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Abstract
We consider the problem of the tragedy of commons in coopera-

tive production economies, and propose a mechanism to resolve this
tragedy, taking into account that the coordinator cannot perfectly
monitor each agent’s labor skill and each agent may have an incentive
to overstate as well as understate his own skill. Even in such a situ-
ation, the mechanism implements the proportional solution [Roemer
and Silvestre (1989, 1993)] in Nash and strong equilibria when it is
played as a normal form game. Moreover, the mechanism triply im-
plements the solution in Nash, subgame-perfect, and strong equilibria
when it is played as a two-stage extensive form game.
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1 Introduction

The fact that resource allocation under free access to technology results in
“overproduction” and inefficient Nash equilibria in cooperative production
economies is best known as the “tragedy of commons”. This paper provides
a mechanism that can solve this tragedy. As a normative solution for the
tragedy, we adopt the proportional solution [Roemer and Silvestre (1993)]
under joint ownership of the technology, which assigns Pareto efficient al-
locations, in which each agent’s output consumption is proportional to his
labor contribution. Then, we construct an incentive-compatible mechanism
that implements the proportional solution.
There are some works on the implementation of the proportional solution,

such as Suh (1995), Yoshihara (1999, 2000a), and Tian (2000), as well as of
other social choice correspondences in production economies.1 However, in
most of the literature on implementation in production economies, a nonneg-
ligible problem of asymmetric information in the production process appears
to be treated as a “black box.” Under any mechanism, each agent is usu-
ally required to provide some information, and the outcome function assigns
an allocation to each profile of agents’ strategies. This implicitly assumes,
in production economies with labor input, that the mechanism coordinator
is authorized to make agents supply their labor hours consistent with the
assigned allocation.2 This is because the original concern of implementation
theory was in regard to adverse selection problems, and such a focus was valid
whenever there was a decentralized resource allocation in exchange economies
and/or production economies with no labor input. However, in production
economies with labor input, this assumption is not realistic.
As an alternative, in this paper we assume that the coordinator is not

authorized to make agents work as he pleases; the coordinator can monitor
each agent’s labor hours, but the coordinator cannot perfectly monitor each
agent’s effective labor contribution measured in efficiency units, since the
coordinator is incapable of observing each agent’s labor skill exercised in
the production process. Thus, there may be an incentive for each agent

1For example, Hurwicz et al.(1995), Hong (1995), Tian (1999) for private ownership
production economies with only private goods, Varian (1994) for production economies
with the presence of an externality, and Kaplan and Wettstein (2000) and Corchón and
Puy (2002) for cooperative production economies.

2Roemer (1989) pointed out this assumption explicitly.
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to overstate or understate his own skill.3 Even under such a more realistic
model of the tragedy of commons, the mechanism proposed in this paper can
implement the solution.
This mechanism is a type of sharing mechanism: each agent can freely

supply his labor hours, and the agent is asked to provide some information
about his demand for the consumption good and his skill. Then, the outcome
function only distributes the produced output to agents, according to the
given information and the record of their supply of labor hours. In this
mechanism, there is no restriction on the strategy spaces that prohibits agents
from understating or overstating their skills. We will demonstrate that this
mechanism triply implements the proportional solution in Nash, strong Nash,
and subgame-perfect equilibria.
The basic model of economies and sharing mechanisms is defined in Sec-

tion 2. Section 3 provides a sharing mechanism that implements the propor-
tional solution. Concluding remarks are in Section 4. All proofs are provided
in the Appendix.

2 The Basic Model

There are two goods, one of which is an input (labor time) x ∈ R+ to be
used to produce the other good y ∈ R+.4 There is a set N = {1, . . . , n}
of agents, where 2 ≤ n < +∞. Each agent i0s consumption is denoted by
zi = (xi, yi), where xi denotes his labor time, and yi the amount of the
output to be consumed by i. All agents face a common upper bound of
labor time x̄ , where 0 < x̄ < +∞, and so have the same consumption set
Z ≡ [0, x̄] × R+. Each agent i0s preference is defined on Z and represented
by a utility function ui : Z → R, which is continuous and quasi-concave on
Z, and strictly monotonic (decreasing in labor time and increasing in the

3Tian (2000) constructed a mechanism that implements the proportional solution even
if the coordinator does not know the agents’ endowment vectors of commodities, under the
assumption that agents cannot overstate their endowments. As Tian (2000) mentioned,
such an assumption may be justified when endowments consist solely of material goods,
since the coordinator can require agents to “place the claimed endowments on the table”
(Hurwicz et al. (1995)). In our setting where endowments are labor skills, such a require-
ment is no longer valid, since the coordinator may not inspect the amount of skills in
advance of production.

4The symbol R+ denotes the set of non-negative real numbers.
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share of output) on
◦
Z≡ [0, x̄)×R++.5 We use U to denote the class of such

utility functions. Each agent i also has a labor skill which is represented
by a positive real number si ∈ R++. The universal set of skills for all agents
is denoted by S = R++. The labor skill si ∈ S implies i0s effective labor
supply per hour measured in efficiency units. Thus, if the agent’s supply
of labor time is xi ∈ [0, x̄] and the agent’s skill is si ∈ S, then sixi ∈ R+
represents the agent’s substantive contribution in labor supply to production.
The production technology is a function f : R+ → R+, which is continuous,
strictly increasing, concave with f (0) = 0. We choose an arbitrary such
production technology function f and keep it fixed in the sequel. Thus,
an economy is a pair of profiles e ≡ (u, s) with u = (ui)i∈N ∈ Un and
s = (si)i∈N ∈ Sn. Denote the class of such economies by E ≡ Un × Sn.
Given s ∈ Sn, an allocation z = (xi, yi)i∈N ∈ Zn is feasible for s ifP
yi ≤ f (

P
sixi). We denote by Z (s) the set of feasible allocations for

s ∈ Sn. An allocation z = (zi)i∈N ∈ Zn is Pareto efficient for e =
(u, s) ∈ E if z ∈ Z (s) and there does not exist z0 = (z0i)i∈N ∈ Z (s) such
that for all i ∈ N , ui (z0i) ≥ ui (zi), and for some i ∈ N , ui (z0i) > ui (zi). The
proportional solution [Roemer and Silvestre (1993)] is a correspondence
PR : E ³ Zn such that, for each e = (u, s) ∈ E , PR (e) stands for the set of
all allocations z=(xi, yi)i∈N ∈ Zn which are Pareto efficient for e such that,
for each i ∈ N , yi = sixiP

sjxj
f (
P
sjxj). An allocation z ∈ Zn is PR-optimal

for e ∈ E if z ∈ PR (e).

