ with x, y ∈ A].

We first note that, for any x, y ∈ Rn
+, if yi = 0 for some i ∈ N , then by

(SIR), y /∈ F (A) for all A ∈ Σ with x, y ∈ A. Therefore, for any x, y ∈ Rn
+,
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[yi = 0 for some i ∈ N ] ⇒ xRy. Further, if x � 0 and yi = 0 for some
i ∈ N , then, by (E) and (SIR), {x} = F (comp{x, y}) implying that xRy and
not(yRx). Therefore, the binary relation R is well-defined.

Note that R thus defined is reflexive and complete. We now show that
R is transitive. To see that R is transitive, consider x, y, z ∈ Rn

+ such
that xRy and yRz. If xi = 0 for some i ∈ N , then xRy implies that
yj = 0 for some j ∈ N , and yRz together with [yj = 0 for some j ∈ N ]
implies zk = 0 for some k ∈ N . Therefore, xRz follows from the defi-
nition of R. If yi = 0 for some i ∈ N , then yRz implies that zj = 0
for some j ∈ N . In this case, xRz follows from the definition of R. If
zi = 0 for some i ∈ N , then xRz follows again from the definition of R.
Consider therefore that x � 0, y � 0 and z � 0. Given that xRy and
yRz, it must be the case that x ∈ F (comp{x, y}) and y ∈ F (comp{y, z}).
We need to show that x ∈ F (comp{x, z}). Suppose to the contrary that
x /∈ F (comp{x, z}). By (E), {z} = F (comp{x, z}). Consider the problem
comp{x, y, z}. Note that comp{x, y, z} ∈ Σ. Consider F (comp{x, y, z}).
By (E), F (comp{x, y, z}) ⊆ {x, y, z}. If x ∈ F (comp{x, y, z}), noting that
{x, z}∩F (comp{x, y, z}) 6= ∅, it follows from (BCα) that F (comp{x, y, z})∩
{x, z} ⊆ F (comp{x, z}), that is, x ∈ F (comp{x, z}), a contradiction. There-
fore, x /∈ F (comp{x, y, z}). If y ∈ F (comp{x, y, z}), noting that x ∈
F (comp{x, y}) by xRy and (BCα), we must have F (comp{x, y}) = {x, y}
by (BCα). It then follows from (BCβ) that x ∈ F (comp{x, y, z}), which,
from the above, leads to a contradiction. Therefore, y /∈ F (comp{x, y, z}).
If z ∈ F (comp{x, y, z}), noting that y ∈ F (comp{y, z}) by yRz and (BCα),
it follows from (BCα) that F (comp{y, z}) = {y, z}. It then follows from
(BCβ) that y ∈ F (comp{x, y, z}), which, from the above, leads to a contra-
diction. Therefore, z /∈ F (comp{x, y, z}). Consequently, F (comp{x, y, z}) ∩
{x, y, z} = ∅, a contradiction. Thus, it must be true that x ∈ F (comp{x, z})
implying xRz. Therefore, R is transitive.

To complete the proof of Theorem 1, we need to show that, for all A ∈ Σ,
F (A) = {x ∈ A | xRy for all y ∈ A}. Consider A ∈ Σ. Let x ∈ F (A).
By (SIR), for any y ∈ A with yi = 0 for some i ∈ N , we must have xRy.
For any y ∈ A with y � 0, since x ∈ F (A), by (BCα), it follows that
x ∈ F (comp{x, y}) implying that xRy. Therefore, F (A) ⊆ {x ∈ A | xRy
for all y ∈ A}. We next show that {x ∈ A | xRy for all y ∈ A} ⊆ F (A).
Suppose, to the contrary, that it is not true that {x ∈ A | xRy for all
y ∈ A} ⊆ F (A). Then, there must exist x ∈ A such that xRy for all y ∈ A,
but x /∈ F (A). Note that it must be true that x � 0. Consider z ∈ F (A).
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(SIR) implies that z � 0. By (BCα) and from z ∈ F (A) and x ∈ A, we
must have z ∈ F (comp{x, z}). Note that xRz, that is, x ∈ F (comp{x, z}).
Therefore, {x, z} = F (comp{x, z}). By (BCβ) and noting that z ∈ F (A), it
then follows that x ∈ F (A), a contradiction. Therefore, {x ∈ A | xRy for all
y ∈ A} ⊆ F (A). Hence, F (A) = {x ∈ A | xRy for all y ∈ A}. �

