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Abstract

We examine global economic dynamics under learning in a New Key-
nesian model in which the interest-rate rule is subject to the zero lower
bound. Under normal monetary and fiscal policy the intended steady
state is locally but not globally stable. Large pessimistic shocks to ex-
pectations can lead to deflationary spirals with falling prices and falling
output. To avoid this outcome it may be necessary to suspend normal
policies and replace them by aggressive monetary and fiscal policy that
guarantees a lower bound on inflation. In contrast, policies geared to-
ward ensuring and output may be insufficient for avoiding deflationary
spirals.
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1 Introduction

There is now widespread agreement that the zero lower bound on nominal
interest rates has the potential to generate a “liquidity trap” with major im-
plications for economic performance. There is a substantial literature that has
discussed the plausibility of the economy becoming trapped in a deflationary
state and what macroeconomic policies would be able to avoid or extricate
the economy from a liquidity trap.1 Our own view, reflected in the current

∗Earlier versions were presented in the ECB Conference on Monetary Policy, Asset Prices,
and Learning in November 2006 and in a number of seminars. We thank Roger Guesnerie and
the audiences for helpful comments. Financial support from National Science Foundation
Grant No. SES-0617859 and ESRC grant RES-000-23-1152 is gratefully acknowledged.

1See Krugman (1998) for a recent seminal discussion and Adam and Billi (2005), Coenen
and Wieland (2004), Eggertsson and Woodford (2003) and Eggertsson and Woodford (2004)
for representative recent analyses and further references.
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paper as well as in the earlier paper Evans and Honkapohja (2005), is that the
evolution of expectations plays a key role in the dynamics of the economy and
that the tools from learning theory are needed for a realistic analysis of these
issues.
The importance of expectations in the liquidity trap is now widely ac-

cepted. For example, Benhabib, Schmitt-Grohe, and Uribe (2001b), Benhabib,
Schmitt-Grohe, and Uribe (2001a) show the possibility of multiple equilibria
under perfect foresight, with a continuum of paths to a low-inflation steady
state. Similarly, Eggertsson and Woodford (2003) emphasize the importance
of policy commitment for influencing expectations under the rational expec-
tations (RE) assumption. In Evans and Honkapohja (2005) we emphasized
how the learning perspective alters both the assessment of the plausibility of
particular dynamics and the impact of policy.
Under learning private agents are assumed to form expectations using an

adaptive forecasting rule, which they update over time in accordance with stan-
dard statistical procedures. In many standard set-ups least-squares learning is
known to converge asymptotically to rational expectations, but cases of insta-
bility can also arise. In the earlier paper we examined a flexible price model
with a global Taylor-rule, which, because of the zero lower bound, generates
a low-inflation steady state below the one intended by policy. We found that
while the intended steady state was locally stable under learning, the lower
one was not2 and there was also the possibility of inflation slipping below the
low-inflation steady state. We there showed that switching to a sufficiently
aggressive monetary policy at low inflation rates could avoid these unstable
trajectories. Fiscal policy in these circumstances was ineffective.
The analysis of Evans and Honkapohja (2005), however, was conducted in

a flexible-price model with exogenous output. In the current paper we employ
a New Keynesian model to reexamine these issues in a framework that allows
for a serious analysis of monetary and fiscal policy for an economy in which
recessions or slumps can arise due to failures of aggregate demand.3 We obtain
a number of striking results.
The possibility of liquidity traps taking the form of a deflationary spiral,

under a global Taylor rule, emerges as a serious concern. Although the tar-
geted steady state is locally stable under learning, a large pessimistic shock
to expectations can result, under learning, in a self-reinforcing deflationary
process in which inflation and output decline over time. We consider a num-
ber of policies to insulate the economy from this possibility. Each of these
policies maintains the Taylor rule over most of the range but augment it by
switches to aggressive policies if inflation or output falls below some threshold.
First, we consider an aggressive monetary policy that tries to ensure a

2See also McCallum (2002) for an argument that the low-inflation steady-state is not
stable under learning.

3Our analysis provides a theoretical framework for the potential role of fiscal policy in
combatting liquidity traps, which has been a contraversial topic in the empirical literature
on Japan’s slump. See Ball (2005), Kuttner and Posen (2002) and Perri (2001).
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minimum level of inflation, but it turns out that even this policy may not be
sufficient in some cases. Next, we augment the preceding policy by adding
aggressive fiscal policy when inflation threatens to fall below the threshold.
We demonstrate that this combination of aggressive policies with a threshold
chosen at a suitable level can always eliminate the possibility of deflationary
spirals and ensure global stability of the targeted steady state. Finally, we
analyze whether an output threshold for aggressive monetary and fiscal policies
could be substituted for an inflation threshold. Surprisingly, this turns out not
to be the case as the possibility of deflationary paths remains.
We conclude first that an inflation threshold for triggering aggressive macro

policies is the key element in combatting the possibility of a liquidity trap and
second that fiscal as well as monetary policy may be required.

2 The Model

We adopt a fairly standard representative agent model along the lines of Ben-
habib, Schmitt-Grohe, and Uribe (2001b), Section 3, except that we allow
for stochastic shocks and conduct the analysis in discrete time.4 There is a
continuum of household-firms units, which produce a differentiated consump-
tion good under conditions of monopolistic competition and price-adjustment
costs. We allow for both fiscal and monetary policy and for the government
to issue debt.

2.1 Private Sector

The objective for agent j is to maximize expected, discounted utility subject
to a standard flow budget constraint:

Max E0

∞X
t=0

βtUt,j

µ
ct,j,

Mt−1,j

Pt
, ht,j,

Pt,j

Pt−1,j
− 1
¶

(1)

st. ct,j +mt,j + bt,j + τ t,j = mt−1,jπ
−1
t +Rt−1π

−1
t bt−1,j +

Pt,j

Pt
yt,j, (2)

where ct,j is the Dixit-Stiglitz consumption aggregator, Mt,j and mt,j denote
nominal and real money balances, ht,j is the labor input into production, bt,j
denotes real bonds held by the agent at the end of period t, τ t,j is the lump-sum
tax collected by the government, Rt−1 is the nominal interest rate factor, Pt,j

is the price of consumption good j, yt,j is output of good j, Pt is the aggregate
price level and the inflation rate is πt = Pt/Pt−1. The utility function has the
parametric form

Ut,j =
c1−σ1t,j

1− σ1
+

χ

1− σ2

µ
Mt−1,j

Pt

¶1−σ2
−

h1+εt,j

1 + ε
− γ

2

µ
Pt,j

Pt−1,j
− 1
¶2

.

