Policy Commitment and Market Expectations: Survey Based Evidence under Japan's Quantitative Easing Policy

Yoshiyuki Nakazono and Kozo Ueda

Waseda University and the Bank of Japan

December 18, 2010

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
Contents	S				

4 Nonparametric Perspective

5 Estimation

 Views expressed in this paper are those of the authors and do not necessarily reflect the official views of the Bank of Japan.

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
Motivatio	on				

- Quantitative easing policy (QEP) by the BOJ
 - March 2001 to March 2006
- CPI commitment policy
 - BOJ promised to keep their accommodative policy until the CPI inflation rate became stably zero or higher.
 - Bank of Canada, Riksbank, etc
- We estimate the effect using survey data.

QEP and the CPI Commitment Policy 1

Date	Policy				
Mar. 19 2001	Committing that the QEP continues to be in place				
	until the CPI (excluding perishables) inflation registers stably				
	a zero percent or an increase year on year.				
	Enhancing monetary policy transparency.				
	BOJ's commitment is underpinned by the following two conditions.				
	1. it requires not only that the most recently published CPI				
	inflation should register a zero percent or above, but also that				
Oct. 10	such tendency should be confirmed over a few months.				
2003	2. the BOJ needs to be convinced that the prospective CPI				
	inflation will not be expected to register below a zero percent.				
	The above conditions are the necessary condition. There may				
	be cases,however, that the BOJ will judge it appropriate to				
	continue with the QEP even if these two conditions are fulfilled.				

QEP and the CPI Commitment Policy 2

Date	Policy
	Exit from the QEP by changing the operating target to the
Mar. 9	uncollateralized overnight call rate.
2006	Encouraging the uncollateralized overnight call rate to remain
	at effectively zero percent.
Jul. 14	Encouraging the uncollateralized overnight call rate to remain
2006	at around 0.25 percent.

Actual and expected inflation

- Supporting evidence of the effect of the CPI commitment policy
 - Survey by Ugai (2006)
 - Baba *et al.* (2005) and Oda and Ueda (2007) develop a macro-finance model.
- Two findings
 - Interest rates became lower for the short- to medium-term range by 0.4 to 0.5 % points.
 - A threshold existed at about 1 % of the CPI inflation rate.

Past Empirical Studies 2

Difficulty

- Inflation expectations are unobsevable.
- The low yield curve may simply be the result of low inflation expectations.

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
Contribu	tion				

- We resolve the difficulty by using a direct measure of inflation expectations.
 - Panel survey, QSS (QUICK Survey System), provided by QUICK corp.
 - Market participants
 - Views on the future interest rates and inflation rates
- The QSS enables us to directly evaluate the effect of CPI commitment policy on market participants' expectations.

- The CPI commitment policy lowered market participants' expectations on interest rates.
 - In the short- to medium-term interest rates
 - About 0.2 percent
- There existed a threshold inflation rate, yielding a kinked curve between interest rates and inflation rates.
 - About 0 percent
 - Consistent with the BOJ's announcement
- Weaker effects than previous studies due to controling inflation expectations

- Model
- QSS Data
- Nonparametric Perspective
- Estimation
- Concluding Remarks

Model without CPI Commitment

- Simple Taylor rule
 - The latent nominal interest rate i_t^* is given by

$$i_t^* = r^* + \pi^* + \phi(\pi_t - \pi^*) + \varepsilon_t.$$
 (1)

In the presence of the ZLB, the interest rate becomes

$$i_t = \begin{cases} 0 & \text{if } i_t^* \le 0\\ i_t^* & \text{if } i_t^* > 0. \end{cases}$$
(2)

Notes

- Partial equilibrium (unlike Eggertsson and Woodford (2003))
- No inertia in the policy rule (unlike Reifschneider and Williams (2000) and Eggertsson and Woodford (2003))

• With CPI commitment, the interest rate is determined as

$$i_t = \begin{cases} 0 & \text{if } i_t^* \leq 0 \\ 0 & \text{if } \pi_t \leq \pi^c \\ i_t^* & \text{otherwise} \end{cases}$$
(3)

Assume

$$r^* + \pi^* + \phi(\pi_t^c - \pi^*) > 0 \tag{4}$$

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks

Medium- to Long-Term Interest Rates

• A term structure model

$$i_t^T = \frac{1}{T} \mathsf{E}_t \left[\sum_{j=0}^{T-1} i_{t+j} \right].$$
 (5)

A k-month forecast

$$\mathsf{E}_{t}i_{t+k}^{T} = \frac{1}{T}\mathsf{E}_{t}\left[\sum_{j=k}^{T+k-1}i_{t+j}\right]$$

$$= \frac{1}{T} \sum_{j=k}^{T+k-1} I(\mathsf{E}_t \pi_{t+j} - \pi^c) \cdot \{ r^* + \pi^* + \phi(\mathsf{E}_t \pi_{t+j} - \pi^*) \}.$$
 (6)

