Chapter 7 Tax Compliance and Evasion¹

a **7.1 Introduction**

It is not unusual to be offered a discount for payment in cash. This is almost routine in the employment of the services of builders, plumbers and decorators. It is less frequent, but still occurs, when major purchases are made in shops. While the expense of banking checks and the commissions changed by credit card companies may explain some of these discounts, the usual explanation is that payment in cash makes concealment of the transaction much easier. Income that can be concealed need not be declared to the tax authorities.

The same motivation can be provided for exaggeration in claims for expenses. By converting income into expenses that are either exempt from tax or deductible from tax, the total tax bill can be reduced. Second jobs are also a lucrative source of income that can be concealed from the tax authorities. A tax return that reports no income, or at least a very low level, is likely to attract more attention than one that declares earnings from primary employment but fails to mention income from secondary employment.

In contrast to these observations on tax evasion, the analysis of taxation assumed that firms and consumers reported their taxable activities honestly. Although acceptable for providing simplified insights into the underlying issues, this assumption is patently unacceptable when confronted with reality. The purpose of this chapter can be seen as the introduction of practical constraints on the free choice of tax policy. Tax evasion, the intentional failure to declare taxable economic activity, is pervasive in many economies as the evidence given in the following section makes clear and is therefore a subject of practical as well as theoretical interest.

The chapter begins by considering how tax evasion can be measured. Evidence on the extent of tax evasion in a range of countries is reviewed. The chapter then proceeds to try to understand the factors involved in the decision to evade tax. Initially this decision is represented as a choice under uncertainty. The analysis predicts the relationship among the level of evasion, tax rates, and punishments. Within this framework the optimal degree of auditing and of punishment is considered. Evidence that can be used to assess the model's predictions is then discussed. In the light of this, some extensions of the basic model are considered. A game-theoretic approach to tax compliance is presented where taxpayers and governments interact strategically. The last section emphasizes the importance of social

¹ This chapter draws entirely from Hindriks and Myles (2006, Chapter 16)

interaction on compliance decisions.

7.2 The Extent of Evasion

Tax evasion is illegal, so those engaging in it have every reason to seek to conceal what they are doing. This introduces a fundamental difficulty into the measurement of tax evasion. Even so, the fact that the estimates that are available show evasion to constitute a significant part of total economic activity underlines the importance of measurement. The lost revenue due to tax evasion also emphasizes the value of developing a theory of evasion that can be used to design a tax structure that minimizes evasion and ensures that policy is optimal given evasion occurs.

Before proceeding, it is worth making some distinctions. First, *tax evasion* is the failure to declare taxable activity. Tax evasion should be distinguished from *tax avoidance*, which is the reorganization of economic activity, possibly at some cost, to lower tax payment. Tax avoidance is legal, whereas tax evasion is not. In practice, the distinction is not as clear-cut, since tax avoidance schemes frequently need to be tested in court to clarify their legality. Second, the terms *black, shadow*, or *hidden economy* refer to all economic activities for which payments are made but are not officially declared. Under these headings would be included illegal activities, such as the drug trade, and unmeasured activity, such as agricultural output by smallholders. Added to these would also be the legal, but undeclared, income that constitutes tax evasion. Finally the *unmeasured* economy would be the shadow economy plus activities such as do-it-yourself jobs that are economically valuable but do not involve economic transaction.

This discussion reveals that there are several issues concerning how economic activity should be divided between the regular economy and the shadow economy. For instance, most systems of national accounts do not include criminal activity (Italy, however, does make some adjustment for smuggling). In principle, the UN System of National Accounts includes both legal and illegal activities, and it has been suggested that criminal activity should be made explicit when the system is revised. Although this chapter is primarily about tax evasion, when an attempt is made at the measurement of tax evasion, the figures obtained may also include some or all of the components of the shadow economy.

The essential problem involved in the measurement of tax evasion is that its illegality provides an incentive for individuals to keep the activity hidden. Furthermore, by its very nature, tax evasion does not appear in any official statistics. This implies that the extent of tax evasion cannot be measured directly but must be inferred from economic variables that can be observed.

A first method for measuring tax evasion is to use survey evidence. This can be employed

either directly or indirectly as an input into an estimation procedure. The obvious difficulty with survey evidence is that respondents who are active in the hidden economy have every incentive to conceal the truth. There are two ways in which the problem of concealment can be circumvented. First, information collected for purposes other than the measurement of tax evasion can be employed. One example of this is the use that has been made of data from the Family Expenditure Survey in the United Kingdom. This survey involves consumers recording their incomes and expenditures in a diary. Participants have no reason to falsely record information. The relation between income and expenditure can be derived from the respondents whose entire income is obtained in employment that cannot escape tax. The expenditures recorded can then be used to infer the income of those who do have an opportunity to evade. Although these records are not surveys in the normal sense, studies of taxpayer compliance conducted by revenue collection agencies, such as the Internal Revenue Service in the United States, can be treated as survey evidence and have some claim to accuracy.

The second general method is to infer the extent of tax evasion, or the hidden economy generally, from the observation of another economic variable. This is done by determining total economic activity and then subtracting measured activity, which gives the hidden economy. The *direct input* approach observes the use of an input to production and from this predicts what output must be. An input that is often used for this purpose is electricity, since this is universally employed and accurate statistics are kept on energy consumption. The *monetary* approach employs the demand for cash to infer the size of the hidden economy on the basis that transactions in the hidden economy are financed by cash rather than checks or credit cards. Given a relationship between the quantity of cash and the level of economic activity, this allow estimation of the hidden economy. What distinguishes alternative studies that fall under the heading of monetary approaches is the method used to derive the total level of economic activity from the observed use of cash. One way to do this is to assume that there was a base year in which the hidden economy did not exist. The ratio of cash to total activity is then fixed by that year. This ratio allows observed cash use in other years to be compounded up into total activity. An alternative has been to look at the actual use of banknotes. The issuing authorities know the expected lifespan of a note (i.e., how many transactions it can finance). Multiplying the number of notes used by the number of transactions gives the total value of activity financed.

ť	0 / 0	
Developing	Transition	OECD
Egypt 68-76%	Georgia 28-43%	Italy 24-30%
Thailand 70%	Ukraine 28-43%	Spain 24-30%
Mexico 40-60%	Hungary 20-28%	Denmark 13-23%
Malaysia 38-50%	Russia 20-27%	France 13-23%
Tunisia 39-45%	Latvia 20-27%	Japan 8-10%
Singapore 13%	Slovakia 9-16%	Austria 8-10%

Table 1 Hidden Economy as Percentage of GDP, average over 1990-1993

Table 1 presents estimates of the size of the hidden economy for a range of countries. These figures are based on a combination of the direct input (actually use of electricity as a proxy for output) and money demand approaches. Further details can be found in the source reference. The table clearly indicates that the hidden economy is a significant issue, especially in the developing and transition economies. Even for Japan and Austria, which have the smallest estimated size of hidden economy, the percentage figure is still significant.