4We develop our analysis within a closed-economy model. For discussions of liquidity
traps in open economies, see for example McCallum (2000) and Svensson (2003).
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Note that the final term parameterizes the cost of adjusting prices in the spirit
of Rotemberg (1982).
The production function for good j is

yt,j = hαt,j

where 0 < α < 1. Output is differentiated and firms operate under monop-
olistic competition. Each firm faces a downward sloping demand curve given
by

Pt,j =

µ
yt,j
Yt

¶−1/ν
Pt.

Here Pt,j is the profit maximizing price set by firm j consistent with its pro-
duction yt,j. The parameter ν is the elasticity of substitution between two
goods and is assumed to be greater than one.

2.2 Fiscal and Monetary Policy

Assume that the government’s budget constraint is

bt +mt + τ t = gt +mt−1πt−1 +Rt−1π
−1
t bt−1, (3)

where gt denotes government consumption of the aggregate good and τ t is the
lump-sum tax collected. We assume that fiscal policy will follow a linear tax
rule as in Leeper (1991)

τ t = κ0 + κbt−1 + ψt + ηt, (4)

where ψt and ηt denote observed and unobserved shocks, respectively. We also
assume that gt is stochastic

gt = ḡ + ut,

where ut is an observable white noise shock. From market clearing we have

ct = hαt − gt (5)

Monetary policy is assumed to follow a global interest rate rule

Rt − 1 = θtf (πt) (6)

The function f(π) is taken to be non-negative and non-decreasing, while θt is
an exogenous, iid and positive random shock with mean 1 representing random
shifts in the behavior of the monetary policy-maker. We assume the existence
of π∗, R∗ such that R∗ = β−1π∗ and f(π∗) = R∗ − 1. π∗ can be viewed as the
inflation target of the Central Bank. In the numerical analysis we will use the
functional form

f(π) = (R∗ − 1)
³ π

π∗

´AR∗/(R∗−1)
,

which implies the existence of a nonstochastic steady state at π∗. Note that
f 0(π∗) = AR∗, which we assume is bigger than β−1.
Equations (3), (4) and (6) constitute “normal policy”. In the first part

of the paper we examine the system under normal policy. Later we consider
modifications to these policy rules in exceptional circumstances.
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2.3 Key Equations

In the Appendix it is shown that private sector optimization yields the key
equations

−h1+εt +
αγ

ν
(πt − 1)πt + α

µ
1− 1

ν

¶
hαt c

−σ1
t = β

αγ

ν
Et [(πt+1 − 1)πt+1] , (7)

c−σ1t = βRtEt

¡
π−1t+1c

−σ1
t+1

¢
, (8)

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

Etπ
σ2−1
t+1

!−1/σ2
, (9)

to which we add the equations (3), (4), (5) and (6).
As first noted by Benhabib, Schmitt-Grohe, and Uribe (2001b), when-

ever f(.) is continuous (and differentiable) and has a steady state πH with
f 0(πH) > β−1, in accordance with the Taylor principle, non-negativity of the
(net) nominal interest rate implies the existence of a second low inflation steady
state πL with f 0(πL) < β−1. Under the parametric form for f(.) we have
πH = π∗. For each steady state π ∈ {π∗, πL} the nominal interest rate factor
equals

R = β−1π. (10)

The other steady state equations are given by

c = hα − ḡ, (11)

−h1+ε + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
hαc−σ1 = 0 (12)

and a steady state version of (9). For a given steady state π ≥ 1, it is shown in
the Appendix that there is a corresponding unique interior steady state c > 0
and h > 0. For steady states π < 1, there continue to be unique values for c
and h provided π is close to one and ḡ > 0.5

When there is a nonstochastic steady state, it can be shown that stochas-
tic steady states exist when the support of the exogenous shocks is sufficiently
small. Furthermore, in this case the steady state is locally determinate, pro-
vided the corresponding linearization is determinate. Throughout the paper
we assume that the shocks are small in the sense of having small support. We
now consider determinacy of the linearized system.
In a neighborhood of a nonstochastic steady state (c, π) we can derive a

linear approximation

ct = −σ1βπ−1cRt + cet+1 + σ1cπ
−1πet+1 + kc (13)

Rt = aπt + δθt + kR, where a = f 0(π), δ = f(π) (14)
αγ

ν
(2π − 1)πt =

βαγ

ν
(2π − 1)πet+1 −

1 + ε

α
(c+ ḡ)(1+ε)α

−1−1(ct + ut) (15)

+α(1− ν−1)
¡
−(c+ ḡ)σ1c

−σ1−1ct + c−σ1(ct + ut)
¢
+ kπ

5Cases of multiple values for c and h for given π < 1 do exist. Throughout the paper we
rule out these exceptional cases.
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together with the linearized evolution of bonds

bt +mt + κ0 + ψt + ηt = gt + π−1mt−1 + (β
−1 − κ)bt−1

+bπ−1Rt−1 − (mπ−1 + β−1b)π−1πt + kb

and the linearized money equation

mt = −σ−12 (χβ)1/σ2
¡
1−R−1

¢−1/σ2−1 cσ1/σ2
π1/σ2

×¡
−σ1

¡
1−R−1

¢
πc−1ct + (1− σ2)

¡
1−R−1

¢
πet+1 + βR−1Rt

¢
+ km,

where b and m are steady-state values.
The block of the first three equations determines the values of ct, πt, Rt

solely in terms of cet+1, π
e
t+1 and the exogenous shocks. Determinacy of a steady

state can therefore be assessed from this block plus stationarity of the bond
dynamics. Substituting (14) into (13) yields a bivariate forward-looking system
of the formµ

ct
πt

¶
=

µ
Bcc Bcπ

Bπc Bππ

¶µ
cet+1
πet+1

¶
+

µ
Gcu Gcθ

Gπu Gπθ

¶µ
ut
θt

¶
+

µ
k̃c
k̃π

¶
, (16)

where the coefficients can be computed by solving the equations. Denoting by
B the 2 × 2 matrix multiplying (cet+1, πet+1)0, a necessary condition for deter-
minacy is that both eigenvalues of B lie inside the unit circle. There is then a
unique nonexplosive solution of the formµ

ct
πt

¶
=

µ
c
π

¶
+

µ
Gcu Gcθ

Gπu Gπθ

¶µ
ut
θt

¶
. (17)

The corresponding solution formt then takes the form of a constant plus white
noise shocks. From the linearized bond equation it follows that the remaining
condition for determinacy is that fiscal policy is “passive” in the sense of Leeper
(1991), i.e.

