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Abstract

We propose a new method for estimating the power-law exponents of firm
size variables. Our focus is on how to empirically identify a range in which a
firm size variable follows a power-law distribution. As is well known, a firm
size variable follows a power-law distribution only beyond some threshold.
On the other hand, in almost all empirical exercises, the right end part of a
distribution deviates from a power-law due to finite size effect. We modify
the method proposed byMalevergne et al.(2011) so that we can identify
both of the lower and the upper thresholds and then estimate the power-law
exponent using observations only in the range defined by the two thresholds.
We apply this new method to various firm size variables, including annual
sales, the number of workers, and tangible fixed assets for firms in more than
thirty countries.
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Introduction

Power-law distributions are frequently observed in social phenomena (e.g.,Pareto
(1897); Newman(2005); Clauset et al.(2009)). One of the most famous examples
in Economics is the fact that personal income follows a power-law, which was
first found byPareto(1897) about a century ago, and thus referred to as Pareto
distribution. Specifically, the probability that personal incomex is abovex0 is
given by

P>(x) ∝ x−µ for x> x0 (1)

whereµ is referred to as a Pareto exponent or a power-law exponent.
As for the variables related to firm behavior, it is well known that there are

several variables that follow a power-law, including firm sales for a particular
period (e.g., annual sales), the number of workers employed by a firm, and the
amount of fixed assets, like machinery equipments, held by a firm. The fact that
the firm size variables mentioned above follow power-law distributions implies
that the behavior of these variables at the aggregate level is dominantly affected
by a very small number of firms that are extremely large in their size.

The purpose of this paper is to propose a new method for estimating the power-
law exponent of a distribution. Our special focus is on how to empirically deter-
mine a range in which a variable follows a power-law distribution. On the one
hand, as shown in equation (1), a variable follows a power-law distribution only
when it exceeds some threshold, for examplex0 in (1); the variable deviates from a
power-law below that threshold. Thus we need to empirically specify where such
a threshold exists. On the other hand, in almost all empirical exercises, the right
end part of a distribution deviates from a power-law due to the limited number of
observations. It is often the case that the right end part of a distribution exhibits a
much quicker decay than implied by a power-law due to such a finite size effect.
We need to eliminate that part of a distribution before estimating a power-law ex-
ponent. Our strategy is to empirically specify the range of a variable, which is
defined by a lower thresholdx0 and an upper thresholdx1, and then estimate a
power-law exponent using only observations only in that range.

Our method is based on the one proposed byMalevergne et al.(2011).1 They
propose to test the null hypothesis that, beyond some threshold, the upper tail of
a distribution is characterized by a power law distribution against the alternative
that the upper tail follows a lognormal beyond the same threshold.2 It is important
to note that their intention was to detect a lower thresholdx0 by conducting this

1See, for example,Hisano and Mizuno(2011) for an application of their method.
2An alternative method to detect departures in the tails from the hypothesized probability

distribution is to use Anderson-Darling statistic (Coronel-Brizio and Hernandez-Montoya(2005,
2010)).
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test, and that they did not pay any particular attention to the presence of an upper
thresholdx1. However, as we will show later, in applying this method to firm
size variables, one often encounters a situation that the threshold detected by this
method is notx0 butx1. Needless to say, this failure leads to an imprecise estimate
of a power-law exponent.

In our method, we first apply the test byMalevergne et al.(2011) to detect a
upper threshold,x1. We then repeat the test, but we “thin out” observations before
conducting the second round test. Specifically, we discard observations abovex1,
which is detected by the first round test, and similarly we thin out observations
belowx1. Then we apply the test to the thinned out set of observations to detect
x0.

The rest of this paper is organized as follows. In Section 1, we will provide
detailed explanation on our new method. In Section 2, we will apply the new
method to firm size variables, including annual sales, the number of workers, and
tangible fixed assets for firms in more than thirty countries. Section 3 concludes
the paper.