As already noted, these estimates are subject to error and must be treated with a degree of caution. Having said this there is a degree of consistency running through them. They indicate that a value for the hidden economy of at least 10 percent is not an unreasonable approximation. Therefore the undeclared economic activity is substantial relative to total economic activity. Tax evasion is clearly an important phenomenon that merits extensive investigation.

7.3 The Evasion Decision

The estimates of the hidden economy have revealed that tax evasion is a significant part of overall economic activity. We now turn to modeling the decision to evade in order to understand how the decision is made and the factors that can affect that decision.

The simplest model of the evasion decision considers it to be just a gamble. If taxpayers declare less than their true income (or overstate deductions), there is a chance that they may do so without being detected. This leads to a clear benefit over making an honest declaration. However, there is also a chance that they may be caught. When they are, a punishment is inflicted (usually a fine but sometimes imprisonment) and they are worse off than if they had been honest. In deciding how much to evade, the taxpayer has to weigh up these gains and losses, taking account of the chance of being caught and the level of the punishment.

A simple formal statement of this decision problem can be given as follows: Let the taxpayer have an income level Y, which they know but is not known to the tax collector. The income declared by the taxpayer, X, is taxed at a constant rate t. The amount of unreported income is $Y - X \ge 0$ and the unpaid tax is t[Y - X]. If the taxpayer evades without being caught,

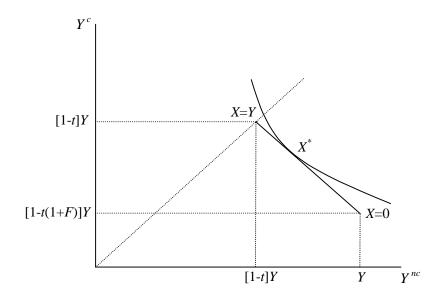
their income is given by $Y^{nc} = Y - tX$. When the taxpayer is caught evading, all income is taxed and a fine at rate *F* is levied on the tax that has been evaded. This gives an income level $Y^{c} = [1 - t]Y - Ft[Y - X]$. If income is understated, the probability of being caught is *p*.

Assume that the taxpayer derives utility U(Y) from an income Y. After making declaration X, the income level Y^c occurs with probability p and the income level Y^{nc} with probability 1-p. In the face of such uncertainty the taxpayer should choose the income declaration to maximize expected utility. Combining these facts, the declaration X solves

$$\max_{\{X\}} E[U(X)] = [1 - p]U(Y^{nc}) + pU(Y^{c})$$
(1)

The solution to this choice problem can be derived graphically. To do this, observe that there are two states of the world. In one state of the world, taxpayers are not caught evading and have income Y^{nc} . In the other state of the world, they are caught and have income Y^{c} . The expected utility function describes preferences over income levels in these two states. The choice of a declaration X determines an income level in each state, and by varying X, the taxpayer can trade off income between the two states. A high value of X provides relatively more income in the state where the taxpayer is caught evading and a low value of X relatively more where they are not caught.

The details of this trade-off can be identified by considering the two extreme value of X. When the maximum declaration is made so that X = Y, the taxpayer's income will be [1 - t]Yin both states of the world. Alternatively, when the minimum declaration of X = 0 is made, income will be [1 - t(1 + F)]Y if caught and Y if not. These two points are illustrated in Figure 1, which graphs income when not caught against income when caught. The other options available to the consumer lie on the line joining X = 0 and X = Y; this is the opportunity set showing the achievable allocations of income between the two states. From the utility function can be derived a set of indifference curves – the points on an indifference curve being income levels in the two states that give the same level of expected utility. Including the indifference curves of the utility function completes the diagram and allows the taxpayer's choice to be depicted. The taxpayer whose preference is shown in Figure 1 chooses to locate at the point with declaration X^* . This is an interior point with $0 < X^* < Y$ -- some tax is evaded but some income is declared. **Figure 1 Interior Choice:** $0 < X^* < Y$



Besides the interior location of Figure 1 it is possible for corner solutions to arise. The consumer whose preferences are shown in Figure 2a chooses to declare his entire income, so $X^* = Y$. In contrast the consumer in Figure 2b declares no income, so $X^* = 0$.

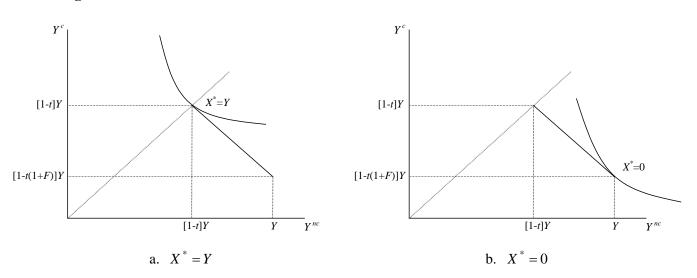


Figure 2 Corner Solutions

The interesting question is what condition guarantees that evasion will occur rather than the no-evasion corner solution with X = Y. Comparing the figures it can be seen that evasion will occur if the indifference curve is steeper than the budget constraint where it crosses the dashed 45° line. The condition that ensures that this occurs is easily derived. Totally

differentiating the expected utility function (1) at a constant level of utility gives the slope of the indifference curve as

$$\frac{dY^{c}}{dY^{nc}} = -\frac{[1-p]U'(Y^{nc})}{pU'(Y^{c})}$$
(2)

where U'(Y) is the marginal utility of income level Y. On the 45° line $Y^{nc} = Y^{c}$, so the marginal utility of income is the same whether or not the tax evader is caught. This implies that

Slope of indifference curve
$$=-\frac{1-p}{p}$$
. (3)

What this expression suggests is that all the indifference curve have the same slope, $-\frac{1-p}{p}$, where they cross the 45° line. The slope of the budget constraint is seen in Figure 1 to be given by the ratio of the penalty Ft[Y - X] to the unpaid tax t[Y - X]. Thus

Slope of budget constraint
$$=-F$$
. (4)

Because of these features the indifference curve is steeper than the budget constraint on the 45° line if $\frac{1-p}{p} > F$, or

$$p < \frac{1}{1+F}.$$
(5)

This result shows that evasion will arise if the probability of detection is too small relative to the fine rate.

Several points can be made about this condition for evasion. First, this is a trigger condition that determines whether or not evasion will arise, but it does not say anything about the extent of evasion. Second, the condition is dependent only on the fine rate and the probability of detection, so it applies for all taxpayers regardless of their utility-of-income function U(Y). Consequently if one taxpayer chooses to evade, all taxpayers should evade. Third, this condition can be given some practical evaluation. Typical punishments inflicted for tax evasion suggest that an acceptable magnitude for F is between 0.5 and 1. In the United Kingdom the Taxes Management Act specifies the maximum fine as 100 percent of the tax lost,

which implies the maximum value of F = 1. This makes the ratio $\frac{1}{1+F}$ greater or equal to 1/2. Information on p is hard to obtain, but a figure between 1 in a 100 or 1 in a 1,000 evaders being caught is probably a fair estimate. Therefore $p < \frac{1}{2} < \frac{1}{1+F}$ and the conclusion is reached that the model predicts all taxpayers should be evading. In the United States, taxpayers who understate their tax liabilities may be subjected to penalties at a rate between 20 to 75 percent of the under-reported taxes, depending on the gravity of the offence. The proportion of all individual tax returns that are audited was 1.7 percent in 1997. This is clearly not large enough to deter cheating, and everyone should be underreporting taxes. In fact the Taxpayer Compliance Measurement Program reveals that 40 percent of US taxpayers underpaid their taxes. This is a sizable minority but not as widespread evasion as the theoretical model would predict. So taxpayers appears to be more honest than might be expected.