¯̄
β−1 − κ

¯̄
< 1.

Determinacy needs to be assessed separately for the π∗ and πL steady
states. We have the following result:

Proposition 1 In the linearized model there are two steady states π∗ > πL.
Provided fiscal policy is passive and γ > 0 is sufficiently small, the steady
state π = π∗ is locally determinate and the steady state π = πL is locally
indeterminate.

Proof. As noted above, from the steady-state interest-rate equation R −
1 = f (π) and the properties of f it follows that there are two steady state
inflation rates 0 < πL < π∗. As γ → 0 it is easily seen that Bcc, Bcπ → 0 and
Bππ → (aβ)−1. At π∗ we have a > β−1 while at πL we have a < β−1. Hence
for γ > 0 sufficiently small the roots of B are inside the unit circle at π∗, while
at πL one root is larger than 1. The result follows.
This result generalizes the corresponding results in Evans and Honkapohja

(2005) and Evans and Honkapohja (2006), which considered an endowment
economy with flexible prices (i.e. γ = 0).
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3 Learning and Expectational Stability

We now formally introduce learning to the model in place of the hypothesis
that RE prevails in all periods. In the modeling of learning it is assumed
that private agents make forecasts using a reduced form econometric model
of the relevant variables and that the parameters of this model are estimated
using past data. The forecasts are input to agent’s decision rules and in each
period the economy attains a temporary equilibrium, i.e. an equilibrium for
the current period variables given the forecasts of the agents. The temporary
equilibrium provides a new data point, which in the next period leads to
re-estimation of the parameters and updating of the forecasts and, in turn,
to a new temporary equilibrium. The sequence of temporary equilibria may
generate parameter estimates that converge to a fixed point corresponding to
a rational expectations equilibrium (REE) for the economy, provided the form
of the econometric model that agents use for forecasts is consistent with the
REE. When the convergence takes place, we say that the REE is stable under
learning.
The literature on adaptive learning has shown that there is a close con-

nection between the possible convergence of least squares learning to an REE
and a stability condition, known as E-stability, based on a mapping from the
perceived law of motion (that private agents are estimating) to the implied
actual law of motion generating the data under these perceptions. E-stability
is defined in terms of local stability, at an REE, of a differential equation based
on this map. For a general discussion of adaptive learning and the E-stability
principle see Evans and Honkapohja (2001).
Although the model of this paper is fairly complex, the RE solutions for

πt and ct described above are simply noisy steady states, i.e. iid processes.
This greatly simplifies the analysis of learning since we can plausibly assume
that private agents forecast by estimating the mean values of πt and ct. In the
learning literature this is often called “steady-state learning.”6 Under steady
state learning agents treat (17) as a Perceived Law of Motion, which they
estimate according to the following simple recursive algorithm

πet+1 = πet + φt(πt−1 − πet) (18)

cet+1 = cet + φt(ct−1 − cet), (19)

where φt is known as the gain sequence. Under least-squares learning the
gain-sequence is usually taken to be φt = t−1, often termed a “decreasing-
gain” sequence, whereas under “discounted least-squares” or “ constant gain”
learning it is set to φt = φ, where 0 < φ < 1 is a small positive constant.
Decreasing gains have the advantage that they can asymptotically converge to
RE, while constant-gain learning rules are more robust to structural change.

6In some cases there can be other more complex RE solutions that would require agents
to use more complicated econometric models. See Evans and Honkapohja (2006) and Evans
and Honkapohja (2005) for a discussion of VAR learning for certain solutions in closely
related models.
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In what follows, we analyze both theoretically and numerically the model
under various specifications of monetary and fiscal policy. The theoretical re-
sults for learning are based E-stability analysis of the system under the learning
rules (18)-(19). When we say that an equilibrium is stable (or unstable) under
learning this implies that it is stable (or not) under these learning rules with
decreasing gain. In the simulations we instead use a small constant gain. Un-
der constant gain, when an equilibrium is E-stable there is local convergence
of learning in a weaker sense to a random variable that is centered near the
equilibrium.7

We next investigate our system under learning under the “normal policy”
rules that we have described. In studying the economy under learning we re-
turn to the nonlinear model so that we can examine the global dynamics of
the system. In doing so it is convenient to make the assumption of point ex-
pectations, e.g. replacing the expectation of π−1t+1c

−σ1
t+1 by (π

e
t+1(c

e
t+1)

σ1)−1. For
stochastic shocks ut and θt with small bounded support this is a reasonable
approximation and it allows us to deal directly with expectations of future con-
sumption and inflation rather than with nonlinear functions of them. Making
this assumption and using also the production function to substitute out ht
leads to the system

β
αγ

ν

¡
πet+1 − 1

¢
πet+1 = −(ct + gt)

(1+ε)/α +
αγ

ν
(πt − 1)πt (20)

+α

µ
1− 1

ν

¶
(ct + gt)c

−σ1
t

ct = cet+1(π
e
t+1/βRt)

σ1 , (21)

where gt = ḡ + ut. These equations, together with the interest-rate rule (6),
implicitly define the temporary equilibrium values for ct and πt given values
for expectations cet+1, π

e
t+1 and given the exogenous shocks ut, θt. Formally we

write the temporary equilibrium map as

πt = Fπ(π
e
t+1, c

e
t+1, ut, θt)

ct = Fc(π
e
t+1, c

e
t+1, ut, θt),

where it follows from the implicit function theorem that such a map exists
in a neighborhood of each steady state (the linearization was given above as
(17)).8

The dynamic system for ct and πt under learning is then given by (20)-
(21) and (6) together with (18)-(19). The full dynamic system under learning
augments these equations with the money equation

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

(πet+1)
σ2−1

!−1/σ2
7For formal details see Section 7.4 of Evans and Honkapohja (2001).
8Numerically it appears that this function is well-defined globally.
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and the bond equation (3).
The stability of a steady-state REE under learning is determined by E-

stability. The REE is said be E-stable if the differential equation (in notional
time τ) µ

dπe/dτ
dce/dτ

¶
=

µ
Tπ(π

e, ce)
Tc(π

e, ce)

¶
−
µ

πe

ce

¶
is locally asymptotically stable at a steady state (π, c), where here

Tπ(π
e, ce) = EFπ(π

e, ce, ut, θt)

Tc(π
e, ce) = EFc(π

e, ce, ut, θt).

