
Infrequent Changes of Policy Target: 
Stop-Go Monetary Policy under Knightian Uncertainty 

 
Shin-ichi Fukuda (University of Tokyo)**

 
This version: February 2007 

 
Abstract 

 
In many countries, the monetary policy instrument remains unchanged for a long period 
and shows infrequent responses to exogenous shocks.  The purpose of this paper is to 
provide a new explanation on why the central bank’s policy instrument remains so 
unchanged.  In the following analysis, we explore how Knightian uncertainty affects 
optimal monetary policy.  We apply the Choquet expected decision theory to a new 
Keynesian model.  A main result is that the policymaker may frequently keep the 
interest rate unchanged even when exogenous shocks change output gaps and inflation 
rates.  This happens because a change of the interest rate increases uncertainty for the 
policymaker when structural parameters are not known.  To the extent that the 
policymaker has uncertainty aversion, it can therefore be optimal for the policymaker to 
maintain an unchanged policy stance for some significant periods and to make 
discontinuous changes of the target rate following a Taylor rule.  Our analysis departs 
from previous studies in that we determine an optimal monetary policy rule that allows 
time-variant feedback parameters instead of restricting ourselves to time-invariant 
feedback parameters.  This leads to an optimal stop-go policy rule that sometimes 
responds to output and inflation gaps but sometimes does not. 
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Introduction 
  In monetary economics, it has widely been discussed what policy rules central banks 
follow.  A growing number of studies advocate a variety of monetary policy rules that 
can lead to good performance.  In particular, many argue that macroeconomic 
stabilization should be implemented through a “Taylor rule” in which interest rates are 
adjusted in response to output gap and inflation rate.  However, when we look at 
high-frequency data, the policy instrument remains unchanged for a long period and 
shows infrequent responses to frequent exogenous shocks.  Figure 1 plots daily data of 
targeted federal fund rates from January 2001 to December 2006.  It is easy to see that 
the changes of the targeted federal fund rates were rare throughout the period.  Since 
the Federal Reserve’s Trading Desk keeps the federal funds rate near a target set by the 
Federal Open Market Committee (FOMC), this implies that the baseline of the U.S. 
short-term interest rate changed very infrequently.1

One of the reasons why the changes of the targeted federal fund rates were so rare is 
that the FOMC meeting is usually held only eight times a year.  It is the FOMC that 
decides some discontinuous jumps of the targeted rates.  However, except in 2001 and 
2005, the FOMC decided not to change the target rate in most of the meetings (see 
Table 1).  Infrequent FOMC meetings would not be enough to explain less frequent 
changes of the targeted rates.  Similar infrequent policy changes can be observed for 
the other central banks that face different environments.  For example, Table 2 
summarizes the number of monetary policy decisions and the number of decisions with 
no policy change in the Bank of Japan, the European Central Bank, and the Bank of 
England from 1999 to 2006.  It is easy to see that these central banks changed the 
targeted policy instruments much less frequently than the Federal Reserve Board 
throughout the period. 

Why do the central banks decide not to change the policy targets so frequently?  The 
purpose of this paper is to provide a new explanation on why the central bank’s policy 
instrument remains so unchanged under parameter uncertainty.  In the following 
analysis, we explore how Knightian uncertainty affects optimal monetary policy in a 
new Keynesian model.  The decision-making theory we use in the analysis is that of 
expected utility under a nonadditive probability measure, that is, the Choquet expected 
model, developed by Gilboa (1987) and Schmeidler (1989).2  We apply the Choquet 
expected decision theory to a new Keynesian model.  A main result is that the 
                                                  
1 The realized federal fund rates that are called “effective federal fund rates” show some daily 
fluctuations over time.  However, they only show small fluctuations around the targeted rates. 
2 Based on the Gilboa-Schmeidler’s axioms, studies such as Epstein and Wang (1994), and 
Mukerji and Tallon (2004) incorporate Knightian uncertainty in economic models. 
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policymaker may frequently keep the interest rate unchanged even when exogenous 
shocks change output gaps and inflation rates.  This happens because a change of the 
interest rate increases uncertainty for the policymaker when the structural parameters 
are not well known.  To the extent that the policymaker has uncertainty aversion, it can 
therefore be optimal for the policymaker to maintain an unchanged policy stance for 
some significant periods and to make discontinuous changes of the target rate following 
a Taylor rule. 

In previous literature, there are a large number of studies that focused on model 
uncertainty and the performance of policy rules across different models.  Brainard 
(1967) is a seminal study that explored how the policymaker’s optimal rule is altered 
when faced with parameter uncertainty.  McCallum (1988) has argued for evaluating 
policy proposals in a variety of economic models as a means of assessing their 
robustness.  Using five macroeconomic models, Levin, Wieland, and Williams (2003) 
identify the robust rules that respond to the inflation forecast and the output gap but that 
incorporate a substantial degree of policy inertia.  Using a new Keynesian model, 
Giannoni and Woodford (2003a, 2003b) have analyzed policy rules that are robust to 
misspecification of the disturbance process of a known model, while Kimura and 
Kurozumi (2003) and Levin and Williams (2003b) have focused on whether parameter 
uncertainty leads to more cautious or more aggressive policy responses to shocks when 
the effects of structural parameters on the loss function are taken into account.  
However, since none of these studies considered Knightian uncertainty, the model 
uncertainty has never lead to the conclusion that it is optimal for the policymaker to 
keep the interest rate unchanged without responding to inflation and output gaps. 

