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Abstract 

 We find that tails of the distribution of JPY/USD exchange rate returns are well approximated by an 

exponentially dampened power-law, suggesting that same mechanism may be responsible for fluctuations in normal 

times as well as rare crashes. In addition, extreme episodes of yen appreciation are larger and more persistent than 

episodes of yen depreciation. The asymmetry is magnified and power-law tails are more elongated during times of 

higher interest rate differential between U.S. and Japan and higher level of VIX indicating that carry trade may be 

the driver. We propose a model of strategic carry trader behavior that in equilibrium generates exponentially 

dampened power-law distribution of jumps in foreign exchange along with “up by the stairs down by the elevator" 

dynamics arising from the assymetries between negative and positive jumps. 
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    1  Introduction 

Foreign exchange returns of high (low) yield currencies tend to exhibit negative (positive) 

skewness -- long duration of runs interrupted by abrupt crashes. Understanding the processes behind rare 

events in foreign exchange markets is important for both risk management and policy making. 

Brunnermeier et al. (2009) find that yen has exhibited the highest degree of skewness among developed 

countries' currencies and attribute it to large periodic yen appreciations caused by the unwinding of carry 

trade
12

. To account for skewness and kurtosis in financial returns they are normally modeled as a 

stochastic jump diffusion process intended to handle both “normal" and “rare" events simultaneously. 

Traditionally, it has been assumed that “rare" events augmenting the Brownian motion in returns follow 

Merton's compound Poisson normal jump process. However, recently Wu (2006) and Bakshi et al. (2008) 

put forth exponentially dampened power-law as an alternative to Merton's formulation because of it's 

better ability to match stochastic skewness in financial returns. We find that jumps in the JPY/USD 

exchange rate are more likely follow an exponentially dampened power-law rather than Merton's 

compound Poisson process and, given yen's role as a funding currency in carry trade, propose a model of 

strategic carry trader behavior that in equilibrium generates exponentially dampened power-law in the 

distribution of jumps. 

Carry trade is the suspect because Japanese yen in particular has served as a funding 

currency for overseas investments because of prolonged “zero interest rate" policy of the Bank of 

Japan. Figure 1 shows the JPY/USD exchange rate (top) and the U.S.-Japan interest rate differential 

(2nd from the bottom). In strong violation of the uncovered interest parity (UIP)
3
 an increase in the 

interest rate spread corresponded with dollar appreciation against the yen in late 1999 through 2000 and 

again from 2004 through 2007
4
. For instance, Ichiue and Koyama (2008) estimate the UIP regression 

coefficient as low as -2.79 for the yen. Farhi et al. (2009) interpret UIP violations as a compensation to 

carry traders for the risk of periodic currency crashes, such as a sharp yen appreciation in 2008 following 

the sub-prime crisis. 

                                                 
1
Carry trade is a strategy in which an investor borrows in a low interest rate currency and takes a long position in a 

higher interest rate currency betting that the exchange rate will not change so as to offset the interest rate differential 

Burnside et al. (2007) and Hochradl and Wagner (2010) document excess returns to carry trade strategies. 
2
In addition, Gagnon and Chaboud (2007) find that prices of deep out-of-money foreign exchange options indicate an 

overall market hedge against large yen appreciation. 
3
UIP is an ex-ante no-arbitrage condition predicting that excess returns from holding high interest rate currency 

must be eliminated through an expected depreciation of that currency. Under rational expectations a regression of 

exchange rate returns on in interest rate differential should yield a coefficient of 1. 
4
An appreciation of the high yield currency is an example of the forward premium puzzle and the violation of the 

uncovered interest parity (UIP) well documented by Hansen and Hodrick (1980) and Engel (1996). 
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We focus on time period from Jan 1, 1999 through Feb 1, 2007, thus the 1998 and 2008 crashes 

are just outside of our sample. We examine daily jumps in JPY/USD exchange rate extracted using a 

non-parametric method allowing us to test hypothesis regarding the underlying distribution. We find that 

a compound Poisson normal jump process is strongly rejected in favor of a process that generates 

power-law tails in the distribution of jumps. Specifically, the data favors exponentially dampened 

power-law. We also find that positive and negative jumps in JPY/USD exchange rate exhibit asymmetries 

indicating higher likelihood of large discrete yen appreciations. The asymmetries are more pronounced 

when the interest rate differential is high. Splitting the sample by the option-implied volatility index VIX, 

which Brunnermeier et al. (2009) consider an important measure of risk for carry traders, we find that the 

asymmetries between positive and negative jumps are greater when the level of VIX is high. Furthermore, 

only yen appreciation jumps tend to occur over consecutive days and exhibit non-linear dependence 

indicative on non-random variation. Together these finding are consistent with “up by the stairs down by 

the elevator" dynamics of investment currency in carry trade.  

We propose a model of carry trade that generates exponentially dampened power-law distribution 

of jumps in foreign exchange rates. The methodology is based on Nirei (2006, 2008) work on stochastic 

herding. Stochastic herding refers to the phenomena of fraction of agents rationally deciding to 

synchronize their actions after evaluating random pieces of information that they receive. The nature of 

carry trade makes strategic interactions particularly susceptible to these dynamic because of strategic 

complementarity and discrete choice in the actions of carry traders (maintain positive position or unwind 

completely), as pointed out by Plantin and Shin (2008). We develop a simple static version of their model 

and without parametric assumptions on private information show that the distribution of the aggregate 

action and the associated discrete price changes (jumps) follow an exponentially dampened power-law. 

Thus, in our framework, instead of being outliers largest crashes are extreme events within the same 

power-law tail. Simulations using power-law paramters estimated from the data are able to produce “once 

in a decade” catastrophic event predicted as an equilibrium outcome of the model. Also, Baysian Markov 

Chain Monte-Carlo parameter estimations show that the likelihood of a crash rises with higher speculative 

incetive and uncerainty as proxied by the interest rate differential and the VIX. Hence our model is 

consistent with Jansen and de Vries (1991) and Longin (1996) who suggest that price fluctuations in 

normal times and rare market crashes are caused by the same mechanisms. 

The paper is organized as follows: section 2 provides data description and describes the 

non-paramteric methodology of extracting jumps in foreign exchange rate returns based on bi-power 

variation in realized volatility; section 3 provides summary statistics and time-series properties of jumps 

making coparison across subsamples of high and low interest rate differential and the VIX; section 4 fits 

the exponentially dampened power-law to positive and negative jumps and provides a simulation based 
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on the fitted parameters; section 5 presents a model of stochastic carry trade unwiding that matches 

stochastic properties of the jump series and provides additional simulations and parameter estimates to 

check for consistency in the basic relationship between the tails of JPY/USD exchange rate returns and 

the levels of the interest rate differential and VIX; section 6 concludes. 

 

2  Data and Non-Parametric Estimation of Jumps 

2.1  Data 

We use intraday JPY/USD exchange rate data from Olsen and Associates. The data was collected 

from commercial banks by Tenfore and Oanda, and covers the January 1, 1999 to February 1, 2007 

time-period. The data consists of the bid and the offer spot exchange rates at the end of every 5-minute 

interval over every 24-hour period. The quotes are indicative quotes, i.e. not necessarily traded quotes. In 

addition we construct a daily series of interest rate spread between U.S. and Japan as the difference 

between the effective federal funds rate and Japan's uncollateralized overnight call rate. Both are publicly 

avaiable from the Federal Reserve Bank of New York and Bank of Japan respectively. Finally, we obtain 

daily Chicago Board Options Exchange (CBOE) S&P 500 options implied volatility index (VIX) data 

from Wharton Research Data Services (WRDS). 