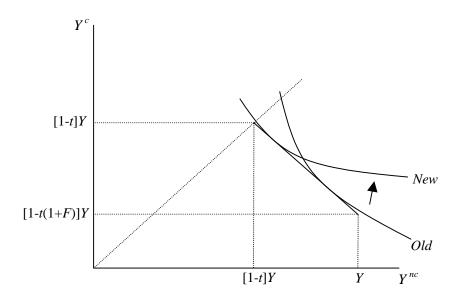
The next step is to determine how the amount of tax evasion is affected by changes in the model's variables. There are four such variables that are of interest: the income level Y, the tax rate t, the probability of detection p, and the fine rate F. These effects can be explored by using the figure depicting the choice of evasion level.

Take the probability of detection first. The probability of detection does not affect the opportunity set but does affect preferences. The effect of an increase in p is to make the indifference curves flatter where they cross the 45° line. As shown in Figure 3, this moves the optimal choice closer to the point X = Y of honest declaration. The amount of income declared rises, so an increase in the probability of detection reduces the level of evasion. This is a clearly expected result, since an increase in the likelihood of detection lowers the payoff from evading and makes evasion a less attractive proposition.

A change in the fine rate only affects income when the taxpayer is caught evading. The consequence of an increase in F is that the budget constraint pivots round the honest report point and becomes steeper. Since the indifference curve is unaffected by the penalty change, the optimal choice must again move closer to the honest declaration point. This is shown in Figure 4 by the move from the initial choice of X^{old} when the fine rate is F to the choice X^{new} when the fine rate increases to \hat{F} . An increase in the fine rate therefore leads to a reduction in the level of tax evasion. This, and the previous result, shows that the effects of the detection and punishment variables on the level of evasion are unambiguous.

Now consider the effect of an increase in income from the initial level Y to a higher level \hat{Y} . This income increase causes the budget constraint to move outward. As already noted the slope of the budget constraint is equal to -F, which does not change with income, so the shift is a parallel one. The optimal choice then moves from X^{old} to X^{new} in Figure 5.

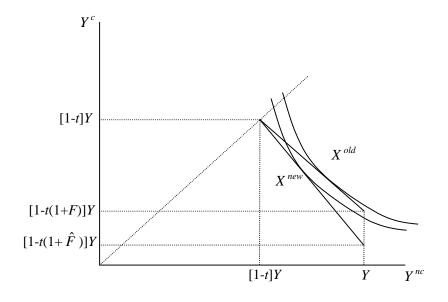
Figure 3 Increase in Detection Probability



How the evasion decision is affected depends on the degree of absolute risk aversion, $R_A(Y) = \frac{U''(Y)}{U'(Y)}$, of the utility function. What absolute risk aversion measures is the willingness to engage in small bets of fixed size. If $R_A(Y)$ is constant as Y changes, the optimal choices will be on a locus parallel to the 45° line. There is evidence, though, that in practice, $R_A(Y)$ decreases as income increases, so wealthier individuals are more prone to engage in small bets, in the sense that the odds demanded to participate diminish. This causes the locus of choices to bend away from the 45° line, so that the amount of undeclared income rises as actual income increases. This is the outcome shown in Figure 5. Hence, with decreasing absolute risk aversion, an increase in income increases tax evasion.

The final variable to consider is the tax rate. An increase in the tax rate from t to \hat{t} moves the budget constraint inwards. As can be seen in Figure 6 the outcome is not clear-cut. However, when absolute risk aversion is decreasing, the effect of the tax increase is to reduce tax evasion. This final result has received much discussion because it is counter to what seems reasonable. A high tax rate is normally seen as providing a motive for tax evasion, whereas the model predicts precisely the converse. Why the result emerges is because the fine paid by the consumer is determined by t times F. An increase in the tax rate thus has the effect of raising the penalty. This takes income away from the taxpayer when they are caught – the state in which they have least income. It is though this mechanism that a higher tax rate can reduce

evasion.



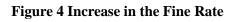
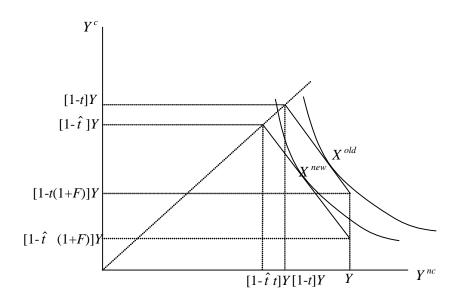




Figure 6 Tax Rate Increase



This completes the analysis of the basic model of tax evasion. It has been shown how the level of evasion is determined and how this is affected by the parameters of the model. The next section turn to the issue of determining the optimal levels of auditing and punishment when the behavior of taxpayers corresponds to the predictions of this model. Some empirical and experimental evidence is then considered and used to assess the predictions of the model.

7.4 Auditing and Punishment

The analysis of the tax evasion decision assumed that the probability of detection and the rate of the fine levied when caught evading were fixed. This is a satisfactory assumption from the perspective of the individual taxpayer. From the government's perspective, though, these are variables that can be chosen. The probability of detection can be raised by the employment of additional tax inspectors, and the fine can be legislated or set by the courts. The purpose of this section is to analyze the issues involved in the government's decision.

It has already been shown that an increase in either p or F will reduce the amount of undeclared income. The next step is consider how p and F affect the level of revenue raised by the government. Revenue in this context is defined as taxes paid plus the money received from fines. From a taxpayer with income Y the expected value (it is expected, since there is only a probability the taxpayer will be fined) of the revenue collected is

$$R = tX + p(1+F)t[Y-X]$$
(6)

Differentiating with respect to p shows that the effect on revenue of an increase in the probability of detection is

$$\frac{\partial R}{\partial p} = (1+F)t[Y-X] + t[1-p-pF]\frac{\partial X}{\partial p} > 0$$
(7)

whenever pF < 1-p. Recall from (5) that if $pF \ge 1-p$, there is no evasion, so *p* has no effect on revenue. Carrying out the differentiation for the fine rate shows that if pF < 1-p

$$\frac{\partial R}{\partial F} = pt[Y - X] + t[1 - p - pF] \frac{\partial X}{\partial F} > 0.$$
(8)

An increase in the fine will therefore raise revenue if tax evasion is taking place. Again, the fine has no effect if $pF \ge 1-p$ and there is no evasion. These expressions show that if evasion is taking place, an increase in the probability of either detection or the fine will increase the revenue the government receives.

The choice problem of the government can now be addressed. It has already been noted that an increase in the probability of detection can be achieved by the employment of additional tax inspectors. Tax inspectors require payment; as a consequence an increase in p is costly. In contrast, there is no cost involved in raising or lowering the fine. Effectively, increases in F are costless to produce. From these observations the optimal policy can be determined.