2.1 Sharing mechanisms

We are interested in mechanisms having the property of labor sovereignty
[Kranich (1994); Yoshihara (2000b)],6 which says that every agent can choose
freely his own labor time. As such, we focus on the following types of mecha-
nisms. For each i ∈ N , let his strategy space be Ai ≡Mi× [0, x̄], with generic
element (mi, xi). Note that here Mi stands for an abstract general message
space as in classical mechanisms, while the members of [0, x̄], which represent
i’s choice of labor time as part of his observable action, are also considered as
a strategic variable for i. Let A ≡ ×i∈NAi. Let w ∈ R+ be the total output
the coordinator observes after production. Then, a sharing mechanism is a

5The symbol R++ denotes the set of positive real numbers.
6The previous mechanisms such as Suh (1995), Yoshihara (1999, 2000a), Tian (2000)

do not have this property.
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function g : A× R+ → Rn+ such that for each (m,x) ∈ A and each w ∈ R+,
g (m,x, w) = y for some y ∈ Rn+. A sharing mechanism g is feasible if for
each (m,x) ∈ A and each w ∈ R+,

P
gi (m,x, w) ≤ w. We denote by G

the class of all (feasible sharing) mechanisms. In the following discussion,
we assume that the production technology function f is known and the to-
tal output after production is observable to the coordinator. Thus, for each
s ∈ Sn and each x ∈ [0, x̄]n, w = f (P sjxj) is known to the coordinator af-
ter production, without the true information about s.7 Then, g ∈ G implies
that for each s ∈ Sn and each (m,x) ∈ A, (x, g (m,x, f (P sjxj))) ∈ Z (s).
In the following discussion, for each g ∈ G, we simply write a value of g
as g (m,x) instead of g (m,x, f (

P
sjxj)) except for when we define new

mechanisms in G.
Given g ∈ G, a (feasible) sharing game is defined for each economy

e ∈ E as a non-cooperative game (N,A, g,e). Fixing the set of players N and
their strategy sets A, we simply denote a feasible sharing game (N,A, g,e)
by (g,e).
Given a profile (m,x) ∈ A, let (m0

i,m−i, x0i,x−i) ∈ A be another strategy
profile that is obtained by replacing the i-th component (mi, xi) of (m,x)
with (m0

i, x
0
i). A profile (m

∗,x∗) ∈ A is a (pure-strategy) Nash equilib-
rium of (g,e) if for each i ∈ N and each (mi, xi) ∈ Ai, ui (x∗i , gi (m∗,x∗)) ≥
ui
¡
xi, gi

¡
mi,m

∗
−i, xi,x

∗
−i
¢¢
. Let NE (g,e) denote the set of Nash equilib-

ria of (g,e). An allocation z = (xi, yi)i∈N ∈ Zn is a Nash equilibrium
allocation of (g,e) if there exists m ∈ M such that (m,x) ∈ NE (g,e)
and y = g (m,x), where x = (xi)i∈N and y = (yi)i∈N . Let NA (g,e) de-
note the set of Nash equilibrium allocations of (g,e). A mechanism g ∈ G
implements PR in Nash equilibria if for each e ∈ E , NA (g,e) = PR (e).
A profile (m∗,x∗) ∈ A is a (pure-strategy) strong (Nash) equilib-

rium of (g,e) if for each T ⊆ N and each (mi, xi)i∈T ∈ (Ai)i∈T , there exists
j ∈ T such that

uj
¡
x∗j , gj (m

∗,x∗)
¢ ≥ uj ¡xj, gj ¡(mi, xi)i∈T , (m

∗
k, x

∗
k)k∈T c

¢¢
.8

7Since the coordinator also knows f and x, he can figure out that the true skill profile
belongs to the hyperplane

©
s ∈ Sn | s·x = f−1 (w)ª. However, the exact location of the

true skill profile in this hyperplane cannot be figured out. Note that, to see which of the
feasible allocations are true PR-optimal allocations, one needs to know the information of
the true skill profile.

8For each T ⊆ N , #T denotes the number of agents in T . For each T ⊆ N , T c denotes
the complement of T in N .
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Let SNE (g,e) denote the set of strong equilibria of (g,e). An allocation z =
(xi, yi)i∈N ∈ Zn is a strong equilibrium allocation of (g,e) if there exists
m ∈ M such that (m,x) ∈ SNE (g,e) and y = g (m,x). Let SNA (g,e)
denote the set of strong equilibrium allocations of (g,e). A mechanism g ∈ G
implements PR in strong equilibria, if for each e ∈ E , SNA (g,e) =
PR (e). Moreover, a mechanism g ∈ G doubly implements PR in Nash
and strong equilibria if for each e ∈ E , NA (g,e) = SNA (g,e) = PR (e).

2.2 Timing problem in sharing mechanisms

Before discussing our own mechanism, we should mention the timing problem
of strategy-decision in real applications of mechanisms, which is particularly
relevant to the case of production economies. Note that m and x represent
different kinds of strategic actions: m is the list of agents’ announcements of
their private information, while x is their production activity from supplying
labor time. Thus, there may be a difference between the point in time when
m is announced and the time when x is exercised. It implies that there may
be at least two polar cases of time sequence with regard to decision making:
the agents may announce m before they engage in production, or they may
announce m after supplying x. The former enables each agent i to choose
his labor supply with knowledge of the announcementsm, whereas the latter
enables each agent i to choose mi with knowledge of the agents’ actions x in
the production process.
Thus, we should consider at least two types of two-stage game forms:

Given g ∈ G, the first two-stage extensive game form derived from g is a
feasible mechanism Γm◦xg in which Stage 1 consists of selectingm ∈M , Stage
2 consists of selecting x ∈ [0, x̄]n, and then (x, g (m,x)) is the outcome. The
second two-stage extensive game form derived from g is a feasible mechanism
Γx◦mg in which Stage 1 consists of selecting x ∈ [0, x̄]n, Stage 2 consists of
selectingm ∈M , and then (x, g (m,x)) is the outcome.
Given a two-stage game

¡
Γm◦xg ,e

¢
and a strategy profilem ∈M in Stage

1, let
¡
Γm◦xg (m) ,e

¢
be the corresponding Stage 2 subgame. A strategy

mapping χ : M → [0, x̄]n is a function such that for each m ∈ M , χ (m)
is a strategy profile of the subgame

¡
Γm◦xg (m) ,e

¢
. Let X be the set of such

mappings. A profile (m∗,χ∗) ∈ M × X is a (pure-strategy) subgame
perfect (Nash) equilibrium of