Several recent studies explored “robust optimal policy rules” under a version of 
Knightian uncertainty, which are designed to be robust in the sense of minimizing the 
worst case scenario when the policymaker believes that the true model is in a 
neighborhood of a given reference model.  These studies include Hansen and Sargent 
(2003), Onatski and Stock (2002), Tetlow and von zur Muehlen (2001), and Giannoni 
(2006).  Walsh (2004) has argued that optimal monetary policy under Hansen-Sargent 
framework is equivalent to that of Giannoni and Woodford where the optimal policy 
rule becomes less aggressive under uncertainty.  In contrast, Onatski and Stock argued 
that the minimax approach of robust control provides robust monetary policies that are 
more aggressive than the optimal policies absent model uncertainty.3  However, unlike 
ours, none of these studies has reached a conclusion that the optimal policy is to keep 
the policy instrument unchanged for some periods. 
                                                  
3 Giannoni (2002, 2006) supports this under more general environments. 
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Our analysis departs from these previous studies in two important ways.   First, 
instead of restricting ourselves to time-invariant feedback parameters, we determine an 
optimal monetary policy rule that allows time-variant feedback parameters.  This leads 
to an optimal stop-go policy rule that sometimes responds to output and inflation gaps 
but sometimes does not.  Second, we assume that the policymaker can observe all 
relevant macro variables before making the policy decision.  The assumption implies 
that the policymaker faces no uncertainty on these variables only without policy 
changes.  Under the assumption, uncertainty on structural parameters becomes crucial 
in deriving infrequent policy changes under Knightian uncertainty or in a robust control 
framework. 

Our result is similar to that of Dow and Werlang (1992) in that a player chooses the 
status quo under Knightian uncertainty.  Dow and Werlang provide a simple example 
where the optimal portfolio choice can be the status quo under Knightian uncertainty.  
However, given that the policy changes are rare, it deserves to pay a special attention to 
see why the central banks prefer the status quo under Knightian uncertainty.  Central 
bankers have multiple objectives and confront a variety of economic circumstances.  
They know that their actions have significant impacts on the economy, but the timing, 
magnitude, and channels of those impacts are not fully understood.  They, in contrast, 
have a concern that their reputation would deteriorate dramatically if their actions have 
wrong impacts on the economy.  Under the circumstances, it may become desirable for 
the central banks not to change the policy targets when the parameter uncertainty makes 
the impacts uncertain enough.   

In macroeconomics, it was almost a conventional wisdom that central banks 
implement monetary policy in a gradual fashion (see, for example, Blinder [1997]).  
Many researchers claim that this gradualism is due to 'optimal cautiousness', although 
some others suggest alternative interpretations (see, for example, Rudebusch [2005]).  
Interest-rate smoothing or monetary policy inertia is, however, different from monetary 
policy with infrequent changes and some discontinuous jumps.  When using low 
frequency data, the two types of monetary policies may be observationally equivalent.  
But their macroeconomic implications will be different at least in the short-run and may 
be so even in the long-run.  It is practically very important to pay a special attention to 
macroeconomic consequences of the stop-go policy that changes the policy instrument 
infrequently. 
  The paper proceeds as follows.  Section 2 sets up the basic model and section 3 
explains the policy objectives.  Sections 4 and 5 derive the optimal monetary rules 
with and without policy changes.  Section 6 shows some results of stochastic 
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simulation and section 7 checks their robustness.  Section 8 summarizes our main 
results and refers to their implications. 
 
 
1. The Basic Model 

Our basic model follows a simple new Keynesian model: 
 
(1)  xt = xt+1

e – α (it - πt+1
e) + ut, 

(2)  πt = β πt+1
e + kt xt + et, 

 
where xt = the gap between actual output and the flexible-price equilibrium output level, 
it = the nominal interest rate, πt = the inflation rate, ut = a demand disturbance, and et = a 
supply shock.  The variable with superscript e, such as xt+1

e and πt+1
e, denotes the 

private agents’ expectations.   
  Equation (1) is the Euler condition from the representative household’s consumption 
decision, while equation (2) is a new Keynesian Phillips curve.  Subscript t denotes 
time period.  All variables are expressed as log deviations from the steady state.  
Although there is some arbitrariness in the information structure, the model is standard.  
We, however, impose an additional assumption that the parameter kt follows a binomial 
distribution that takes either k1 or k2, where k1 > k2.  The parameter kt captures both the 
impacts of a change in real marginal cost on inflation and the co-movement of real 
marginal cost and the output gap.  In literature, there exists large disagreement on an 
appropriate value of kt.  When the time interval is one quarter, McCallum and Nelson 
(2000) report that the empirical evidence is consistent with a value of kt in the range 
[0.01, 0.05].  Roberts (1995) show that the coefficient on the output gap is about 0.3 by 
annual data, which implies a value for kt is 0.075 by quarterly data.  Jensen (2002) uses 
a baseline value of kt = 0.1, while Walsh (2003) uses 0.05.  In the following analysis, 
we assume that the random parameter kt is independently and identically distributed 
over time.  
  In our model, the following timing of events is assumed in period t.  At the 
beginning of period t, the private agents form their expectations xt+1

e and πt+1
e.  When 

they form the expectations, shocks in period t have not occurred yet, so that the 
expectations are based on the information available at the end of period t-1.  After the 
private agents formed xt+1

e and πt+1
e, innovations to ut and et as well as the parameter 

value of kt are realized.  However, the policymaker cannot observe the realized 
innovations directly.  Instead, he (or she) observes the realized values of xt and πt that 
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reflect the innovations.  The policymaker decides the nominal interest rate it based on 
the updated information.  It is, however, noteworthy that the updated information only 
includes the realized values of xt and πt before the nominal interest rate is changed.  
There still exists uncertainty on what value was realized for πt when the nominal 
interest rate is changed in period t.  The period t ends after the policymaker decided the 
nominal interest rate it.  At the end of the period, both the private agents and the 
policymaker observe the realized innovations to ut and et directly, which are reflected 
only in their decision makings after period t+1. 
  Figure 2 summarizes the timing of the events in period t.  A key assumption in the 
timing is that the policymaker faces a significant uncertainty on the effects of the 
nominal interest rate change on πt.  To distinct the state before the policy change from 
that after the policy change, we define x0

t and π0
t respectively as the realized values of xt 

and πt before the nominal interest rate is determined.  By definition, it holds that 
 

(3)  x0
t = xt+1

e – α (it-1 - πt+1
e) + ut, 

   (4)  π0
t = β πt+1

e + kt x0
t + et. 

