Appendix: the Great Moderation in the Japanese Economy

Jun-Hyung Ko^{*a*} and Koichi Murase^{*b*}

^a Graduate School of Economics, Hitotsubashi University ^b Sompo Japan.Inc

December 19, 2010

e-mail: ed074002@g.hit-u.ac.jp

HITOTSUBASHI UNIVERSITY

Omitted Variables

Omitted Variables

Capital?

- Gali (1999)
- assumption: Stationary Capital output ratio

Other Variables (Shocks)?

- IST shocks, Monetary shock, and so on
- Future work

Equilibrium

Self-Confirming Equiibrium 1)

- Fudenberg and Levine (1993), Cho and Sargent (2006), Sargent (2008)
- interactions among a collection of adaptive agents, each of whom averages past data to approximate moments of the conditional probability distns
- If outcome converge, a Law of Large Numbers implies agents' beliefs about conditional moments become correct on events that are infrequently observed.
- Beleifs are not necessarily correct about events that are infrequently oberved.
- Where beliefs are correct, a self-confirming equilibrium is like a rational expectations equilibrium.

Self-Confirming Equiibrium 2)

- Agent *i* with strategy space A_i and state space X_i .
- Probability distn P_i over A_i × X_i: how actions and states are related.
- utility fcn is $u_i : A_i \times X_i \to R$
- μ_i(: a_i): a probability distn over X_i represent i's belief about the state conditional on action a_i.
- Agent i's decision problem is to solve

$$\max_{a_i \in A_i} \int_{x_i} u_i(a_i, x_i) d\mu_i(x_i : a_i).$$
(1)

Priors

Priors

• 18 Models

Robost Results

Priors 1)

• the conditional prior density of θ^T is given by

$$p(\theta^T | \alpha^T, h^T, Q, \Psi, \Xi) \propto I(\theta^T) f(\theta^T | \alpha^T, h^T, Q, \Psi, \Xi),$$

• z^T : a sequence of z's up to time T.

•
$$I(\theta^T) = \prod_{t=0}^T I(\theta_t),$$

- $f(\theta^T | \alpha^T, h^T, Q, \Psi, \Xi) = f(\theta_0) \Pi_{t-1}^T f(\theta_t | \theta_{t-1}, \alpha^T, h^T, Q, \Psi, \Xi)$
- $I(\theta^T)$ takes a unit value if all the roots of the VAR polynomial associated with θ_t are larger than one in modulus and 0 otherwise,

ruling out a non-stationary process.

Priors 2) distributions

 Following Cogley and Sargent (2005) and Gali and Gambetti (2009), prior distributions and its hyperparameters :

$$p(\theta_0) \propto I(\theta_0) N(\hat{\theta}_{OLS}, \hat{V}(\hat{\theta}_{OLS}))$$
$$p(\log h_0) = N(\log \hat{h}_{OLS}, 10 \times I)$$
$$p(\alpha_0) = N(\hat{\alpha}_{OLS}, |\hat{\alpha}_{OLS}|)$$

$$p(Q) = IW(\overline{Q}^{-1}, T_0)$$
$$p(\Xi_{i,i}) = IG\left(\frac{\overline{\Xi}}{2}, \frac{1}{2}\right)$$
$$p(\Psi) = IW(\overline{\Psi}^{-1}, 2).$$

not flat but uninformative

Ko and Murase (2010)

12th Macroeconomics Conference

Priors 3) values

- $\hat{\theta}_{OLS}$: OLS estimates of VAR coefficients.
- $\hat{V}(\hat{\theta}_{OLS})$: the estimate of their covariance matrix.
- \hat{h}_{OLS} : vector containing elements of the diagonal matrix \hat{H} .
- $\hat{\alpha}_{OLS}$: the element (2,1) of the lower triangular matrix \hat{A} .
- $\bar{Q} = k_Q \times \hat{V}(\hat{\theta}_{OLS}).$
- *T*₀: # of observations in the initial sample.
- $\overline{\Xi} = k_{\xi}$.
- $\overline{\Psi} = \mathbf{k}_{\Psi} \times |\hat{\alpha}_{OLS}|.$
- Benchmark: $k_Q = 0.005$, $k_{\xi} = 0.0001$, $k_{\Psi} = 0.001$.

Priors 4) robustness

- 18 models
- $k_Q = \{0.005, 0.001, 0.1\}.$
- $k_{\xi} = \{0.0001, 0.001\}.$
- $k_{\Psi} = \{0.001, 0.01, 1\}.$
- Robust in all cases!!!

Estimation

Estimation

- We use a Markov Chain Monte Calro (MCMC) method, the Gibbs sampling .
 - The Gibbs sampler partitions the vector of unknowns into blocks.
 - The transition density is defined by the product of conditional densities.