It may be noted that when the solution F is restricted to be single-valued,
we have the following result:

Corollary 1. Let a solution F over Σ be single-valued and satisfy (E) and
(SIR). Then, F satisfies (BCα) if and only if F is rationalizable.

Note that, in the above result, (BCβ) is not needed since, when F is
single-valued, (BCβ) is satisfied trivially. It may be noted that our domain
is ‘smaller’ than the domain studied in Denicolò and Mariotti (2000) and
(BCα) is weaker than the contraction independence used by them. Therefore,
Corollary 1 can be regarded as a strengthening of Theorem 1 in Denicolò and
Mariotti (2000).

Remark 1. It may be noted that (E) is not necessary for a solution to be ra-
tionalizable: there exists a rationalizable solution that satisfies (SIR), (BCα)
and (BCβ) but violates (E). To see this, consider the following solution: for
all A ∈ Σ, let FE(A) = {x ∈ A | x1 = · · · = xn, and there exists no y ∈ A
such that y � x} (the Egalitarian solution).

Remark 2. It is also interesting to note that (SIR) is not necessary for
a solution to be rationalizable: there exists a rationalizable solution that
satisfies (E), (BCα) and (BCβ) but violates (SIR). To see this, let ≥lex be a
standard lexicographic binary relation defined over Rn

+. Define the solution,
F lex as follows: for all A ∈ Σ, F lex(A) = {x ∈ A|x ≥lex y for all y ∈ A}.

Remark 3. It may be noted that (E) is indispensable in Theorem 1:
there are non-rationalizable solutions that satisfy (SIR), (BCα) and (BCβ),
but violates (E). To show this, let #N = 2 and for each A ∈ Σ, let
E (A) ≡ {x ∈ A | x1 = x2 > 0}. Then, define F 1 as follows: for any A ∈ Σ,
F 1 (A) = FN (A) ∪ E (A), where FN = {x ∈ A|

∏n
i=1 xi ≥

∏n
i=1 yi for all

y ∈ A}. Note that F 1 satisfies (SIR) but violates (E). Note that, for all
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{x, y} ∈ Σ, {x, y} = F 1(comp{x, y}) does not hold since F 1(comp{x, y}) con-
tains E (comp {x, y}). Thus, (BCβ) is vacuously satisfied by F 1. F 1 also sat-
isfies (BCα). To see this, consider A ∈ Σ, x, y ∈ A such that {x, y}∩F 1(A) 6=
∅. Let x, y ∈ F 1 (A). If x, y ∈ E (A), then x, y ∈ F 1 (comp {x, y}).
If x ∈ FN (A) \E (A) and y ∈ E (A), then x, y ∈ F 1 (comp {x, y}). If
x, y ∈ FN (A) \E (A), then x, y ∈ F 1 (comp {x, y}). Let x ∈ F 1 (A) and
y /∈ F 1 (A). If x ∈ E (A), then x ∈ F 1 (comp {x, y}). If x ∈ FN (A) \E (A),
then x ∈ F 1 (comp {x, y}). Therefore, F 1 satisfies (BCα). Finally, F 1 is not
rationalizable. Consider A = comp {(4, 2)} and B = comp {(4, 1) , (2, 2)}.
Then, (4, 2) , (2, 2) ∈ F 1 (A) and (4, 1) /∈ F 1 (A), while (4, 1) , (2, 2) ∈ F 1 (B).
Suppose F 1 is rationalizable by a binary relation R. Then, by considering
the problem A, we must have (2, 2)R(4, 1) and not(4, 1)R(2, 2), and by con-
sidering the problem B, we have (2, 2)R (4, 1) and (4, 1)R(2, 2), which is a
contradiction. Therefore, F 1 is not rationalizable. Note that F 1 satisfies
Nash’s IIA and Pareto Continuity, but it is not rationalizable even within
convex problems due to its multi-valuedness. This is in sharp contrast with
the result obtained for convex problems. For instance, Sánchez (2000)) shows
that Nash’s IIA and Pareto Continuity (for this definition, see Peter and
Wakker (1991) or Sánchez (2000)) are sufficient for single-valued bargaining
solutions to be rationalizable in the context of convex problems.