E-stability is determined by the Jacobian matrix DT of T = (Tπ, Tc)0 at the
steady state, which for small noise, is approximately equal to the matrix B of
(16) for the steady state in question. It follows that the E-stability conditions
are that both eigenvalues of B− I have real parts less than zero. We have the
following result for low levels of price stickiness.9

Proposition 2 For γ > 0 sufficiently small, the steady state π = π∗ is locally
stable under learning and the steady state π = πL is locally unstable under
learning taking the form of a saddle point.

Proof. In the limit γ → 0 it is straightforward to show that the eigenvalues
of B − I are −1 and (βf 0(π))−1 − 1. Since f 0(π∗) = A/β and A > 1 we have
that (βf 0(π∗))−1 − 1 = A−1 − 1 < 0. At the πL steady state we instead have
f 0(πL) < β−1 implying (βf 0(πL))−1 − 1 > 0, so that the roots are real and of
different signs.
The saddle point property of πL creates a region in which there can be

deflationary spirals. We illustrate this by numerically constructed phase dia-
grams. This also allows to examine larger γ > 0 and conduct a global analysis.
Parameters are set at A = 2.5, π∗ = 1.05, β = 0.96, σ1 = 0.95, α = 0.75, γ = 5,
ν = 1.5, ε = 1 and ḡ = 0.1. Figure 1 shows the E-stability dynamics under
normal monetary and fiscal policy. These indicate how expectations will ad-
just over time under learning when the economy is perturbed from its steady
state equilibrium.
It can be seen that while π∗ is locally stable the low steady state πL =

0.968536 is a saddle. Under learning, normal policy works satisfactorily for
moderate-sized perturbations from the targeted steady state. However, there
are also starting points that lead to instability. In particular, if an exogenous
shock leads to a strong downward revision of expectations, relative to the
normal steady state, these pessimistic expectations generate paths leading to
a deflationary spiral.
These results indicate the need for more aggressive policies when expec-

tations are pessimistic. We begin by considering changing to an aggressive

9Some further results for general γ > 0 are available. For example local stability of π∗

obtains for all γ > 0 and g ≥ 0 if σ1 ≥ 1.
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Figure 1: πe and ce dynamics under standard policy
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monetary policy when inflation threatens to become too low. As we will see,
it may be important also to alter fiscal policy in certain circumstances.

4 Adding Aggressive Monetary Policy

We first consider modifying monetary policy so that it follows the normal
interest rate rule as long as πt ≥ π̃, but cuts interest rates to a low level floor
R̂ if inflation threatens to get below the threshold π̃. Thus

Rt =

½
1 + θtf (πt) if πt > π̃

R̂ if πt < π̃,

and
R̂ ≤ Rt ≤ 1 + θtf (πt) if πt = π̃,

where we choose

1 < R̂ < min
¡
1 + f (π̃) , β−1π̃

¢
if β−1π̃ > 1 or

1 < R̂ < 1 + f(π̃) if β−1π̃ ≤ 1.

Thus, if πt < π̃ the temporary equilibrium is given by (20)-(21), which yields

β
αγ

ν

¡
πet+1 − 1

¢
πet+1 = −(ct + gt)

(1+ε)/α +
αγ

ν
(πt − 1)πt

+α

µ
1− 1

ν

¶
(ct + gt)c

−σ1
t (22)

ct = cet+1(π
e
t+1/βR̂)

σ1. (23)

We remark that real money stock is given by

mt = (χβ)
1/σ2

⎛⎝
³
1− R̂−1

´
c−σ1t

(πet+1)
σ2−1

⎞⎠−1/σ2

andMt is endogenous. In the πt < π̃ regime, expectations determine ct through
the Euler equation. Then ht is determined by ct and fiscal policy by hαt = ct+gt
and the Phillips Curve gives πt.
A policy question of major importance is whether an aggressive monetary

policy of this form is sufficient to eliminate deflationary spirals from arising
when expectations are pessimistic. We now show that aggressive monetary
policy will not always be adequate to avoid these outcomes (see the Appendix
for a proof):

Proposition 3 There is a steady state at π̂ = βR̂ and there no steady state
value for πt below π̂. For all γ > 0 sufficiently small the steady state at π̂ = βR̂
is a saddle point under learning.
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Figure 2: Four steady states with aggressive monetary policy but standard
fiscal policy.

We also illustrate this point numerically using the phase diagrams showing
expectational dynamics. Figure 2 gives the E-stability dynamics when the
switch to aggressive monetary policy takes place only at π̃ = 0.965, i.e. in the
deflationary region below πL. We here set R̂ = 1.0001, so that net nominal
interest rates are cut almost to zero. In the case shown case there are now
four steady states and the possibility of a deflationary spiral remains.
Monetary policy can be strengthened by raising the threshold π̃ for ag-

gressive interest-rate cuts. Figure 3 shows the impact of setting a value
π̃ = 1.01 > πL. Other parameter values are as in Figures 1 and 2. Al-
though this eliminates the unstable steady state at πL, the deflationary spiral
still exists for sufficiently pessimistic expectations. There are now two steady
states: the targeted steady state at π∗, which is locally stable, and a low level
steady state at π̂ = βR̂ < πL, which is a saddle with nearby deflationary
paths.
The conclusion from this analysis is that aggressive monetary policy will

not always be sufficient to eliminate deflationary spirals and stagnation. We
therefore now take up fiscal policy as a possible additional measure.
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Figure 3: Two steady states with standard fiscal policy and high π̃
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5 Combined Monetary and Fiscal Policy