The left panel of Figure 2 shows the normal kernel density plot of the JPY/USD exchange rate 

log-return series from January 1, 1999 through February 1, 2007. The leptokurtic features are apparent, 

with a fatter negative tail (yen appreciations). The right panel shows the associated quantile-quantile plot 

against a normal distribution (red line). Again, the negative tail exhibits larger deviation from the normal 

hypothesis and has a higher number of data points in the extreme range.  

 

2.2  Extracting jumps using bi-power variation 

Consider a jump diffusion process for the evolution of foreign exchange rate returns: 

 )()()()()(=)( tdJttdWtdtttds κσµ ++  (1) 

where )(ts  is log exchange rate, )(tµ  is drift, )(tσ  represents stochastic volatility process, and 

)(tW  is standard Brownian motion such that dzdttdW =)(  with (0,1)Ndz : . The last term on the 

right had side represents the stochastic jump process, )(tκ  is the size of jump at time t  and )(tdJ  is 

an indicator of jumps; 1=)(tdJ  with some probability and 0 otherwise. At this stage we do not make 

any parametric assumptions about )(tκ . Instead we use a non-parametric method of Bi-Power variation 

of Barndorff-Nielsen (2004) to estimate daily jumps as the difference between the total intra-day realized 

volatility, )(∆tRV , and its continuous component, )(∆tBV . )(∆tRV  is just the sum of square intraday 
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discretely sampled ∆  -period returns between time 0 and time t. If the intraday data is obtained at 5 

minute intervals then 288=1/∆  is the number of daily data points. Barndorff-Nielsen and Shephard 

(2004) show that in the limit (as 0→∆ ) realized daily volatility approaches continuously aggregated 

sum of square returns. Since returns from two adjacent intraday sample points share the persistent 

volatility but not the sporadic jumps, it follows that bi-power variation provides a reasonable proxy for 

the persistent component of the volatility: 

 dssBV
t

t
t )()( 2

1

1 σ∫
+

+ →∆   

as 0)( →∆ . 

Since realized volatility, )(1 ∆+tRV , and bi-power volatility, )(1 ∆+tBV , can be directly 

calculated from the observed intraday returns, it follows that the jump component can be approximated as 

the difference of the two: 

 )()()( 2

1<

11 sBVRV
tst

tt κ∑
+≤

++ →∆−∆  (2) 

We take additional steps to account for the finite sample bias and in addition to reporting all 

jumps, we report jumps estimated with 0.05=α  and 0.01=α  significance level correcting for 

intraday noise. Choosing to estimate fewer but more probable jumps as opposed to a continuous 

adjustment amounts to choosing a smaller significance level α  associated with critical value αΦ  The 

details of this procedures are outlined in the appendix. 

 

3  Descriptive Statistics and Time-Series Properties of RV Jumps 

Table 1 shows jump summary statistics. Mean absolute values of jumps in yen appreciations are 

higher for all α  ranging between 0.019 and 0.044 compared to 0.16 and 0.36 for jumps in yen 

depreciations. Negative jumps (appreciations) also exhibit higher kurtosis. The maximum jump in 

appreciation is 2.959 compared to the maximum jump of 1.482 in yen depreciation. Finally, the bottom 

row of Table 1 reports Ljung-Box test statistic for white noise. Negative jumps exhibit high degree of 

serial correlation with the Q-stat in the 133.5 to 161.9 range. Serial correlation is rejected for positive 

jumps selected using a more restrictive 0.01=α  criteria. Overall, Table 1 indicates that jumps in yen 

appreciation are more rare than jumps in yen depreciation, but tend to be larger in magnitude and occur 

over several consecutive days. 

 

 

 



5 

 

3.1  Sample split by interest rate differential and VIX 

Next we split the sample by the interest rate differential between U.S. and Japan and by the level 

of VIX focusing on 0.01=α  jumps. If carry trade plays a significant role in the stochastic volatility of 

JPY/USD exchange rate then the contrast between yen appreciation and yen depreciation jumps should be 

magnified when carry trade activity is high (high interest rate differential) and when overall market 

uncertainty is high (high level of VIX). Based on the historical time-series in Figure 1 we observe roughly 

two regimes in the interest rate differential and VIX. Throughout our sample period Japan has maintained 

a zero-interest rate policy while the dot-com collapse in the U.S. resulted in monetary easing beginning in 

late 2000 and the differential fell to the level between 1 and 2% where it remained until the FED began 

raising rates in 2004. Also, the VIX settled at levels below 20 and exhibited a lower volatility beginning 

in early 2003. Therefore, we select 2% as the cutoff for the interest rate differential and 20 as the cutoff 

for VIX (dashed lines). Table 2 shows the associated statistics. Mean and maximum values for −κ  (yen 

appreciation jumps) are higher when interest rate differential is high, 0.124 compared to 0.093 and 1.386 

compared to 1.124 respectively. The difference is more pronounced when compared across subsamples 

split by VIX. When VIX is high −κ  mean and maximum are 0.140 and 1.386 compared to 0.078 and 

0.510 when VIX is low respectively. In contrast, +κ  (yen depreciation jumps) do not exhibit higher 

mean or maximum when the differential is high and only slightly higher mean when VIX is high, 0.099 

compared to 0.082. Also, only yen appreciation jumps exhibit serial correlation. Overall, the comparison 

of summary statistics for jumps in realized volatility across different levels of the interest rate differential 

and VIX are consistent with the hypothesis that carry trade plays an important role in the stochastic 

volatility in JPY/USD. 

 

3.2  Non-linear dependence in Yen appreciation jumps 

Next we test for non-linear dependence in the jump series using DBS test named after Brock, 

Dechert, and Scheinkman (1987). DBS test can be thought of as non-linear counterpart of the Q-test
5
. The 

test was applied to find evidence of conditional hetersokedasticity in foreign exchange rate returns by 

Hsieh (1989) who found that nonlinearity in the return series entered through changing volatility. We are 

able to examine whether descrete changes in realized volatility exhibit non-linearity. The test embeds the 

time series of )(tκ  into m -dimensional vectors with overlapping entries. Then computes the spatial 

correlation among the points in the m -dimensional space which are within tolerance radius ε  of each 

other. Properly adjusted for the sample size, and specially defined mean and variance the correlation 

                                                 
5
For detail see Brock et al. (1996). 
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statistic asymptotically follows a standard normal distribution. We select m  in the same way as the 

number of lags for the Q-test. In addition, we parametrize the test to maintain robustness to unusual or 

unknow distributions of the series: we choose the lolerance radius such that 0.7 of the total number of 

pairs of points in the sample lie within ε  and the p-values are computed by bootstrapping based on 

1,000 repetitions. Table 2 shows the results
6
. After a minimal correction for itraday noise is employed 

(such as 0.05=α ) only yen appreciation jumps exhibit non-linear dependence, which is statistically 

significant for all m . 

