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1 Introduction

In many applied economic models, we need to conduct �integration�. For ex-
ample, in continuous time dynamic models such as Ramsey�s optimal growth
model, the utility function is de�ned as an integral over time. When aggregating
the entire economy over continuously many agents, the aggregate consumption
or income is de�ned as an integral over agents. But most frequently, integra-
tion becomes an important when we include stochastic factor in our model.
The Euler equation for intertemporal optimization becomes an integral over a
random variable. To obtain the permanent income, we also need integrations if
there are any uncertainty in future income. The maximum likelihood estimators
is nothing but the optimization of an integral. Whenever we want to solve an
economic model with uncertainty or heterogeneity, some forms of integration is
necessary.

2 Simple Numerical Integration

Numerical integration is much easier to implement than numerical di¤erentia-
tion. A very intuitive method is the midpoint estimator, which is easy to under-
stand because it is very similar to the de�nition of Riemann-Integral. Basically,
the midpoint estimator is an approximation of a venation by a rectangular. Take
a look at Figure 1. We are interested in an integration of a function f (x) from
a to b. The value of the integration is illustrated as the area between function
f (x) and the x-axis. Suppose we know that the function passes points A, C,
and D. C is ((b� a) =2; f ((b� a) =2)) ;that is, y axis of C is the value of f (x)
at the midpoint of the interval between a and b. One candidate of an approx-
imation of the integral can be given by a square, a � P � R � b, which is an
approximation of the area by a square. Since the height of f (x) is evaluated at
the midpoint of the interval, this approximation is called as the midpoint rule.
The sum of two trapezoids, a�A�C�(b�1)=2 ; and (b�a)=2�C�D�b can
be also regarded as an approximation of the area, which is the approximation
by a line AC, and CD: This approximation is sometimes called as the trapezoid
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Figure 1: Midpoint Rule and Newton-Cotes

rule.1 Finally, we can think of an area below the parabola (quadratic function)
A � C �D: This approximation uses information of three points, A;C;and D.
Then, we approximate the function by a polynomial. This method is called as
Newton-Cotes quadrature2 .
Although these rules are easy to understand, these are seldom used in applied

economics. As the number of points increases, the integration tends to converge
to the true value (no always, though). The reason is simple. They are slow or
fail to converge to the true integral. See Judd (1998) for detailed discussion and
an example of the slowness of these rules when we try to integrate x�2 from 1
to 10. Rather, most people use the Gaussian quadrature or the (Quasi) Monte
Carlo methods. The Gaussian quadrature is much more accurate than the
Newton-Cotes or the Simpson�s method. It is reasonably fast in modern PCs.
For integrations under higher dimensions, people have begun to use the Monte
Carlo method.3

A word �quadrature� has several meanings. According to the Oxford dic-
tionary, quadrature means �The process of constructing a square with an area
equal to that of a circle, or of another �gure bounded by a curve with compass
and straightedge�Of course it is impossible to draw a square with the same

1There is a variant of the trapezoid rule, called the Simpson�s rule, which is discussed in
many textbooks on numerical methods such as Judd (1998).

2The term �quadrature� originally means an ancient quiz in Greek to �nd a process to
construct a rectangular (or �nite set rectangular) that has the same area of a given �gure
such as a circle with compass and straightedge. Of course, it is impossible to

3See Train (2009) Discrete Choice Methods with Simulation for the detail of simulation
based integration.
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area of a given circle with only a �nite step. But, it is not di¢ cult to get a good
approximation. By increasing the number of steps, the approximation becomes
very accurate. This idea is very close to the original Riemann-Integral. Now, a
word quadrature is used in more general numerical procedures for integration.

3 Basic Idea of Gaussian Quadrature

We are interested in �nding, Z b

a

f (x) dx; (1)

for given interval [a; b] and a known function, f . It is well known that except
for some special cases, we cannot get the integral as a function of a and b in
a closed form. The idea of the Gaussian quadrature is to �nd an approxima-
tion by a sum of polynomials that are exact when the function f is actually
a polynomial of some degree of (� m). You might notice that Newton-Cotes
also uses a polynomial. The crucial di¤erence between Gaussian quadrature
and Newton-Cotes is that the former uses the orthogonal polynomials, just like
we discussed in Cheybyshev polynomial while the latter uses the second order
natural polynomial only.
To implement Gaussian quadrature, given n, the number of grids to approx-

imate the integral, we would like to �nd a combination of (�1; �2; :::; �n) ; and
(x1; x2; :::; xn) such thatZ b

a

f (x)w (x) dx �
nX
i=1

�if (xi) ; (2)

