Liquidity Constraints in a Monetary Economy

Leo Ferraris Makoto Watanabe

Departamento de Economía, Universidad Carlos III de Madrid

December, 2008

Objective

- Money: the medium to transfer resources on the spot
- Liquidity: the availability of a medium to transfer resources over time

Explore a (monetary) model to study the issue of liquidity.

Key ingredients

(i) Use of money in spot exchange (Kiyotaki and Wright (1989)):

• Anonymity;

• Absence of double coincidence of wants.

 \implies Pledgeability of returns: the fundamental impediments arising in spot trade may seep into the credit market.

(ii) Liquidity (Holmstrom and Tirole (1998)):

• liquid project;

pledgeable returns = expected returns

• illiquid project;

pledgeable returns < expected returns.

Preview of main results:

- The same frictions generating an essential role for money may also make firms liquidity constrained;
- Money can perform two roles as a provider of liquidity service and exchange service;
- The binding liquidity constraint constitutes a channel through which under-investment occurs.

Literature

• Kiyotaki and Wright (1989)

• Kiyotaki and Moore (2001)

Model

A divisible/competitive version of monetary model, Lagos and Wright (2005), with a consumption and an investment market

- Time: discrete, infinite w./ three sub-periods (morning, afternoon and evening)

- Agents: entrepreneurs, investors; homogeneous, unit mass, infinitely lived

- Goods: consumption goods, investment goods; all production costs are normalized to one.

- Morning market (investment market):
 - Investors produce an investment good;
 - Entrepreneurs and investors meet randomly and bilaterally;
 - An investment good q_1 generates returns, *early returns* and *late returns*, to entrepreneurs with technology $g(q_1)$;
 - $g(\cdot)$ is continuously differentiable, strictly increasing and concave with g(0) = 0, $g'(0) = \infty$, $g'(\infty) = 0$;
 - The investment is a one-period event.

- Afternoon market (consumption market):
 - Anonymous trading;
 - Uncertainty in production and consumption opportunities; a buyer with prob δ ; a seller with prob 1σ ;
 - A consumption good q_2 yields utility $u(q_2)$ to buyers. $u(\cdot)$ is differentiable and strictly increasing and concave with $u'(0) = \infty$, $u'(\infty) = 0$;
 - Sellers have production technologies.

- Evening market (Walrasian market):

Agents can produce and trade an output whose market price is normalized to one.

Fiat money can also be traded at a market price, denoted by $\phi.$

Timing

Efficiency

The planner solves

$$\max_{q_1,q_2 \ge 0} \left[g(q_1) - q_1 \right] + \left[(1 - \sigma)g(q_1) + \sigma(u(q_2) - q_2) \right].$$

The optimal solution $q_1^*, q_2^* > 0$ satisfies

$$(2-\sigma)g'(q_1^*) = 1, u'(q_2^*) = 1.$$

Contract with investors

- Long term contracts are not available;
- Only early returns of investment are pledgeable;

A contract between an entrepreneur and an investor specifies the amount q_1 of investment goods, generating output with technology $g(q_1)$, and its payment z, θ that satisfies

$$z + \theta \phi m = q_1 \tag{1}$$

$$z \leq g(q_1) \tag{2}$$

$$\theta \in [0,1].$$
 (3)

Berman equations

[Evening market]:

$$W(\hat{m}) = \max_{x, e, m+1 \ge 0} \left[x - e + \beta V(m_{+1}) \right]$$

s.t. $x - e = \phi(\hat{m} - m_{+1}) + \tau$

where $\hat{m} = (1 - \theta)m - pq_2$ or $\hat{m} = (1 - \theta)m + pq_2^s$.