Non-linearity may be due to autoregressive conditional heteroskedasticity, that is exchange rate 

changes are nonlinear stochastic functions of their own past. For instance Lahaye et al. (2010) model 

foreign exchange rate jumps using Tobit-GARCH. However, this approach also assumes that the 

magnitude of the jumps follows a lognormal distribution. An alternative explanation of the nonlinear 

dependence is that these descrete changes in exchange rate returns are purely deterministic processes that 

only “look" random. To the extent that nonlinearity is one of the indications of chaos a further finding that 

jumps follow a power-law in the tail would support the second explanation. 

 

4  Power-Law in the Distribution of Jumps 

We follow Wu (2006) who proposes to model the Levy density of jump components as an 

exponentially damped power-law: 

 






∝
−−−−

+−+−

0<,||

0>,
)(

||
κκ

κκ
κ

κφζ

κφζ

e

e
Pr  (3) 

This specification is parsimonious enough to nest several families of jump processes. For instance, the 

values of the power exponent 31 <≤ ζ  favor a power-law tail
7
.  

In order to examine whether the tail distribution of jumps follows a power-law we follow the 

methodology of Clauset et al. (2009). For each possible choice of cutoff value for the power-law tail in 

the distribution of κ , we estimate the power exponent via the maximum likelihood and calculate the 

Kolmogorov-Smirnov (KS) goodness-of-fit statistic. We then select the minimum cutoff minκ  that gives 

                                                 
6
We also run the DBS test for jump series before separating into positive and negative samples to find strong 

evidence of non-linear dependence. The results reported in the paper show that the time-series non-linearity comes 

from yen appreciation jumps. 
7
 In a panel study of different currencies Bakshi et al. (2008) estimates parameters of a jump diffusion processes 

with exponentially dampened power-law. They do not have observations on jumps separately, so they estimates ζ  

and φ  for positive and negative jumps as a part of a richer parametrization scheme for the entire return process. 

Our study is the first to examine the goodness of fit of exponentially damped power-law model to empirical 

observations of jumps. 
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the minimum KS-statistic. Figure 3 shows the probability plots for positive and negative jumps for each 

level of significance, α, on a log-log scale. A Gaussian decay would appear as a concave curvey, however 

the fitted straight line on the log-log probability plot indicates that distributions of jumps exhibit strong 

power-law tails. 

The top panel of Table 4 shows exponentially dampened power-law parameter estimates for 

negative jumps at three different significance levels against the two alternatives: Pareto (pure power-law) 

and lognormal distribution. Given that the distribution parameters are estimated from a relatively small 

number of observations in the tail we use Bayesian Markov Chain Monte-Carlo (MCMC) method to 

estimate the fitted parameter uncertainty for the exponentially dampened power-law. Details of this 

procedure are provided in the appendix. 

The log likelihood values indicate that exponentially dampened power-law is the preferred model 

for all three negative jump series. The estimates of the power-law exponent ζ  greater than 1 indicate 

that the data favors a process that generates high frequency jumps with infinite variation rather than 

Merton's compound Poisson process. This is confirmed by the rejection of log-normal distribution in a 

non-nested comparison based on the log likelihood values. The estimates also show that ζ  tends to 

decline further below 3 as only seginificant jumps are selected. 

Table 4 and 5 show exponentially dampened power-law parameter estimates for negative (yen 

appreciation) and positive (yen depreciation) jumps respectively. Once again a compound Poisson jump 

process is rejected in favor of a model that yields power-law tail. In contrast to the parameter estimates 

for negative jumps the estimates of the power-exponent ζ  are consistently higher tending to the value 

of 3  instead of 2 . Furthermore, the estimates of the exponential rate β  tend to decline when more 

significant jumps are selected. The difference in parameter estimates and in their behavior across jumps of 

different significance levels indicates that while both negative and positive jumps follow distributions 

with power-law tails the underlying data generating processes are not the same. This is confirmed by the 

simulations of 0.05=α  jumps shown in Figure 4 with parameters for the exponentially dampened 

power-law. 

The top panel in Figure 4 correspond to the simulated series while the bottom panel displays the 

empirical observations of jumps. The amplitude in fluctuations is higher for both empirical and simulated 

series for the negative jumps. The simulation of negative jump series matches the pattern of the data in 

generating small jump periods punctuated by extreme deviations. This is not the case for the positive 

jumps. The simulation based on distribution parameter estimates of positive jumps produces a series more 

even in magnitude, consistent with the lower variability of the observed positive jumps. Based on 

simulation results we suspect that the underlying data generating process is different for negative and 
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positive jumps, with negative jumps subject to more extreme fluctuations. Simulations clearly depict the 

negative skewness of JPY/USD returns. In the following section we propose a model that yields 

exponentially dampened power-law distribution of discrete yen appreciations as an equilibrium outcome 

of rational carry trader behavior. 

 

5  Model of Stochastic Unwinding of Carry Trades 

The loose fundamental anchoring of foreign exchange rates, also known as the  exchange rate 

disconnect puzzle  first documented by Mussa (1986) and Flood and Rose (1993), suggests that strategic 

behavior by traders can play an important role in exchange rate dynamics. Abreu and Brunnermeier 

(2003) use a continuous time coordination game to show that short-term consideration and actions of 

other traders can dominate when prices are not well anchored in fundamentals. In their setting a market 

finally crashes when a critical mass of arbitrageurs synchronizes their trades. Consider a switching 

strategy, which is a rule of action put forth by Morris and Shin (1998) as part of the global games 

framework. Under a switching strategy each trader chooses the action based on her best estimate of the 

fundamental value bearing in mind that other traders are engaged in the same exercise. 

Plantin and Shin (2008) model carry trade using the global games approach. They show that the 

introduction of leverage makes the actions to engage in carry trade strategic complements across traders 

because leveraged carry trade generates positive funding externality: by entering into a carry transaction 

traders appreciate the high yield currency effectively reducing funding costs for one another in terms of 

the funding currency. Furthermore, they show that funding externalities also work in the opposite 

direction in response to an adverse shock generating “up by the stairs down by the elevator" dynamics. 

We build on a simple static version of their model to show that if each carry trader infers other 

traders' private information only from their actions then episodes of carry unwinding arise endogenously 

through rational herd behavior. These dynamics arise from the discrete action space of carry traders: 

either hold on to an existing carry position or unwind completely. This means that both holding and 

unwinding actions reveal a traders' private information only partially. Then it is rational for each trader to 

take the actions of others into account along with her own private information when choosing a carry 

position for the subsequent period. As a result, in Bayes-Nash equilibrium the threshold value of the 

signal below which carry traders chose to unwind fluctuates endogenously with the actions of other 

traders giving rise to sudden episodes of "explosive" unwinding. Furthermore, these dynamics are 

re-enforced by leverage but are present even in the absence of leverage. Thus, our model suggests that the 

mechanism behind endogenous carry unwinding is stochastic herding by partially informed traders while 

leverage only serves to strengthen the resulting chain reaction. 
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5.1  Model analysis 

Consider that there are N  informed traders indexed by Ni ,1,2,= K . Each trader can engage 

in a carry trade where she holds short in yen and long in dollar, and earns an interest differential 

*
ii −≡δ . Suppose that each trader has an existing carry position 1>k  and one new addition of fund in 

yen. The trader can choose a new carry position 1][0, +∈′ kk . 

