The Great Moderation in the Japanese Economy

Jun-Hyung Ko^{*a*} and Koichi Murase^{*b*}

^a Graduate School of Economics, Hitotsubashi University ^b Sompo Japan.Inc

December 19, 2010

e-mail: ed074002@g.hit-u.ac.jp

HITOTSUBASHI UNIVERSITY

Great Moderation and Japanese Economy

Great Moderation (GM): Stable Process of GDP volatility

• Why Now?

- no discussion on Jap. economy.
- very useful tool to analyze economic fluctuations.

Big Picture

- Introduction (3 minutes)
- Rolling Standard Deviation (SD) (5 minutes)
- Time Varying Parameter VAR (5 minutes)
- Results and Discussion (5 minutes)
- Conclusion (1 minute)

Introduction

Former Literature on Structural Changes

Higo et al. (2005)

- output and inflation
- relationship btw Phillips curve
- Kimura and Shiotani (2010)
 - output and inventory
- Watanabe (2009)
 - Ol
 - MS model with structural changes

Our Goals to find, Method

This paper

- output, labor productivity, and labor input
- Changing Dynamics in the labor market
- Contribution of technology and non-technology shocks
- Connections to GM

Methods

- Rolling SD and Correlations
- Time-varying coefficient VAR

•
$$\boldsymbol{x}_t = \boldsymbol{\mu}_t + \boldsymbol{\beta}_t \boldsymbol{x}_{t-1} + \boldsymbol{u}_t, \, \boldsymbol{u}_t \sim N(0, \boldsymbol{\Sigma}_t)$$

Basic Results

- 5 Phases in the postwar economy
- GM starts from mid-1970s in Japan: but two other upheavals:
 - the bubble periods
 - the recent financial boom and crisis
- Contribution: output T shock while labor input NT shocks.
- Possible changes in the labor mkt structure but No Contribution Changes to Output Variations

Japanese Economy

- Data
- Rolling SD
- Rolling Correlation

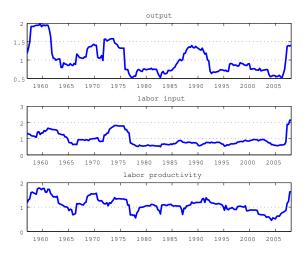
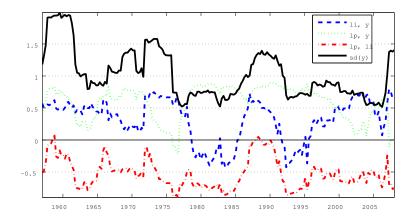

Data

Table: Benchmark Data

Data	Sources
output (Y _t)	68SNA and 93SNA
working population over 15 (N_t)	Japanese Census Population
employment (E_t)	Labor Force Survey
working hours (H_t)	Monthly Labor Survey
Notes: sample periods are from 55q2 to 09q4.	

- Output : $y_t = \ln \frac{Y_t}{N_t}$
- Labor input : $li_t = \ln \frac{E_t H_t}{N_t}$
- Labor productivity : $lp_t = y_t li_t$


Rolling SD

• 5 phases in the postwar economy.

Ko and Murase (2010)

Rolling Correlations

Negative sign btw labor input and productivity

Ko and Murase (2010)

Framework of the analysis

- TVP VAR
- Identification

Time-Varying Parameter VAR

• TVP VAR with $x_t \equiv [\Delta l p_t, l i_t]$

$$x_t = \beta_{0,t} + \beta_{1,t} x_{t-1} + \beta_{2,t} x_{t-2} + \dots + \beta_{p,t} x_{t-p} + u_t.$$
 (1)

•
$$\theta_t = vec(\beta_{0,t}, \cdots, \beta_{p,t})$$
 evolves
 $\theta_t = \theta_{t-1} + \omega_t,$

where $\omega_t \sim N(0, \Omega)$

(2)

Assumptions

• $\Sigma_t \equiv A_t^{-1} H_t A_t'^{-1}$ where

$$H_t \equiv \begin{bmatrix} h_{1,t} & 0\\ 0 & h_{2,t} \end{bmatrix} \quad A_t \equiv \begin{bmatrix} 1 & 0\\ \alpha_t & 1 \end{bmatrix}.$$
(3)

• $h_t = vec(H_t)$ and α .

$$\log h_t = \log h_{t-1} + \xi_t, \qquad (4)$$

$$\alpha_t = \alpha_{t-1} + \zeta_t, \qquad (5)$$

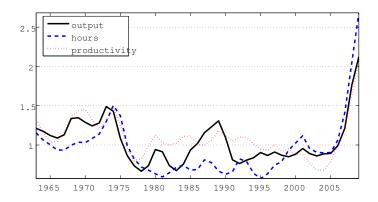
where $\xi_t \sim N(0, \Xi)$ and $\zeta_t \sim N(0, \Psi)$.