Since p is costly and F is free, the interests of the government are best served by reducing p close to zero while raising F toward infinity. This has been termed the policy of "hanging taxpayers with probability zero." Expressed in words, the government should put virtually no effort into attempting to catch tax evaders but should severely punish those it apprehends. This is an extreme form of policy, and nothing like it is observed in practice. Surprising as it is, it does follow from the logical application of the model.

Numerous comments can be made about this conclusion. The first begins with the objective of the government. In previous chapters it was assumed that the government is guided in its policy choice by a social welfare function. There will be clear differences between a policy designed to maximize revenue and one that maximizes welfare. For instance, inflicting an infinite fine on a taxpayer caught evading will have a significantly detrimental effect on welfare. Even if the government does not pursue welfare maximization, it may be constrained by political factors such as the need to ensure re-election. A policy of severely punishing tax evaders may be politically damaging especially if tax evasion is a widely established phenomenon. One could think that such an argument is not relevant because, if the punishment is large enough to deter cheating, it should not matter how dire it is. If fear keeps everyone from cheating, the punishment never actually occurs and its cost is irrelevant. The problem with this argument is that it ignores the risk of mistakes. The detection process may go wrong, or the taxpayer can mistakenly understate taxable income. If the punishment is as large as possible, even for small tax underpayments, then mistakes will be very costly. To reduce the cost of mistakes, the punishment should be of the smallest size required to deter cheating. Minimal deterrence accomplishes this purpose.

A further observation, and one whose consequences will be investigated in detail, concerns the policy instruments under the government's control. The view of the government so far is that it is a single entity that chooses the level of all its policy instruments simultaneously. In practice, the government consists of many different departments and agencies. When it comes to taxation and tax policy, a reasonable breakdown would be to view the tax rate as set by central government as part of a general economic policy. The probability of detection is controlled by a revenue service whose objective is the maximization of revenue. Finally, the punishment for tax evasion is set by the judiciary.

This breakdown shows why the probability and fine may not be chosen in a cohesive manner by a single authority. What it does not do is provide any argument for why the fine should not be set infinitely high to deter evasion. An explanation for this can be found by applying reasoning from the economics of crime. This would view tax evasion as just another crime, and the punishment for it should fit with the scheme of punishments for other crimes. The construction of these punishments relies on the argument that they should provide incentives that lessen the overall level of crime. To see what this means, imagine that crimes can be ranked from least harmful to most harmful. Naturally, if someone is going to commit a crime, the authorities wish that they commit a less harmful one rather than a more harmful one. If more harmful ones are also more rewarding (think of robbing a bank while armed compared to merely attempting to snatch cash), then a scheme of equal punishments will not provide any incentive for committing the less harmful crime. What will provide the right incentive is for the more harmful crime to also have a heavier punishment. So the extent of punishment should be related to the harmfulness of the crime. Punishment should fit the crime.

This framework has two implications. First of all, the punishment for tax evasion will not be varied freely in order to maximize revenue. Instead, it will be set as part of a general crime policy. The second implication is that the punishment will also be quite modest, since tax evasion is not an especially harmful crime. Arguments such as these are reflected in the fact that the fine rate on evasion is quite low - a figure in the order of 1.5 to 2 would not be unrealistic. As already noted, the maximum fine in the United Kingdom is 100 percent of the

unpaid tax, but the Inland Revenue may accept a lesser fine depending on the "size and gravity" of the offense.

Putting all of these arguments together suggests adopting a different perspective on choosing the optimal probability of detection. With the tax rate set as a tool of economic policy and the fine set by the judiciary, the only instrument under the control of the revenue service is the probability of detection. As already seen, an increase in this raises revenue but only does so at a cost. The optimal probability is found when the marginal gain in revenue just equals the marginal cost – and this could occur at a very low value of the probability of detection.

7.5 Evidence on Evasion

This model of tax evasion has predicted the effect that changes in various parameters will have on the level of tax evasion. In some cases, such as the effect of the probability of detection and the fine, these are unambiguous. In others, particularly the effect of changes in the tax rate, the effects depend on the precise specification of the tax system and on assumptions concerning attitudes toward risk. These uncertainties make it valuable to investigate further evidence to see how the ambiguities are resolved in practice. The analysis of evidence also allows the investigation of the relevance of other parameters, such as the source of income, and other hypotheses on tax evasion, such as the importance of social interaction.

Table 2 Declaration of Income					
Income interval	17-20	20-25	25-30	30-35	35-40
Midpoint	18.5	22.5	27.5	32.5	37.5
Assessed income	17.5	20.6	24.2	28.7	31.7
Percentage	94.6	91.5	88.0	88.3	84.5

Table 2 Declaration of Income

Source: Mork (1975).

When income levels ascertained from interviews were contrasted to those given on the tax returns of the same individuals, a steady decline of declared income as a proportion of reported income appeared with income rises. This finding is in agreement with the comparative statics analysis. Table 2 provides a sample of data to illustrate this. Interviewees were placed in income intervals according to their responses to interview questions. The information on their tax declaration was then used to determine assessed income. The percentage is found by dividing the assessed income by the midpoint of the income interval.

Econometrics and survey methods have been used to investigate the importance of attitudes and social norms in the evasion decision. The study reported in table 3 shows that the propensity to evade taxation is reduced by an increased probability of detection and an increase in age. An increase in income reduces the propensity to evade. With respect to the attitude and social variables, both an increase in the perceived inequity of taxation and of the number of other tax evaders known to the individual make evasion more likely. The extent of tax evasion is increased by the attitude and social variables but also by the experience of the taxpayer with previous tax audits. The social variables are clearly important in the decision to evade tax.

Variable	Propensity to Evade	Extent of Evasion
Inequity	0.34	0.24
Number of evaders known	0.16	0.18
Probability of detection	-0.17	
Age	-0.29	
Experience of audits	0.22	0.29
Income level	-0.27	
Income from wages and salaries	0.20	

Table 3 Explanatory Factors

Source: Spicer and Lundstedt (1976).

As far as the effect of the tax rate is concerned, data from the US Internal Revenue Services Taxpayer Compliance Measurement Program survey of 1969 shows that tax evasion increases as the marginal tax rates increases but is decreased when wages are a significant proportion of income. This result is supported by employing the difference between income and expenditure figures in National Accounts as a measure of evasion. In contrast, a study of Belgian data found precisely the converse conclusion, with tax increases leading to lower evasion. Therefore these studies do not resolve the ambiguity about the relation between marginal tax rates and tax evasion.

Turning now to experimental studies, tax evasion games have shown that evasion increases with the tax rate and that evasion falls as the fine is increased and the detection probability reduced. Further results have shown that women evade more often than men but evade lower amounts and that purchasers of lottery tickets, presumed to be less risk averse, are no more likely to evade than nonpurchasers but evade greater amounts when they do evade. Finally the very nature of the tax evasion decision has been tested by running two sets of experiments. One was framed as a tax evasion decision and the other as a simple gamble with the same risks and payoffs. For the tax evasion experiment some taxpayers chose not to evade even when they would under the same conditions with the gambling experiment. This suggests that tax evasion is not viewed as just a gamble.

