Comment on "Income Risk, Consumption Inequality, and Macroeconomy in Japan" by Tomoaki Yamada

Makoto Nirei Institute of Innovation Research, Hitotsubashi University

> 10th Macroeconomics Conference December 6, 2008

Summary

- Develop an OLG model calibrated to Japanese economy 1980-2000
- Numerically simulate the earning/income/consumption inequality
- Identify the demographic effect on the development of inequality
- Timely contribution, well-executed with cutting-edge methodology and realistic calibration

Model Household

Household *i* lives up to maximum age 100 with survival rate \$\phi_{j,t}\$ for age *j* and year *t*

- works from age 20 to 65
- ► Instantaneous utility $\left((c_{j,t}^i)^{\sigma}(\bar{h}_t h_{j,t}^i)^{1-\sigma}\right)^{1-\gamma}/(1-\gamma)$

Household's idiosyncratic risk

- Wealth a_{j,t} > 0 (no borrowing) accumulates as: c_{j,t} + a_{j+1,t+1} = (1 + (1 - τ_t^{cap})r_t)(a_{j,t} + b_t) + (1 - τ_t^{ss})y_{j,t}
 Earning: y_{j,t} = κ_je_jⁱh_{j,t}ⁱw_t κ_j: age-effect on productivity
 e_jⁱ: idiosyncratic shock on productivity

 Idiosyncratic risk: e_jⁱ = ξ_t^fαⁱ + z_jⁱ + ξ_t^tε_jⁱ Persistent component z_jⁱ = ρz_{j-1}ⁱ + ξ_t^pη_jⁱ
 Random shocks: fixed αⁱ, transitory ε_jⁱ, persistent η_jⁱ
 - Random shocks. Each α , transitory ϵ_j , persistent η_j
 - Loading factors $\xi_t^f, \xi_t^t, \xi_t^p$ (normalized to 1 at year zero)
- Retirees receive pension φ_tw_tH_t and pays no social security tax

Firms and government

- Production function $Y_t = A_t K_t^{\theta_t} H_t^{1-\theta_t}$
- Time-varying TFP (A_t) and capital share (θ_t)
- Competitive factor prices r_t, w_t
- Government
 - Social security $\varphi_t w_t H_t$, financed by $\int \tau_t^{ss} y_{j,t} dj$
 - Expenditure G_t , financed by capital tax τ_t^{cap}
 - Collects accidental bequests and redistributes b_t

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equilibrium path

- Starting from a stationary state in 1980
- Ending at a new stationary state in 2200
- Population distribution and other aggregate parameters evolve exogenously

- Households choose consumption/leisure paths, given the prices and time-varying parameters perfectly forecasted
- Market-clearing price sequence is computed numerically

Estimation of the earning process

- Estimates draw on Abe and Yamada (2006)
- Method developed by Storesletten, Telmer, and Yaron (2004)
- Construct the cohort cross-section dispersions that are not explained by observable variables
- Match the dispersions by the variances of fixed, transitory, and persistent income shocks and their time-varying loading factors
- Estimated process explains the upward sloping and convex age-profile of income dispersions (Deaton and Paxson 1994; Ohtake and Saito 1998)

Calibration

- Demography
 - Population moves as realized for 1980-2005 and as projected for 2006-2055
 - Population growth stops at 2055. Stationary age distribution is reached by 2200.
- Constants: Preference (β, γ, σ) , pension replacement rate (φ)
- Time-varying macro factors: Capital share (θ_t), depreciation (δ_t), capital tax (τ_t^{cap})
- Time endowment (h
 t) decreases from 5.5 days to 5 days from 1988 to 1993
- Time-varying TFP (A_t) exogenous a la Hayashi and Prescott (2002). Assumed to converge to 2%
- Chosen parameters well mimic the paths of interest rate, capital-output ratio, Hours worked, and saving rate

Comments

- Exogenous TFP innocuous
 - Income/consumption dispersions less likely affect TFP
- Time-varying time endowment
 - Did the workweek reduction decrease leisure?
 - Hayashi-Prescott specification
 - $U = logc_t + \alpha (1 + (h_t 40)/40)e_t$
 - Forced to work 44h before workweek reduction
 - Here, the workweek reduction reduces endowment causes wealth and substitution effects

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inequality accounting

- Obtain the evolution of inequality by numerically computing the equilibrium path
- and match with previous findings (Ohtake and Saito 1998; Kohara and Ohtake 2006)
- Decompose the evolution movements into time-varying factors...
- by counterfactual simulations where each time-varying factor is knocked out

Main results

Calibrated simulations show that:

- simulations reproduce the upward trend in earning/income inequality in 1985-2000
- but consumption inequality rises not until 1988
- Decomposition shows that:
 - aging drove the rise in income inequality
 - Inequality is sloping up in age, so aging drives up overall inequality
 - Aging does not fully explain earning inequality somehow

- depressed TFP helped reduce consumption inequality
- the increase in capital share until 1990 raised consumption inequality in the period

Comments

- Economic explanations are in due course here
- ▶ \bar{h}_t drives consumption inequality down until 1988, up until 1993, and then stabilizes

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Depressed TFP lowers consumption inequality

•
$$c \propto w(\bar{h}-h)$$
. So $\tilde{c} = -1/(\bar{h}/h-1)\tilde{h}$.

- h fluctuates by idiosyncratic shocks
- Reduction in \bar{h} increases \tilde{c}/\tilde{h}
- Reduction in w reduces h and decreases \tilde{c}/\tilde{h}

Comments cont'd

- Surprising that the income inequality largely explained by aging, rather than by other observable variables
 - Some suspicion on contaminated loading factors
- Missing households singles, self-employed
- …and abstracted dimensions idiosyncratic asset returns, bequests