Step 1

Step 1: $p(\theta^T | x^T, \alpha^T, h^T, Q, \Psi, \Xi)$

- Conditional on x^T, α^T, h^T, Q, Ψ, Ξ, the unrestricted posterior of the states is normal.
- To draw from the conditional posterior, we employ the algorithm of Carter and Kohn (1994).
- The conditional mean and variance of the terminal state θ_T is computed using standard Kalman filter recursions.
- For all the other states, the following backward recursions are employed:

$$\theta_{t|t+1} = \theta_{t|t} + P_{t|t} P_{t|t+1}^{-1} (\theta_{t+1} - \theta_{t|t}),$$
(2)

$$P_{t|t+1} = P_{t|t} - P_{t|t} P_{t+1|t}^{-1} P_{t|t}, \qquad (3)$$

where $p(\theta^T | x^T, \alpha^T, h^T, Q, \Psi, \Xi) \sim N(\theta_{t|t+1}, P_{t|t+1})$.

Step 2: $p(\alpha^T | x^T, \theta^T, h^T, Q, \Psi, \Xi)$

- Conditional on θ^T , $\hat{y}_t = x_t - \beta_{0,t} - \beta_{1,t} x_{t-1} - \dots - \beta_{p,t} x_{t-p}$ is observable.
- We can rewrite our system of equations as $A_t \hat{y}_t = H_t v_t$, where $v_t \sim N(0, I)$.
- Conditional on h^T, we use the algorithm of Carter and Kohn (1994) to obtain a draw for α_t taking the above system as observational equations and unobserved states equations.
- Given that the α_t and the ν_t are independent across equations, the algorithm can be applied equation by equation.

Step 3

Step 3: $p(h^T | x^T, \theta^T, \alpha^T, Q, \Psi, \Xi)$

 This is done by using the univariate algorithm by Jacquier et al. (1994). Step 4: $p(\Psi|x^T, \theta^T, \alpha^T, h^T, Q, \Xi)$, $p(\Xi_{i,i}|x^T, \theta^T, \alpha^T, h^T, Q, \Psi)$, $p(Q|x^T, \theta^T, \alpha^T, h^T, \Psi, \Xi)$

 Conditional on x^T, θ^T, α^T, h^T, all the remaining hyperparameters, under conjugate priors, can be sampled in a standard way from Inverted Wishart and Inverted Gamma densities.

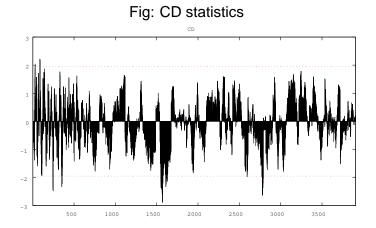
• Geweke (1992)

Convergence Diagnotics (CD)

Ko and Murase (2010)

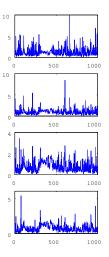
12th Macroeconomics Conference

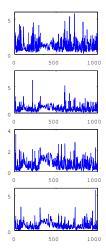
GM in the Japanese economy 20 / 43

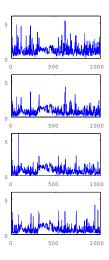


Cannot reject the null hypothesis in most cases

Fig: Draws and Means of posterior $\log h_t$

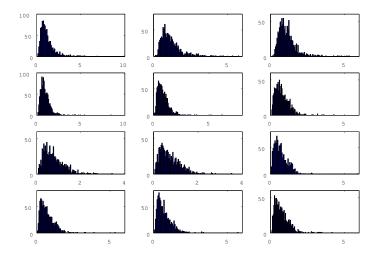






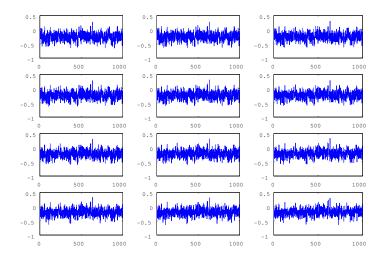
stationary distn

Fig: Density of Posterior $\log h_t$



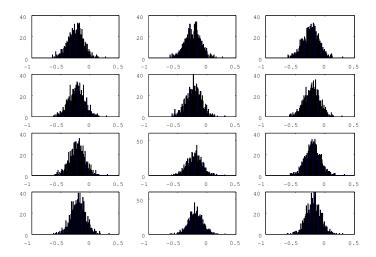
stationary distn

Fig: Draws and Means of posterior $\beta_{1,t}$



stationary distn

Fig: Density of Posterior $\beta_{1,t}$



stationary distn

Government and labor

Labor Market Dynamics

- Employment Protection by Case Laws (Kaiko Kisei)
 - employers must meet four conditions before they fire an employee.
 - 2 Kawaguchi and Murao (2009)
- Life-time employment system
 - Endo and Hirakata (2010)
 - 2 still survives
- Labor Standard Law (Jitan)
 - Mawaguchi and Tsuru (2010): endogenous working hours ↓.
 - 2 Kuroda (2010): No effect on large firms
- Worker Dispatching Act (Roudou Haken Hou)
 - 1986, 1999, 2004

Taxes

- Gali (2003), Uhlig (2004)
 - Capital tax: included in productivity shocks

Suppose

- prod. fcn: Y = F(K, AN)
- lemma Homo. of degree 1: $\frac{Y}{N} = AF(k, 1)$ where $k \equiv (K/AN)$: the ratio of capital to labor

(1 –
$$\tau$$
) $F_k(k, 1) = const.$ hold along a B.G.P.