¡
Γm◦xg ,e

¢
if for each i ∈ N , eachmi ∈Mi,

6



each χ ∈ X with χ =
¡
χi,χ

∗
−i
¢
, and eachm ∈M ,

ui (χ
∗
i (m

∗) , gi (m∗,χ∗ (m∗))) ≥ ui
¡
χ∗i (mi,m

∗
−i), gi

¡
mi,m

∗
−i,χ

∗(mi,m
∗
−i)
¢¢

and ui (χ∗i (m) , gi (m,χ
∗ (m))) ≥ ui (χi(m), gi (m,χ(m))) ,

where χ∗i (m) (resp. χi (m)) is the i-th component of χ
∗ (m) (resp. χ (m))

in Stage 2 subgame induced by the choice m in Stage 1.
Given a two-stage game

¡
Γx◦mg ,e

¢
and a strategy profile x ∈ [0, x̄]n in

Stage 1, let
¡
Γx◦mg (x),e

¢
be the corresponding Stage 2 subgame. A strategy

mapping μ : [0, x̄]n →M is a function such that for each x ∈ [0, x̄]n, μ (x)
is a strategy profile of the subgame

¡
Γx◦mg (x) ,e

¢
. LetM be the set of such

mappings. A profile (μ∗,x∗) ∈M× [0, x̄]n is a (pure-strategy) subgame
perfect (Nash) equilibrium of

¡
Γx◦mg ,e

¢
if for each i ∈ N , each xi ∈ [0, x̄],

each μ ∈M with μ =
¡
μi,μ

∗
−i
¢
, and each x ∈ [0, x̄]n,

ui (x
∗
i , gi (μ

∗ (x∗) ,x∗)) ≥ ui
¡
xi, gi

¡
μ∗
¡
xi,x

∗
−i
¢
, xi,x

∗
−i
¢¢
,

and ui (xi, gi (μ∗ (x) ,x)) ≥ ui (xi, gi (μ (x) ,x)) .

Let SPE
¡
Γm◦xg ,e

¢
be the set of subgame perfect equilibria of

¡
Γm◦xg ,e

¢
.

An allocation z = (xi, yi)i∈N ∈ Zn is a subgame perfect equilibrium
allocation of

¡
Γm◦xg ,e

¢
if there exists (m,χ) ∈ SPE ¡Γm◦xg ,e

¢
such that

χ (m) = x and y = g (m,χ (m)). Let SPA
¡
Γm◦xg ,e

¢
be the set of subgame

perfect equilibrium allocations of
¡
Γm◦xg ,e

¢
. Given g ∈ G, Γm◦xg implements

PR in subgame perfect equilibria if for each e ∈ E , SPA ¡Γm◦xg ,e
¢
=

PR (e). Given g ∈ G, Γm◦xg triply implements PR in Nash, strong, and
subgame perfect equilibria if for each e ∈ E , NA (g,e) = SNA (g,e) =
SPA

¡
Γm◦xg ,e

¢
= PR (e).9 Parallel definitions apply to

¡
Γx◦mg ,e

¢
.

3 Implementation of the Proportional Solu-
tion

In the following, we impose two additional assumptions.

Assumption 1 (boundary condition): ∀i ∈ N , ∀zi ∈
◦
Z, ∀z0i ∈ [0, x̄] × {0},

ui (zi) > ui (z
0
i).

9This definition contains some abuse of language, as the implementation in Nash and
strong equilibria is achieved by the mechanism (g,e), while it is Γm◦xg that implements
PR in subgame perfect equilibria.
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Assumption 2: The production function f is continuously differentiable.

We denote by f 0 (x) the derivative of f at x.
The message space M of the mechanism in this paper is defined by M ≡

Sn×Rn+ with generic element (σ,y), where σ = (σi)i∈N , in which σi denotes
i’s reported skill, and y = (yi)i∈N , in which yi denotes i’s demand for output.

3.1 Nash and strong implementability

In this subsection, we will set aside the timing problem of sharing mecha-
nisms and propose a sharing mechanism as a normal form game form that
implements PR in Nash and strong equilibria. To propose our mechanism,
let us introduce two feasible sharing mechanisms, defined as follows:

• gπ ∈ G is such that for each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+, each w ∈ R+,
and each i ∈ N ,
gπi (σ,x,y, w) =

½
w if Π (x−i) 6= ∅, xi = π (x−i) , and yi > max {yj | j 6= i}
0 otherwise

where Π (x−i) ≡
©xj+x̄

2
| xj < x̄ for j 6= i

ª
and π (x−i) ≡ maxΠ (x−i).

• gσ ∈ G is such that for each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+, each w ∈ R+,
and each i ∈ N ,
gσi (σ,x,y, w) =

½
w if xi = 0, and σi > σj for all j 6= i,
0 otherwise.

The mechanism gπ ∈ G assigns all of the produced output to only one agent
who provides less than x̄ of labor time, but the maximal positive amount
among those who provide less than x̄ of labor time, and reports a maximal
amount of demand for the output, if there is such an agent at all. The
mechanism gσ ∈ G also assigns all of the produced output to only one agent
who reports the highest labor skill and provides no labor time.
Given (s,x,y) = (si, xi, yi)i∈N ∈ Sn × Zn, let PR (s,x,y)−1 ≡ {u ∈ Un |

(x,y) ∈ PR (u,s)}. If PR (s,x,y)−1 6= ∅, then (x,y) should be a PR-
optimal allocation for some economy with skill profile s. Let us call
such an (s,x,y) a PR-consistent profile. Note that if for all i ∈ N , yi =
sixiP
skxk

f (
P
skxk) and (x,y) is an interior allocation, then PR (s,x,y)

−1 6= ∅.
Given (s,x,y) ∈ Sn × Zn, let N (s,x,y) ≡ {i ∈ N | ∃ (s0i, x0i, y0i) ∈ S × Z s.t.
PR

¡
s0i, x

0
i, y

0
i, s−i,x−i,y−i

¢−1 6= ∅}. This N (s,x,y) is the set of potential
8



deviators under the profile (s,x,y), since any i ∈ N (s,x,y) can constitute
a PR-consistent profile with the others’ fixed strategies by switching his
strategy from (si, xi, yi). Given (s,x,y) ∈ Sn × Zn and i ∈ N (s,x,y), let
Si (s,x,y) ≡ {s0i ∈ S | ∃ (x0i, y0i) ∈ Z s.t. PR(s0i, x

0
i, y

0
i, s−i,x−i,y−i)

−1 6=
∅}. Note that Si (s,x,y) is closed and bounded from below, or otherwise,
Si (s,x,y) = S. The latter case occurs if and only if there exists b ∈ R++
such that

P
k 6=i skxk < b and f is linear on [0, b].