Identification

- T shocks and NT shocks
- T shocks can influence productivity in the long run.
- Identification with Long run restrictions: $u_t = K_t \varepsilon_t$

$$C_{t}(L) = B_{t}(L)K_{t}$$

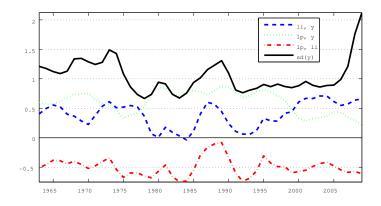
$$C_{t}(1)C_{t}(1)' = B_{t}(1)\Sigma_{t}B_{t}(1)' \quad (\because K_{t}K_{t}' = \Sigma_{t})$$


$$C_{12t}(1) = 0.$$
(6)

Main Results

Unconditional (Conditional) Second Moments

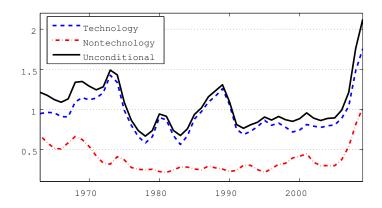
IRF


Unconditional SDs

- 5 Phases
- Not persistent GM

Ko and Murase (2010)

Unconditional Correlations

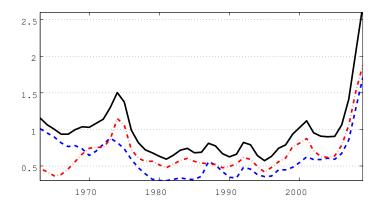


Negative sign btw labor input and productivity

Ko and Murase (2010)

Conditional SDs

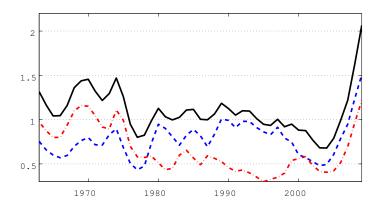
SD of Output



• T shocks contribute most in all sample periods.

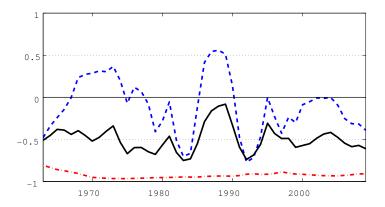
Ko and Murase (2010)

Conditional SDs


SD of Labor Input

• NT shocks contribute most.

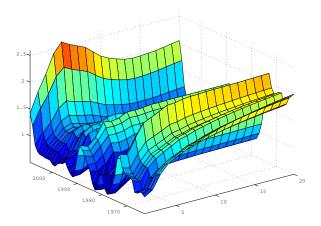
Ko and Murase (2010)


SD of Labor Productivity

• T shocks contribute most.

Ko and Murase (2010)

Conditional Correlations

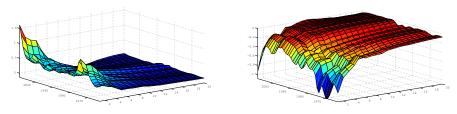


Minus-Unity correlation under NT shocks

Ko and Murase (2010)

Impulse Responses

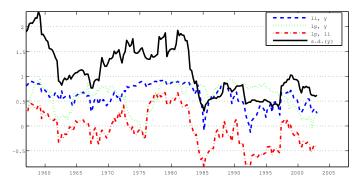
Output Response to T shocks



Consistent with output volatility

Ko and Murase (2010)

Responses to NT shocks


Labor input and labor productivity

- Opposite responses of productivity
- ∴ mute response of output on NT shocks

Comparison

Fig: Rolling Correlations of the U.S.

- procyclical movement of productivity under NT shocks
- sign changes of correlation btw li and lp

Ko and Murase (2010)

Conclusion

Conclusion

- No Persistent GM
- Output: contributed by T shocks
- Labor Input: mainly by NT shocks
- No Contribution Changes of the labor mkt dynimics to GM

Negative Correlation of li and lp

Ko and Murase (2010)