 
Equations (1)-(4) therefore lead to: 
 

(5) xt = x0
t – α Δit,  

(6) πt = π0
t – α kt Δit. 

 
where xt and πt denote the realized values of xt and πt after the nominal interest rate is 
determined. 

Equations (5) and (6) determine the equilibrium values of xt and πt in our model.  It 
is noteworthy that these equations hold for more general models.  For example, we can 
show that our model leads to (5) and (6) even when we include a variety of lagged 
variables, xt-1, xt-2, …, πt -1, πt -2, …, in the right-hand sides of (1) and (2).   

From (5), the policymaker can infer the exact value of xt when observing x0
t.  In 

addition, from (4), the observation of x0
t and π0

t will make the estimate of kt more 
precise.  However, to the extent that the supply shock et is stochastic, the policymaker 
cannot identify the exact value of kt.  Given the prior distribution of kt, the Bayesian 
policymaker deduces its posterior distribution when observing x0

t and π0
t.  In the 

following analysis, the Bayesian policymaker is supposed to have the posterior 
distribution that kt is k1 with probability νt and k2 with probability 1-νt.  It is 
noteworthy that even if the policymaker’s prior distribution of kt is time-invariant, the 
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posterior probability νt is time-variant because π0
t changes over time.  

 
 
2. The Policy Objectives 
  The policymaker chooses its policy instrument so as to achieve the policy objective. 
We suppose that the objective of the policymaker is to set the nominal interest rate at 
each point of time so as to minimize the “expected” value of the following loss 
function: 

 
(7) Lt = λ(xt – x*)2 + (πt - π*)2, 
 

  In the loss function, loss depends on deviations of output gap and inflation from their 
targets x* and π*.  An exogenous parameter λ is positive and is treated as independent 
of the specification of the structural equations.  We assume that the loss depends only 
on the current output gap and inflation deviations.  We imposed the assumption for 
analytical tractability.  However, to the extent that the policymaker minimizes (7) in 
each period, minimizing the present discounted value will have only second-order 
welfare effects under reasonable environments.  In addition, we can justify the myopic 
loss function when the private agents’ expectations are independent of previous policy 
changes or when they are uncertain enough for the policymaker (see Appendix for their 
examples). 

What makes the following analysis distinctive from the standard minimization 
problem is that we characterize the expected loss minimization of the policymaker by 
the Choquet expectation.  To distinguish it from standard expectation operator, we 
defined the Choquet expectation operator by Et

Q.  Having aversion to Knightian 
uncertainty, the policymaker chooses its policy instrument Δit so as to minimize Et

Q Lt.  
More general representation of the Choquet expectation is extensively discussed in 
Schmeidler (1989).4  But, since the parameter kt follows a binomial distribution that 
takes either k1 or k2 (k1 > k2), the loss function is simply written as 
 

                                                  
4 For example, define L(kt) ≡ λ(x0

t – α Δit – x*)2 + (π0
t – α kt Δit - π*)2.  If the random 

variable kt takes n alternative values, k1, k2, ..., kn, such that 0 ≤ L(k1) ≤ L(k2) ≤ ··· ≤ L(kn), the 

Choquet expectation is expressed as Et
QL(kt) = [ ] )()()( 1

1

1 1 j
i
j

n

i ii kkLkL =
−

= + ∪−∑ θ  + L(kn), 

where θ(⋅) is a convex probability capacity (or a convex non-additive probability function). 
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(8) Et
Q Lt = λ(x0

t – α Δit – x*)2 + νt(1-ε) (π0
t – α k1 Δit - π*)2  

+ {1-νt(1-ε)} (π0
t – α k2 Δit - π*)2  

when (π0
t – α k1 Δit - π*)2 < (π0

t – α k2 Δit - π*)2, 
= λ(x0

t – α Δit – x*)2 + {1-(1-νt)(1-ε)} (π0
t – α k1 Δit - π*)2  

+ (1-νt)(1-ε) (π0
t – α k2 Δit - π*)2   

when (π0
t – α k1 Δit - π*)2 > (π0

t – α k2 Δit - π*)2. 
 

where νt is the original posterior probability that kt = k1 (so that 1-νt is the original 
posterior probability that kt = k2).  A parameter ε (> 0) denotes the degree of 
ε-contamination in the Choquet expectation.  Since the Choquet expectation puts more 
weight on the worst outcome, νt is contaminated to be smaller when (π0

t – α k1 Δit - π*)2 
< (π0

t – α k2 Δit - π*)2, so is 1-νt when (π0
t – α k1 Δit - π*)2 > (π0

t – α k2 Δit - π*)2 in the 
Choquet expectation. 
  The problem the policymaker faces is similar to that of a Bayesian statistician who is 
confronted with “uncertainty” in a posterior distribution of kt.  One procedure that the 
Bayesian statistician often follows under Knightian uncertainty is to introduce a set of 
posteriors obtained by “contaminating” original posteriors.  The loss function (8) 
follows this procedure.  When ε = 0, the problem is degenerated to the traditional 
expected loss minimization problem.  When ε = 1, the problem is degenerated to the 
classical mini-max problem where the policymaker minimizes only the worst case 
scenario.  An increase in ε implies that the policymaker becomes less certain that the 
original posterior distribution is true distribution.  Thus, an increase in ε can be 
interpreted as an increase in Knightian uncertainty. 

If ε = 0, the first-order condition ∂ Et
QLt/∂Δit = 0 leads to 

 

(9)  Δit = 
}])1({[

*)}()1({*)(
22

0
21

0

kk
kkxx tttt

ννλα
ππννλ

−++

−−++−

21 tt

. 