Given (s,x,y) ∈ Sn × Zn and i ∈ N (s,x,y), let (bsi, bxi, byi) ∈ S ×
Z be defined by bsi = argmins0i∈Si(s,x,y) | s0i − si |, 0 < bxi < x̄, and byi
with byi +Pj 6=i yj = f

³P
j 6=i sjxj + bsibxi´ and P

j 6=i yjbyi =
P
j 6=i sjxjbsibxi . Then,

PR(bsi, bxi, byi, s−i,x−i,y−i)−1 6= ∅. Note that such (bsi, bxi, byi) is well-defined:
first, bsi is uniquely determined, since if si ∈ Si (s,x,y), then bsi = si,
whereas if si /∈ Si (s,x,y), then Si (s,x,y) is bounded from below and bsi =
minSi (s,x,y). Second, once bsi is uniquely determined, then the other agents’
strategies together with bsi give us the information about i’s potential con-
sumption vector (bxi, byi) by the proportionality of the PR-optimal allocation.
We introduce g∗ ∈ G which works in each given w ∈ R+ as follows:

Let any (σ,x,y) = (σi, xi, yi)i∈N ∈ Sn × [0, x̄]n ×Rn+ be given.
Rule 1: If f (

P
σkxk) = w, then

1-1: if PR (σ,x,y)−1 6= ∅, then g∗ (σ,x,y, w) = y,
1-2: if PR (σ,x,y)−1 = ∅, and N (σ,x,y) 6= ∅, then
1-2-1: if #N (σ,x,y) > 1, then g∗ (σ,x,y, w) = 0,
1-2-2: if N (σ,x,y) = {j} for some j ∈ N , then
g∗j (σ,x,y, w) = min

n
max

n
0, byj + bsj · f 0 ³Pk 6=j σkxk + bsjbxj´ · (xj − x̂j)o , wo

and g∗i (σ,x,y, w) = 0 for any i 6= j, where PR(bsj, bxj, byj,σ−j,x−j,y−j)−1 6=
∅,
1-3: in any other case, g∗ (σ,x,y, w) = gπ (σ,x,y, w).

Rule 2: If f (
P

σkxk) 6= w, then g∗ (σ,x,y, w) = gσ (σ,x,y, w).

First, g∗ computes the expected output f (
P

σkxk) from the data (σ,x,y)
and compares this with the real output w. In the case where these two values
coincide, if (σ,x,y) is PR-consistent, then g∗ gives the agents their desired y
underRule 1-1; if (σ,x,y) is not PR-consistent, and there exists at least one
potential deviator, say j, then g∗ gives him at most a share of outcome avail-
able in the budget set with the supporting price bsj · f 0 ³Pk 6=j σkxk + bsjbxj´,
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while g∗ gives nothing to any other agents underRule 1-2; for any other case,
g∗ applies gπ under Rule 1-3. Finally, if f (

P
σkxk) and w are different,

then g∗ applies gσ under Rule 2.
It is easy to see that g∗ is forthright [Saijo et al. (1996)] and satisfies

best response property [Jackson et al. (1994)]. Moreover, g∗ is a quantity
type, and so self-relevant [Hurwicz (1960)]. It is also easy to check that g∗

is feasible.
Let us briefly explain how g∗ induces true information about skills. This

g∗ has to distribute the total output f (
P
skxk) according to (σ,x,y), where

(sk)k∈N stands for the true skill profile and the coordinator cannot know
whether σ = s or not. If f (

P
σkxk) 6= f (

P
skxk), however, then clearly

σ 6= s, and there is at least one agent, say j ∈ N , such that σj 6= sj and
xj > 0. Then, this agent is definitely punished underRule 2. Next, consider
the case where f (

P
σkxk) = f (

P
skxk) but σ 6= s. Then, there are either

at least two agents i, j ∈ N such that σi 6= si, σj 6= sj, xi > 0, and xj > 0, or
else there exists an agent j ∈ N such that σj 6= sj and xj = 0. If the latter
case is applied, then the agents such as j will be punished under Rule 1-2
or Rule 1-3. If the former case is applied, then one of the agents, j ∈ N ,
with σj 6= sj can induceRule 2 by switching from xj > 0 to x0j = 0, together
with announcing a higher number σ0j 6= sj than any other σ−j. Thus, this
case may not correspond to an equilibrium. The following lemma actually
confirms this insight:

Lemma 1: Let g∗ ∈ G be given. Given (u,s) ∈ E , let (σ,x,y) ∈ Sn ×
[0, x̄]n × Rn+ be a Nash equilibrium of (g∗,u,s) such that f (

P
σkxk) =

f (
P
skxk). Then, it follows that for all i ∈ N with xi > 0, σi = si.

Now, we examine the performance of g∗.

Theorem 1: Let Assumptions 1 and 2 hold. Now the mechanism g∗ imple-
ments PR in Nash and strong equilibria.

Note that g∗ works even in economies of two agents.

3.2 Implementation of the proportional solution with
the timing problem

Because of the timing problem discussed in Section 2.2, g∗ may be played as
Γ
(σ,y)◦x
g∗ or Γx◦(σ,y)g∗ . In this situation, the coordinator may not know in ad-
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vance the information structure of the two-stage game induced by Γ(σ,y)◦xg∗ or

Γ
x◦(σ,y)
g∗ , even if the coordinator has control over the number of stages in the
mechanism: this information structure among agents may be characterized
as perfect information, or as complete but imperfect information about Stage
1. If the game is played as one with perfect information (resp. complete but
imperfect information), we should consider subgame-perfect equilibria (resp.
Nash equilibria) in the two-stage game. For instance, let us assume that the
stage of announcing (σ,y) to the coordinator is in advance of production,
in which x is supplied, and the information (σ,y) is not made public by
the coordinator until the end of the production process. If this is effectively
enforced, then the coordinator may be concerned with Nash and strong im-
plementation only. Such a scenario implicitly assumes that the coordinator
can effectively obstruct any private communication regarding (σ,y) among
agents until the end of the production process. However, the coordinator
may not be able to effectively wield this power, and agents could privately
communicate with each other regarding (σ,y). This is one case that the
coordinator cannot control the information structure among agents. In such
a situation, the double implementability by Γ

(σ,y)◦x
g∗ (resp. Γx◦(σ,y)g∗ ) in Nash

and subgame-perfect equilibria would be strongly attractive, since it keeps
the desirable performance of the mechanism without relying on the informa-
tion structure among agents:

Theorem 2: Let Assumptions 1 and 2 hold. Now the mechanism Γ
(σ,y)◦x
g∗

doubly implements PR in Nash and subgame-perfect equilibria.

Theorem 3: Let Assumptions 1 and 2 hold. Now the mechanism Γ
x◦(σ,y)
g∗

doubly implements PR in Nash and subgame-perfect equilibria.

By the three theorems discussed above, we can summarize as follows:

Corollary: Let Assumptions 1 and 2 hold. Now both of the mechanisms
Γ
(σ,y)◦x
g∗ and Γ

x◦(σ,y)
g∗ respectively triply implement PR in Nash, subgame-

perfect, and strong equilibria.

This result implies that g∗ implements PR even if it permits each agent
various kinds of freedom: the agent may choose freely his own supply of
labor time; the agent is permitted to overstate his labor skill; the agent
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can behave unilaterally or coalitionally; and the agent can behave strong-
rationally, as in the subgame-perfect response, or weak-rationally, as in the
Nash-like response.10

4 Concluding Remarks

We have proposed a feasible sharing mechanism that triply implements the
proportional solution in Nash, subgame-perfect, and strong equilibria, even
when agents can understate or overstate their labor skills. The performance
of our mechanism is summarized in Table 1, which provides a comparison
with other relevant mechanisms.