1 Methodology

Let us start by showing the empirical distributions for tangible fixed assets, which
is denoted byK, the number of workers,L, and annual sales,Y. The cumulative
distributions for these three variables for Japanese firms are shown in figure1 with
horizontal and vertical axes being in logarithm. We see that dots are on a straight
line in each of the three figures, indicating that each of the distributions is a power-
law. However, dots deviate from a straight line when the firm size variables take
very small or very large values. In other words,K, L, andY follow power-law
distributions only within some range. That is,

P>(K) ∝ K−µK for K0 < K < K1, (2)

P>(L) ∝ L−µL for L0 < L < L1, (3)

P>(Y) ∝ Y−µY for Y0 <Y <Y1. (4)

The main issue of this paper is how to estimate the range in which dots are on a
straight line; namely,[K0,K1], [L0,L1], and[Y0,Y1].

Our method is based onMalevergne et al.(2011), which propose a method
to identify the boundary between a power-law and a lognormal. Consider a case
described by equation (1). For each value ofx, they test the null hypothesis that
x follows a power-law distribution beyond that value against the alternative thatx
follows a lognormal distribution beyond the same value. They start this test for
the maximum value ofx, and repeat the test for the second largest, the third largest
values, and so on, until the null is finally rejected.
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Figure 1: Cumulative Distribution Functions of Firm Size Variables for Japanese Firms.

Note that their test is equivalent to testing the null that the upper tail of
the log of x follows an exponential distribution against the alternative that the
log of x follows a truncated normal distribution. For this transformed test,
del Castillo and Puig(1999) have shown that the clipped empirical coefficient of
variation provides the uniformly most powerful unbiased test.

Specifically, let us consider a random variablez which follows a truncated
normal distribution with truncation occurring atz= A. The probability density
functionP(z) is given by

P(z; α , β ) = exp[−α(z−A)−β (z−A)2]/NC(α , β ) (5)

where NC(α , β ) represents a scaling value, and it is defined by

NC(α , β ) =
√

π
β

exp

(
α2

4β

)[
1−Φ

(
α√
2β

)]
(6)

whereΦ(·) is the CDF of a standard normal distribution. Note that it can be shown
by using asymptotic expansion thatP(z; α , β )→ α exp[−α(z−A)] as(α, β )→
(α, 0).

Suppose there aren observations forz (namely,z1, z2, · · · , zn). The log likeli-
hood is given by

l(θ) = l(α, β ) =−α
n

∑
i=1

(zi −A)−β
n

∑
i=1

(zi −A)2−nlogNC(α, β ) (7)

and the maximum likelihood estimate forθ = (α, β ) is characterized by

−γh(γ)+ γ2+1/2
(h(γ)− γ)2 −1= c2 (8)
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whereγ andh(γ) are defined by

γ ≡ α/2
√

β ; h(γ)≡ exp(−γ2)

2
√

π(1−Φ(
√

2γ))
(9)

andc2 is the square of the coefficient of variation for(xi −A), which is defined by

c2 =
⟨(x−A)2⟩−⟨x−A⟩2

⟨x−A⟩2 =
⟨(x−A)2⟩
⟨x−A⟩2 −1 (10)

where⟨·⟩ represents the sample mean. For a give value ofA, one can calculate
c2 from the data, and then obtain a maximum likelihood estimate ofγ from (8),
which is denoted bŷγ. Note that the expression on the left hand side of (8) is
monotonically increasing with respect toγ, so that one can obtain a solution just
by applying a simple method like the Newton-Raphson method.

If z follows an exponential distribution rather than a truncated normal distribu-
tion, β in equation (5) is equal to zero, and the log likelihood is given by

l(θ) = l(α, 0) =−α
n

∑
i=1

(xi −A)−nlog(α) (11)

The maximum likelihood estimate forθ is given byθ̃ = (α̃, 0) = (1/⟨x−A⟩, 0).
Then the null hypothesis thatz is exponentially distributed can be tested against
the alternative thatz follows a truncated normal distribution by conducting a like-
lihood ratio test, in which the likelihood ratio is given by

W = 2(l(θ̂)− l(θ̃)) (12)

The random variablez is more likely to follow a truncated normal distribution if
the value ofW is above zero, and it is more likely to be exponentially distributed
if W is below zero. Specifically, it is known that the asymptotic distribution ofW
aroundW = 0 is a 50-50 mixture of aχ2 distribution with a degree of freedom of
one, and a constant zero (seeSelf and Liang(1987) andGeyer(1994)). Therefore,
the asymptotic distribution ofW is given byW(γ̂) = 0 if c is greater than unity,
and