Z b

a

f (x)w (x) dx =
nX
i=1

�if (xi) if f is polynomials of degree � m, (3)

where w (x) is a weighting function.
Following Judd (1998), we formulate a famous Theorem by Gauss (1816).4

Let a closed interval [a; b] and the number n 2 R be �xed. Suppose that
f'i (x)g

1
i=0 is an orthonormal family of polynomials with respect to a weighting

function, w (x) : De�ne qi so that 'i (x) = qix
i+ :::: Let xi; i = 1; 2; ::; n be the n

zeros of 'n (x) : Then, a < x1 < x2 < ::: < xn < b ; and if f is twice continuously

di¤erentiable in [a; b];then,
Z b

a

f (x)w (x) dx �
Pn

i=1 �if (xi) :

4Usually, I told students that we should look for the original paper when using theorems,
or citing results. However, in mathematics, many important works are written in Latin.
This quite famous paper by Gauss is no exception, which makes it very di¢ ucult for us to
look for the originals. Some very important theorems or results in economic theory are also
written in other than English, such as many papers by Walras (in French), Pareto (in Italian),
and Laspeyres (in German). When I actually read papers by Laspeyes in German (with
helps of translation by machines), it was a big surprise. The objects, the way of discussion,
and the main massages are so di¤erent from those we imagined from standard textbooks in
Macroeconomics. Anyway, it is worth reading �classics� if possible.
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The weights for each point, xi is given by

�i =
�qn+1=qn

'0n (xi)'n+1 (xi)
> 0

We do not de�ne the approximation, �; above, thus the above is not rigor-
ous. However, we can see that we can �nd (�1; �2; :::; �n) ; and (x1; x2; :::; xn) ; it
should be straightforward to take an integral of any twice continuously di¤eren-
tiable functions, f: The issue here is how to �nd an actual set of (�1; �2; :::; �n) ;
and (x1; x2; :::; xn) . As the above theorem says, it depends on what kinds of
polynomials we use for (3).

4 Gauss-Legendre Quadrature

Gauss-Legendre quadrature is often used in economics. Suppose we are inter-
ested in the following integration,Z 1

�1
f (x) dx: (4)

Note that it is easy to change the interval from [�1; 1] to [a; b] without chang-
ing the main results. Di¤erent quadratures are used when we use �weights�such
as, Z 1

0

f (x) exp (�x) dx : Gauss-Laguerre, (5)Z 1

�1
f (x) exp

�
�x2

�
dx : Gauss-Hermite, (6)Z 1

�1
f (x)

�
1� x2

��1=2
dx : Gauss-Chebyshev, (7)Z 1

�1
f (x) (1 + x)

a
(1� x)b dx : Gauss-Jacobi. (8)

In many casews, when we are interested in integrations, we do not have such
weights. Even if there are weights, by incorporating the weights into the func-
tion, f; we can eliminate the weight. Therefore, Gauss-Legendre quadrature is a
natural candidate for our integration. However, by transforming the variable, x ;
it is possible to apply other integrations such as Gauss-Chebyshev. However, I
don�t think there are much advantages in doing so. The name �Gauss-Legendre
quadrature�comes from the fact that we use the Legendre polynomials for (3).
Note that similar to the Chebyshev polynomials, the Legendre polynomials are
orthonormal, which gives us a very nice base to approximate functions.
Actual procedure to get (�1; �2; :::; �n) ; and (x1; x2; :::; xn) is a bit cumber-