There are two important lessons to be drawn from this brief review of the empirical and experimental results. First, the theoretical predictions are generally supported except for the effect of the tax rate. The latter remains uncertain with conflicting conclusions from the

evidence. Second, it appears that tax evasion is more than the simple gamble portrayed in the basic model. In addition to the basic element of risk, there are social aspects to the evasion decision.

7.6 Effect of Honesty

The evidence discussed in the previous section has turned up a number of factors that are not explained by the basic model of tax evasion. Foremost among these are that some taxpayers choose not to evade even when they would accept an identical gamble and that there are social aspects of the evasion decision. The purpose of this section is to show how simple modifications to the model can incorporate these factors and can change the conclusions concerning the effect of the tax rate.

The feature that distinguishes tax evasion from a simple gamble is that taxpayers submitting incorrect returns feel varying degrees of anxiety and regret. To some, being caught would represent a traumatic experience that would do immense damage to their self-image. To others, it would be only a slight inconvenience. The innate belief in honesty of some taxpayers is not captured by representing tax evasion as just a gamble nor are the nonmonetary costs of detection and punishment captured by preferences defined on income alone. The first intention of this section is to incorporate these features into the analysis and to study their consequences.

A preference for honesty can be introduced by writing the utility function as

$$U = U(Y) - \chi E , \tag{9}$$

where χ is the measure of the taxpayer's honesty and, with E = Y - X the extent of evasion, χE is the utility (or psychic) cost of deviating from complete honesty. To see the consequence of introducing a psychic cost of evasion, assume that taxpayers differ in their value of χ but are identical in all other respects. Those with higher values of χ will suffer from a greater utility reduction for any given level of evasion. In order for them to evade, the utility gain from evasion must exceed this utility reduction. The population is therefore separated into two parts, with some taxpayers choosing not to evade (those with high values of χ) while others will evade (those with low χ). It is tempting to label those who do not evade as honest, but this is not really appropriate, since they will evade if the benefit is sufficiently great.

Let the value of χ that separates the evaders from the nonreader's be denoted $\hat{\chi}$. A change in any of the parameters of the model (p, F, and t) now has two effects. First, it changes the benefit from evasion, which alters the value of $\hat{\chi}$. For instance, an increase in the rate of tax raises the benefit of evasion and increases $\hat{\chi}$ with the consequence that more

taxpayers evade. Second, the change in the parameter affects the evasion decision of all existing tax evaders. Putting these effects together, it becomes possible for an increase in the tax rate to lead to more evasion in aggregate. This is in contrast to the basic model where it would reduce evasion.

The discussion of the empirical evidence has drawn attention to the positive connection between the number of tax evaders known to a taxpayer and the level of that taxpayer's own evasion. This observation suggests that the evasion decision is not made in isolation by each taxpayer but is made with reference to the norms and behavior of the general society of the taxpayer. Given the empirical significance of such norms, the second part of this section focuses on their implications.

Social norms have been incorporated into the model of the evasion decision in two distinct ways. One approach is to introduce them as an additional element of the utility cost to evasion. The additional utility cost is assumed to be an increasing function of the proportion of taxpayers who do not evade. This formulation captures the fact that more utility will be lost, in terms of reputation, the more out of step the taxpayer is with the remainder of society. The consequence of this modification is to reinforce the separation of the population into evaders and nonevaders.

An alternative approach is to explicitly impose a social norm on behavior. One such social norm can be based on the concept of Kantian morality and, effectively, has individuals assessing their fair contribution in tax payments toward the provision of public goods. This calculation then provides an upper bound on the extent of tax evasion. To calculate the actual degree of tax evasion, each taxpayer performs the expected utility maximization calculation, as in (1), and evades whichever is the smaller out of this quantity and the previously determined upper bound. This formulation is also able to provide a positive relation between the tax rate and evaded tax for some range of taxes and to divide the population into those who evade tax and those who do not.

The introduction of psychic costs and of social norms is capable of explaining some of the empirically observed features of tax evasion that are not explained by the standard expected utility maximization hypothesis. This is achieved by modifying the form of preferences, but the basic nature of the approach is unchanged. The obvious difficulty with these changes is that there is little to suggest precisely how social norms and utility costs of dishonesty should be formalized.

7.7 Tax Compliance Game

Case (I):

An initial analysis of the choice of audit probability was undertaken in section 4. It was argued there that the practical situation involves a revenue service that chooses the probability to maximize total revenue, taking as given the tax rate and the punishment. The choice of probability in this setting requires an analysis of the interaction between the revenue service and the taxpayers. The revenue service reacts to the declarations of taxpayers, and taxpayers make declarations on the basis of the expected detection probability.

Such interaction is best analyzed by formalizing the structure of the game that is being played between the revenue service and the taxpayers. The choice of a strategy for the revenue service is the probability with which it chooses to audit any given value of declaration. This probability need not be constant for declarations of different values and is based on its perception of the behavior of taxpayers. For the taxpayers a strategy is a choice of declaration given the audit strategy of the revenue service. At a Nash equilibrium of the game the strategy choices must be mutually optimal: the audit strategy must maximize the revenue collected, net of the costs of auditing, given the declarations; the declaration must maximize utility given the audit strategy.

Even without specifying further details of the game, it is possible to make a general observation: predictability in auditing cannot be an equilibrium strategy. This can be established by the following steps: First, no auditing at all cannot be optimal because it encourages maximal tax evasion. Second, auditing of all declarations cannot be a solution either because no revenue service incurs the cost of auditing where full enforcement induces everyone to comply. Finally, prespecified limits on the range of declarations to be audited are also flawed. Taxpayers tempted to underreport income will make sure to stay just outside the audit limit, and those who cannot avoid being audited will choose to report truthfully. Exactly the wrong set of taxpayers will be audited. This establishes that the equilibrium strategy must involve randomization.

But how should the probability of audit depend on the information available on the tax return? Since the incentive of a taxpayer is to understate income to reduce their tax liabilities, it seems to require that the probability of an audit should be higher for low-income reports. More precisely, the probability of an audit should be high for an income report that is low compared to what one would expect from someone in that taxpayer's occupation or given the information on previous tax returns for that taxpayer. This is what theory predicts and what is done in practice.

Figure 7 Audit Game

		Audit	No Audit
Taxpayer	Evasion	Y-T-F,T+F-C	<i>Y</i> ,0
	No evasion	Y - T, T - C	Y - T, T

A simple version of the strategic interaction between the revenue service and a taxpayer is depicted in Figure 7. The taxpayer with true income Y can either evade (reporting zero income) or not (truthful income report). By reporting truthfully, the taxpayer pays tax T to the revenue service (with T < Y). The revenue service can either audit the income report or not audit. An audit costs C for the revenue service to conduct but provides irrefutable evidence on whether the taxpayer has misreported income. If the taxpayer is caught evading, he pays the tax due, T, plus a fine F (where the fine includes the cost of auditing and a tax surcharge so that F > C). If the taxpayer is not caught evading, then he pays no tax at all. The two players choose their strategies simultaneously, which reflects the fact that the revenue service does not know whether the taxpayer has chosen to evade when it decides whether to audit. To make the problem interesting we assume that C < T, so the cost of auditing is less than its potential gain, which is to recover the tax due.