From the above discussion, it is clear that there exists a solution that is
not rationalizable (consider, for example, the solution given by the union of
FN and FE), but satisfies (SIR), (BCα), (BCβ) and Weak Efficiency.

Remark 4. We note that (SIR) is indispensable in Theorem 1: there are non-
rationalizable solutions satisfying (E), (BCα), (BCβ) and violating (SIR). To
see this, let mi(A) = max{ai | (a1, · · · , ai, · · · , an) ∈ A} for all A ∈ Σ and
all i ∈ N . Therefore, m(A) ≡ (mi(A))i∈N is the ideal point of A. For each
i ∈ N , let mi(A) ≡ (mi(A); 0−i). Let P (A) be the set of Pareto efficient

alternatives in A ∈ Σ. Again, let #N = 2. Given A ∈ Σ, let Ã ⊆ A be
defined as follows:

Ã = {x ∈ A | ∀ε > 0,∃y ∈ R2
++ with ||y − x|| < ε, y ∈ A}

(For example, when A = comp{(1, 1), (2, 0)}, then Ã = comp{(1, 1)}.) Let
FU (A) ≡ {x ∈ A | ∀y ∈ A : x1 + x2 ≥ y1 + y2} for any A ∈ Σ. Then, define
F 2 as follows: for any A ∈ Σ,
1) if min {m1(A),m2(A)} > x1+x2 for any x ∈ Ã, then F 2 (A) = {m1(A),m2(A)};
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2) if min {m1(A),m2(A)} ≤ x1+x2 for some x ∈ Ã, but FU (A)∩{m1(A),m2(A)} 6=
∅, then F 2 (A) = FU (A) ∩ {m1(A),m2(A)}; and
3) if FU (A) ∩ {m1(A),m2(A)} = ∅, then F 2 (A) = FU (A).

This solution satisfies (E), but violates (SIR). It also satisfies (BCα) and
(BCβ). Consider (BCα) first. Take any A ∈ Σ and any x, y ∈ A, and sup-
pose F 2 (A)∩ {x, y} 6= ∅. If case 3) above is applicable, then (BCα) is obvi-
ously satisfied. If case 2) above is applicable, then F 2 (A) ⊆ {m1(A),m2(A)}.
Without loss of generality, let x ∈ {m1(A),m2(A)}. If y ∈ {m1(A),m2(A)},
then comp {x, y} /∈ Σ, which implies that (BCα) is trivially satisfied. If
y /∈ {m1(A),m2(A)} and y ∈ R2

+\R2
++, again comp {x, y} /∈ Σ. If y /∈

{m1(A),m2(A)} and y ∈ Rn
++, then comp {x, y} ∈ Σ and it corresponds to

case 2), so that x ∈ F 2 (comp {x, y}). If case 1) above is applicable, then
F 2 (A) = {m1(A),m2(A)}. Let x ∈ {m1(A),m2(A)} and y /∈ {m1(A),m2(A)}.
Then, if y ∈ Ã ∩ R2

++, comp {x, y} ∈ Σ and we are back to case 2). Thus,
x ∈ F 2 (comp {x, y}). Therefore, F 2 satisfies (BCα).

