The Global Impact of Chinese Growth

Ippei Fujiwara Bank of Japan Keisuke Otsu Sophia University

Masashi Saito Bank of Japan

December 7, 2008 10th Macroeconomics Conference

Facts and Motivation

- Facts on China's opening-up and growth:
 - China's openness jumped up in 1978 ($10\% \rightarrow 40\%$)
 - China's per capita GDP growth rate jumped up in 1978 (2.5% \rightarrow nearly 8%)
 - China's trade balance was roughly zero, especially prior to 1978
- Question: How do China's opening-up and growth affect welfare in China and the rest of the world (ROW)?

This Paper

- Two-country two-good model consisting of China and ROW
 - Backus, Kehoe, and Kydland (1994)
- Deduce shocks to China's "home goods weight" and productivity by matching data on China's openness and GDP growth
- Analyze effects of China's opening-up and growth on welfare in China and ROW
- Counterfactual simulation: case of no tariffs after 1978

Effects of China's Opening-up and Growth on Welfare

- China's opening-up: welfare improving for China, little impact on ROW
 - China: imports more and produces less domestically (labor↓)
- China's productivity growth: welfare improving for both China and ROW
 - China: sustained increase in consumption
 - ROW: terms of trade improves \rightarrow consumption \uparrow
- Combination of China's opening-up and productivity growth: welfare improving for both China and ROW

Effects of China's Opening-up and Growth on Welfare (ctd.)

- Counterfactual: Without balanced trade constraint, China's welfare would have been higher and ROW's welfare would have been lower
 - China: large wealth effects of expected future growth→consumes more by running trade deficit
 - ROW: works more to supply goods to China

Related Studies

- Dekle and Vandenbroucke (2006): *Dynamic but closed model*
 - Shift in labor to private non-agriculture sector contributed to TFP growth in China
 - Importance of TFP in China's GDP growth
- Coleman (2007): *Open but static model*
 - Effects of China's opening-up on ROW
 - * International production adjustment through changes in international relative prices
- This paper: *Dynamic and open model*
 - Enables us to consider combined effects of China's TFP growth and opening-up on both China and ROW

Outline

• Facts on Opening-up and Growth in China (data: Penn World Tables 6.2)

• Model

• Quantitative Analysis

China's Openness

Output per capita

(in logs, linearly detrended at 2.5% growth)

Consumption per capita

(in logs, linearly detrended at 2.5% growth)

Investment per capita

Investment

(in logs, linearly detrended at 2.5% growth)

Employment per capita

Labor

(source: OECD)

"Crude" Measure of TFP

(linearly detrended at 2.5% growth)

China's Trade Balance

Model

- Two-Country, Two-Good: Backus, Kehoe and Kydland (1994)
- Intermediate goods are produced from capital and labor, and are traded in international goods market
 - China specializes in producing intermediate good a
 - ROW specializes in producing intermediate good b
- In each country, final goods are produced from both home and foreign intermediate goods
- State contingent claims are traded in complete international financial market
- Chinese government imposes tariffs on imports in order to maintain balanced trade

Households

• For
$$i = China, ROW$$
,

$$\max U_i = \sum_t \beta^t \left(\Psi_i \log c_{i,t} + (1 - \Psi_i) \log(1 - l_{i,t}) \right)$$

subject to

$$w_{i,t}l_{i,t} + r_{i,t}k_{i,t} + T_{i,t} + rer_{i,t}d_{i,t} = c_{i,t} + x_{i,t} + rer_{i,t}Q_t \Gamma d_{i,t+1}$$

$$\Gamma k_{i,t+1} = (1-\delta)k_{i,t} + x_{i,t}$$

 $T_{i,t}$: lump-sum transfer from government (only in China)

 $rer_{i,t}$: real exchange rate (claims are denominated in ROW currency)

 Q_t : price of international claims

Intermediate Goods Firms

- Using capital and labor, China produces good a, ROW produces good b
- For i =China, ROW

$$\max \pi_i = p_i^j y_i - w_i l_i - r_i k_i$$

subject to

$$y_i = \exp(z_i)k_i^{\theta}l_i^{1-\theta}$$

 p_i^j : price of intermediate goods j in country i relative to final goods price in country i z_i : productivity

- $GDP = \underbrace{p \exp(z)}_{\text{TFP}} k^{\theta} l^{1-\theta}$: Endogenous movements p also affect TFP and hence production decisions
- Terms of trade $= p^a/p^b$

Final Goods Firm in China

• Both domestic and foreign intermediate goods are used to produce final goods:

$$\max G_{C,t}(a_{C,t}, b_{C,t}, \eta_{C,t}) - p_{C,t}^a a_{C,t} - (1 + \tau_{C,t}) p_{C,t}^b b_{C,t}$$

where

$$G_{C,t}(a_{C,t}, b_{C,t}, \eta_{C,t}) = \left(\eta_{C,t} a_{C,t}^{\frac{\varepsilon-1}{\varepsilon}} + (1 - \eta_{C,t}) b_{C,t}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