Insert Table 1 around here.

As revealed in Table 1, our mechanism has two undesirable features. First,
it lacks continuity. Second, the mechanism fails to meet balancedness or
nonwastefulness. One reason of the second undesirability is that the mech-
anism permits agents to both overstate and understate their labor skills.
Thus, it is difficult to find the deviator when only aggregate information
(f (

P
σkxk) and f (

P
skxk)) is available. Therefore, the mechanism basi-

cally punishes all agents when there is a deviator. The other reason is that
this mechanism is characterized by labor sovereignty. The labor sovereignty
mechanism should accept a profile of the agents’ choice of labor time as an
outcome, even when it may constitute a nondesirable allocation. Thus, if
the mechanism needs to punish potential deviators, this is only possible by
reducing their share of output, which leads to the violation of balancedness.
We surmise that there may be a trade-off between labor sovereignty and bal-
ancedness. However, it remains an open question whether or not there exists

10Let us point out this more precisely. Note that intermediate situations may happen
where some agents behave unilaterally, and others coalitionally. For instance, let H be
a subset of the power set of N , which is the set of admissible coalitions, and consider
an equilibrium relative to H, i.e. message-action profiles upon which no coalition in H
can improve. When H stands for the set of all singletons, the equilibrium relative to H
becomes the Nash equilibrium, while it becomes the strong equilibrium in case H is the
set of all coalitions. The problem is that the mechanism coordinator may not expect what
equilibrium notions the agents choose in the play of the game, since he has no information
about the structure of H. However, once a doubly-implementing mechanism is provided,
such a difficulty is resolved, which gives us a motivation for the double implementation in
Nash and strong equilibria.
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a mechanism that satisfies both labor sovereignty and balancedness, and at
the same time implements the proportional solution.

5 Appendix

Proof of Lemma 1. Suppose there exists j ∈ N with σj 6= sj and xj > 0.
Let NL (σ) be the set of such j. Since f (

P
σkxk) = f (

P
skxk), NL (σ) is

not a singleton. Moreover, for each j ∈ NL (σ), y0j = f
³P

i6=j sixi
´
> 0 by

σ0j > max {σi | i 6= j} and x0j = 0 under Rule 2. Note that

X
j∈NL(σ)

y0j =
X

j∈NL(σ)
f

ÃX
i6=j

sixi

!
=
X

j∈NL(σ)
f

⎛⎝ X
i∈NL(σ)\{j}

sixi+
X

i/∈NL(σ)
sixi

⎞⎠
≥

X
j∈NL(σ)

f

⎛⎝sjxj+ X
i/∈NL(σ)

sixi

⎞⎠ (since NL (σ) is not a singleton)

≥ f

⎛⎝ X
j∈NL(σ)

⎛⎝sjxj+ X
i/∈NL(σ)

sixi

⎞⎠⎞⎠ (since f is concave and f (0) ≥ 0)

≥ f

⎛⎝ X
j∈NL(σ)

sjxj+
X

i/∈NL(σ)
sixi

⎞⎠ ≥ X
j∈NL(σ)

yj ≡
X

j∈NL(σ)
g∗j (σ,x,y) .

If there exists j ∈ NL (s) such that y0j > yj, then j has an incentive to switch
from xj to x0j = 0 and report σ0j > max {σi | i 6= j}. If y0j = yj for each
j ∈ NL (σ), then each j ∈ NL (σ) has an incentive to switch from xj to
x0j = 0, since uj(x

0
j, y

0
j) = uj(0, yj) > uj(xj, yj) by the strict monotonicity of

utility functions. Thus, in any case, it contradicts the fact that (σ,x,y) is
a Nash equilibrium.

Proof of Theorem 1.
(1) Show PR (u, s) ⊆ NA (g∗,u,s) for each (u,s) ∈ E . Let z = (x,y) ∈
PR (u, s). If the strategy profile is (s,x,y) ∈ Sn × [0, x̄]n × Rn+, then
g∗ (s,x,y) = y by Rule 1-1. Since sÀ 0 and z is an efficient proportional
allocation,Assumption 1 implies xÀ 0 and g∗i (s,x,y) > 0 for each i ∈ N .
Suppose that j ∈ N deviates from (sj, xj, yj) to

¡
σ0j, x

0
j, y

0
j

¢ ∈ S× [0, x̄]×R+.
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Note first that the deviation cannot induce Rule 1-3. If the deviation
results in Rule 1-2-1, then g∗j

¡
σ0j, x

0
j, y

0
j, s−j,x−j,y−j

¢
= 0. If the deviation

induces Rule 2, then x0j > 0. Hence, g
∗
j

¡
σ0j, x

0
j, y

0
j, s−j,x−j,y−j

¢
= 0 under

Rule 2.
If the deviation induces Rule 1-2-2 with σ0j 6= sj, then x0j = 0. Thus,

g∗j
¡
σ0j, x

0
j, y

0
j, s−j,x−j,y−j

¢ ≤ byj−bsjbxj·f 0 ³Pi6=j sixi + bsjbxj´ by some (bsj, bxj, byj) ∈
S × [0, x̄] × R+ such that PR

¡bsj, bxj, byj, s−j,x−j,y−j¢−1 6= ∅. Suppose

f
³P

i6=j sixi + bsjbxj´ 6= f
³P

i6=j sixi + sjxj
´
. Since PR (s,x,y)−1 6= ∅,

f(
P
i6=j sixi+bsjbxj)P
i6=j sixi+bsjbxj =

P
i6=j yiP
i6=j sixi

=
f(
P
i 6=j sixi+sjxj)P
i 6=j sixi+sjxj

. Since f is concave, f must

be linear on a closed interval
h
0,max

nP
i6=j sixi + bsjbxj,Pi 6=j sixi + sjxj

oi
.

Hence, byj−bsjbxj·f 0 ³Pi6=j sixi + bsjbxj´ = 0. Thus, g∗j ¡σ0j, x0j, y0j, s−j,x−j,y−j¢ ≤
0. Next, suppose that f

³P
i6=j sixi + bsjbxj´ = f

³P
i6=j sixi + sjxj

´
. This

implies bsjbxj = sjxj and byj = yj. Thus, g∗j
¡
σ0j, x

0
j, y

0
j, s−j,x−j,y−j

¢ ≤byj − bsjbxj · f 0 ³Pi6=j sixi + bsjbxj´ = yj − sjxj · f 0 (P skxk).

Consider the case where the deviation induces Rule 1-2-2 with σ0j = sj.