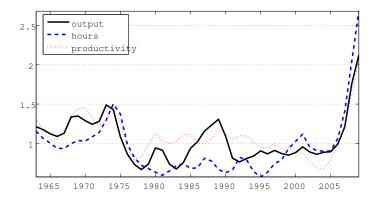
• stationary τ may be unwarranted.

But, at least

- theory: $\tau \uparrow \rightarrow lp \Downarrow N \uparrow$
- **2** our result (IR): $lp \uparrow N \uparrow$

Phases

Unconditional SDs



• 5 Phases

Five Phases

- 5 distint Phases in our economy
- Ist Phase: Until Mid-1970s
 - participation of Baby-boomers
 - geographical and sectoral movement
- 2nd Phase: Mid-1970s to Late-1980s
 - Very stable economy (GM period)
- 3rd Phase: Late-1980s to Early-1990s
 - Bubble periods
 - volatile output while stable labor input and productivity
 - olisappearence of negative correlation

Phases

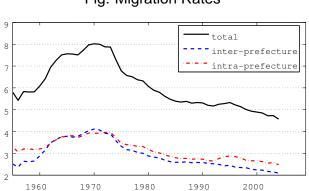
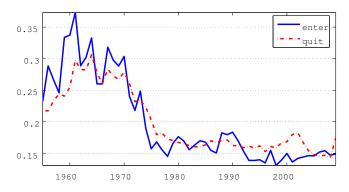


Fig: Migration Rates

upper trend in the 1st Phase

Phases

Fig: Turnover Rates



volatile in the 1st Phase

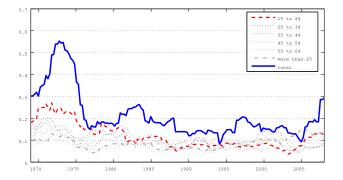
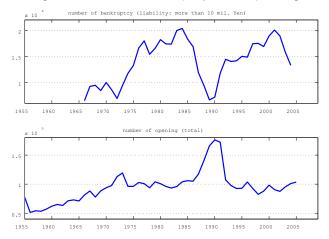


Fig: SD of employment rate among ages

- main role of 15-24 in the 1st Phase
- consistent with Jaimovichi and Siu (2009)

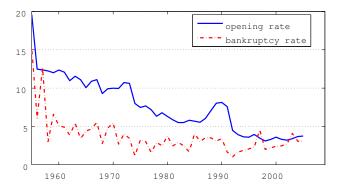
Fig: Number of Bankruptcy and Opening



different feature in the 3rd Phase

Phases

Fig: Rates of Bankruptcy and Opening



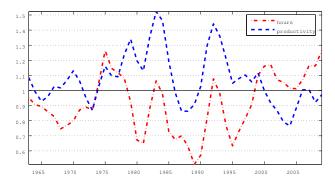
Five Phases

• 4th Phase: Early-1990s to Mid-2000s

- stable output (GM period)
- Iabor input [↑]
- Iabor productivity U
- 5th: Late-2009s
 - Global crisis
 - all volatile

Phases

Fig: Relative SDs



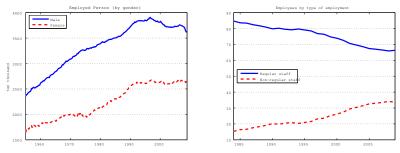
Ko and Murase (2010)

12th Macroeconomics Conference

GM in the Japanese economy 38 / 43

Phases

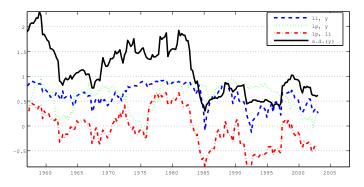
Fig: Employed Person (by gender) and Employees (by type of employment)



- Participation Rate: Male ↑ until 1975, Female ↑ from 1975
- Saito (2003): home production: husband ↓ → wife ↑
- Gaston and Kishi (2007): long time working by part-time workers

Comparison with the U.S.

Fig: Rolling Correlations of the U.S.



- procyclical movement of productivity under NT shocks
- sign changes of correlation btw li and lp

Ko and Murase (2010)

12th Macroeconomics Conference

Relationship with theory

Relationship with labor hoarding models

- Disutility from work depends on employment (n), hours (h), and effort (e): v(n_t, h_t, e_t) ≡ n_t(λ_h/(1+η_h h_t^{1+η_h} + λ_e/(1+η_e e_t^{1+η_e})
 y_t = a_tn_t(h_te_t)^α = a_tn_th_t^φ where φ = α(1 + η_h/(1+η_e)).
- U.S. with the labor-search model
 - Itring cost ↓.
 - Substitution from e_t to n_t and h_t .

Hours and Employment

- Negative Correlations of Ip and Ii in all periods (Contributed by NT shocks)
- the labor-search model: Not Our Story in Japan