We now introduce our recommended policy to combat liquidity traps and
deflationary spirals. Normal monetary and fiscal policy is supplemented by a
target floor for inflation that policy is designed to achieve:

πt ≥ π̃. (24)

It is assumed that 1/2 < π̃ < π∗. If the target would not be achieved under
normal policy, then monetary and/or fiscal policy is adjusted as follows.
First, monetary policy is relaxed as required to achieve these targets, sub-

ject to the requirement that the interest rate does not fall below a minimum
value R̂, which can be set just above one. It is assumed that R̂ < β−1πL. If
this is not sufficient to achieve the target, then we set Rt = R̂ and fiscal policy
is used, increasing gt as required, to meet the target. The following Lemma
shows that this is indeed feasible:

Lemma 4 Given expectations cet+1 and πet+1 and setting Rt = R̂, any value of
πt > π∗/2 can be achieved by setting gt sufficiently high.

Proof. First, note that ct = cet+1(π
e
t+1/βR̂)

σ1 is fixed when Rt = R̂.
Implicitly differentiating (20) we obtain

dπt
dgt

=
ν

2αγ

(1 + ε)αh1+ε−αt − α2(1− ν−1)c−σ1t

πt − 1/2
.

Since dht
dgt
= αh1−αt is bounded above zero for ct > 0, there exists g0 such that

dπt
dgt

> 0 for gt > g0. It follows that πt →∞ as gt →∞ since if πt were bounded
then dπt

dgt
would be unbounded.

The Lemma shows that policy can be designed to guarantee an inflation
floor. We now specify a policy based on this result. If the inflation bound π̃
is not achieved under normal policy, then we (i) compute the interest rate R̆t

consistent with equations (20), (21) and πt = π̃, (ii) set Rt = max[R̆t, R̂]. If
Rt = R̂ > R̆t then gt is adjusted upward and is set equal to the minimum
value such that the bound is met. By the Lemma this is feasible.
Intuitively, if the target would not be met under normal policy the first

priority is to relax monetary policy to the extent required to achieve it. If the
zero net interest rate lower bound renders monetary policy inadequate to the
task, then aggressive fiscal policy is deployed. As we will see below, the choice
of the threshold inflation rate π̃ is crucial for the success of this policy.
We now consider the possible steady states when the floor constraints are

introduced. We have the result:

Proposition 5 (i) If πL < π̃ < π∗ then π∗ is the unique steady state.
(ii) If βR̂ < π̃ < πL then there are three steady states π∗, πL and π̃.
(iii) π̃ < βR̂ < πL then there are two steady states at π∗ and πL. In addition,
there is a quasi-steady state at π̃ in which consumption is falling.

14



Proof. We first remark that the Fisher equation βR = π holds in all
steady states.
Case (i) follows from the assumption that π̃ < π∗. In a steady state we

must have π ≥ π̃. For π̃ ≤ π < π∗ the interest rate given by β−1π > 1 + f(π),
which is impossible. For π > π∗ the floors are necessarily met but then the
only solution is π∗.
To prove (ii), suppose π̃ < πL. If π̂ < π̃, then clearly there are interior

steady states at π∗and πL in which normal policy is being followed. In the
constrained region (where the constraint (24) is binding) we must have π = π̃
in a steady state. Clearly, π = π̃ is a steady state for R̆ = β−1π̃.
To prove (iii), suppose that πet = π̃ and cet sufficiently low. Then the

constraint (24) is binding, so that πt = π̃ and ct = cet(π̃/βR̂)
σ1. Since π̃/βR̂ <

1, under learning both cet and ct fall steadily over time.
In the last case π̃ < βR̂ there is a locally stable steady state at π∗. However,

the economy can also end up in a depressionary spiral, as illustrated below.
The intuition is straightforward. With pessimistic expectations and π̃ set too
low, the real interest rate exceeds the subjective rate given by the discount
factor, so that households want to reduce their consumption.
The following figures illustrate two of the possibilities. In both figures

we set R̂ = 1.0001, so that when aggressive monetary policy is triggered the
nominal interest rate is cut almost all the way to the zero lower bound. (Other
parameters are as before.) Figure 4 sets π̃ = 1 > πL. This illustrates our
recommended policy in which we set πL < π̃ < π∗. There is now a unique
steady state at π∗ and it is evident in the figure that it is globally stable.
It is crucial to set π̃ > πL to get the desired properties of our recommended

policy. As indicated in Proposition 5, setting π̃ too low can result in multiple
equilibria. As an illustration Figure 5 sets π̃ = 0.95. This illustrates possibility
(iii) of the Proposition, in which there is a quasi-steady state and the possibility
of falling ce is present.
Our key finding is that a combination of aggressive monetary and fiscal

policy to maintain a sufficiently high lower bound on inflation will eliminate
the possibility of a deflationary spiral. Choosing an appropriate switch-point
π̃ from normal to aggressive policy is crucial. If π̃ is not set at sufficiently
high value, the economy can converge to π̃ itself with low inflation (or even
deflation) and low interest rates: a type of liquidity-trap equilibrium. (This
case splits, moreover, into two subcases for consumption. Either there is a
steady state value for consumption or there may be only a quasi steady state
with falling consumption). On the other hand, if π̃ is set at a sufficiently high
value, i.e. π̃ > πL, there exists a unique steady state π∗, which is globally
stable.
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Figure 4: Unique steady state with a high value for π̃
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Figure 5: Two steady states and a quasi steady state
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6 An Output Target for Policy?