 
This simple monetary policy rule is similar to a Taylor rule in the sense that the nominal 
interest rate is adjusted in response to “output gap” and “inflation”.  Because of 
uncertainty in kt, variance of kt appears in the denominator of the feedback rule.  This 
reflects a version of Brainard’s effect where the policymaker’s optimal rule becomes 
less aggressive under parameter uncertainty.  It is noteworthy that the rule does not 
depend on how expectations are formed nor what stochastic processes the exogenous 
shocks follow.  However, “output gap” and “inflation” in (9) are those before the 
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central bank sets a new interest rate.  In addition, unlike standard Taylor rules, the 
coefficient of lagged inflation is always equal to unity.5

 
 
3. The Optimal Monetary Rule that Removes Uncertainty 

The policy rule (9) is no longer optimal when the policymaker has some aversion to 
uncertainty.  One technical problem in deriving the optimal rule under uncertainty is 
that unless ε = 0, the “expected” loss function Et

QLt is not differentiable.  However, 
since Et

QLt is convex in Δit, it is optimal for the central bank to set Δit = Φ if and only if 
∂Et

QLt/∂Δit ≥ 0 when Δit approaches to Φ from above and ∂Et
QLt/∂Δit ≤ 0 when Δit 

approaches to Φ from below.  This leads to the following proposition. 
 

Proposition:  When π0
t > π*, the central bank decides not to change the nominal 

interest rate if and only if 

(10) 
21

0

)1)(1()}1)(1(1{
*)(

kk
xx

tt

t

ενεν
λ

−−+−−−
−−

≤ π0
t-π* ≤

21

0

)}1(1{)1(
*)(

kk
xx

tt

t

ενεν
λ

−−+−
−−

. 

 
When π0

t < π*, the central bank decides not to change the nominal interest rate if and 
only if 
 

(11) 
21

0

)}1(1{)1(
*)(

kk
xx

tt

t

ενεν
λ

−−+−
−−

≤ π0
t-π* ≤

21

0

)1)(1()}1)(1(1{
*)(

kk
xx

tt

t

ενεν
λ

−−+−−−
−−

. 

 
Proof:  When π0

t > π*, (π0
t – α k1 Δit - π*)2 < (π0

t – α k2 Δit - π*)2 if Δit = +0 and (π0
t – 

α k1 Δit - π*)2 > (π0
t – α k2 Δit - π*)2 if Δit = -0.  Equation (8) therefore implies that 

0+=
∂
∂

tit

t
Q
t

i
LE

Δ
Δ

= -2αλ(x0
t - x*) -2α [{1-(1-νt)(1-ε)}k1+ (1-νt)(1-ε) k2] (π0

t - π*)2, and 

0−=
∂
∂

tit

t
Q
t

i
LE

Δ
Δ

= -2αλ(x0
t - x*) -2α [νt(1-ε) k1+ {1-νt(1-ε)} k2] (π0

t - π*)2. 

                                                  
5 In previous literature, Levin, Wieland, and Williams (1999) provides strong support for 
rules in which the first-difference of the federal funds rate responds to output and 
inflation gaps. 
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Since it is optimal to set Δit = 0 if and only if 
0+=

∂
∂

tit

t
Q
t

i
LE

Δ
Δ

≥ 0 and 
0−=

∂
∂

tit

t
Q
t

i
LE

Δ
Δ

≤ 0, we 

thus obtain the first part of the proposition.  Similarly, we can derive the second part of 
the proposition.       [Q.E.D.]   
 

The above result suggests that the policymaker may keep the policy instrument 
unchanged even if the exogenous shocks change output gaps and inflation rates.  In the 
absence of Knightian uncertainty, ε is equal to zero, so that there exists no measurable 
range of π0

t - π* that satisfies the above inequalities.  However, when ε > 0, some 
measurable range of π0

t - π* satisfies the above inequalities.  Given the parameters, the 
range is wider as ε is larger.  The reason why the policymaker may choose Δit = 0 is 
that xt = x0

t and πt = π0
t when Δit = 0, so that the policymaker faces no uncertainty when 

Δit = 0.  To the extent that the policymaker has uncertainty aversion, it can therefore be 
optimal to set Δit = 0 for some measurable range.   

It is noteworthy that neither (10) nor (11) holds unless (x0
t - x*)(π0

t - π*) < 0.  This 
implies that some conflict between output stability and inflation stability is an important 
source for the policymaker to keep the interest rate unchanged.  For example, when x0

t 
> x* and π0

t < π*, lowering the interest rate achieves output stability but sacrifices 
inflation rate stability.  The tradeoff leads to infrequent changes of the interest rate 
under uncertainty in our model. 

Since it holds that (π0
t – α k1 Δit - π*)2 = (π0

t – α k2 Δit - π*)2 = [(k1-k2)/(k1+k2)]2 (π0
t – 

π*)2 when Δit = (2/α)(π0
t - π*)/(k1+k2), there also exists no uncertainty in the loss 

function when Δit = (2/α)(π0
t - π*)/(k1+k2).  This leads to the following corollary. 

 
Corollary: When π0

t > π*, the central bank sets Δit = (2/α)(π0
t - π*)/(k1+k2) if and only if 

 

(12)  )(2 *0
1

21

1 ππ
λ

−⎥
⎦

⎤
⎢
⎣

⎡
Ψ−

+
Ω+

tkk
≤ λ (x0

t - x*) ≤ )(2 *0
2

21

2 ππ
λ

−⎥
⎦

⎤
⎢
⎣

⎡
Ψ−

+
Ω+

tkk
, 

 
where Ω1 ≡ νt(1-ε) k1

2 + {1-νt(1-ε)} k2
2, Ω2 ≡ {1-(1-νt)(1-ε)} k1

2+ (1-νt)(1-ε) k2
2, Ψ1 ≡ 

νt(1-ε) k1
 + {1-νt(1-ε)} k2, and Ψ2 ≡ {1-(1-νt)(1-ε)} k1

 + (1-νt)(1-ε) k2.  Similarly, when 
π0

t < π*, it is optimal for the central bank to set Δit = (2/α)(π0
t - π*)/(k1+k2) if and only 

if 
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(13)  )(2 *0
2

21

2 ππ
λ

−⎥
⎦

⎤
⎢
⎣

⎡
Ψ−

+
Ω+

tkk
≤ λ (x0

t - x*) ≤ )(2 *0
1

21

1 ππ
λ

−⎥
⎦

⎤
⎢
⎣

⎡
Ψ−

+
Ω+

tkk
. 