We assume that the traders are risk neutral and maximize the expected return from the currency 

position. The carry δ  is stochastic. We assume that there are two states of the world, “High" and “Low", 

and δ  takes from two values Hδ  and Lδ , depending on the realization of the state, where 

LH δδ >0> . The trader's return also depends on the rate of change in the value of the collateral, γ . 

Thus the traders maximize kE ′+ )( γδ  by choosing k′ . Since the traders are risk neutral, the optimal 

position is either 1= +′ kk  or 0=k′ . We call the trader's choice 1+k  as “stay" and 0 as “exit" of the 

carry trade. 

Let m  denote the number of exiting traders. We assume that the collateral value depends on the 

extent of the net outflow of funds from the carry currency. Thus γ  is a decreasing function of 

mNmk +− , where mk  is the unwound amount of carry trades by exiting traders and mN −  is the 

increase in the carry position by continuing traders. We also assume that gamma is bounded in a 

small range: 0 <γ  < | Lδ |. Each trader submits to a market maker her supply schedule, namely “stay" or 

“exit", conditional on m . The market maker then chooses m  so that the number of the exiting traders 

coincides to the chosen m . 

Each trader draws a private signal ix  which is correlated with the state. The distribution of ix  

is a common knowledge where ix  is drawn from F  if the true state is High and from G  if the true 

state is Low. Let f  and g  denote the density functions of F  and G , respectively. We assume that 

the odds ratio )()/( xgxf  is increasing in x . Namely, F  and G  satisfy the monotone likelihood 

ratio property. This assumption implies that a larger value of x  conveys the information that it is more 

likely that the state is High rather than Low. 

We conjecture that each trader employs a threshold strategy in which trader i  stays in carry 

( 1= +′ kk ) if xxi >  and exits ( 0=k′ ) otherwise. For a fixed m , a staying trader must be indifferent 

between stay or exit if she draws a private information at the threshold level )(mx . Thus )(mx  must 

satisfy the indifference condition:  

 0=))(=,|( mxxmE iγδ +  (1) 
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 Then,  

 0=)),(=|(Pr)()),(=|(Pr)( mmxxLowmmxxHigh iLiH γδγδ +++  (2) 

 where “ Pr " denotes a likelihood function. Equivalently, the threshold x  is determined by the 

following equation:  
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 where 0θ  denotes the prior likelihood ratio, which is the prior belief on High divided by the prior belief 

on Low state. The term GF/  expresses the likelihood ratio inferred by m  exiting traders, and the term 

))/(1(1 GF −−  is the likelihood ratio inferred by staying traders. Note that we only count mN −−1  

staying traders in this term, because the equation is based on the indifference condition for a staying 

trader and her own information is already included by the term gf/ . From this equation, it is 

straightforward to show the optimality of the threshold rule: only if a trader draws an information greater 

than the threshold, i.e. xxi > , the left hand side of ((3)) exceeds the right hand side due to the MLRP, 

and thus the trader chooses to stay in carry. 

We can show that the traders' choices are strategic complement, in the sense that a trader's exit 

increases the likelihood of other traders' exits. This amounts to establish that the threshold for the exit x  

is increasing in m . We obtain the following property as in Appendix B:  
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 0>  (8) 

 Thus, we have shown that the threshold x  is increasing in m . This implies that the trader's decision 

exhibits strategic complementarity: when a trader decides to exit, it increases m  and then x , making 

other traders more likely to exit. Also, the leverage effect is captured by the third term in the numerator 

increasing the degree of strategic complementarity. Note however, that x  increases in m  even if γ  
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is zero indicating that leverage only complements pre-existing dynamics. 

We now define an equilibrium as a mapping from a profile of realized private information )( ix  

to an action profile with m  “exits" and mN −  “stays", such that the number of traders with 

)(< mxxi  coincides with m  for each realization )( ix . The equilibrium notion here is a standard 

rational expectations equilibrium in a market microstructure with a market maker and traders submitting 

supply schedules (Vives (2008)). 

Next, we characterize the equilibrium by constructing a fictitious tatonnement process, following 

Nirei (2006, 2008). We imagine that the market maker finds an equilibrium m  as follows. At the initial 

step 0=s , the market maker starts with 0=0=sm  and counts the number of traders who would exit 

according to their supply schedules given the information 0=m . If no trader exits, then the process 

stops here and 0=m  is chosen as an equilibrium. If 0>0=sn  traders choose to exit, the step is 

increased to 1=s , and 1=sm  is set by 11= −− + sss nmm . If no traders other than the traders who chose 

to exit previously decide to exit, then the process stops and smm =  is chosen as an equilibrium. 

Otherwise, the step is increased and the process iterates until it stops. Nirei (2006) has shown that this 

procedure always converges to an equilibrium m , and the selected equilibrium is the smallest among 

potential equilibria. 

The fictitious tatonnement process sm , K0,1,=s , can be embedded to a stochastic process 

defined in the probability space of the private information profile )( ix . Namely, we can derive the 

probability distribution of 1+sm  conditional on sm  before the realization of ix . It is shown (Nirei 

(2006)) that sn  follows a branching process in which the number of “children" born by a “parent" in 

step s  follows a binomial distribution with a probability parameter sp  and population smN − , and if 

we increase N  to infinity, the binomial asymptotically converges to a Poisson distribution with mean 

)(lim= ssNs mNp −∞→µ . 

This property of the fictitious tatonnement process is utilized to characterize the equilibrium. The 

equilibrium m  is the sum of sn  over s , which is the total number of “children" born in the branching 

process until it stops. Then, we can apply a powerful theorem by Otter (see Harris (1989)). Consider a 

branching process sn  in which the mean number of children per parent is constant at µ  and the initial 

condition is 1=0n . Then the total population ss
nm ∑=  follows a dampened power-law distribution 

in the tail:  
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00 =1)=|(Pr  (9) 

 for a large m  where φ  is a constant determined by the distribution of the number of children per 

parent. In our case where the number of children follows a Poisson distribution, we further have 

µµφ log1= −−  for the case of 1<µ  (Nirei (2006)). The key parameter for the fluctuation of m  is 

µ . When 1≤µ , the fictitious tatonnement sn  is a supermartingale, which stops in a finite step and 

whose total population m  is finite with probability one. Equation ((9)) and the relation between φ  and 

µ  implies that the mean and variance of m  is determined by µ . A greater µ  decreases φ  and thus 

makes the exponential truncation point further in the tail of ((9)). 1=µ  is the critical point at which 

((9)) reduces to a pure power law distribution whose mean is indefinite. Thus, we observe that the model 

is capable of generating a substantial size of fluctuations in m  when µ  is close to 1. When µ  is 

greater than 1, the fictitious tatonnement is “explosive" and there is a positive probability in which the 

process does not stop in a finite step. In our finite model, this event corresponds to the case Nm = . 