Medium- to Long-Term Interest Rates

Add a term premium

$$E_{t}i_{t+k}^{T} = \frac{1}{T}\sum_{j=k}^{T+k-1} \alpha \left\{ 1 - I(E_{t}\pi_{t+j} - \pi^{c}) \right\} + \frac{1}{T}\sum_{j=k}^{T+k-1} I(E_{t}\pi_{t+j} - \pi^{c}) \cdot \left\{ \beta + \phi(E_{t}\pi_{t+j} - \pi^{c}) \right\}.$$
(7)

We require

$$\beta > \alpha.$$
 (8)

- From the QSS, we know $E_t i_{t+k}^T$, and $E_t \pi_{t+12}$, $E_t \pi_{t+24}$, and $E_t \pi_{t+120}$.
- Real-time π_t
- Linear interpolation

$$\mathsf{E}_{t}\pi_{t+m} = \begin{cases} \left\{ \begin{array}{c} \left\{ (12-m)\pi_{t} + m\mathsf{E}_{t}\pi_{t+12} \right\} / 12 \\ \text{for } 1 \le m \le 12 \\ \left\{ (24-m)\mathsf{E}_{t}\pi_{t+12} + (m-12)\mathsf{E}_{t}\pi_{t+24} \right\} / 12 \\ \text{for } 13 \le m \le 24 \\ \left\{ (120-m)\mathsf{E}_{t}\pi_{t+24} + (m-24)\mathsf{E}_{t}\pi_{t+120} \right\} / 96 \\ \text{for } 25 \le m \le 120 \\ E_{t}\pi_{t+120} \text{ for } 121 \le m \end{cases}$$
(9)

• We estimate π^{c} , α , β , and ϕ from

$$E_{t}i_{t+k}^{T} = \frac{1}{T}\sum_{j=k}^{T+k-1} \alpha \left\{ 1 - I(E_{t}\pi_{t+j} - \pi^{c}) \right\} + \frac{1}{T}\sum_{j=k}^{T+k-1} I(E_{t}\pi_{t+j} - \pi^{c}) \cdot \left\{ \beta + \phi(E_{t}\pi_{t+j} - \pi^{c}) \right\}.$$
(10)

 As for π^c, we employ a grid-search method for maximizing the likelihood function.

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
QSS Da	ta				

- Panel data
- Market participants from securities firms, banks, investment trusts, insurance firms, pension funds, and other private financial institutions
- About 150 people per month

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks

ltom	Time horizon	Poriod
liem	of forecast	Fellou
TIBOR yield (3 months)	1, 3, 6 months	2000M5 - 2008M11
Newly issued JGB yield (2 years)	1, 3, 6 months	2001M5 - 2008M11
Newly issued JGB yield (5 years)	1, 3, 6 months	2001M5 - 2008M11
Newly issued JGB yield (10 years)	1, 3, 6 months	1998M7 – 2008M11
Newly issued JGB yield (20 years)	1, 3, 6 months	2003M4 - 2008M11
CDI (ovaluding parishable) inflation	Average of	2004147 20091414
CFT (excluding perishable) initation	1, 2, 10 years	2004117 - 200610111

Nonparametric Perspective

Interest rate expectations vis-a-vis 1-year inflation expectations

Interest rate expectations vis-a-vis 2-year inflation expectations

Interest rate expectations vis-a-vis 10-year inflation expectations

Interest rate expectations vis-a-vis 1-year inflation expectations after the CPI commitment policy ended

Interest rate expectations vis-a-vis 1-year inflation expectations during (red solid lines) and after (blue dashed lines) the CPI commitment policy.

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks

Estimation

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
Benchn	nark				

$$i_t = \begin{cases} \beta + \phi(\pi_t - \pi^c) \\ \alpha \end{cases}$$
(11)

•
$$\alpha < \beta$$

- ϕ is positive and significant
- π^c is around 0 percent

• Adjusted R² is the highest for the 2-years yields

dependent variables		α	β	ϕ	π^{c}	Adj R2
TIBOR	3M	0.093	0.095	0.249	-0.04	0.256
2Y	3M	0.118	0.287	0.153	0.10	0.413
5Y	3M	0.551	0.757	0.206	0.09	0.232
10Y	3M	1.447	1.562	0.054	0.29	0.065