We now consider (BCβ). Note that for anyA ∈ Σ, either F 2 (A) ⊆ {m1(A),m2(A)}
or F 2 (A) ⊆ R2

++. Take any A ∈ Σ and any x, y ∈ A, and suppose
F 2 (comp {x, y}) = {x, y}. First of all, comp {m1(A),m2(A)} /∈ Σ. More-
over, if x ∈ {m1(A),m2(A)} and y ∈ R2

++, then F 2 (comp {x, y}) = {x, y}
does not hold. Thus, that F 2 (comp {x, y}) = {x, y} implies case 3) is ap-
plicable. Consequently, FU (comp {x, y}) = {x, y}. Therefore, F 2 satisfies
(BCβ).

To see that F 2 is not rationalizable, let M be the unit simplex, and consider
x = (0, 2), y = (2, 0), A = comp ({x, (3, 0)}∪ M), andB = comp ({y, (0, 3)}∪ M).
Note that x ∈ F 2(A), y /∈ F 2(A), y ∈ F 2(B) and x /∈ F 2(B) implying no bi-
nary relation R can be defined over R2

+ that will rationalize F 2. The above
argument still works even if F 2 is refined to be single-valued and this refined
solution satisfies all the axioms except (SIR). This observation suggests that
(SIR) is indispensable for rationalizable bargaining solutions to nonconvex
problems that are single-valued.

Remark 5. (BCα) is indispensable in Theorem 1: there are non-rationalizable
solutions satisfying (E), (SIR) and (BCβ) but violating (BCα). To see this,
consider the lexicographic Kalai-Smorodinsky solution F lexKS which is de-
fined as usual. This solution satisfies all the axioms in Theorem 1 except
(BCα) and is not rationalizable.
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Remark 6. (BCβ) is indispensable in Theorem 1: there are non-rationalizable
solutions satisfying (E), (SIR) and (BCα) but violating (BCβ). To see this,
for any A ∈ Σ, let F PSIR(A) = {x ∈ A ∩ Rn

++ | there exists no y ∈ A
such that y > x}. This solution satisfies all the axioms in Theorem 1 except
(BCβ) and is not rationalizable.

4 Asymmetric Nash solutions

In this section, we show that under (E), (SIR), (BCα) and (BCβ), if we
impose Nash’s scale invariance axiom and require a solution to be continu-
ous (see the formal definition below), then we obtain an asymmetric Nash
solution defined below.

Definition 2. A bargaining solution F over Σ is an asymmetric Nash
solution if there exist t1 > 0, · · · , and tn > 0 such that, for all A ∈ Σ,
F (A) = {x ∈ A |

∏n
i=1 x

ti
i ≥

∏n
i=1 y

ti
i for all y ∈ A}

To study asymmetric Nash solutions, we first introduce the axioms of
scale invariance and continuity.

Scale Invariance (SI): For all A ∈ Σ and all t ∈ Rn
++, if tA = {(tiai)i∈N |

a ∈ A} then F (tA) = {(tiai)i∈N | a ∈ F (A)}.

Continuity (CON): For any x, y ∈ Rn
+ with x 6= y, if {x} = F (comp{x, y})

then there exists ε > 0 such that for all z � 0 and all z′ ∈ Rn
+,

[||z − x|| < ε⇒ {z} = F (comp{y, z})] and [||z′ − y|| < ε⇒ {x} = F (comp{x, z′})] .

It may be noted that (CON) introduced above is somewhat weaker than
a continuity property introduced in Peters and Vermeulen (2010), but very
different from various other continuity properties discussed in the literature
on bargaining problems (see, for example, Kaneko (1980), Bossert (1994),
Peters and Wakker (1991), and Sánchez (2000)). To a certain degree, (CON)
is a fairly weak requirement as it restricts its applicability to a class of prob-
lems each consisting of the comprehensive hull of two points. (CON) is
structurally similar to the continuity property used in a continuous utility
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function representation of a binary relation over the n-dimensional real space
discussed in microeconomics (see, for example, Debreu (1954)).

With the help of (CON), we present and prove the second main result of
our paper.

Theorem 2. A solution F over Σ satisfies (E), (SIR), (BCα), (BCβ), (SI)
and (CON) if and only if it is an asymmetric Nash.