Since
f(
P
i 6=j sixi+sjbxj)P
i6=j sixi+sjbxj =

P
i 6=j yiP
i6=j sixi

=
f(
P
i6=j sixi+sjxj)P
i6=j sixi+sjxj

by PR (s,x,y)−1 6= ∅,
f 0
³P

i6=j sixi + sjbxj´ = f 0 ³Pi6=j sixi + sjxj
´
. Thus, g∗j

¡
s, x0j,x−j, y

0
j,y−j

¢ ≤
yj + sj · f 0 (

P
skxk) ·

¡
x0j − xj

¢
.

Next, if the deviation induces Rule 1-1, then σ0j = sj. This is because

σ0j 6= sj implies x0j = 0 underRule 1-1, which contradicts PR
¡
σ0j, x

0
j, y

0
j, s−j,x−j,y−j

¢−1 6=
∅ byAssumption 1. However, if the deviation inducesRule 1-1 with σ0j =

sj, then f must be linear on a closed interval
h
0,max

nP
skxk,

P
i6=j sixi + sjx

0
j

oi
,

and we obtain g∗j
¡
s, x0j,x−j, y

0
j,y−j

¢ ≤ yj + sj · f 0 (P skxk) ·
¡
x0j − xj

¢
. In

summary, by Assumption 1 and Pareto efficiency of z, no agent has an
incentive to deviate from (s,x,y).

(2) Show NA (g∗,u,s) ⊆ PR (u, s) for each (u, s) ∈ E . Let (σ,x,y) ∈
NE (g∗,u,s).
Suppose that (σ,x,y) corresponds toRule 2. LetN0 (x) ≡ {i ∈ N | xi = 0}.

If N0 (x) = ∅, then g∗i (σ,x,y) = 0 for all i ∈ N . Then, there exists j ∈ N
such that

P
i6=j σixi 6=

P
i6=j sixi. Thus, g

∗
j

¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 with

σ0j > max {σi | i ∈ N} and x0j = 0 under Rule 2. If #N0 (x) ≥ 2, then for
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any j ∈ N0 (x), g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
= f (

P
skxk) by x0j = 0 and σ

0
j >

max {σi | i 6= j} under Rule 2. If #N0 (x) = 1 and #N\N0 (x) ≥ 2, then
there exists j ∈ N\N0 (x) such that

P
i∈N\(N0(x)∪{j}) σixi 6=

P
i∈N\(N0(x)∪{j}) sixi.

Thus, g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 by σ0j > max {σi | i ∈ N} and x0j = 0

underRule 2. IfN0 (x) = {i} andN\N0 (x) = {j}, then g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
>

0 by σ0j = sj, x
0
j =

x
2
, and y0j > max

©
yi, f

¡
sjx

0
j

¢ª
under Rule 1-3. In sum-

mary, no profile of strategies can constitute a Nash equilibrium in Rule 2.
Suppose that (σ,x,y) corresponds toRule 1-3. Then, g∗j (σ,x,y) = 0 for

some j ∈ N . If either xj = 0 or σj = sj, then g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0

by σ0j = sj, x
0
j = π (x−j), and y0j > max

©
f
¡
sjx

0
j

¢
, max {yi | i 6= j}

ª
under

Rule 1-3. If xj > 0 and σj 6= sj, then g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 by

σ0j > max {σi | i ∈ N} and x0j = 0 under Rule 2.
Suppose that (σ,x,y) corresponds to Rule 1-2-1. Then, g∗i (σ,x,y) = 0

for each i ∈ N . Note xj = 0 for some j ∈ N implies N (σ,x,y) =
{j} or N (σ,x,y) = ∅. Hence x À 0. For each j ∈ N with σj =
sj, g∗j

¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 by σ0j = sj, x0j = π (x−j), and y0j >

max
©
f
¡
sjx

0
j

¢
, max {yi | i 6= j}

ª
under Rule 1-3 or Rule 1-2-2. Also,

for each j ∈ N with σj 6= sj, g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 by σ0j >

max {σi | i ∈ N} and x0j = 0 under Rule 2.
Suppose that (σ,x,y) corresponds toRule 1-2-2. Then, N\N (σ,x,y) 6=

∅, and xi > 0 and g∗i (σ,x,y) = 0 for each i ∈ N\N (σ,x,y). For each
j ∈ N\N (σ,x,y) with σj = sj, g∗j

¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0 by σ0j = sj,

x0j = π (x−j), and y0j > max
©
f
¡
sjx

0
j

¢
, max {yi | i 6= j}

ª
under Rule 1-3.

Also, for any j ∈ N\N (σ,x,y) with σj 6= sj, g∗j
¡
σ0j, x

0
j, y

0
j,σ−j,x−j,y−j

¢
> 0

by σ0j > max {σi | i ∈ N} and x0j = 0 under Rule 2.
Thus, (σ,x,y) corresponds to Rule 1-1. Then, g∗ (σ,x,y) = y, which

implies g∗i (σ,x,y) =
σixiP
σkxk

f (
P
skxk) for each i ∈ N . By Assumption

1, x À 0. Moreover, f (
P

σkxk) = f (
P
skxk). Therefore, by Lemma 1,

σ = s. Since (σ,x,y) ∈ NE (g∗,u,s), for each i ∈ N and each (σ0i, x
0
i, y

0
i) ∈

S × [0, x̄]× R+, ui (xi, g∗i (σ,x,y)) ≥ ui
¡
x0i, g

∗
i

¡
σ0i, x

0
i, y

0
i,σ−i,x−i,y−i

¢¢
. For

each i ∈ N , g∗i
¡
σ0i, x

0
i, y

0
i,σ−i,x−i,y−i

¢ ≤ yi + si · f 0 (P skxk) · (x0i − xi) by
σ0i = si and y0i = 0 under Rule 1-2-2. Thus, (x,y) is Pareto efficient for
(u, s), so that (x,y) ∈ PR (u, s).
(3) Show SNA (g∗,e) = NA (g∗,e) for each e ∈ E . By definition, SNA (g∗,e) ⊆
NA (g∗,e). Suppose SNA (g∗,e) ( NA (g∗,e). Then, there exists (σ,x,y) ∈
NE (g∗,e) such that for some T ( N and some (σ0i, x

0
i, y

0
i)i∈T ∈ S#T ×
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[0, x̄]#T ×R#T+ , and each j ∈ T ,

uj
¡
xj, g

∗
j (σ,x,y)

¢
< uj

³
x0j, g

∗
j

³
(σ0i, x

0
i, y

0
i)i∈T , (σl, xl, yl)l∈N\T

´´
.