 
Proof:  When π0

t > π*, it holds that 

0+=−
∂
∂

Ait

t
Q
t

t
i
LE

Δ
Δ

= -2α(λ (x0
t - x*) + [νt(1-ε) k1+ {1-νt(1-ε)} k2] (π0

t - π*)2)  

+ 4α(λ + [νt(1-ε) k1
2+ {1-νt(1-ε)} k2

2] (π0
t - π*)/(k1+ k2)), 

0−=−
∂
∂

Ait

t
Q
t

t
i
LE

Δ
Δ

= -2α(λ (x0
t - x*) + [{1-(1-νt)(1-ε)}k1+ (1-νt)(1-ε) k2] (π0

t - π*)2) 

+ 4α(λ + [{1-(1-νt)(1-ε)} k1
2+ (1-νt)(1-ε) k2

2] (π0
t - π*)/(k1+ k2)), 

where A ≡ (2/α)(π0
t - π*)/(k1+k2).  Since it is optimal to set Δit = A if and only if 

0+=−
∂
∂

Ait

t
Q
t

t
i
LE

Δ
Δ

≥ 0 and 
0−=−

∂
∂

Ait

t
Q
t

t
i
LE

Δ
Δ

≤ 0, we thus obtain the first part of the proposition.  

Similarly, we can derive the second part of the proposition.   [Q.E.D.]   
 
  This corollary suggests that the under some circumstances, the policymaker may 
change the interest rate responding only to the gap between inflation rate and its target.  
This corollary is, however, an artifact from our specific assumption that the parameter kt 
follows a binomial distribution.  For example, if kt follows a trinomial distribution that 
takes either k1, k2, or k3, the corollary no longer holds because (π0

t – α k1 Δit - π*)2 = (π0
t 

– α k2 Δit - π*)2 = (π0
t – α k3 Δit - π*)2 if and only if Δit = 0. 

 
 
4. The Optimal Monetary Rule with a Taylor Rule 

Unless Δit is equal to either zero or (2/α)(π0
t - π*)/(k1+k2), it does not hold that (π0

t – 
α k1 Δit - π*)2 = (π0

t – α k2 Δit - π*)2.  Therefore, when neither (10)-(11) nor (12)-(13) 
hold, the first-order condition ∂Et

QLt/∂Δit = 0 leads to the optimal monetary policy rule.  
In particular, when π0

t > π*, it holds that (π0
t – α k1 Δit - π*)2 > (π0

t – α k2 Δit - π*)2 if 
Δit < 0 or Δit > (2/α)(π0

t - π*)/(k1+ k2) and (π0
t – α k1 Δit - π*)2 < (π0

t – α k2 Δit - π*)2 if 
0 < Δit < (2/α)(π0

t - π*)/(k1+ k2).  When π0
t > π* and neither (10)-(11) nor (12)-(13) 

hold, differentiating equation (8) thus leads to the optimal rule: 
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if Δit < 0 or Δit > A, where A ≡ (2/α)(π0

t - π*)/(k1+k2). 
Similarly, when πt < π0

t, it holds that (π0
t – α k1 Δit - π*)2 > (π0

t – α k2 Δit - π*)2 if Δit 
> 0 or Δit < (2/α)(πt - π*)/(k1+ k2) and (π0

t – α k1 Δit - π*)2 > (π0
t – α k2 Δit - π*)2 if Δit < 

0 or Δit > (2/α)(πt - π*)/(k1+ k2).  Therefore, when πt < π0
t and neither (10)-(11) nor 

(12)-(13) hold, the optimal rule is (14) if Δit > 0 or Δit < A, and (15) if Δit < 0 or Δit > A. 
Both of the monetary policy rules (14) and (15) are similar to a Taylor rule in the 

sense that the nominal interest rate is adjusted in response to “output gap” and 
“inflation”.  They also reflect a version of Brainard’s effect where the policymaker’s 
optimal rule becomes less aggressive under parameter uncertainty.  However, the 
elasticity of Δit to output gap and inflation rate depends on the degree of uncertainty 
aversion (that is, ε) and differs between (14) and (15).6  Consequently, the nominal 
interest rate shows different responses to “output gap” and “inflation” depending on 
whether Δit is positive or not and whether Δit is greater than A or not. 

It is noteworthy that neither the rule (14) nor the rule (15) is optimal when (10)-(11) 
hold.  This implies that the policymaker, who has uncertainty aversion, sometimes 
keeps the interest rate unchanged and sometimes implements discontinuous jumps of 
the interest rate.  This type of stop-go policy is different from standard interest-rate 
smoothing or monetary policy inertia that was regarded as a conventional wisdom in 
macroeconomics.  The macroeconomic consequences are also different because x t and 
πt take different values depending on whether it was changed or not. 
 