Proof. It can be checked that an asymmetric Nash solution satisfies (E),
(SIR), (BCα), (BCβ), (SI) and (CON). We now show that if a solution
satisfies (E), (SIR), (BCα), (BCβ), (SI) and (CON), then it must be an
asymmetric Nash solution.

Let F satisfy (E), (SIR), (BCα), (BCβ), (SI) and (CON). From Theorem
1, F is rationalizable by a reflexive, transitive and complete binary relation
R over Rn

+. Define the binary relation R as in the proof of Theorem 1.
Note that F satisfies (CON). Then, R must be continuous over Rn

++. Since
F satisfies (SI), R satisfies the following property: for all x, y ∈ Rn

++ and
all λ ∈ Rn

++, xRy ⇔ (λ1x1, · · · , λnxn)R(λ1y1, · · · , λnyn). Then, following
Tsui and Weymark (1997) (see also Xu (2002)), there exist t1, · · · , tn such
that, for all x, y ∈ Rn

++, xRy ⇔
∏n

i=1 x
ti
i ≥

∏n
i=1 y

ti
i . By (E), it follows

that t1 > 0, · · · , tn > 0. Note that if yi = 0 for some i ∈ N , then xRy.
Therefore, R can be represented by a Cobb-Douglas function. Hence, F is
an asymmetric Nash solution. �

It may be noted that any single-valued asymmetric Nash solution violates
(CON). Let a single-valued asymmetric Nash solution F an be given as follows:
for all A ∈ Σ, F an(A) ∈ {x ∈ A|

∏n
i=1 x

ti
i ≥

∏n
i=1 y

ti
i for all y ∈ A}, where

ti > 0 for all i ∈ N . Consider x, y ∈ Rn
++ with

∏n
i=1 x

ti
i =

∏n
i=1 y

ti
i and

the problem B = comp{x, y}. Without loss of generality, let F an(B) =
x. Then, for all ε > 0, there exists z � 0 with ||z − x|| < ε, such that
F an (comp {z, y}) = y. This implies a violation of (CON).

In view of the above observation and from Theorem 2, we have the fol-
lowing impossibility result, a similar but different version is obtained in Pe-
ters and Vermeulen (2010) where they show the incompatibility of single-
valuedness of a solution with the axioms of Weak Efficiency, (SIR), (SI),
Contraction Independence and their continuity property.

Proposition 1. Suppose F is single-valued. Then, there is no F over Σ
satisfying (E), (SIR), (BCα), (BCβ), (SI) and (CON).
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Remark 7. Note that (CON) is indispensable in Theorem 2. Indeed, there
exists a solution satisfying (E), (SIR), (BCα), (BCβ) and (SI) while vio-
lating (CON). For instance, consider the following solution: for all A ∈ Σ,
F 3(A) = {x ∈ FN (A) | x ≥lex y for all y ∈ FN (A)}, where ≥lex is a usual
lexicographic relation. This solution satisfies (E), (SIR), (BCα), (BCβ), and
(SI), but violates (CON). By the definition, F 3 is neither an asymmetric
Nash nor the (symmetric) Nash solution.

Remark 8. Roth (1977) uses (SIR) to derive an asymmetric Nash solution
for convex bargaining problems. Zhou (1997) uses (SIR) together with Nash’s
IIA (which is stronger than our (BCα)) and (SI) to derive an asymmetric
Nash solution for nonconvex bargaining problems. In Zhou’s approach, a
solution is assumed to be single-valued. In our context with a multi-valued
solution, if we drop (E), the solution FWP− which is defined as, for any
A ∈ Σ, FWP−(A) = {x ∈ A∩Rn

++ | there exists no y ∈ A such that y � x},
satisfies (SIR), (BCα), (BCβ), and (SI). Thus, there are solutions other than
asymmetric Nash solutions satisfying (SIR), (BCα), (BCβ), and (SI). Note
that FWP− satisfies (CON).