some. See Mori, Murota, and Sugihara (1992) for example. Compecon toolbox
provides us with a function that gives (�1; �2; :::; �n) ; and (x1; x2; :::; xn) :
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Note that when we choose the Legendre polynomials for our integration,
the points for evaluation, (x1; x2; :::; xn) and their weights(�1; �2; :::; �n), do
not depend on the actual function, f: When I �rst encountered this idea of
the Gaussian quadrature, this independence seemed very odd. For example, a
famous software, Mathematica, conducts a numerical integration in two steps,
�rst it plots f roughly to detect the regions in which f changes a lot. Then,
the software increases the number of grid assigned to the regions. In other
words, the choice of (�1; �2; :::; �n) ; and (x1; x2; :::; xn) depends on the shape
of f , which sounds very natural. The trick of Gaussian quadrature is it takes
advantages of approximation by orthonormal polynomials. Any functions can be
approximated by polynomials. It becomes a good approximation if the function
well behaves. So, if the number of quadrature point, (x1; x2; :::; xn) ; is extremely
small, such as 2 or 3, the performance of the Gaussian quadrature is not so good.
However, if the number exceeds 10, the Gaussian quadrature becomes very
accurate because the Legendre polynomials become a very good approximation
of the original function,f .

5 Matlab Example

The compecon toolbox provided by Miranda and Fackler contains very useful
matlab codes to �nd a set of (�1; �2; :::; �n) ; and (x1; x2; :::; xn) . The below is
an example of calculate, Z 1

0

�
1 + x2

�
f (x) dx; (9)

f : pdf for lognormal. (10)

Integrating over lognormal distribution is quite popular among consumption
research.
To implement the following code, we need both compecon toolbox and sta-

tistical toolboxes. The compecon toolbox is needed to obtain the quadrature
points, (x1; x2; :::; xn) and the weights,(�1; �2; :::; �n). Statistical toolbox is used
for pdf of the lognormal distribution.

% Numerical Integration
%
% Integral(1+(x^2 ))f(x);
% f: lognormal with u=0, sig=0.1
clear
n=30;
a=0;
b=1;
%
[x2,w]=qnwlege(n,a,b); % Gauss-Legendre quadrature
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forquadsum=0;
for i=1:n

forsum1d=w(i)*(1+x2(i)^2) *lognpdf(x2(i),0,0.1);
forquadsum=forquadsum+forsum1d;

end
%%%%%%%

6 Monte-Carlo Integration

When we need to integrate over three or more variables, or when the integration
includes complicated conditional distribution, it is often the case that Gaussian
quadrature does not provide us with nice approximations. In such a case, Monte-
Carlo and its variants are the ways you should go. Due to a rapid progress
in microeconometrics and Bayesian econometrics, Monte-Carlo integration is
increasingly getting popular among researchers. Accordingly, there are several
excellent textbooks on the method such as Train (2009). If your integration
consists of more than three variables, I strongly recommend that you should
read such textbooks. In this note, I brie�y introduce Monte-Carlo integration.
Suppose we are interested in an integration of f (x) over x 2 X:
Suppose we have a set of random draw fromX, (x1; x2; ::; xn) and (f (x1) ; f (xx) ; :::; f (xn)) :

Then, by the strong law of the large number, we must have

lim
n!1

1

n

nX
i=1

f (xn) = E [f (x)] with probability one. (11)

For �nite sample, we can expect

1

n

nX
i=1

f (xn) � E [f (x)]

The problem in the above method is that we need a random draw, which
is actually very di¢ cult. Of course, most standard package such as R, Matlab,
Stata, and Python are able to generate random draw from various distributions.
However, most cases, even if they state that they are random draws, most likely,
they use deterministic routines. Therefore, most random numbers generated by
standard packages are not random, but pseudorandom numbers. For example,
whenever you restart Matlab, Matlab returns the identical results for its random
generators, rand, randi, and randn. Since randomization is the key for cryp-
tography and one of the central topics in the recent network system, generating
truly random draw is a very active research area. When we need very accurate
random draw, we need to use a physical random number generator. The basic
idea is that we actually observe physical movements that are supposed to be
random, such as a dice. Of course, modern physical random generators use more
sophisticated system such as noises observed in PC.
To apply (11) , we need a random draw. Suppose we do not have a random

draw, but have many observations in X that satis�es the following equation,
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lim
n!1

b� a
n

nX
i=1

f (xn) =

Z b

a

f (x) dx:

The basic idea is as follows. When integrating a function, we need a random
draw to cover the area evenly. For example, if we are interested in the integration
of a function f (x) over [0,1], grids with even intervals must su¢ ce for the
purpose.
Recent progresses in Monte-Carlo and its variants are quite rapid, and have

been used intensively in Bayesian econometrics such as NKDSGE, which is
beyond the scope of this lecture note.
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