[Afternoon market]:

$$Z(q_1, (1-\theta)m) = \sigma \left\{ \begin{array}{l} \max_{q_2 \ge 0} \left[u(q_2) + W((1-\theta)m - pq_2) \right] \\ \text{s.t. } pq_2 \le (1-\theta)m \end{array} \right\} + (1-\sigma) \left\{ \max_{q_2^s \ge 0} \left[g(q_1) - q_2^s + W((1-\theta)m + pq_2^s) \right] \right\}$$

[Morning market]:

$$V(m) = \max_{\substack{q_1, z, \theta \ge 0 \\ \text{ s.t. } (1)-(3)}} [g(q_1) - z + Z(q_1, (1-\theta)m)]$$

or by $z = q_1 - \theta \phi m$,

$$V(m) = \max_{q_1, \theta \ge 0} \left[g(q_1) - (q_1 - \theta \phi m) + Z(q_1, (1 - \theta)m) \right]$$

s.t. $q_1 - \theta \phi m \le g(q_1)$
 $\theta \in [0, 1]$

First order conditions

$$(2-\delta)g'(q_1) = 1 + \mu(1 - g'(q_1))$$

$$\mu + \frac{\gamma}{\phi m} = \delta(u'(q_2) - 1)$$

Complementary slackness condition

$$\mu \left[g(q_1) - q_1 + \theta \phi m \right] = 0$$

$$\gamma \theta = 0$$

Two situations are possible:

- 1. Binding liquidity constraint.
- 2. Non-binding liquidity constraint.

Euler equation

$\phi = \beta \phi_+ \left[(1-\theta)(\delta u'(q_2) + 1 - \delta) + \theta(\mu + 1) \right]$

Euler Equation

Stationary monetary equilibrium

$$\mu + \frac{\gamma}{q_2} = \delta(u'(q_2) - 1) = \frac{\pi}{\beta} - 1$$

Three possible cases for $\pi > \beta$:

[1] liquidity constraint is not binding $\mu = 0$ and no money is pledged $\theta = 0$;

[2] liquidity constraint is binding $\mu > 0$ and no money is pledged $\theta = 0$;

[3] liquidity constraint is binding $\mu > 0$ and a positive amount of money is pledged $\theta > 0$.

Proposition 1 Suppose $g(q_1^*)/q_1^* \ge 1$. Then, a unique equilibrium exists for all $\pi > \beta$ in which the liquidity constraint is not binding, $\mu = 0$, and no money is pledged, $\theta = 0$. Further, it satisfies: $q_1 = q_1^*$ for all $\pi > \beta$; $q_2 \in (0, q_2^*)$ is strictly decreasing in $\pi \in (\beta, \infty)$; $q_1 \to q_1^*$, $q_2 \to q_2^*$ as $\pi \to \beta$.

Proposition 2 Suppose $g(q_1^*)/q_1^* < 1$. Then, a unique equilibrium exists for all $\pi > \beta$ in which the liquidity constraint is binding, $\mu > 0$. It satisfies: $q_2 \in (0, q_2^*)$ is strictly decreasing in $\pi \in (\beta, \infty)$; $q_1 \to q_1^*$, $q_2 \to q_2^*$ as $\pi \to \beta$. Further, there exists a unique $\hat{\pi} \in (\beta, \infty)$ such that $q_1 = \hat{q}_1 \in (0, q_1^*)$ at $\pi = \hat{\pi}$ and:

- 1. $\theta > 0$ for $\pi \in (\beta, \hat{\pi})$ and $\theta = 0$ for $\pi \in [\hat{\pi}, \infty)$;
- 2. $q_1 \in (\hat{q_1}, q_1^*)$ is strictly decreasing in $\pi \in (\beta, \hat{\pi})$ and $q_1 = \hat{q}_1$ for all $\pi \in [\hat{\pi}, \infty)$.

Discussion 1: money and credit

"Evil is the root of all money" (Kiyotaki and Moore (2001))

versus

"Money is the root of all evil" (The Bible, 1 Timothy 6:10)

Discussion 2: policy and empirical implications

• Impact of inflation on investment according to the stage of country development (Gertler and Rogoff (1990))

 Negative but decreasing effect of inflation on investment (Boyd, Levine and Smith (2001))

Discussion 3: definition of liquidity

- Completemness of markets (Holmstrom and Titole (1998))
- Means of payment (Shubik (1999), Kiyotaki and Moore (2000))
- Thinnes of market (Diamond (1986), Jones and Ostroy (1984), Morris and Shin (2003))
- Agents' ability to sell contingent promises of future deliveries (Diamond and Rajan (2001), Caballero and Krishnamurthy (2001))
- Flexibility to move goods (Fostel and Geanakoplos (2008))

Conclusion

- Liquidity constraints
- Money can play two roles as a provide of liquidity services and exchange services
- Interaction of an investment and a consumption market