Remark 9. Note that FWP− constructed in Remark 8 satisfies Weak Effi-
ciency, (SIR), (BCα), (BCβ), and (CON), and is different from any asym-
metric Nash solution. Therefore, in our Theorem 2, (E) cannot be weakened
to Weak Efficiency. This is in contrast with Theorem 5.2 in Peters and Ver-
meulen (2010) where they derive an asymmetric Nash solution by using Weak
Efficiency, (SI), (SIR), Contraction Independence (see, for example, Xu and
Yoshihara (2006) and Peters and Vermuelen (2010)), and their continuity
property for the domain that also contains finite bargaining problems. The
contrast between our Theorem 2 and Theorem 5.2 in Peters and Vermeulen
(2010) suggests a trade-off between ‘degrees’ of rationality and ‘degrees’ of
efficiency requirement.

Remark 10. It is interesting to note that, there are single-valued solu-
tions satisfying (E), (BCα), (BCβ) and (SI), which are different from asym-
metric Nash solutions. Let ≥lex be a standard lexicographic binary rela-
tion defined over Rn

+. Define the solution, F lex, as follows: for all A ∈ Σ,
F lex(A) = {x ∈ A | x ≥lex y for all y ∈ A}. This solution satisfies (E),
(BCα) (because the solution is rationalizable), (BCβ) (because the solution
is again rationalizable) and (SI). F lex is single-valued. Note that F lex vio-
lates (SIR) and (CON). This suggests that (E), (BCα), (BCβ), (SI) and the
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single-valuedness of a solution are not sufficient to derive asymmetric Nash
solutions.

Remark 11. It may be noted that the solution F lex defined in Remark 9
is rationalizable, and therefore, F lex satisfies Nash’s IIA (Independence of
Irrelevant Alternatives). Note that F lex is single-valued, and satisfies (E)
and (SI), and is different from any single-valued asymmetric Nash solution.
To see the difference between F lex and any single-valued asymmetric Nash
solution, consider the problem A = {x ∈ Rn

+|x1 + · · · + xn ≤ 1}. Then,
F lex ∈ {(1, 0, · · · , 0), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1)}, while any single-valued
asymmetric Nash solution will choose an x ∈ A such that xi > 0 for all i ∈ N .
Therefore, F lex serves as a counter-example to Theorem 2 of Denicolò and
Mariotti (2000) where they stated that any single-valued asymmetric Nash
solution can be derived from (E), (SI) and Nash’s IIA. In view of the solution
F lex, it is clear that (E), (SI) and Nash’s IIA together do not imply any
single-valued asymmetric Nash solution.

Remark 12. In Theorem 2, if we impose Anonymity (see, for example, Xu
and Yoshihara (2006), for a definition) on a solution F , then we obtain a
characterization of the (symmetric) Nash solution. It can be verified, how-
ever, that both (SIR) and (CON) are redundant if Anonymity is added and
that (E) can be replaced by Weak Efficiency. As a consequence, the symmet-
ric Nash solution is characterized by Weak Efficiency, (SI), (BCα), (BCβ)
and Anonymity.

5 Conclusion

In this paper, we have examined the implications of two weaker versions
of conditions α and β in the context of solutions to non-convex bargaining
problems. In particular, we have shown that, (i) under efficiency and strict
individual rationality, they are equivalent to rationalizable solutions, and (ii)
together with efficiency, strict individual rationality, scale invariance and a
weak continuity requirement, they characterize asymmetric Nash solutions.
Conditions α and β, together, characterize rationalizability of a choice func-
tion defined over the set of all non-empty subsets of a finite universal set in
terms of an ordering. It is therefore interesting to note that, in non-convex
bargaining problems, (BCα) and (BCβ) are associated with “rationalizabil-
ity” of a solution to bargaining problems. Our results clarify several issues
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relating to rationalizable solutions to nonconvex bargaining problems and
to asymmetric Nash bargaining solutions, make further connections between
two widely used rationality conditions in rational choice theory and solutions
to non-convex bargaining problems, and improve characterizations of Nash
solutions to nonconvex bargaining problems.
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