Since (σ,x,y) ∈ NE (g∗,e) corresponds to Rule 1-1 as shown above,
(σ,x,y) is PR-consistent, so that x À 0 under Assumption 1. Hence,
σ = s by Lemma 1. Note also that T = N is eliminated by Pareto efficiency
of NA (g∗,e). By construction of g∗, there is at most one agent who has
a positive share of output under Rules 1-2-1, 1-2-2, 1-3, and 2. Since
g∗i (s,x,y) > 0 for all i ∈ N ,

³
(σ0i, x

0
i, y

0
i)i∈T , (sl, xl, yl)l∈N\T

´
corresponds to

Rule 1-1 by Assumption 1. Then, f must be linear on a closed intervalh
0,max

nP
skxk,

P
i∈T σ

0
ix
0
i +
P

l∈N\T slxl
oi
, and we obtain

g∗j
³
(σ0i, x

0
i, y

0
i)i∈T , (sl, xl, yl)l∈N\T

´
≤ wj + sj · f 0

³X
skxk

´
· ¡x0j − xj¢

for some j ∈ T . Thus, by Pareto efficiency of (x, g∗ (s,x,y)), NA (g∗,e) =
SNA (g∗,e).

Proof of Theorem 2. Since NA (g∗,e) = PR (e) for each e ∈ E , we have
only to show PR (e) ⊆ SPA

³
Γ
(σ,y)◦x
g∗ ,e

´
for each e ∈ E . First, we show that

in every Stage 2-subgame, there exists a Nash equilibrium. Let a strategy
mapping χ∗ : Sn ×Rn+ → [0, x̄]n be such that for each

³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
:

for all i ∈ N , χ∗i (σ,y) =
⎧⎨⎩ x

2

if yi > max {yk | k 6= i} , σi = si, and
N
¡
σ,
¡
x
2
,0−i

¢
,y
¢
= ∅

0 otherwise
.

Note g∗ (σ,χ∗ (σ,y) ,y) corresponds to Rule 1-3. To simplify the notation,
let us denote x∗ = χ∗ (σ,y) in the following discussion.
Suppose that i ∈ N switches from x∗i to x

0
i. Note that this deviation does

not induce Rule 1-1. If x0i induces Rule 1-2-2, then g∗i
¡
σ, x∗0i ,x

∗
−i,y

¢ ≤
g∗i (σ,x

∗,y), because i /∈ N ¡σ, ¡x0i,x∗−i¢ ,y¢. If x0i inducesRule 2, then x0i >
0, so that g∗i

¡
σ, x0i,x

∗
−i,y

¢
= 0. If x0i inducesRule 1-3, then g

∗
i

¡
σ, x0i,x

∗
−i,y

¢ ≤
g∗i (σ,x

∗,y). To see this, let us assume that an agent, say j, has a positive
output in g∗ (σ,x∗,y). Then, yj > max {yk | k 6= j}. Since x∗ =

¡
x
2
,0−j

¢
,

and g∗ (σ,x∗,y) corresponds to Rule 1-3, N
¡
s,
¡
x
2
,0−j

¢
,w
¢
= ∅. Thus,
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if i = j, then x∗i =
x
2
is the best response to 0−i in

³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
. If

i 6= j, then g∗i
¡
σ, x0i,x

∗
−i,y

¢
= 0. Thus, x∗ ∈ NE

³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
.

Now, we will demonstrate that for each e = (u,s) ∈ E , if bz = (bx,by) ∈
PR (e), then there exists a subgame-perfect equilibrium whose corresponding

outcome is bz. Consider the following strategy profile of ³Γ(σ,y)◦xg∗ ,e
´
:

(1) In Stage 1, (σ,y) = (s, by).
(2) In Stage 2, χ : Sn ×Rn+ → [0, x̄]n is given as follows:
(2-1): if (σ,y) = (s, by) in Stage 1, then χ (σ,y) = bx;
(2-2): if (σ,y) =

¡¡
s0j, s−j

¢
,
¡
y0j, by−j¢¢ is such that s0j = sj, y0j 6= byj, and for

each i 6= j, y0j ≥ yi in Stage 1, then for this j ∈ N ,

χj (σ,y) = arg max
x0j∈[0,x̄]

uj
¡
x0j, g

∗
j

¡
s, x0j, bx−j, y0j, by−j¢¢

and for all i 6= j, χi (σ,y) = bxi;
(2-3): in any other case, χ (σ,y) = χ∗ (σ,y).

If the subgame
³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
corresponds to (2-1), then

χ (σ,y) ∈ NE
³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
. This is because (bx, by) ∈ NA (g∗,e) by

Theorem 1. Also, by the above argument, χ (σ,y) ∈ NE
³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
in the subgame (2-3) of Stage 2.

Suppose that
³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
corresponds to (2-2). Then, g∗ (σ,χ (σ,y) ,y)

corresponds to Rule 1-1 or Rule 1-2, since j ∈ N ¡s, x0j, bx−j, y0j, by−j¢ or
PR

¡
s, x0j, bx−j, y0j, by−j¢−1 6= ∅ for any x0j ∈ [0, x̄]. If g∗ (σ,χ (σ,y) ,y) corre-

sponds toRule 1-1, then f must be linear on
h
0,max

nP
skbxk,Pi6=j sibxi + sjx0joi,

which implies the Pareto efficiency of
¡¡
x0j, bx−i¢ , ¡y0j, by−j¢¢. Thus, χ (σ,y) ∈

NE
³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
. If g∗ (σ,χ (σ,y) ,y) corresponds toRule 1-2, then

χj (σ,y) = 0 is a best response to bx−j in ³Γ(σ,y)◦xg∗ (σ,y) ,e
´
. This is be-

cause N
¡
s, 0, bx−j, y0j, by−j¢ = {j}, and so g∗ (σ,χ (σ,y) ,y) corresponds to

Rule 1-2-2. For any other i 6= j, any deviation from bxi to x0i results in
g∗i
¡
σ, x0i,χ−i (σ,y) ,y

¢
= 0. Thus, χ (σ,y) ∈ NE

³
Γ
(σ,y)◦x
g∗ (σ,y) ,e

´
.

Now, let us see that the above strategy profile (1)-(2) constitutes a

subgame-perfect equilibrium of
³
Γ
(σ,y)◦x
g∗ ,e

´
. By the strategy profile (1)-
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(2) of
³
Γ
(σ,y)◦x
g∗ ,e

´
, g∗ (σ,χ (σ,y) ,y) = g∗ (s, bx,by) = by. Suppose that

j ∈ N switches from (sj, byj) to ¡s0j, y0j¢ in Stage 1. Then by (2-2) and (2-
3), g∗j

¡
s0j, s−j,χ

¡
s0j, s−j, y

0
j, by−j¢ , y0j, by−j¢ ≤ byj + sj · f 0 (P skbxk) · ¡x0j − bxj¢.

Thus, since (bx,by) ∈ PR (e), (bx,by) ∈ SPA³Γ(σ,y)◦xg∗ ,e
´
.

