Discussion of "The Great Moderation in the Japanese Economy"

by Jun-Hyung Ko and Koichi Murase

December 2010

Tatsuyoshi Okimoto

GS of International Corporate Strategy (ICS) Hitotsubashi University

Great Moderation

- 1. Decline in the volatilities of macro economic variables, in particular GDP growth
- 2. Stock and Watson (2005, JEEA)
 - (a) Estimate FSVAR model with common international factors and country specific shock
 - (b) G7 output volatilities have been low for the last 20 years except for Japan
 - (c) Reduction in volatility is associated with a reduction in the magnitude of the common international shocks
 - (d) For Japan international shocks have become unimportant, and domestic shocks explain nearly all of its volatility in the 1990s
- 3. Few studies about Japanese output volatility dynamics and its source

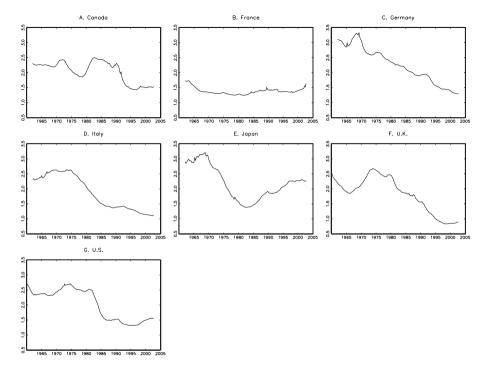


FIGURE 4. Estimated instantaneous standard deviation of four-quarter GDP growth.

Contributions

- 1. Investigate possible "Great Moderation" in Japan
- 2. Examine the timing and sources
- 3. Focus on output (OP), labor inputs (LI), labor productivity (LP)
- 4. Provide many interesting findings
- 5. Some comparison with US case

Basic Methodology

- 1. SVAR model with time-varying coefficients and stochastic volatility
- 2. Flexible way to model changes in
 - (a) Impulse response function
 - (b) Variance decomposition
 - (c) Unconditional and conditional comovements
- 3. Considered variables
 - (a) Output: y_t (b) Labor input: li_t (c) Labor productivity: $lp_t = y_t - li_t$ (d) $x_t = [\Delta lp_t, li_t]'$
- 4. Two structural disturbances

(a)
$$\varepsilon_t^T$$
: Technology shock
(b) ε_t^{NT} : Nontechnology shock

- 5. Identification follows Galí (1999)
- 6. Technology shocks are sources of the unit root in labor productivity
- 7. Only technology shocks have a permanent effect
- 8. Distributed lag representation based on the technology and nontechnology shocks (Galí and Gambetti, 2009)

$$x_{i,t} = \mu_t^i + \sum_{k=0}^{\infty} C_{t,k}^{i,T} \varepsilon_{t-k}^T + \sum_{k=0}^{\infty} C_{t,k}^{i,NT} \varepsilon_{t-k}^{NT}$$

9. Unconditional Variance

$$\operatorname{Var}(x_{i,t}) = \sum_{k=0}^{\infty} (C_{t,k}^{i,T})^2 + \sum_{k=0}^{\infty} (C_{t,k}^{i,NT})^2$$

10. Unconditional Covariance

$$Cov(x_{i,t}, x_{j,t}) = \sum_{k=0}^{\infty} C_{t,k}^{i,T} C_{t,k}^{j,T} + \sum_{k=0}^{\infty} C_{t,k}^{i,NT} C_{t,k}^{j,NT}$$

Main results

- 1. Japanese output growth volatility has declined temporally in the middle of 1970s
 - (a) Consistent with Stock and Watson (2005)
- 2. Main source of the volatility dynamics

(a) Output and productivity growth: technology shock(b) Labor input: nontechnology shock

3. Relatively stable negative correlation between LI and LP cf. US: positive \longrightarrow negative

Overall comments

- 1. Challenge important questions
- 2. High tech paper
- 3. Find many interesting results
- 4. Open up a lot of new research topics
- 5. Could provide more evidence
- 6. Should emphasize validity of the model