The preceding discussion naturally raises the question whether another type of
target might be used for triggering aggressive policies. Consider in particular
the possibility that the policy authorities choose a minimum output target, so
that policies ensure ct + gt ≥ ỹ by first dropping interest rates as needed to
ensure the target, subject to their not falling below the floor R̂. If setting R =
R̂ is not sufficient to meet the output target then also gt is raised as required
to ensure yt = ỹ. Thus this policy is analogous to the one recommended in
Section 5, except that we now have a minimum output target instead of an
inflation target.
Surprisingly, it turns out that this form of policy does not eliminate the

possibility of the economy getting stuck in a liquidity trap. The details of the
analysis depend on the steady-state relationship between output and inflation.
Combining (11), (12) and the production function y = hα yields

−y(1+ε)/α + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
y(y − g)−σ1 = 0. (25)

We are restricting attention to values π > 1/2, so given y and g this equation
determines a unique π whenever a solution exists. Also, for a given g it can
be shown that a sufficient condition for ∂π/∂y > 0 is that σ1 > 1. (See the
Appendix for details on these points.) The condition σ1 > 1 is sufficient but
not necessary for an upward sloping long-run Phillips curve. For convenience,
we here restrict attention to the case in which ∂π/∂y > 0 throughout the range
of admissible y. This in particular implies that yL < y∗, where yL denotes the
output level in the πL steady state and y∗ denotes output in the π∗ steady
state.
Let πỹ denote the steady-state inflation at y = ỹ when g = ḡ. As usual we

make an assumption that R̂ is above, but close to one. Specifically, we assume
that 1 < R̂ < min(1 + f(πỹ), β

−1πỹ) if β−1πỹ > 1 or 1 < R̂ < 1 + f(πỹ) if
β−1πỹ ≤ 1.
We have the following result:

Proposition 6 Assume that ∂π/∂y > 0.
(i) If ỹ < yL with πL > πỹ > π̂ there are four steady states. These include the
πL and π∗steady states, a constrained steady state with π = πỹ , g = ḡ and
R > R̂, and a steady state at π̂ = βR̂, with R = R̂, y = ỹ, g > ḡ. If instead
ỹ < yL with πỹ < π̂ then there are only the two unconstrained steady states at
πL and π∗.
(ii) if yL < ỹ < y∗ the steady states consist of the normal π∗ steady state and
a second steady state at π̂ = βR̂, with R = R̂, y = ỹ, g > ḡ.
(iii) if ỹ > y∗ then there is one steady state at π̂ as in (ii) and a second steady
state at πỹ > π∗ with R = β−1πỹ.
In each case, the steady state with the lowest inflation rate is a saddle point
under learning.
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Proof. First, there are no steady states with πL < π < π∗, since for
such π the value of R given by the Fisher equation would be greater than the
value given by normal monetary policy, which is not possible under output-
constrained monetary policy.
(i) Clearly both πL and π∗ are steady states. There cannot be a steady state
with π > π∗. In that case we would have g > ḡ (otherwise the output target
would be met), which implies R = R̂, but by the Fisher equation this would
be inconsistent. In the case πL > πỹ > π̂ it is easy to verify that πỹ and π̂ are
additional steady states.
(ii) It is clear that π∗ is a steady state. Any other steady state is constrained,
so that y = ỹ. If g = ḡ, then πL < πỹ < π∗, which is impossible. Thus, for
any steady state other than π∗ we have g > ḡ, which implies that R = R̂ and
π = π̂.
(iii) In this case πỹ > π∗ and setting R = β−1πỹ we have a steady state at
π = πỹ and y = ỹ (with g = ḡ). Any other steady state is constrained at y = ỹ

but with g > ḡ. Hence R = R̂ and π = π̂.
We now turn to the stability of the steady states with the lowest inflation. If
the only steady states are at πL and π∗ then from earlier results we know that
πL is a saddle point under learning. Otherwise the steady state with the lowest
inflation rate is at π̂. In this case the constrained temporary equilibrium is
given by

ct = cet+1(π
e
t+1/βR̂)

σ1

and
αγ

ν
(πt − 1)πt =

αγβ

ν

¡
πet+1 − 1

¢
πet+1 + (ỹ)

(1+ε)/α − α

µ
1− 1

ν

¶
ỹ(cet+1)

−σ1.

This system can be solved explicitly for (ct, πt) to obtain the constrained tem-
porary equilibrium. Using Mathematica (routine available on request), it can
be shown that the determinant of the linearized E-stability differential equa-
tion system is negative at the steady state. This implies that the steady state
is a saddle point.
This Proposition shows that however an output target is set, the lowest

inflation steady state is a saddle under learning and therefore there are nearby
paths taking the form of a deflationary spiral.
To illustrate the results, we first consider a case in which the output target

is set at a level below yL. The target ỹ is set at 98 percent of the high steady
state level of output (the other parameters are the same as in earlier figures).
The results are illustrated in Figure 6. There are two steady states and the
unconstrained steady state πL is locally a saddle point under learning. The
dynamics are naturally affected by an output-target policy. Nevertheless, it is
seen that pessimistic expectations for consumption and inflation can still lead
to a deflationary spiral at the bottom-left corner of the diagram.
The second case we consider has an output target ỹ > yL. This is obtained

by setting ỹ at 99.5 percent of the high steady state output (the other para-
meters are unchanged). In this case a constrained steady state at π̂ exists,
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Figure 6: Learning dynamics under output targeting with ỹ < yL.
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Figure 7: Learning dynamics under output targeting with ỹ > yL.

which again is locally a saddle point under learning. The figure shows that
deflationary spirals exist at the bottom-left corner of the phase diagram.
On these deflationary spiral paths consumption falls steadily after a certain

point. Output is then sustained by ever increasing government spending. The
intuition is that in a deflationary spiral, even at a near-zero nominal interest
rate Rt = R̂, the ex-ante real interest rate increases, which depresses private
consumption. Simply maintaining output is not enough. In order to put a floor
on consumption it is critical to put an upper bound on real interest rates, and
this can only be done by stabilizing inflation.