In our model, sµ  is not constant over the tatonnement step s . However, we can infer the range 

of sµ  as follows. Suppose that the true state is “Low". For a large N , the mean number of traders who 

are induced to unwind the carry by observing an additional trader unwinding to the existing unwinding 

traders m  is approximated by:  

 ))/()))((())/(1(()( dmmxdmxGmxgmN sssss −−:µ  (10) 

 where dmxd /  is the increase in the threshold, )/(1 Gg −  is the conditional density at the threshold 

level, and smN −  is the number of staying traders at step s . Then,  
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 where sx  is a short-hand for )( smx . For a fixed, finite sm , we have:  
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 Note that:  
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 Thus, the fictitious tatonnement starts out as an explosive process near 0=/Nms . 

For a range of larger values of sm , we can characterize µ  as follows. Consider an alternative 

continuum version of our model in which there are a continuum of traders rather than finite N  traders. 

Then, we expect that the equilibrium fraction of exiting traders to be )(xG  by the law of large numbers. 

Thus, we impose ))((=/ mxGNm  in the expression ((11)). Then:  
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 We note that:  
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 This expression takes a value greater than 1 when x  is small (and thus m  is small) whereas it takes a 

value less than 1 when ∞→x  (and thus Nm → ). Thus, we can infer that sµ  travels from an 

explosive region to a dampening region (if k  is small enough) as the fictitious tatonnement develops 

into a larger m . This suggests that the tatonnement generates m  smaller than N  when N  is large 

enough, and the fluctuation of m  follows the dampened power-law distribution. 

The function )( mNmk +−γ  is constructed so that the dynamic pattern of exchange rates 

matches with the model when the static equilibrium of the model is repeated with evolving currency 

position k . Consider the case 0=0k . Then the effect of γ  on µ  in ((11)) is negative, and thus we 

expect a high probability for staying behavior: 1=k′ . In the next period, we set 1==1 kk ′ . We have a 

greater value of sµ , and expect some probability of collective unwinding. When k  becomes quite large, 

we expect an even higher probability of sudden unwinding because of a greater sµ . Thus, we expect a 

small value of m  and a gradual increase of k  over periods, whereas the development of the carry 

accumulation is punctuated by a “sudden fall" when m  takes some large positive value. In terms of the 

exchange rate, the currency appreciation γ  is a negative function of mNmk +− , and thus the 

dynamics of m  corresponds to the appreciation by the stairs and the fall by an elevator. 
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5.2  Correspondence with the data 

The model predicts the power exponent of 1.5 in the exponentially dampened power-law. Our 

empirical estimates for the exponent, conditional on the cutoff value for the tail selected based on the best 

fit for the Pareto distribution, have yielded estimates of the exponent in the neighborhood of 2. This gap 

may be rectified by modifications on estimation and modeling. Table 8 illustrates that under alternative 

selection for the cutoff, κmin, estimates of 1.5 are for ζ are also within the feasible range. The lower 

cutoff on the tail observations has been selected as one standard deviation in the empirical jump data. 

Under this more inclusive specification the power-law exponent is 1.527 for negative jumps and 1.495 for 

positive jumps. 

Alternatively, it is known that the power exponent ζ  derived in the model is increased above 

1.5  if the parameter µ  is taken gradually from below the criticality 1<µ  toward the criticality 

during the time span of observations. This mechanism is called a “sweeping" of control parameter 

towards a critical point (Sornette(2006)). Recall the case in which we repeat the static equilibrium over 

periods where the currency position tk  is updated over the periods. When k  is small, the tatonnement 

is likely to be subcritical with 1<µ , while µ  is increased toward 1 as k  increases and thus the effect 

of possible sudden appreciation due to the collective unwinding becomes more significant on the overall 

return of the carry trade. If our data is generated by such process, the situation exactly falls in the scenario 

of the sweeping of parameter where the key parameter µ  gradually sweeps toward the criticality. In this 

case, the observed jumps exhibit dampened power law with exponent greater than 1.5. The exact value of 

the exponent depends on how the parameter µ  is increased over periods. 

At the criticality 1=µ , the model generates a pure power-law distribution for m . The top panel 

of Figure 5 shows data simulated using a power-law fit to the negative jump series. The simulation 

approximates the general amplitude in the fluctuations of the empirical data shown in the bottom panel 

except for the one “catastrophic" event when the simulated jump exceeds 11 in absolute value. This 

simulation illustrates the ability of the model to incorporate “rare" disasters in the same data generating 

process. 

 Whether the rare instances of large jumps in JPY/USD exchange rate are related to carry trade 

activity is better understood by examing how the paramter values governing the tails change with the 

level of the interest rate differential and the VIX. Table 7 shows distribution parameter estimates for 

subsamples of high and low interest rate differentials based on the same 2% cutoff. The power exponent 

for yen appreciation jumps is 2.007 when the differential is high compared to 2.394 when it is low. In 

addition, lower φ  during higher interest rate differential period indicates exponential truncation point 
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further in the tail of the distribution. intuitively, this means a larger adjustment is induced by the same 

size shock, or that a larger number of traders m  would have switched their strategies before the 

tatonnement process is completed.  Table 8 shows distribution parameter estimates for subsamples split 

by the level of VIX based on the same 20 point cutoff. When uncertainty is high then exponentially 

dampened power-law has higher log likelihood than a simple Pareto with a considerably lower estimate of 

φ  compared to when VIX is low (0.620 versus 3.327). The negative relationship between φ  and the 

ineterest rate differential and the VIX is confirmed by conducting a Bayesian MCMC simulatation of the 

following hierarchical model: 

 ),(;)( ,,

1.5

−+

−− ∈∝ jjj

jj

jj ePr κκκκκ
κφ

 (19) 

 

where parameter φ  is assumed to be a linear function of either )( JPUS ii −  or of the VIX: 

 Jjiilog j
JP

j

US

jj 1,..,=;)(=)( 10 εγγφ +−×+  (20) 

or 

 JjVIXloglog jjj 1,..,=;)(=)( 10 εγγφ +×+  (21) 

with priors ),( 00~
0 σµγ N   , ),( 11

~
1 σµγ N   , )(0,~

ετε N   , and ),(~
εεε βατ Gamma   . The 

ετ  represents the precision of the random effects term in the model. The hyper-parameters for 0γ  and 

1γ  selected such that prior means match the MLE estimates. Table 9 shows the estimation results. The 

association between the speed, φ , of exponential truncation of the tail of jump distribution for both 

positive and negative jumps is decreasing (that is the branching process depicted by model’s µ  is 

intensifying) in the differential and the VIX. Intuitively, stochastic volatility in the JPY/USD foreign 

exchange market rises (that is tail of the return series are more elongated) when speculative motive is 

higher, as proxied by the interest rate differential, and when market uncertainty is higher, as measured by 

VIX. The coefficient 1γ  is statistically significant for both yen appreciation and yen depreciation jumps 

under the assumption the the generated data is approximately Gaussian. Figures 6 and 7 show the density 

plots, simulation quantiles, and autocorrelation plots for 1γ  coefficients on the differential and the VIX 

respectively. A bell curve indicates that a normal approximation to the standard errors in not unreasonable 

and fact declining ACF plots indicate a good mixture. Overall, we have provided some evidence that 

parameters governing stochastic volatility in JPY/USD are consistent with the model of herding induced 

by carry trade opportunities. 
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6  Conclusion 

This paper examines a mechanism that generates tail events in the distribution of foreign 

exchange returns. We find that jumps in daily returns of JPY/USD over the period from January 1, 1999 

through February 1, 2007 are more likely to follow an exponentially dampened power-law than Merton's 

compound Poisson process. Our data does not include “extreme" episodes in JPY/USD return volatility 

corresponding to the 1998 LTCM collapse and the 2008 sub-prime crisis, yet exponentially dampened 

power-law parameter estimates indicate that the data favors a distribution that generates jumps with 

unbounded variation, essentially attributing rare market crashes and normal return volatility to the same 

underlying mechanism. In addition, we find that yen appreciation (negative) and yen depreciation 

(positive) jumps are assymetric: appreciation jumps are more rare, exhibit higher variability, and have 

higher mean and maximum value. These asymmetries are more pronounced when interest rate differential 

between the two countries is higher and when market uncertainty is higher (as proxied by VIX). 