 $au_{C,t}$: tariffs on imports

 ε : elasticity of substitution between home and foreign goods

 $\eta_{C,t}$: China's "home goods weight"

• $\eta_{C,t}$ determines the share of Chinese intermediate goods among intermediate goods used to produce final goods

Final Goods Firm in ROW

 $\max G_{R,t}(a_{R,t}, b_{R,t}, \eta_{R,t}) - p_{R,t}^{a} a_{R,t} - p_{R,t}^{b} b_{R,t}$

where

$$G_{R,t}(a_{R,t}, b_{R,t}, \eta_{R,t}) = \left((1 - \eta_{R,t}) a_{R,t}^{\frac{\varepsilon - 1}{\varepsilon}} + \eta_{R,t} b_{R,t}^{\frac{\varepsilon - 1}{\varepsilon}} \right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

• ROW government does not impose tariffs

Government Budget Constraint in China

 $\tau_{C,t} p^b_{C,t} b_{C,t} = T_t$

Shocks

- Shocks to China's "home goods weight" (η_C)
 - China's reform and opening-up policy—sudden fall in η_C
- Shocks to China's productivity (z_C)
- Throughout, Chinese government adjusts tariffs on imports (τ_C) to maintain balanced trade

Parameters

		China	ROW
π	(population weight)	0.5	0.5
arepsilon	(elasticity of substitution)	1.5	1.5
δ	(depreciation)	0.035	0.035
eta	(discount factor)	0.95	0.95
Ψ	(preferences)	0.34	0.34
η	("home goods weight")	0.71	0.71
heta	(capital share)	1/3	1/3

• η is chosen so that openness in symmetric steady state is 30%

Simulation

- Deterministic
- Divide the simulation period into two:
 - Initial equilibrium (1950-1977): China has low openness and low GDP (5% of ROW)
 - Post-1978 (1978-2100): In 1978, agents are surprised by shocks to China's home goods weight and productivity and re-optimize
- Choose shocks to China's home goods weight and productivity such that:
 - China's openness jumps up from 10% to 30% in 1978 and remains at that level
 - China's per-capita GDP growth rate jumps up from 2.5% to 7.5% in 1978 and stays at that rate until China's GDP catches up to ROW level

Implied Path of Exogenous Variables: China's Home Goods Weight (- - -), China's detrended Productivity (----)

1950-77: China's GDP level is 5% of ROW, GDP growth is 2.5%, openness is 10% 1978- : China's GDP growth is 7.5% (until reaching ROW level), openness is 30%

Shocks to China's "Home Goods Weight" Only

China: imports more and produces less (labor \downarrow)

Shocks to China's Productivity Only

China: sustained increase in consumption

ROW: terms of trade improves \rightarrow consumption \uparrow

Both Shocks

Effects on Welfare

• Welfare improvements relative to the case of no shocks to China's home goods weight and productivity:

	Both Shocks	η_C Only	Productivity Only
China	8.31	0.95	9.52
ROW	0.82	0.03	0.84

- - China's opening-up: welfare improving for China, little impact on ROW
 - China's productivity growth: welfare improving for both China and ROW
 - Combination of China's opening-up and productivity growth: welfare improving for both China and ROW

Counterfactual Simulation

- What if China removed tariffs in 1978 and did not maintain balanced trade after 1978?
- Removal of tariffs stimulates China's imports:
 - China runs trade deficit, works less, and consumes more
 - * Removal of tariffs is welfare-improving for China
 - ROW works harder in order to meet increased demand from China
 - * Removal of tariffs is welfare-decreasing for ROW
- In the following simulations, shocks to China's home goods weight and productivity are the same as in previous simulations

Effects on Welfare (No Tariff Case)

• Welfare improvements relative to the case of no shocks to China's home goods weight and productivity:

	Both Shocks	$n_C Only$	Productivity Only
China	14.94	12.29	11.29
ROW	-1.92	-3.72	-0.21

• China's welfare would have been higher and ROW's welfare would have been lower if the balanced trade constraint was removed in 1978

Conclusion

- China's opening-up is welfare improving for both China and ROW if it led to significant productivity growth in China
- China's balanced trade helped ROW at the expense of China

Extensions

- Link between opening-up and productivity growth
 - Import of ideas
- Balanced trade in China
 - Incomplete international capital market, Infant industry protection,
- Stochastic model

Capital-Output Ratio

Capital Output Ratio

Shocks to China's "Home Goods Weight" Only (No Tariff)

Shocks to China's Productivity Only (No Tariff)

Both Shocks (No Tariff)