 
6.  Stochastic Simulations 
  The purpose of this section is to examine how the policymaker chooses the policy 
instrument it under Knightian uncertainty for some specific parameter values and 

 
6 For example, since k1 > k2, the elasticity of Δit to output gap is larger in (14) than in (15). 
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stochastic shocks.  Our model has three constant parameters: α, β, λ and one random 
parameter: kt.  The discount factor β is set equal to 0.999, appropriate for interpreting 
the time interval as one month.  We use the interest rate elasticity of the aggregate 
demand of α = 0.5, which implies α = 0.2 by quarterly data, and a weight on output 
fluctuations of λ = 0.25.  For the random parameter kt, we set k1 = 0.03 and k2 = 0.01, 
which implies k1 = 0.12 and k2 = 0.04 by quarterly data.  Since all variables are 
expressed as log deviations from the steady state, x* and π* can take any sign when the 
policy target is different from the steady state.  In the benchmark case, we set x* to be 
zero but π* to be -0.5.  This implies that the policymaker is an aggressive inflation 
fighter. 
  As for the private agents’ expectations, we assume the following backward-looking 
expectations: 
 

xt+1
e = θx xt-1 + (1-θx ) xt

e, 
πt+1

e = θπ πt-1 + (1-θπ) πt
e. 

 
To the extent that 0 < θx < 1 and 0 < θπ< 1, the expectations are a version of adaptive 
expectations.  Growing empirical studies support backward-looking adaptive 
expectations over forward-looking rational expectations.  We set θx = θπ = 0.5 in the 
benchmark experiments. 

As for the exogenous shocks, we suppose that both the demand disturbance ut and the 
supply shock et follow a first-order autoregressive process: ut = ρu ut-1 + ηt and et = ρe 
et-1 + ωt.  We set ρu = ρe = 0.8 and assume that ηt ∼ N(0, 0.01) and ωｔ ∼ N(0, 0.05).  
The assumption implies that supply shocks are more dominant than demand shocks in 
the economy.  As for the prior distribution of k t, we assume that k t = k1 with 
probability 0.5 and k t = k2 with probability 0.5.  Given this prior distribution for k t, the 
Bayes’ theorem implies that 

 

νt ≡ Pr(k t = k1|π0
t =π0) = 

)Pr()Pr(
)Pr(
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Since Pr(π0

t =π0|k t = k1) = Pr(ωt = π0 - β πt+1
e
 - k1x0

t - ρe et-1), the observations of π0
t and 

x0
t and the predetermined values of πt+1

e
 and et-1 lead to the posterior probability νt.   

  In the simulations, we randomly draw stochastic shocks following the above 
distributions for 460 periods and calculate the optimal monetary policy for the shocks.  
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We depict a series of optimal nominal interest rates when ε = 0.2 and 0.  The interest 
rate for ε = 0.2 is the optimal monetary policy under Knightian uncertainty and the 
interest rate for ε = 0 is that without Knightian uncertainty.  It is noteworthy that the 
policy instrument follows a version of Taylor rule when ε = 0.  The comparison 
between the two interest rates will thus show how the optimal policy deviates from a 
Taylor rule when the policymaker has uncertainty aversion.  As for the initial 
conditions, we set xt+1

e = πt+1
e
 = 0 when t = 0.  But to avoid the impacts of the arbitrary 

initial conditions, we show the series from t = 201 to 260, from t = 301 to 360, and from 
t = 401 to 460. 

Figures 3-A, 3-B, and 3-C depict the interest rates for three alternative sixty-month 
periods.  Since the realized shocks are different, each series shows different 
movements for sixty-month periods.  However, the basic features are essentially the 
same among the three series.  Comparing two interest rate series, we can see that 
uncertainty aversion of the policymaker does not affect medium-run and long-run 
movements of the interest rates.  In other words, when using low frequency data such 
as quarterly or annual data, a version of Taylor rule holds approximately in our model.  
However, when focusing on high frequency data, the optimal interest rates deviate from 
the Taylor rule significantly because the changes of the interest rates become very 
infrequent when ε = 0.2.  The status quo of the interest rate is most conspicuous in 
Figure 3-A.  For example, the interest rate remained the same for 9 periods from t = 
206 to 213 and for 13 periods from t = 242 to 253.  Even in Figures 3-B and 3-C, we 
can see that the interest rate remained the same for multi periods many times.  In 
contrast, when ε = 0, we can observe continuous changes of the interest rates in 
response to output and inflation changes in all of the three figures.  However, the 
interest rate often reacts more aggressively when ε = 0.2 than when ε = 0. 
 
 
7. Robustness Checks 
(1)  The degree of uncertainty 

The purpose of the following experiments is to investigate robustness of our basic 
results.  In this subsection, we check how the degree of uncertainty will affect 
frequency of the interest rate changes.  In our model, kt is the only random structural 
parameter that changes over time.  For the random parameter, we set k1 = 0.03 and k2 = 
0.01 in our benchmark case.  We examine how the interest rates will change when we 
use alternative combinations of (k1, k2) = (0.0225, 0.0175), (0.025, 0.015), and (0.035, 
0.005).  In all of the combinations, the expected value of kt is equal to 0.02 in the prior 
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distribution.  The experiment thus explores how mean-preserving spread will affect the 
interest rates.   

Figure 4 depicts the interest rates for these alternative sets of k1 and k2 from t = 201 to 
248.  It is easy to see that the interest rates change most frequently when (k1, k2) = 
(0.0225, 0.0175) and least frequently when (k1, k2) = (0.035, 0.005).  This implies that 
mean-preserving spread of kt will make the interest rates change less frequent.  
However, even when (k1, k2) = (0.0225, 0.0175), we can still observe that the interest 
rates remained unchanged for several periods. 

In contrast with kt, the degree of ε-contamination changes the policymaker’s aversion 
to uncertainty.  Therefore, given the distribution of kt, changes of ε will capture another 
type of uncertainty changes.  For the degree of ε-contamination, we set ε = 0.2 in our 
benchmark case.  We examine how the interest rates will change when we use 
alternative values of ε = 0.5, 0.3, and 0.1.  Figure 5 depicts the interest rates for these 
alternative values of ε from t = 201 to 248.  It is easy to see that the interest rates 
change very infrequently when ε = 0.5 but frequently when ε = 0.1.  This implies that 
an increase of uncertainty aversion will make the interest rates change less frequent.  
However, even when ε = 0.1, we can still observe that the interest rates remained 
unchanged for a few months. 