Furthermore, only the negative jumps exhibit autocorrelation and non-linear dependence indicating that 

episodes of discrete yen appreciations tend to take place over several consecutive days and may be 

non-random. The asymmetries and higher negative skew of JPY/USD returns are confirmed by 

simulations based on estimated distribution parameters. We think that such asymmetries are related to the 

role of yen as a funding currency in carry trade during our sample period since only yen appreciations 

would have been costly to carry traders producing different dynamics on the way up than on the way 

down. 

We build on a simple static version of Plantin and Shin (2006) carry trade model in which traders 

follow a switching strategy. We show that if each carry trader infers other traders' private information 

only from their actions then episodes of “explosive" carry unwinding arise endogenously via a stochastic 

herding mechanism because of a non-linear dependence of the switching threshold on the actions of 

others. In Bayes-Nash equilibrium the distribution of the number of traders unwinding their positions 

fluctuates according to an exponentially dampened power-law and, with a linear price impact function, so 

do the jumps in foreign exchange returns. The model yields a power-law exponent of -1.5 in the density 

function of jumps which is found to be in the feasible range of our empirical estimates. Thus, our model 

incorporates “rare" disasters in the same data generating process as stochastic volatility on day to day 

basis. In addition the model shows that leverage exacerbates the chain reaction in the carry unwinding but 

the underlying dynamics are generated by the propensity of carry traders to herd even in the absence of 

leverage.
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Appendix 

A.  Empirical Methodology 

A.1  Jump component 

In the limit (as 0→∆ ) realized daily volatility approaches continuously aggregated sum of 

square returns: 

 )()()( 2
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2
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1 sdssRV
tst

t

t
t κσ ∑∫

+≤

+

+ +→∆  (A.1) 

and )(∆tBV  is defined as the sum of the product of adjacent absolute intraday returns 

standardized by a constant: 
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where 
2)(2/πµ ≡  is the mean of the absolute value of standard normally distributed random 

variable. Since returns from two adjacent time periods share the persistent volatility but not the sporadic 

jumps, it follows from (A.2) that bi-power variation provides a reasonable proxy for the persistent 

component of the volatility. Barndorff-Nielsen et al. (2006) show that: 
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t
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as 0)( →∆ . 

Since realized volatility, )(1 ∆+tRV , and bi-power volatility, )(1 ∆+tBV , can be directly 

calculated from the observed asset prices, it follows that the jump component can be approximated as the 

difference of the two: 
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Because of a finite sample the estimate of the squared jump process might be negative so the 

measure us truncated at zero to get: 

 ),0]()([)( 111 ∆−∆≡∆ +++ ttt BVRVmaxκ  (A.5) 

We select only significant jumps while discounting smaller jumps as a part of continuous process 

or noise. Andersen et al. (2007) derive an asymptotically standard-normally distributed test statistic based 

on the fourth moment of the jump-diffusion process: 
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 where,  
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 so that dssTQ
t

t
t )()( 4

1

1 σ∫
+

+ →∆  as 0→∆ . 

Hence, choosing to estimate fewer but larger jumps amounts to choosing a smaller significance 

level α  associated with critical value αΦ  to compute:  

 )]()([]>)([=)( 1111, ∆−∆⋅Φ∆∆ ++++ tttt BVRVZI αακ  (A.9) 

In addition to reporting all jumps, we report jumps estimated with 0.05=α  and 0.01=α . As 

a final step of implementing (A.9). Andersen et al. (2007) tackle first order autocorrelation due to 

microstructure noise by dividing )(1 ∆+tBV  and )(1 ∆+tTQ  by )2(1 ∆−  and )4(1 ∆−  respectively 

and adjusting the lags on returns. 

A.2  Bayesian MCMC Estimation of ζ  and φ  

Under the assumption of exponentially dampened power-law for minj κκ ≥  using equation (3) 

the joint likelihood is: { }
jj

J

j

J expf φκκκκκ ζ −∝ −∏
1=

21 ),..,,(  (A.10) 

The conjugate prior families for the power exponent and exponential decay parameter are Gamma 

families
8
: ),( ζζ βαζ Gamma:  and ),( φφ βαφ Gamma: . Combining prior parameter densities with 

equation (A.10) and assuming ζ  and φ  are orthogonal we obtain the joint posterior: 
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From (A.11) we obtain complete parameter conditionals: 
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and 
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From (A.12) and (A.13)it follows that we can apply the Gibbs step in the MCMC algorithm to 

sample the power exponent and the exponential decay parameter from the following distributions 

                                                 
8
See Arnold and Press (1983) for the detailed discussion on the Bayesian techniques to estimate parameters in the 

power-law distribution 
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respectively: ))(,(,..,,|
1=

~
21 j

J

j

J lnGamma κβακκκζ ζζ ∑+    (A.14) 

 ),(,..,,| ~
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For each jump sample we have a strong prior for the parameters based on preliminary MLE 

results, therefore we chose prior parameters such that MLEζβα ζζ
ˆ=/  and MLEφβα φφ

ˆ=/ . 

 

B.  Derivation of Equation (7) 
  
By taking a partial derivative with respect to m  for a fixed x , we have:  
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 where the inequality obtains because of ))/(1(1</</ GFgfGF −−  since gf/  is increasing. 

Thanks to the MLRP, we also have the following properties:  
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 Then, the partial derivative of the left-hand side of ((3)) with respect to x  becomes:  
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 The partial derivative of the right-hand side of ((3)) is:  
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 Collecting terms, we obtain:  
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 which is strictly positive by the inequalities shown above. 
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Tables and Figures 

Table 1: Summary statistics for realized volatility jumps in JPY/USD exchange rate 

 
 

Note: All jumps and jumps with 0.05=α  and 0.01=α . The Ljung-Box Q-test statistic (Q-stat) 

#lags=log(sample size); *,**, and *** indicate rejection of 0H  of white noise at 5%, 1% and 0.1% level of 

significance respectively. 01/01/1999 through 02/01/2007 sample period.  

 

   

Table 2: Subsample summary statistics for realized volatility jumps in JPY/USD exchange rate  

 
 

Note: Jumps with 0.01=α . The Ljung-Box Q-test statistic (Q-stat) #lags=log(sample size); *,**, and *** 

indicate rejection of 0H  of white noise at 5%, 1% and 0.1% level of significance respectively. 01/01/1999 through 

02/01/2007 sample period.  