Estimation of models with and without the CPI commitment

		$ \alpha$	eta	ϕ	π^{c}	π^0	Adj R ²	F test
TIBOR	benchmark	0.093	0.095	0.249	-0.04	-	0.256	0.342
	w/o commit	0.093	$= \alpha$	0.259	-	-0.04	0.256	
	(S.E.)	0.001	-	0.009	-	-		
2Y	benchmark	0.118	0.287	0.153	0.10	-	0.413	0.000
	w/o commit	0.140	$= \alpha$	0.395	-	-0.05	0.350	
	(S.E.)	0.002	-	0.010	-	-		
5Y	benchmark	0.551	0.757	0.206	0.09	-	0.232	0.000
	w/o commit	0.643	$= \alpha$	0.346	-	0.00	0.198	
	(S.E.)	0.005	-	0.013	-	-		
10Y	benchmark	1.447	1.562	0.054	0.29	-	0.065	0.000
	w/o commit	1.479	$= \alpha$	0.115	-	0.00	0.055	
	(S.E.)	0.006	-	0.009	-	-		
20Y	benchmark	1.896	2.104	0.051	-0.20	-	0.035	0.000
	w/o commit	2.096	$= \alpha$	0.056	-	-0.20	0.030	
	(S.E.)	0.006	-	0.006	-	-		3:

- Different models confirm our results
- Various samples
- A model excluding food and energy
- A simple model without a term structure consideration
- A modified Tobit model
 - Unclear lower bound
 - Tobit and panel (with fixed effect) analysis
- A model with policy inertia
- A model with the restriction of $\phi = 1.1$

Motivation	Model	QSS Data	Nonparametric Perspective	Estimation	Concluding Remarks
Conclu	dina Rer	narks			

- Future work
 - Effects of increases in current reserves
 - Recent episode
 - Other countries such as Canada, Sweden, and the United States

Current account balances (Source: Bank of Japan)

Estimation for the sample periods that include three months just before and after the CPI commitment policy ended

		$ \alpha$	eta	ϕ	π^{c}	π^{0}	Adj R ²	F test
TIBOR	w commit	0.152	0.302	0.193	0.32	-	0.808	0.000
	w/o commit	0.114	$= \alpha$	0.925	-	0.02	0.518	
2Y	w commit	0.349	0.733	0.493	0.50	-	0.608	0.000
	w/o commit	0.438	$= \alpha$	2.663	-	0.20	0.296	
5Y	w commit	0.923	1.179	0.328	0.50	-	0.376	0.000
	w/o commit	1.022	$= \alpha$	0.961	—	0.20	0.170	
10Y	w commit	1.579	1.707	0.164	0.50	-	0.182	0.000
	w/o commit	1.657	$= \alpha$	0.127	-	0.25	0.079	
20Y	w commit	2.116	2.180	0.081	0.50	-	0.080	-
	w/o commit	2.161	$= \alpha$	0.057	—	0.25	0.038	

Motivation Model QSS Data Nonparametric Perspective Estimation Concluding Remarks

Interest rate expectations vis-a-vis 1-year inflation expectations in the short period just before and just after the CPI commitment policy ended

Estimation of models with policy inertia

		α	eta	ϕ	ρ	π^{c}	π^{0}	Adj R ²	
TIBOR	w commit	0.088	0.019	0.288	0.728	-0.24		0.440	
	w/o commit	0.008	$= \alpha$	0.227	0.717	—	-0.48	0.434	
2Y	w commit	0.111	0.007	1.026	0.922	-0.21		0.702	
	w/o commit	-0.012	$= \alpha$	0.857	0.913	_	-0.50	0.694	
5Y	w commit	0.570	0.108	0.128	0.891	-0.01		0.642	
	w/o commit	0.108	$= \alpha$	0.306	0.804	_	-0.50	0.624	
10Y	w commit	1.229	0.595	0.061	0.597	-0.21		0.448	
	w/o commit	0.658	$= \alpha$	0.058	0.549	_	-0.50	0.420	
20Y	w commit	1.896	0.969	0.012	0.541	-0.21		0.361	
	w/o commit	1.207	$= \alpha$	0.010	0.430	_	-0.50	0.301	

Tobit model using 3M forecast of 2Y yields as a dependent variable and 1Y π^e as an explanatory variable

$$i_t = \begin{cases} \gamma + \phi \pi_t + \varepsilon_t \\ \alpha \end{cases}$$
(12)

lpha (preset) [#N, #N]	γ	ϕ	$\sigma_{arepsilon}$	$\pi^{c}=(lpha-\gamma)/\phi$
0 [0. 2096]	0.191	0.299	0.096	-0.64
0.10	0.173	0.353	0.113	-0.21
0.15	0.136	0.453	0.138	0.03
[919, 1177] 0.20 [1242, 854]	0.100	0.575	0.150	0.17

Motivation Model QSS Data Nonparametric Perspective Estimation Concluding Remarks

Interest rate expectations vis-a-vis 1-year inflation expectations excluding food and energy during the CPI commitment policy

Motivation Model QSS Data Nonparametric Perspective Estimation Concluding Remarks

Interest rate expectations vis-a-vis 1-year inflation expectations excluding food and energy after the CPI commitment policy ended

Inflation expectations (top: means; middle: standard deviations / means; bottom: skewness