In our model, α is assumed to be constant over time.  However, as you see in (6), the 
value of α affects the degree of uncertainty about the effects of the interest rate on the 
inflation rate.  In the benchmark case, we used the interest rate elasticity of the 
aggregate demand of α = 0.5.  We examine how the interest rates will change when we 
use alternative values of α = 0.025, 0.075, and 0.3.  Figure 6 depicts the interest rates 
for these alternative values of α.  We can see that the choice of α does not make a 
significant difference for frequency of policy changes.  However, interest rates are 
most volatile when α = 0.025 and least volatile when α = 0.3.  This happens because α 
appears in the denominator of our Taylor rules (14) and (15).  It reflects the fact that 
the policy becomes more aggressive when its impact is certain but weak. 

 
(2)  The role of persistence 

In this subsection, we investigate how the degree of persistence in exogenous shocks 
will affect frequency of the interest rate changes.  In our model, both the demand 
disturbance ut and the supply shock et follow a first-order autoregressive process: ut = ρu 
ut-1 + ηt and et = ρe et-1 + ωt.  In the benchmark case, we set ρu = ρe = 0.8 and assumed 
that ηt ∼ N(0, 0.01) and ωｔ ∼ N(0, 0.05).  We first explore how alternative values of ρu 
and ρe will affect the interest rates.  Specifically, we examine how the interest rates 
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will change when we use alternative values of ρu = ρe = 0.9, 0.5, and 0.2.  Figure 7 
depicts the interest rates for four alternative sets of ρu and ρe from t = 201 to 248.  It is 
easy to see that the interest rates tend to change less frequently when the shocks are 
more persistent (that is, when ρu = ρe = 0.9) but more frequently when they are less 
persistent, especially when ρu = ρe = 0.2.  This implies that more persistent exogenous 
shocks will make the interest rates change less probable.  However, even when ρu = ρe 
= 0.2, we can still observe infrequent changes of the interest rates. 

We next explore how the interest rates will change when the variances of the 
innovations ηt and ωt differ.  When the innovations are more volatile, the exogenous 
shocks become less persistent.  In the benchmark case, we assumed that supply shocks 
were more dominant than demand shocks in the economy.  We examine how the 
interest rates will change when we use alternative combinations of variances for ηt and 
ωt, that is, (0.01, 0.01), (0.05, 0.01), and (0.005, 0.025).  The combination (0.01, 0.01) 
corresponds to the case where supply and demand shocks are equally important, while 
the combination (0.05, 0.01) corresponds to the case where demand shocks are more 
dominant than supply shocks.  The combination (0.005, 0.025) implies that supply 
shocks are more dominant than demand shocks but that both shocks are less volatile 
than those in the benchmark.   

Figure 8 depicts the interest rates for four alternative combinations of the variances 
from t = 201 to 248.  When we use the combination (0.005, 0.025), the interest rates 
show similar infrequent changes to those in the benchmark.  This suggests that less 
volatile innovations do not affect likelihood of no policy change so much.  However, 
when we use (0.05, 0.01) or (0.01, 0.01), the interest rates change much more frequently 
than those in the benchmark.  Although we still observe some infrequent changes 
when we use (0.01, 0.01), unchanged policy stance becomes extremely rare when we 
use (0.05, 0.01).  This indicates that supply shocks need to be more volatile than 
demand shocks in our model to observe infrequent policy changes.  This is because the 
estimate of kt becomes more precise as supply shocks are less volatile.  It is the supply 
shock et that makes the policymaker’s estimate of kt uncertain.  Since the degree of 
uncertainty on the parameter kt is a source of infrequent policy changes, infrequent 
policy changes disappear when demand shocks are dominant in the economy.  
However, this result comes from our simplified assumption that the only parameter 
uncertainty is that of kt in our model.  If we relax the assumption and allows parameter 
uncertainty of α, we may observe infrequent policy changes under some environments 
even if demand shocks are volatile. 

Given the degree of exogenous shock persistence, the shocks may have more 
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persistent impacts on the interest rates when the degree of expectation adjustment is 
slower.  In our experiments, we assumed that xt+1

e = θx xt-1 + (1-θx ) xt
e and π t+1

e = θπ 
πt-1 + (1-θπ) π te.  The expectation adjustment is thus slower when θx and θπ are smaller.  
In the benchmark case, we set θx = θπ = 0.5.  We explore how alternative values of θx 
and θπ will affect the interest rates.  Specifically, we examine how the interest rates 
will change when we use alternative values of θx = θπ = 0.9, 0.3, and 0.1.  Figure 9 
depicts the interest rates for four alternative sets of θx and θπ from t = 201 to 230.  It is 
easy to see that the interest rates tend to change less frequently when the expectation 
adjustment is slower, especially when θx = θπ = 0.1.  This implies that the degree of 
sluggish expectation adjustment will make the interest rates change less probable.  
However, even when θx = θπ = 0.9, we can still observe infrequent changes of the 
interest rates. 
 
(3) The policy objectives 

In this subsection, we investigate how the choice of the policy objectives will affect 
frequency of the interest rate changes.  There is some arbitrariness on the choice of the 
policy objective.  In our model, the policy objective depends on two target variables x* 
and π* and on a weight on output fluctuations λ.  In our benchmark case, we set x* to 
be zero but π* to be -0.5.  For the inflation target, we here consider the other three 
cases: π* = -1.0, 0, and 0.5.  These values respond to the cases where the 
policymaker’s attitude towards for inflation is very conservative, neutral, and 
benevolent respectively.  For simplicity, we keep setting x* to be zero.  Figure 10 
depicts the interest rates for four alternative values of π* from t = 201 to 248.  The 
change of π* does not make big difference for the interest rates.  But if we compare the 
series more carefully, we can see that the interest rates tend to change less frequently 
when π* = -0.1 and more frequent when π* = 0.  This implies that the interest rates 
change becomes less probable when the policymaker’s desirable inflation rate is 
different from the steady state.  However, even when π* = 0, we can still observe very 
infrequent changes of the interest rates. 