There is no pure strategy equilibrium in this tax compliance game. If the revenue service does not audit, the agent strictly prefers evading, and therefore the revenue service is better off auditing as T + F > C. On the other hand, if the revenue service audits with certainty, the taxpayer prefers not to evade as T + F > T, which implies that the revenue service is better off not auditing. Therefore the revenue must play a mixed strategy in equilibrium, with the audit strategy being random (i.e., unpredictable). Similarly for the taxpayer the evasion strategy must also be random.

Let *e* be the probability that the taxpayer evades, and *p* the probability of audit. To obtain the equilibrium probabilities, we solve the conditions that the players must be indifferent between their two pure strategies. For the government to be indifferent between auditing and not auditing, it must be the case that the cost from auditing, *c*, equals the expected gain in tax and fine revenue, e[T + F]. For the taxpayer to be indifferent between evading and not evading, the expected gain from evading, [1 - p]T equals the expected penalty pF. Hence in equilibrium the probability of evasion is

$$e^* = \frac{C}{T+F} \tag{10}$$

Lectures on Public Finance Part2_Chap7, 2016 version Last updated 19/4/2015

and the probability of audit is

$$p^* = \frac{T}{T+F} \tag{11}$$

where both e^* and p^* belong to the interval (0, 1) so that both evasion and audit strategies are random.

The equilibrium probabilities are determined by the strategic interaction between the taxpayer and the revenue service. For instance, the audit probability declines with the fine, although a higher fine may be expected to make auditing more profitable. The reason is that a higher fine discourages evasion, thus making auditing less profitable. Similarly evasion is less likely with a high tax because a higher tax induces the government to audit more. Note that these results are obtained without specifying the details of the fine function, which could be either a lump-sum amount or something proportional to evaded tax. Evasion is also more likely the more costly is auditing, since the revenue service is willing to audit at a higher cost only if the taxpayer is more likely to have evaded tax.

The equilibrium payoffs of the players are

$$u^* = Y - T + e^* [T - p^* [T + F]]$$
(12)

for the taxpayer and

$$v^* = (1 - e^*)T + p^*[e^*[T + F] - C]$$
(13)

for the revenue service. Substituting into these payoffs the equilibrium probabilities of evasion and audit gives

$$u^* = Y - T \tag{14}$$

$$v^* = T - \frac{C}{T+F}T \tag{15}$$

Because the taxpayer is indifferent between evading and not evading, his equilibrium payoff is equal to his truthful payoff Y - T. This means that the unpaid taxes and the fine cancel out in expected terms. Increasing the fine does not affect the taxpayer. However, a higher fine

increases the payoff of the revenue service, since it reduces the amount of evasion. Hence increasing the penalty is Pareto-improving in this model. The equilibrium payoffs also reflect the cost from evasion. Indeed, for any tax T paid by the taxpayer, the revenue service effectively receives $T - \Delta$, where $\Delta = \frac{C}{T+F}T$ is the deadweight loss from evasion. Thus evasion involves a deadweight loss that is increasing with the tax rate.

Case (II):

Consider the simultaneous move game between a taxpayer and a tax inspector. The taxpayer chooses whether or not to underreport taxable income. The tax inspector chooses whether or not to audit the income report. The cost of auditing is c > 1 and the fine (including tax payment) imposed if the taxpayer is caught cheating is F (with F > c > 1). With truthful report the taxpayer has to pay a tax of T unit of income y. The payoffs are given in the matrix where the first number in each cell denotes the tax inspector's payoff and the second number is the taxpayer's payoff. Find the Nash equilibria of this game, considering both pure and mixed strategies.

	Underreport	Truthful report
Audit	T+F-c, y-T-F	T-c, $y-T$
No audit	0, y	T, y-T

Solution

The Nash equilibrium in pure strategies is found at a pair of strategies where neither player has an incentive to deviate. In this game there is no pair of strategies that satisfies this criterion.

The mixed strategy equilibrium is a pair of probabilities such that each probability is a best-reply to the other player's choice. Let the tax inspector play Audit with probability p and No audit with probability 1-p, and let the taxpayer play Underreport with probability q and Truthful report with probability 1-q. The expected payoff of the tax inspector is

$$EP_{I} = q(p(T + F - c) + (1 - p)0) + (1 - q)(p(T - c) + (1 - p)T)$$

= $qp(T + F) + T(1 - q) - pc$ (16)

The expected payoff of the taxpayer is

$$EP_{T} = p(q(y-T-F) + (1-q)(y-T)) + (1-p)(qy + (1-q)(y-T))$$

= -pq(T-F) + (y-T+qT) (17)

The necessary condition for choosing p is found by differentiating EP_I as

$$qF + T - c = 0 \tag{18}$$

and the necessary condition for choosing q is found by differentiating EP_T as

$$p(T - F) + T = 0 (19)$$

Solving these conditions gives

$$p = \frac{T}{F - T}, \quad q = \frac{c - T}{F} \tag{20}$$

These probabilities characterize the mixed strategy equilibrium.

Case (III):

Consider the optimal audit strategy by a tax authority. All taxpayers have either a low income Y_L or a high income Y_H , with $Y_L < Y_H$. They file a tax return, but the rich taxpayers may attempt to underreport. The proportions of taxpayers with high and low incomes are known, but a personal tax return can only be verified through an audit that costs *c*. There is a constant tax rate on income *t* and a fine consisting of a surcharge *F* on any underpaid tax. The parameters *c*, *t*, and *F* are not chosen by the tax authority.

- a. Suppose that the tax authority can pre-commit to its audit polity. What is the optimal audit strategy for the tax authority? Is such policy credible? Why or why not?
- b. If there is a fixed fraction of high-income taxpayers who are known to report truthfully, what could be a credible audit strategy? What is the impact on the equilibrium audit strategy of an increase in the cost of auditing?

Solution

a. In these circumstances the high-income taxpayers will either all declare Y_L or all declare Y_H . Let the number of taxpayers with income Y_H be N_H and the total number of taxpayers be N. Assume that all high-income taxpayers declare Y_L . If the tax authority conducts A audits, the probability of a tax evader being caught is A/N. The expected utility of evasion in terms of A is

$$EU = \left(1 - \frac{A}{N}\right)U(Y_H - tY_L) + \frac{A}{N}U((1 - t)Y_H - F(Y_H - Y_L))$$
(21)

and the utility of honest payment is

$$U = U((1-t)Y_{H})$$
(22)

A high-income taxpayer will announce Y_L if

There is a value $0 < A^* < 1$ such that for all $A < A^*$ the high-income taxpayers announce Y_L and for $A^* \le A$ they announce Y_H .