Proof of Theorem 3. Since NA (g∗,e) = PR (e) for each e ∈ E , we have
only to show PR (e) ⊆ SPA

³
Γ
x◦(σ,y)
g∗ ,e

´
. First, we will show that in every

Stage 2-subgame, there is a Nash equilibrium.
Given e = (u,s) ∈ E , let a strategy mapping μ∗ : [0, x̄]n → Sn × Rn+ be

such that for each
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
, μ∗ (x) = (σ∗,y∗), where for each i ∈ N :

(σ∗i , y
∗
i ) =

½
(si, 0) if xi 6= π (x−i)
(si, f (sixi) + 1) otherwise

.

Suppose that i ∈ N switches from (σ∗i , y
∗
i ) to (σ

0
i, y

0
i). Note that g

∗ (σ∗,x,y∗)
corresponds to Rule 1-3. Thus, i cannot induce Rule 1-1 by changing
his strategy. If (σ0i, y

0
i) induces Rule 1-2-2, then g∗i

¡
σ0i,σ

∗
−i,x, y

0
i,y

∗
−i
¢
= 0,

because i /∈ N ¡σ0i,σ∗−i,x, y0i,y∗−i¢. If (σ0i, y0i) induces Rule 2, then xi > 0,
which implies g∗i

¡
σ0i,σ

∗
−i,x, y

0
i,y

∗
−i
¢
= 0. If (σ0i, y

0
i) induces Rule 1-3, then

g∗i
¡
σ0i,σ

∗
−i,x, y

0
i,y

∗
−i
¢ ≤ g∗i (σ∗,x,y∗), since whether xi = π (x−i) or not is

already fixed in Stage 1. Thus, (σ∗,y∗) ∈ NE
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
.

Now, we will show that if bz = (bx,by) ∈ PR (e), then there exists a
subgame-perfect equilibrium whose corresponding outcome is bz. Consider
the following strategy profile of

³
Γ
x◦(σ,y)
g∗ ,e

´
:

(1) In Stage 1, each i ∈ N supplies bxi > 0.
(2) In Stage 2, μ : [0, x̄]n → Sn ×Rn+ is given as follows:
(2-1): if x = bx in Stage 1, then μ (x) = (s,by);
(2-2): if x =

¡
x0j, bx−j¢À 0, where x0j 6= bxj in Stage 1, then

for j ∈ N , μj (x) =
¡
sj, f

¡
sjx

0
j

¢
+ 1
¢
,

for all i 6= j, μi (x) =

(
(si, byi) if xi 6= π (x−i)³
si, f

³P
k 6=j skbxk + sjx0j´´ otherwise

;

(2-3): in any other case, μ (x) = μ∗ (x).

18



If the subgame
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
corresponds to (2-1), then (s,by) ∈ NE ³Γx◦(σ,y)g∗ (x) ,e

´
.

This is because (bx, by) ∈ NA (g∗,e) by Theorem 1. Also, by the above argu-

ment, μ∗ (x) ∈ NE
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
in the subgame (2-3) of Stage 2.

Suppose that
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
corresponds to (2-2), and h ∈ N switches

from μh (x) to (s0h, y
0
h). First, if s

0
h 6= sh, then g∗h

¡
s0h, y

0
h,μ−h (x) ,x

¢
= 0

under Rule 2. Secondly, consider the following two cases:
(i) For all i 6= j, xi 6= π (x−i). Then, g∗ (μ (x) ,x) corresponds to Rule 1-2-
2. If h 6= j and (s0h, y0h) inducesRule 1-2-2 orRule 1-3, then g∗h

¡
s0h, y

0
h,μ−h (x) ,x

¢
=

0. Note if h 6= j, then (s0h, y
0
h) cannot induce Rule 1-1. If h = j and

(s0h, y
0
h) induces Rule 1-2-2 or Rule 1-1, then g

∗
h

¡
s0h, y

0
h,μ−h (x) ,x

¢ ≤byh + sh · f 0 (P skbxk) · (x0h − bxh). Note if h = j, then (s0h, y0h) cannot induce
Rule 1-3. Thus, μ (x) ∈ NE

³
Γ
x◦(σ,y)
g∗ (x) ,e

´
.

(ii) There exists i∗ 6= j with xi∗ = π (x−i∗). Then, g∗ (μ (x) ,x) corre-
sponds to Rule 1-3. Then, (s0h, y

0
h) cannot induce Rule 1-1. If (s

0
h, y

0
h)

induces Rule 1-2-2, this implies h = i∗ or h = j. Thus, since h /∈
N
¡
s0h, y

0
h,μ−h (x) ,x

¢
, g∗h

¡
s0h, y

0
h,μ−h (x) ,x

¢
= 0. If (s0h, y

0
h) induces Rule

1-3, then g∗h
¡
s0h, y

0
h,μ−h (x) ,x

¢ ≤ g∗ (μ (x) ,x), since xi∗ = π (x−i∗) is al-

ready fixed in Stage 1. Thus, μ (x) ∈ NE
³
Γ
x◦(σ,y)
g∗ (x) ,e

´
.

Now, let us see that the above strategy profile (1)-(2) constitutes a

subgame-perfect equilibrium of
³
Γ
x◦(σ,y)
g∗ ,e

´
. By the strategy profile (1)-

(2) of
³
Γ
x◦(σ,y)
g∗ ,e

´
, g∗ (μ (bx) , bx) = g∗ (s, bx, by) = by. Suppose that j ∈

N deviates from bxj to x0j 6= bxj in Stage 1. If x0j = 0, then by (2-3),
g∗j
¡
μ
¡
x0j, bx−j¢ , ¡x0j, bx−j¢¢ = 0. If x0j > 0, then by (2-2), g∗j ¡μ ¡x0j, bx−j¢ , ¡x0j, bx−j¢¢ ≤byj + sj · f 0 (P skbxk) · ¡x0j − bxj¢. Thus, since (bx,by) ∈ PR (e), (bx,by) ∈

SPA
³
Γ
x◦(σ,y)
g∗ ,e

´
.
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Suh
(1995)
Yoshihara
(1999)
Yoshihara
(2000)

Kaplan-
Wettstein
(2000)

Tian
(2000)
Corchon-
Puy
(2002)

our
mechanism

equilibrium
notions*

NA
SNA
UNA

NA
SNA
UNA

NA
SNA

SPA
NA
SNA

NA
NA
SNA
SPA

# of goods 2 2 2 or more 2 2 or more 2 2
# of agents 2 or more 3 or more 3 or more 3 or more 2 or more 3 or more 2 or more
permission of
overstatement of
skills

no no no no no no yes

permission of
understatement
of skills

no no no no yes no yes

labor sovereignty no no no no no no yes
feasibility yes yes yes yes yes yes yes
self-relevancy no yes yes no no no yes
best response
property

no yes yes no no yes yes

forthrightness no yes yes yes yes yes yes
balancedness no yes yes no no yes no
continuity no no no no yes no no

Table 1: Performance of mechanisms implementing solutions for the tragedy of commons

* NA , SNA , UNA , and SPA  mean Nash implementability, strong Nash implementability,
undominated Nash implementability, and subgame-perfect implementability respectively.