 

  

 

  

  κ- κ-(α=0.05) κ-(α=0.01) κ+ κ+(α=0.05) κ+(α=0.01)

 Prop. 47.40% 24.60% 17.20% 48.50% 23.90% 16.70%

Obs. 1255 650 455 1276 628 438

Mean 0.044 0.026 0.019 0.036 0.022 0.016

St. Dev. 0.113 0.097 0.073 0.079 0.068 0.055

Skew. 10.543 14.290 8.575 6.521 8.803 7.876

Kurt. 202.355 351.193 110.709 77.961 133.712 105.325

Min. 0.000 0.000 0.002 0.000 0.000 0.001

Max. 2.959 2.959 1.386 1.482 1.482 1.125

Q-stat 161.899*** 79.366*** 133.528*** 38.296*** 33.733*** 3.828

Yen Appreciation Jumps Yen Depreciation Jumps

  

  κ-(α=0.01) κ+(α=0.01) κ-(α=0.01) κ+(α=0.01) κ-(α=0.01) κ+(α=0.01) κ-(α=0.01) κ+(α=0.01)

 Prop. 10.51% 10.90% 6.69% 8.12% 9.34% 5.80% 7.83% 8.58%

Obs. 278 286 177 213 247 152 207 225

Mean 0.124 0.093 0.093 0.109 0.140 0.099 0.078 0.082

St. Dev. 0.160 0.089 0.113 0.098 0.177 0.126 0.080 0.107

Skew. 3.941 2.976 5.172 2.906 3.769 5.074 2.672 5.765

Kurt. 23.883 17.218 42.683 15.898 20.888 35.761 11.442 48.260

Min. 0.002 0.001 0.002 0.001 0.002 0.003 0.002 0.007

Max. 1.386 0.780 1.124 0.780 1.386 1.125 0.510 1.125

Q-stat 88.506*** 1.399 46.481*** 1.253 63.216*** 4.708 25.4126*** 3.616

Low VIXHigh Differential Low Differential High VIX
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Table 3: DBS test for non-linear dependence in realized volatility jumps 

 
 

Note: Standard erros in parenthesis; *,**, and *** indicate rejection of the null of I.I.D. at 5%, 1% and 0.1% level of 

significance respectively Test parametrized to be most parsimonious to unknown distribution in the data so 

acceptance parameter selected such that 0.7 of the total number of pairs of points in the sample lie within the 

acceptance radius and p-values calculated by bootstrapping based on 1,000 repetitions. Embeding dimention (m) 

chosed as log(sample size) of the data. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dim. (m) BDS-stat p-value BDS-stat p-value BDS-stat p-value BDS-stat p-value BDS-stat p-value BDS-stat p-value

2 0.024*** 0.000 0.015*** 0.000 0.008** 0.016 0.009*** 0.000 0.002 0.554 0.005 0.144

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

3 0.043*** 0.000 0.025*** 0.000 0.016*** 0.008 0.017*** 0.000 0.002 0.698 0.007 0.222

(0.004) (0.005) (0.006) (0.004) (0.005) (0.006)

4 0.055*** 0.000 0.028*** 0.000 0.022*** 0.002 0.019*** 0.000 0.001 0.85 0.007 0.278

(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

5 0.063*** 0.000 0.029*** 0.000 0.022*** 0.006 0.020*** 0.000 0.002 0.73 0.007 0.3

(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

6 0.065*** 0.000 0.027*** 0.000 0.020*** 0.010 0.021*** 0.000 0.002 0.622 0.004 0.49

(0.005) (0.006) (0.007) (0.005) (0.006) (0.007)

κ+(α=0.05) κ+(α=0.01)

Yen Appreciation Jumps Yen Deprectiation Jumps

κ- κ-(α=0.05) κ-(α=0.01) κ+
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Table 4: Parameter estimates for the tail in the distribution of yen appreciation jumps 

 
 

Note: The power exponent estimated via the maximum likelihood then select the minimum cutoff κ  that gives the 

minimum KS-statistic. Standrad errors for ζ and φ calculated using Bayesian MCMC method based on 10,000 

simulations.  

   

  

 

 

 

 

 

 

 

 

 

 

 

Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm

ζ ζ µ ζ ζ µ ζ ζ µ

3.110 3.183 -0.776 2.377 2.615 -1.618 2.246 2.704 -1.501

(0.193) (0.258) (0.056) (0.199) (0.207) (0.041) (0.204) (0.223) (0.048)

φ σ φ σ φ σ

0.080  0.463 0.528  0.564 1.040  0.528

(0.021)  (0.040) (0.018)  (0.029) (0.023)  (0.034)

loglike loglike loglike loglike loglike loglike loglike loglike loglike

39.012 38.993 9.387 209.283 208.458 146.591 128.253 127.16 89.24

AIC AIC AIC AIC AIC AIC AIC AIC AIC

-74.024 -75.986 -14.774 -414.566 -414.916 -289.182 -252.506 -252.320 -174.480

AICc AICc AICc AICc AICc AICc AICc AICc AICc

-73.845 -75.898 -14.595 -414.502 -414.884 -289.118 -252.406 -252.270 -174.380

Cutoff: 0.291  Cutoff: 0.107  Cutoff: 0.124

(0.051)  (0.033)  (0.027)

Tail Obs. 70  Tail Obs. 190  Tail Obs. 123

(141.455) (57.801) (40.092)

Obs. 1,255  Obs. 650  Obs. 455

κ- κ-(α=0.05) κ-(α=0.01)
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Table 5: Parameter estimates for the tail in the distribution of yen depreciation jumps 

 
 

Note: The power exponent estimated via the maximum likelihood then select the minimum cutoff κ  that gives the 

minimum KS-statistic. Standrad errors for ζ and φ calculated using Bayesian MCMC method based on 10,000 

simulations.  

 

Table 6: Exponentially dampened power-law parameter estimates (tail cutoff at 1 s.d.) 

 

Note: Exponentially dampened power-law parameters re-estimated expanding the tails of the distribution to 1 S.D. 

bounds. 
 

Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm

ζ ζ µ ζ ζ µ ζ ζ µ

2.51 2.967 -1.502 2.928 3.065 -1.538 2.983 3.229 -1.547

(0.202) (0.224) (0.036) (0.203) (0.286) (0.045) (0.203) (0.395) (0.047)

φ σ φ σ φ σ

1.125  0.466 0.321  0.475 0.642  0.435

(0.018)  (0.026) (0.026)  (0.032) (0.032)  (0.034)

loglike loglike loglike loglike loglike loglike loglike loglike loglike

198.864 197.884 142.702 145.335 145.234 99.382 117.424 117.284 84.037

AIC AIC AIC AIC AIC AIC AIC AIC AIC

-393.728 -393.768 -281.404 -286.670 -288.468 -194.764 -230.848 -232.568 -164.074

AICc AICc AICc AICc AICc AICc AICc AICc AICc

-393.549 -393.680 -281.225 -286.606 -288.436 -194.700 -230.748 -232.518 -163.974

Cutoff: 0.134 Cutoff: 0.132 Cutoff: 0.136

(0.030) (0.034) (0.035)

Tail Obs. 168 Tail Obs. 115 Tail Obs. 87

(111.917) (74.413) (64.540)

Obs. 1,276 Obs. 628 Obs. 438

κ + (α=0.01)κ + κ + (α=0.05)

κ - κ - (α=0.05) κ - (α=0.01) κ+ κ+ (α=0.05) κ+ (α=0.01)

ζ 2.288 2.23 1.527 2.146 2.049 1.495

(0.197) (0.196) (0.201) (0.200) (0.200) (0.201)

φ 0.713 0.744 2.48 1.858 1.992 4.324

(0.026) (0.035) (0.041) (0.028) (0.039) (0.046)

Cutoff: 0.113 0.097 0.073 0.079 0.068 0.055

Loglike. 286.25 237.038 244.226 538.233 428.577 421.284

Tail Obs. 274 211 210 368 283 268

Obs. 1255 650 455 1276 628 438

Yen Appreciation Jumps Yen Depreciation Jumps
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Table 7: Distribution paremeter estimates, sample split by interest rate differential. 