The revenue for the tax authority is given by

$$R(A) = \begin{cases} (N - N_{H})tY_{L} + (1 - \frac{A}{N})N_{H}tY_{H} \\ + \frac{A}{N}N_{H}(tY_{H} + F(Y_{H} - Y_{L}) - cA, \quad A < A^{*} \\ (N - N_{H})tY_{L} + N_{H}tY_{L} - cA, \quad A^{*} \le A \end{cases}$$
(23)

The first two lines are the sum of tax revenue from the low-income, tax revenue from the high-income who successfully evade, and the fine plus tax from high-income caught evading less the cost of auditing. The third line is the sum of tax revenue from the low-income and the high-income (when all declare honestly) less the cost of audit. Provided that

$$\frac{1}{N}(N_H(tY_H + F(Y_H - Y_L)) - N_H tY_L) - c > 0$$
(24)

the revenue function R(A) will be increasing in A until A^* . The function will have a discontinuity at A^* as the high-income taxpayers switch from evasion to honesty. The policy of the revenue service depends on what happens at this discontinuity. Evaluating the two parts of the function at A^* gives the magnitude of the discontinuity as

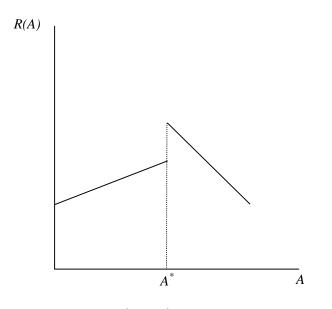
$$\Delta R \equiv R(A_{+}) - R(A_{-})$$
$$= N_{H} \left[t \left(Y_{H} - \left(1 - \frac{A^{*}}{N} \right) Y_{L} \right) - \frac{A^{*}}{N} (tY_{H} + F(Y_{H} - Y_{L})) \right]$$

and a sufficient condition for the discontinuity to be an upward one (see Figure 7) is

$$\frac{A^*}{N}F > \left(1 - \frac{A^*}{N}\right)t \tag{25}$$

Beyond A^* it is clear that R(A) is decreasing in A.

Figure 7 Revenue and the number of audits



Assume that $\frac{A^*}{N}F > \left(1 - \frac{A^*}{N}\right)t$. The optimal policy of the tax authority is to audit at a

value just above A^* . This ensures that no taxpayer evades at the least possible auditing cost. Is this policy credible? Credibility can be tested by considering whether either party would wish to change behavior given the choice of the other party. The taxpayers do not wish to change given the audit strategy. However, if all taxpayers are honest, the tax authority will not wish to audit. For this reason the policy choice of the tax authority is not credible given the behavior of the taxpayers.

b. A credible equilibrium must involve the choice of the revenue service being a best-response to the choices of the taxpayers, and vice versa. It is therefore necessary to find the Nash equilibrium strategies. As part of a implies, there is no Nash equilibrium in pure strategies. This is due to the discontinuity in taxpayer behavior. To find a Nash equilibrium, mixed strategies need to be analyzed. For the revenue service this is simple. It will never audit high-income reports (doing so gains no tax revenue but involves a cost) and need not randomize over *A*. Hence a mixed strategy for the revenue service need not be considered.

Low-income taxpayers never do anything but act honestly. There is now a set of honest high-income taxpayers who also act honestly. The mixed strategy that ensures an equilibrium is played by the high-income taxpayers who will choose to declare a low income with probability p and a high income with probability 1-p. The probability is chosen as the best response to A and has the effect of removing the discontinuity (p falls as A increases but does so continuously).

The number of taxpayers declaring a low income is $N - N_H + p(1-\alpha)N_H$. If A audits are conducted, the probability of being audited for each individual declaring a low income is $q = \frac{A}{N - N_H + p(1-\alpha)N_H}$. Assuming that the number of taxpayers is sufficiently

high that each individual takes q as given, a high-income taxpayer chooses \hat{p} to solve

$$\max_{\substack{\{\hat{p}\}\\ +(1-\hat{p})U(Y_H - tY_L) + qU((1-t)Y_H - F(Y_H - Y_L))]} + (1-\hat{p})U(Y_H (1-t))$$
(26)

The necessary condition is

$$(1-q)U(Y_H - tY_L) + qU((1-t)Y_H - F(Y_H - Y_L)) -U(Y_H(1-t)) = 0$$
(27)

Denoting $U(Y_H - tY_L) - U(Y_H(1-t))$ by ΔU_1 and $U(Y_H - tY_L) - U((1-t)Y_H - F(Y_H - Y_L))$ by ΔU_2 , write (21) as

$$0 = \Delta U_1 - q\Delta U_2$$

= $\Delta U_1 - \frac{A}{N - N_H + p(1 - \alpha)N_H} \Delta U_2$ (28)

The revenue service obtains a payoff of

$$R = (N - N_{H})tY_{L} + \alpha N_{H}tY_{H} - cA + \frac{p(1 - \alpha)N_{H}A}{N - N_{H} + p(1 - \alpha)N_{H}}(tY_{H} + F(Y_{H} - Y_{L}))$$
(29)

The necessary condition for maximizing revenue through choice of A is

$$\frac{p(1-\alpha)N_H}{N-N_H + p(1-\alpha)N_H}(tY_H + F(Y_H - Y_L)) - c = 0$$
(30)

Solving the necessary conditions for the taxpayers and the revenue service simultaneously gives the equilibrium strategies

$$p = \frac{c(N - N_H)}{(1 - \alpha)N_H (tY_H + F(Y_H - Y_L))}$$
(31)

and

$$A = \frac{\Delta U_1}{\Delta U_2} \left(\frac{(N - N_H)(tY_H + F(Y_H - Y_L))}{tY_H + F(Y_H - Y_L) - c} \right)$$
(32)

It is can be seen from the optimal auditing strategy that if the cost of audit rises, the number of audits increases. This counterintuitive result is a consequence of p rising as c rises, so auditing becomes more regarding for the revenue authority.

7.8 Compliance and Social Interaction

It has been assumed so far that the decision by any taxpayer to comply with the tax law is independent of what the other taxpayers are doing. This decision is based entirely on the enforcement policy (penalty and auditing) and economic opportunities (tax rates and income). In practice, however, we may expect that someone is more likely to break the law when noncompliance is already wide-spread than when it is confined to a small segment of the population. This observation is supported by the evidence in Table 3, which shows that tax compliance is susceptible to social interaction.

The reasoning behind this social interaction can be motivated along the following lines: The amount of stigma or guilt I feel I do not comply may depend on what others do and think. Whether they also underpay taxes may determine how I feel if I do not comply. As we now show, this simple interdependence between taxpayers can trigger a dynamic process that moves the economy toward either full compliance or no compliance at all.

To see this, consider a set of taxpayers. Each taxpayer has to decide whether to evade taxes or not. Fixing the enforcement parameters, the payoff from evading taxes depends on the number of noncomplainers. In particular, the payoff from noncompliance is increasing with the number of noncompliers because then the chance of getting away with the act of evasion increases. On the other hand, the payoff from compliance decreases with the number of noncompliers. The reason can be that you suffer some resentment cost from abiding with the law when so many are breaking the law. Therefore individuals care about the overall compliance in the group when choosing to comply themselves.