7 Stochastic Simulations

We now illustrate our recommended policy using real-time stochastic simula-
tions. We here assume a constant gain form of the learning rule with a small
gain. Simulations confirm local convergence to the stable targeted steady state
under normal policy and global convergence under our recommended policy
in which when normal policy is augmented by aggressive monetary and fiscal
policy if πt threatens to fall below π̃ > πL.
It is beneficial to have our recommended policies in place before a collapse
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Figure 8: Dynamics of c and ce.

in expectations We illustrate how our policies work in real time, in the face
of pessimistic expectations, if initially normal policies are used, and then our
recommended policies are implemented after some point t1.
Figure 8 shows consumption diverging to low values before the augmented

policies are introduced at time t1 = 170.10 Inflation is on a steady downward
trajectory when only normal policy rules are in place. Introduction of the
aggressive policies at t1 leads to a recovery of inflation and consumption to
the targeted steady-state values.
Figure 9 shows the dynamics of interest rates, government spending and

public debt. It is seen that interest rates falls to the floor level and debt
gradually rises under the normal policy regime in which government spending is
constant. At time 170, when the augmented policies are introduced, this leads
to an increase in government spending and consequently a further substantial
increase in debt in a short interval in time. With the new policy government
spending is gradually reduced as expectations of inflation and consumption
recover. This also allows debt to return gradually to the steady state. Interest
rates also return to normal levels and inflation (not shown) converges towards
π∗. Introduction of our policies at an earlier time avoids the worst part of

10Parameters are A = 1.8, π∗ = 1.02, β = 0.96, σ1 = 0.95, α = 0.75, γ = 5, ν = 1.5,
ε = 1, g = 0.1, R̂ = 1.002. Other parameters are φ = 1/30, σθ = 0.02, σu = 0.000001,
σψ = 0.000001, ση = 0.001, κ0 = −0.005, κ = β−1 − 1 + 0.15, and χ = 0.0005.
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Figure 9: Dynamics of r, g and b.

stagnation. Consumption does not fall as much and returns to normal levels
much earlier, and the debt level does not rise nearly as much.

8 Conclusions

The recent theoretical literature on the zero lower bound to nominal inter-
est rates has emphasized the possibility of multiple equilibria and liquidity
traps when monetary policy is conducted using a global Taylor rule. Most of
this literature has focused on models with perfect foresight or fully rational
expectations. We take these issues very seriously, but our findings for these
models under adaptive learning are quite different and in some ways much
more alarming than suggested by the rational expectations viewpoint. We
have shown that under standard monetary and fiscal policy, the steady state
equilibrium targeted by policymakers is locally stable. In normal times, these
policies will appropriately stabilize inflation, consumption and output. How-
ever, the desired steady state is not globally stable under normal policies. A
sufficiently large pessimistic shock to expectations can send the economy along
a unstable deflationary spiral.
To avoid the possibility of deflation and stagnation we recommend a com-

bination of aggressive monetary and fiscal policy triggered whenever inflation
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threatens to fall below an appropriate threshold. Monetary policy should im-
mediately reduce nominal interest rates, as required, even to the zero interest
floor if needed, and this should be augmented by fiscal policy if necessary. In-
triguingly, targeting aggregate output in this way may not successfully reverse
a deflationary spiral, but our policy combination targeting inflation at an ap-
propriate rate will do so. When aggressive fiscal policy is necessary, this will
lead to a temporary build-up of debt. However, government spending and debt
will gradually return to their steady state values and early implementation of
the recommended policies will mitigate the temporary run-up in debt.
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A Derivations

A.1 Private sector optimization

One can show that

Pt,j

Pt
yt,j = Y

1/ν
t y

1−1/ν
t,j

= Y
1/ν
t h

α(1−1/ν)
t,j

and that firm j0s gross inflation can be expressed as

Pt,j

Pt−1,j
=

³
yt,j
Yt

´−1/ν
Pt³

yt−1,j
Yt−1

´−1/ν
Pt−1

=

µ
Yt
Yt−1

¶1/ν µ
ht,j
ht−1,j

¶−α/ν
Pt

Pt−1
.

These allow us to write the utility function in the form

Ut,j =
c1−σ1t,j

1− σ1
+

χ

1− σ2

¡
mt−1,j ∗ π−1t

¢1−σ2 − h1+εt,j

1 + ε

−γ
2

Ãµ
Yt
Yt−1

¶1/ν µ
ht,j
ht−1,j

¶−α/ν
Pt

Pt−1
− 1
!2

.

Next, the Lagrangian can be expressed as

L = E0

∞X
t=0

[βtUt,j − βt+1λt+1,j[ct,j + wt+1j + τ t,j −mlt,jπ
−1
t

−Rt−1π
−1
t (wt,j −mlt,j)− Y

1/ν
t h

α(1−1/ν)
t,j ]

−βt+1μt+1,j (mlt+1,j −mt,j)− βt+1ηt+1,j (hlt+1,j − ht,j)]

where the notation

wt+1,j = mt,j + bt,j

mlt+1,j = mt,j

hlt+1,j = ht,j

is employed. Here wt,j, mlt,j and hlt,j are the state variables and ct,j, mt,j and
ht,j are the control variables. In addition, πt, Yt and Yt−1 are state variables,
which are viewed as exogenous by each agent.
Following Chow (1996), we write the Lagrangian into the general form

L =E0

" ∞X
t=0

©
βtr (xt, ut)− βt+1ξ0t+1 [xt+1 − f (xt, ut)− εt+1]

ª#
,
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for which the FOC’s are expressed compactly as

∂

∂ut
r (xt, ut) + β

∂

∂ut
f 0 (xt, ut)Etξt+1 = 0

ξt =
∂

∂xt
r (xt, ut) + β

∂

∂xt
f 0 (xt, ut)Etξt+1.

Using these, the FOC’s for the problem at hand are obtained as follows:
wrt ct,j :

c−σ1t,j − βEtλt+1,j = 0, (26)

wrt mt,j :
Etμt+1,j = 0, (27)

wrt wt,j :
λt,j = β

¡
Rt−1π

−1
t

¢
Etλt+1,j, (28)

wrt mlt,j :

μt,j = χ
¡
mlt,jπ

−1
t

¢−σ2 π−1t + β
¡
π−1t −Rt−1π

−1
t

¢
Etλt+1,j, (29)

wrt ht,j :

−hεt,j + γ

Ãµ
Yt
Yt−1

¶1/ν
Pt

Pt−1

µ
ht,j
hlt,j

¶−α/ν
− 1
!

∗α
ν

µ
ht,j
hlt,j

¶(−α/ν)−1
1

hlt,j

µ
Yt
Yt−1

¶1/ν
Pt

Pt−1

+βY
1/ν
t α

µ
1− 1

ν

¶
h
α(1−1/ν)−1
t,j Etλt+1,j + βEtηt+1,j = 0, (30)

wrt hlt,j :

ηt,j = −γ
Ãµ

Yt
Yt−1

¶1/ν
Pt

Pt−1

µ
ht,j
hlt,j

¶−α/ν
− 1
!