The interest rates are more sensitive to the choice of λ.  In our benchmark case, we 
set λ = 0.25.  We here consider the other three cases: λ = 0.1, 0.5, and 0.75.  Figure 11 
depicts the interest rates for four alternative values of λ from t = 201 to 230.  It is easy 
to see that the interest rates tend to change more frequently when λ = 0.5 and 0.75.  In 
particular, the interest rates change very frequently when λ = 0.75.  In contrast, when λ 
= 0.1, we can observe very infrequent changes of the interest rates.  This implies that 
the changes of the interest rates become unlikely when the policymaker’s objective puts 
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less weight on output stability and more weight on inflation stability.  The reason is 
that the impacts of monetary policy are ambiguous on πt but unambiguous on xt when 
only the parameter kt is uncertain.  Larger weight on inflation thus leads to less 
frequent policy changes. 
 
 
8. Concluding Remarks 

In this paper, we explored why the central bank’s policy instrument remains so 
unchanged under uncertainty.  Although infrequent policy changes have been widely 
observed in many central banks, they have not been taken into account in previous 
macro models.  This is true even in previous studies that investigated optimal 
monetary policy under model uncertainty or robust optimal policy rules.  A large 
number of studies agreed that there is clearly much uncertainty over policy multipliers.  
However, most previous studies concluded that, under certain conditions, multiplier 
uncertainty may make optimal policy more conservative but does not lead to a policy of 
“doing nothing”.  A key departure of our paper from these studies is the introduction of 
a stop-go monetary policy in a Knightian uncertainty or a robust control framework.  
This increases an incentive for the central bank to keep the policy instrument unchanged 
even when exogenous shocks change output gap and inflation rate. 

For analytical simplicity, our model relies on several restrictive assumptions.  For 
example, our model allows multiplier uncertainty only for the parameter kt that follows a 
binomial distribution.  Introducing uncertainty to the other parameters such as α and 
allowing more general stochastic processes are straightforward extensions to our 
analysis.  The extensions would lead to more complicated but more rich stop-go 
monetary policy rules that may be more relevant for the policy analysis. 

Needless to say, our stop-go monetary policy is not the only explanation for why the 
central banks’ policy changes are so infrequent.  Infrequent decision-making meetings 
would be one reason why the policy target changes so infrequently.  Infrequent 
observations of macroeconomic data could be another reason.  However, as we 
discussed briefly in the introduction, policy changes are less frequent than what these 
institutional constraints predict, so that these explanations are not satisfactory.  This 
paper will probably fill some gaps that the institutional constraints cannot explain.  
What we have not discussed in the paper but what seems important is a constraint that a 
unit the central banks change the target rate is 0.25 % point.  It could be another source 
for infrequent policy changes but probably calls for another paper. 
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Table 1. The Number of FOMC Release Dates and No Policy Change Annoucement

1991 1992 1993 1994 1995 1996 1997 1998
Number of FOMC meetings 18 12 8 9 8 7 8 9
Number of meeings without policy change 9 9 8 3 4 6 7 6

1999 2000 2001 2002 2003 2004 2005 2006
Number of FOMC meetings 8 8 11 8 8 8 8 8
Number of meeings without policy change 5 5 0 7 7 3 0 4

Table 2. The Number of Meetings and No Policy Change Annoucement

(1) Bank of Japan (Monetary Policy Meetings)
1999 2000 2001 2002 2003 2004 2005 2006

Number of Monetary Policy Meetings 19 18 17 16 16 16 15 14
Number of meeings without policy change 18 17 12 13 12 15 15 12

(2) European Central Bank (The Governing Council)
1999 2000 2001 2002 2003 2004 2005 2006

Number of Government Council meetings 24 24 24 12 12 12 12 12
Number of meeings without policy change 19 17 20 11 10 12 11 7

(3) Bank of England (The Monetary Policy Committee)
1999 2000 2001 2002 2003 2004 2005 2006

Number of MPC meetings 12 12 13 12 12 12 12 12
Number of meeings without policy change 6 10 6 12 9 8 11 10  
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Figure  1. Federal Funds Targe t Rate :
From Dec. 2000 to Dec. 2006
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Figure 2. The Timing of Events in Period t
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Figure 3-A.  Interest rates under uncertainty: from t = 201 to 260
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Figure 3-B.  Interest rates under uncertainty: from t = 301 to 360
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Figure 3-C.  Interest rates under uncertainty: from t = 401 to 460
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Figure 4. Interest rates for alternative sets of (k1, k2)

0

0.5

1

1.5

2

2.5

3

201 20
4

207 210
21

3
216 21

9
222 225

22
8

231 23
4

237 240
24

3
246

(0.0225, 0.0175) (0.025, 0.015) (0.035, 0.005) (0.03, 0.01) benchmark
 

 

Figure 5. Interest Rates for Alternative Values of ε
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Figure 6. Interest rates for alternative values of α
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Figure 7.  The effects of persistence of exogenous shocks: ρ
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Figure 8.  Interest rates for alternative sets of variances

-4

-3

-2

-1

0

1

2

3

4

5

201 20
4

207 210
21

3
216 21

9
222 225

22
8

231 23
4

237 240
24

3
246

(0.01, 0.01) (0.05, 0.01) (0.005, 0.025) (0.01, 0.05) benchmark
 

 

Figure 9.  The Effects of persistence of adaptive expectations: θ

0

0.5

1

1.5

2

2.5

3

3.5

201 20
4

207 210
21

3
216 21

9
222 225

22
8

231 23
4

237 240
24

3
246

0.9 0.7 0.2 0.5 benchmark
 

 
 

 29



Figure 10.  Interest rates for alternative values of π *
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Figure 11.  Interest rates for alternative values of λ
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