 
Note: The power exponent estimated via the maximum likelihood then select the minimum cutoff κ  that gives the 

minimum KS-statistic. Standrad errors for ζ and φ calculated using Bayesian MCMC method based on 10,000 

simulations. Sample split into jumps associated with the interest rate differential above and below 2%. 
      

Table 8: Distribution paremeter estimates, subsample split by VIX. 

Note: The power exponent estimated via the maximum likelihood then select the minimum cutoff κ  that gives the 

minimum KS-statistic. Standrad errors for ζ and φ calculated using Bayesian MCMC method based on 10,000 

simulations. Sample split into jumps associated with the VIX above and below 20 points. 
 

   

Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm

ζ ζ µ ζ ζ µ ζ ζ µ ζ ζ µ

2.007 2.569 -1.530 2.769 3.610 -1.461 2.394 2.874 -1.785 2.894 2.932 -1.745

(0.194) (0.406) (0.057) (0.200) (0.690) (0.052) (0.204) (0.511) (0.065) (0.198) (0.439) (0.081)

φ σ φ σ φ σ φ σ

1.250 0.561 2.408 0.355 1.410 0.487 0.094 0.531

(0.060) (0.041) (0.100) (0.038) (0.106) (0.047) (0.114) (0.059)

loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike

92.538 93.749 65.281 68.830 68.576 51.153 78.550 81.079 61.272 63.659 63.671 42.640

Cutoff: 0.1138 Cutoff: 0.1568 Cutoff: 0.0975 Cutoff: 0.1029

(0.063) (0.049) (0.031) (0.024)

Tail Obs. 94 Tail Obs. 48 Tail Obs. 56 Tail Obs. 44

(46.707) (55.433) (32.467) (21.661)

Obs. 278 Obs. 286 Obs. 177 Obs. 152

High Differential Low Differential

κ+ (α=0.01) κ-(α=0.01) κ+ (α=0.01)κ-(α=0.01)

Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm Exp-PL Pareto Lognorm

ζ ζ µ ζ ζ µ ζ ζ µ ζ ζ µ

2.358 2.664 -1.466 2.719 3.398 -1.539 1.933 2.682 -2.131 2.885 3.035 -1.590

(0.190) (0.212) (0.059) (0.198) (0.558) (0.053) (0.198) (0.324) (0.056) (0.196) (0.333) (0.086)

φ σ φ σ φ σ φ σ

0.620 0.564 1.999 0.387 3.327 0.526 0.223 0.509

(0.060) (0.043) (0.098) (0.039) (0.099) (0.040) (0.120) (0.063)

loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike loglike

88.777 88.323 55.604 77.050 76.759 57.142 142.520 144.235 117.057 45.868 48.614 30.994

Cutoff: 0.1257 Cutoff: 0.1403 Cutoff: 0.0651 Cutoff: 0.1231

(0.019) (0.037) (0.019) (0.025)

Tail Obs. 90 Tail Obs. 53 Tail Obs. 86 Tail Obs. 36

(17.934) (36.537) (23.712) (34.358)

Obs. 248 Obs. 213 Obs. 207 Obs. 225

κ-(α=0.01)

High VIX Low VIX

κ+ (α=0.01) κ-(α=0.01) κ+ (α=0.01)



 

  

  

Table 9: MCMC estimation results of the 

)( *ii −  and the VIX 

Note: Results based on 10,000 samples after discarding the first 4,000 iterations as 

parenthesis. *, **, and *** indicate coefficientes significant at 10%, 5%, and 1% level respectively under the 

normality assumption for the simulated para

 

 

Figure 1: Daily time series of JPY/USD exchange rate, realized volatility jumps, U.S.

differential, and CBOE VIX; 01/01/1999 through 02/01/2007 sample period.  

Parameter:

(1)

(i-i*) -1.676

(0.718)

MC S.E 0.076

VIX

MC S.E

τ ε 0.911

(0.764)

MC S.E 0.130

27 

MCMC estimation results of the linear coeffients of tail exponential truncation parameter

based on 10,000 samples after discarding the first 4,000 iterations as “burn-in". Standard errors in 

parenthesis. *, **, and *** indicate coefficientes significant at 10%, 5%, and 1% level respectively under the 

normality assumption for the simulated parameter values.    

of JPY/USD exchange rate, realized volatility jumps, U.S.-Japan interest rate 

01/01/1999 through 02/01/2007 sample period.   

(1) (2) (1) (2)

-1.676 ** -1.701 **

(0.718) (0.689)

0.076 0.025

-1.838 *** -1.720 ***

(0.581) (0.571)

0.026 0.022

0.911 0.743 0.829 0.764

(0.764) (0.601) (0.568) (0.516)

0.130 0.053 0.042 0.040

φ - φ +

linear coeffients of tail exponential truncation parameter φ  on 

 

in". Standard errors in 

parenthesis. *, **, and *** indicate coefficientes significant at 10%, 5%, and 1% level respectively under the 

 

Japan interest rate 

***
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Figure 2: Distribution of JPY/USD Log Returns.  Left:  Kernel density;  Right:  Q-Q plot versus 

normal distribution 

 

 

 

Figure 3: Power-law fits to the tail of realized volatility jump distribution, MLE method. Top:  Yen 

appreciation jumps; Bottom: Yen depreciation jumps 

   



29 

 

 

Figure 4:  Top: Jumps in JPY/USD simulated using exponentially dampened power-law with 

parameters tail cutoff=0.124, ζ =2.246, φ =1.040 for −κ  and tail cutoff=0.136, ζ =2.983, φ =0.642 

for +κ ;  Bottom:  Empirical realized volatility jumps series 

 

 

        

Figure 5:  Top:  Jumps in JPY/USD simulated using pure power-law with parameters tail cutoff=0.124, 

ζ =2.704;  Bottom: empirical realized volatility jump series. 



30 

 

 

 

Figure 6: MCMC simulated coefficient on U.S.-Japan intererest rate differential: density plot, iterative 

quantile plot, and ACF.  Top:  exponential truncation in the negative tail of jump distribution, −φ ;  

Bottom:  exponential truncation in the positive tail of jump distribution, +φ  

   

  

 

 ccc                   

Figure 7: MCMC simulated coefficient on VIX: density plot, iterative quantile plot, and ACF.  Top: 

exponential truncation in the negative tail of jump distribution, −φ ;  Bottom:  exponential truncation in 

the positive tail of jump distribution, +φ  

   

   

  