∗α
ν

µ
ht,j
hlt,j

¶(−α/ν)−1µ
Yt
Yt−1

¶1/ν
Pt

Pt−1

ht,j
hl2t,j

. (31)

All firms are assumed to be identical so,

ht,j
hlt,j

=
ht,j
ht−1,j

=
ht
ht−1

=
Y
1/α
t

Y
1/α
t−1µ

Yt
Yt−1

¶1/ν µ
ht,j
hlt,j

¶−α/ν
= 1µ

ht,j
hlt,j

¶(−α/ν)−1µ
Yt
Yt−1

¶1/ν
ht,j
hlt,j

= 1

26



(as ηt,j = ηt) this reduces equation (31) to

ηt =
−αγ
ν

(πt − 1)πt
1

ht−1
. (32)

Similarly, equation (30) can be reduced to

hεt +
αγ

ν
(πt − 1)

πt
ht
+ βα (1− 1/ν) Yt

ht
Etλt+1 + βEtηt+1 = 0. (33)

Equation (26) can also be reduced to

c−σ1t = βEtλt+1, (34)

so using equations (32), (33) and (34), we get a Phillips curve

−h1+εt +
αγ

ν
(πt − 1)πt + α

µ
1− 1

ν

¶
hαt c

−σ1
t = β

αγ

ν
Et [(πt+1 − 1)πt+1] ,

which is equation (7) in the main text.
As agents are homogeneous, equation (28) reduces to

λt = β
¡
Rt−1π

−1
t

¢
Etλt+1 (35)

and combining equations (34) and (35) yields the consumption Euler equation

c−σ1t = βRtEt

¡
π−1t+1c

−σ1
t+1

¢
,

which is equation (8) in the main text. Under the assumption that μt,j = μt, by
combining equations (27), (29) and (34) we get the money demand equation:

mt = (χβ)
1/σ2

Ã¡
1−R−1t

¢
c−σ1t

Etπ
σ2−1
t+1

!−1/σ2
,

which is equation (9) in the main text.

A.2 Further Properties of Steady States

We show existence of unique steady state values for c and h for a given steady
state π under normal policy. Combining (11) and (12), we have the equation

−h1+ε + (1− β)
αγ

ν
(π − 1)π + α(1− ν−1)hα(hα − g)−σ1 = 0.

Let Λ = (1− β)αγ
ν
(π − 1)π > 0 and write the equation as

Λ+ α(1− ν−1)hα(hα − g)−σ1 = h1+ε.

The RHS is increasing and convex. Consider first the case π ≥ 1. For g = 0,
the LHS is increasing and concave for σ1 ≤ 1 and at h = 0 it is positive (or
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zero if π = 1), so clearly there is a unique interior solution for h. For g = 0,
when σ1 > 1, the LHS is decreasing with limit Λ as h →∞ so again there is
a unique solution. If g > 0, the LHS has an asymptote at plus infinity when
h→ g1/α from above. For h > g1/α the LHS shifts up and also

∂

∂g

µ
∂

∂h
(hα(hα − g)−σ1)

¶
= σ1(h

α − g)−σ1−1
µ
1− 1 + σ1

1− g/hα

¶
< 0

for all values of σ1, so that the preceding arguments can be extended accord-
ingly and there is a unique interior solution.
Finally, if π < 1 (so that Λ < 0) various possibilities arise. There may

be zero or two interior solutions when g = 0. However, for g > 0 and π
sufficiently close to one, the argument above for the case π = 1 applies and
there is a unique solution.

A.3 Proof of Proposition 3

First, π̂ is clearly a steady state and by equation (8) there is no other steady
state value below π̂. The corresponding value ĉ for consumption can be com-
puted from (22).
To prove the saddle-point property, we consider the temporary equilibrium

defined by the system (22) and (23) that pertains to the region where Rt = R̂.
Then we show that the determinant of the Jacobian matrix of the E-stability
differential equations evaluated at that steady state is always negative for γ
sufficiently small.
The temporary equilibrium equation for ct is simply (23). The correspond-

ing equation for πt is obtained by solving πt in terms of πet+1 and ct using (22),
which is a quadratic equation in πt (the relevant solution is the larger root),
and substituting (23) into the solution of the quadratic.
Using Mathematica (routine available on request) it can be shown that the

determinant of the Jacobian matrix of the E-stability differential equations at
the steady state (π̂, ĉ) is a ratio of two terms, of which the denominator is
always positive. The numerator is proportional to

−[c1+σ1(c+g) 1+εα (1+ε)ν+c2α2(ν−1)(σ1−1)+g2α2(ν−1)σ1+cgα2(ν−1)(2σ1−1)].

This expression in the square brackets is increasing in σ1, so that its minimal
value obtains when σ1 = 0. Imposing σ1 = 0 and using (22) at the steady
state the numerator can be simplified to

−(1 + ε)[−R̂(β − 1)β(βR̂− 1)γ + (c+ g)(ν − 1)] + α(c+ g)(ν − 1).

The final term α(c+ g)(ν−1) is dominated by the negative term −(1+ ε)(c+
g)(ν − 1), while the first term in square brackets −R̂(β − 1)β(βR̂ − 1)γ can
be made arbitrarily small by making γ sufficiently small. The result follows.
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A.4 Details on Output-Target Policies

For an output target ỹ we can find an equivalent employment target h̃ = (ỹ)1/α.
An output-target constrained steady state must satisfy the equation

−h1+ε + αγ

ν
(1− β) (π − 1)π + α

µ
1− 1

ν

¶
hαc−σ1 = 0

or
(π − 1) π = ν

αγ(1− β)
h̃1+ε − ν − 1

γ(1− β)
h̃α(h̃α − g)−σ1 ≡ L.

This equation is quadratic in π and solutions are

π =
1±
√
1 + 4L

2
.

The positive root gives the economically sensible solution, i.e., there is a unique
solution for π for any given h̃.
To show that for steady states ∂π/∂y > 0 if σ1 > 1 we consider the equation

(25) for π > 1/2. It is sufficient to show that the expression y(y − g)−σ1 is
decreasing in y. Clearly,

d

dy
(y(y − g)−σ1) = (y − g)−σ1[1− σ1y(y − g)−1] < 0

when σ1 > 1 and g ≥ 0.
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