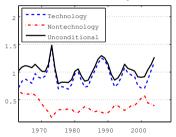
Comments

1. Order of integration for labor input

(a)
$$x_t = [\Delta l p_t, l i_t]' \sim I(0)$$

(b) $l p_t = y_t - l i_t \sim I(1)$
(c) $y_t \sim I(1)$
(d) $y_t - l p_t = l i_t \sim I(0)$
(e) y_t and $l p_t$ are cointegrated
(f) Technology shocks are sources of the unit root in output as well
(g) $x_t = [\Delta l p_t, \Delta l i_t]' \sim I(0)$ may be more natural

- 2. Investigate the change and sources of short- and long-run fluctuations
 - (a) Distributed lag representation based on the technology and nontechnology shocks (Galí and Gambetti, 2009)


$$x_{i,t} = \mu_t^i + \sum_{k=0}^{\infty} C_{t,k}^{i,T} \varepsilon_{t-k}^a + \sum_{k=0}^{\infty} C_{t,k}^{i,NT} \varepsilon_{t-k}^d$$

(b) MSE of h-quarter ahead forecast

$$MSE(\hat{x}_{i,t+h|t}) = \sum_{k=0}^{h-1} (C_{t,k}^{i,T})^2 + \sum_{k=0}^{h-1} (C_{t,k}^{i,NT})^2$$

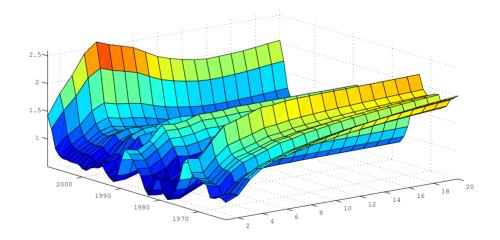
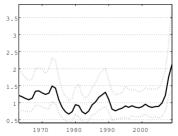
(c) The paper considers only the case for $h = \infty$ (d) Could be more interesting to compare several cases Ex. h = 1, 4, 12, 20

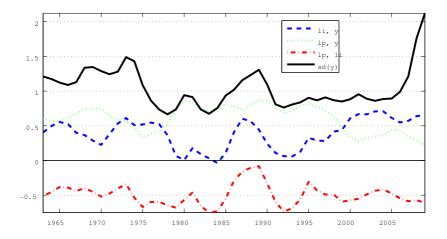
Standard Deviation: Output

- 3. Examine changes in impulse response function (IRF) more carefully
 - (a) Interesting figures for IRF
 - (b) No confidence intervals
 - (c) Too much information for one figure
 - (d) Use two dimensional figure with confidence intervals for several time horizon \boldsymbol{h}

Ex. h = 1, 4, 12, 20

- (e) Discuss significance of time variation of IRF
- (f) Compare the results with different horizons


Fig. 7. Impulse Response of Output to Technology shocks.

- 4. Interpretation of nontechnology shock
 - (a) Little power to explain output volatility
 - (b) Induce almost perfect negative correlation between LI and LP throughout entire sample
 - (c) Negative IRF of LP to nontechnology shock
 - (d) Sign of IRF of output to nontechnology shock?
 - (e) Possible nontechnology shock
 - i. Monetary policy shock
 - ii. Fiscal policy shock
 - iii. Demand shock
 - (f) Nontechnology shock might have permanent effect on LP
 - (g) Extend the model to identify nontechnology shocks in detail

- 5. Significance of changes in volatility and correlations
 - (a) 90% confidence interval for volatility is relatively wide
 - (b) No confidence interval for correlation
 - (c) Better have some test for structural change
 - (d) Table 1 could be used
- 6. Little justification of the model
 - (a) Comparison with other models
 - i. VAR model with constant coefficient and volatility
 - ii. VAR model with GARCH type disturbance
 - iii. Markov switching VAR model
 - (b) Calculation of marginal likelihood

Output

- 7. Interesting future research
 - (a) Volatility dynamics for other macroeconomic variables
 - (b) Good luck or good policy
 - (c) Reason for a decline in technology shock volatility
 - (d) Negative correlation between labor input and output

8. Minor comments

- (a) Length of rolling-window may be too short
- (b) Lag length?
- (c) Is it "Great Moderation?"

Conclusion

- 1. Valuable contribution for Japanese economic analysis
- 2. Powerful tool to detect changes in volatility and impulse response function
- 3. Find many interesting results
- 4. Open up a lot of new research topics
- 5. Can be applied to many macroeconomic series