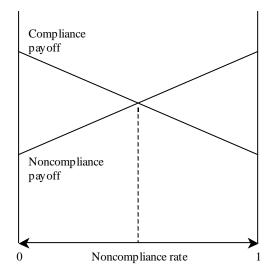


Figure 8 Equilibrium Compliance

Because of the way interactions work, the choice of tax evasion becomes more attractive when more taxpayers make the same choice of breaking the law. The aggregate compliance tendency is toward one of the extremes: only the worst outcome of nobody complying or the best outcome of full compliance are possible. This illustrated in Figure 8 depicting the payoff from compliance and noncompliance (vertical axis) against the noncompliance rate in the group (horizontal axis). At the intersection of the two payoff functions taxpayers are indifferent between compliance or noncompliance. Starting from this point, a small reduction in noncompliance will break the indifference in favor of compliance and trigger a chain reaction toward increasing compliance. Alternatively a small increase in noncompliance triggers a chain reaction in the opposite direction making noncompliance progressively more and more attractive.

In this situation, how do we encourage taxpayers to abide by the law when the dynamic is pushing in the opposite direction? The solution is to get a critical mass of individuals complying to reverse the dynamic. This requires a short but intense audit policy backed by a harsh punishment in order to change the decisions of enough taxpayers that the dynamics switch toward full compliance. When at this new full-compliance equilibrium, it is possible to cut down on audit costs because compliance is self-sustained by the large numbers of taxpayers who comply. It follows from this simple argument that a moderate enforcement policy with few audits and light penalties over a long period is ineffective. Another interesting implication of this model is that two countries with similar enforcement policies can end up with very different compliance rates. Social interaction can be a crucial explanation for the astoundingly high variance of compliance rates across locations and over time that are much higher than can be predicted by differences in local enforcement policies.

7.9 Conclusions

Tax evasion is an important and significant phenomenon that affects both developed and developing economies. Although there is residual uncertainty surrounding the accuracy of measurements, even the most conservative estimates suggest the hidden economy in the United Kingdom and United States to be at least 10 percent of the measured economy. There are many countries where it is very much higher. The substantial size of the hidden economy, and the tax evasion that accompanies it, require understanding so that the effects of policies that interact with it can be correctly forecast.

The predictions of the standard representation of tax evasion as a choice with risk were derived and contrasted with empirical and experimental evidence. This showed that although it is valuable as a starting point for a theory of evasion, the model did not incorporate some key aspects of the evasion decision, most notably the effects of a basic wish to avoid dishonesty and the social interaction among taxpayers. The analysis was then extended to incorporate both of these issues.

Exercises

- 1) Hindriks and Myles (2006, Chapter 16, exercise 16.3) Consider a consumer with utility function $U = Y^{1/2}$.
 - a. Defining the coefficient of absolute risk aversion by $R_A(Y) = -\frac{\partial^2 U / \partial Y^2}{\partial U / \partial Y}$, show that this is a decreasing function of *Y*.

The consumer is faced with a gamble that results in a loss of 1 with probability p = 0.5 and a gain of 2 with probability 1 - p.

- b. Show that there is a critical value of income Y^* with certainty. Hence show that the gamble will be undertaken at any higher income but will not at any lower income.
- 2) Hindriks and Myles (2006, Chapter 16, exercise 16.5)

Given utility function $U = -e^{-Y}$.

a. Show that the coefficient of absolute risk aversion $R_A(Y) = -\frac{U''}{U'}$ is constant (where U' and U'' denote the first and second derivative of U with respect to Y,

respectively). Show that U'>0 (positive marginal utility of income) and that U''<0 (diminishing marginal utility of income).

- b. Show that the proportion of income not declared, $\frac{X}{Y}$, is independent of *Y* for a consumer with this utility function. (Hint: Let $X = \alpha Y$ in the first-order condition and show that *Y* can be eliminated.)
- 3) Hindriks and Myles (2006, Chapter 16, exercise 16.10)

A consumer has a choice between two occupations. One occupation pays a salary of \$80,000 but gives no chance for tax evasion. The other pays \$75,000 but does permit evasion. With the probability of detection p = 0.3, the tax rate t = 0.3, and the fine rate F = 0.5, which occupation will be chosen if $U = Y^{1/2}$?

- 4) Hindriks and Myles (2006, Chapter 16, exercise 16.11)
 Use the parameter values from the previous exercise with the modification that pay in the occupation permitting evasion is given by \$90,000[1-n], where n is the proportion of the population choosing this occupation. What is the equilibrium value of n? How is this
- 5) Hindriks and Myles (2006, Chapter 16, exercise 16.12)

Consider the simultaneous move game between a taxpayer and a tax inspector. The taxpayer chooses whether or not to underreport their taxable income. The tax inspector chooses whether or not to audit the income report. The cost of auditing is c > 1 and the

value affect by an increase in t?

fine (including tax payment) imposed if the taxpayer is caught cheating is F (with F > c > 1). With a truthful report the taxpayer has to pay a tax of 1 unit of income. The payoffs are given in the matrix where the first number in each cell denotes the tax inspector's payoff and the second number is the taxpayer's payoff. Find the Nash equilibria of this game, considering both pure and mixed strategies.

6) Hindriks and Myles (2006, Chapter 16, exercise 16.14)

Consider the game between taxpayer and revenue service described in the payoff matrix below.

	Audit	No audit
Honest	100, -10	100, 10
Evade	<i>Y</i> , 5	150, T

a. For what value of *T* is (Evade, No audit) a Nash equilibrium?

- b. Can (Evade, Audit) ever be a Nash equilibrium? What does this imply about the punishment structure?
- c. Does a simultaneous move game capture the essence of the auditing problem?

References

- Allingham, M., and Sandmo, A. (1972) "Income tax evasion: A theoretical analysis." *Journal of Public Economics* 1: 323-38.
- Baldry, J.C. (1986) "Tax evasion is not a gamble." Economics Letters 22: 333-35.
- Becker, G. (1968) "Crime and punishment: An economic Approach." *Journal of Political Economy* 76: 169-217.
- Cowel, F.A. (1990) Cheating the Government. The MIT Press.
- Glaeser, E.L., Sacerdote, B., and Scheinkman, J.A. (1996) "Crime and social interaction." *Quarterly Journal of Economics* 111: 506-48.
- Graetz, M., Reinganum, J., and Wilde, L. (1986) "The tax compliance game: Towards an interactive theory of law enforcement." *Journal of Law, Economics and Organization* 2: 1-32.
- Hindriks, J., Keen, M., and Muthoo, A. (1999) "Corruption, extortion and evasion." *Journal of Public Economics* 74: 395-430.

Hindriks, J., and Gareth D.M. (2006) International Public Economics, The MIT Press.

- Mork, K.A. (1975) "Income tax evasion: Some empirical evidence." Public Finance 30: 70-76.
- Schneider, F., and Enste, D.H. (2000) "Shadow economies: Size, causes, and consequences." *Journal of Economic Literature* 38: 77-114.
- Scotchmer, S. (1987) "Audit classes and tax enforcement policy." *American Economic Review* 77: 229-33.
- Spicer, M.W., and Lundstedt, S.B. (1976) "Understanding tax evasion." *Public Finance* 31: 295-305.