W(γ̂) = n[2log{2h(γ̂)(h(γ̂)− γ̂)}+2γ̂2−2γ̂h(γ̂)+1] (13)

if c is less than unity.del Castillo and Puig(1999) adopts a more precise approxi-
mation toW by using

W∗ =W(γ̂)+2L(γ̂)+L2(γ̂)/W(γ̂) (14)

whereL(·) is defined by

L(γ̂) =
1
2

log

[
2γ̂3h(γ̂)−4γ̂2h(γ̂)2+ γ̂h(γ̂)(2h(γ̂)2+3)−3h(γ̂)2+1

4(h(γ̂)− γ̂)2(W(γ̂)/n)

]
(15)
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In sum, the procedure proposed bydel Castillo and Puig (1999) and
Malevergne et al.(2011) is as follows.

1. Pick up the largestn observations and take log. Set the thresholdA equal to
the log of the value for the largest observation.

2. Computeγ̂ by solving (8).

3. ComputeW∗ andp-value associated with it by inserting the value ofγ̂ into
(14).

4. Repeat this procedure forn = 1,2,3, . . . until the p-value associated with
W∗ is sufficiently large to reject the null hypothesis.

Let us show how the method proposed byMalevergne et al.(2011) works by
applying it to the distribution for the number of workers employed by Japanese
firms in 2004. The black dots in Figure2 represent empirical CDF produced using
actual observations. There are two vertical lines in the figure, but the dashed line
represents the threshold identified by the procedure proposed byMalevergne et al.
(2011), which corresponds to the 17th largest observation with the value (i.e., the
number of workers) of 84,899. Figure3ashows the p-value for each rank in this
test. If their method works well, this result indicates that the number of workers
follows a power-law beyond this threshold, but a lognormal below it. However,
as one can clearly see from the figure, the black dots are on a straight line even
below this threshold, implying that their method fails to detect a correct thresh-
old. This failure happens because the right end part of the distribution decays
quicker than the other part of the distribution due to the limited number of obser-
vations. The possibility of such a finite size effect is not seriously considered in
Malevergne et al.(2011). It is important to note that this particular case is not an
exception, but in fact we encounter similar failures quite often in estimating the
power-law exponents of firm size distributions.

To cope with this problem, we propose to modify their procedure in the follow-
ing way. Basically what we will do is to “thin out” observations so as to minimize
the extent to which one suffers from the finite size effect. Specifically, after detect-
ing the 17th largest observation as a (wrong) threshold, we discard 16 observations
above it. We also discard the 18th, 19th, 20th,. . ., and 33rd largest observations,
the 35th, 36th, 37th,. . ., and 50th largest observations, and so on. By repeating
this procedure, we end up with a thinned out set of observations which consist of
the 17th largest observation, the 34th largest observation, the 51st largest observa-
tion, and so on. These thinned out observations are indicated by grey circles in
Figure2. Then we apply again the method byMalevergne et al.(2011), but this
time not to the original set of observations but to the thinned out set of observa-
tions. This second round test identifies a new threshold, which is represented by

www.economics-ejournal.org 6
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Figure 2: Cumulative Distribution Function for the Number of Workers Employed by Japanese
Firms in 2004. Black dots represent the original set of observations, while grey dots represent the
thinned-out set of observations. The two vertical lines indicate the upper and lower thresholds,
which are estimated using the method described in the text. The power-law exponent is estimated
using only observations within the range defined by these two thresholds.

the vertical solid line in Figure2. This corresponds to the 24701st largest among
the original set of observations and the 1453rd largest among the thinned out set
of observations. Figure3b shows the p-value for each rank in this second round
test. The number of workers corresponding to this second threshold is 60, which
is substantially lower than the number corresponding to the first threshold. We see
from the figure that dots, both black and grey, are on a straight line in the range
indicated by the two vertical lines.

To see how our method works, consider a size-rank equation of the form

ln r = const−µ lns (16)

wheresrepresents a firm size,r is the rank associated with it, andµ is a power-law
exponent. We assume that this size-rank equation holds forr ∈ [r0, r1]. We know

www.economics-ejournal.org 7
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(a) The p-value for each rank obtained from
the first round test. The vertical line repre-
sents the rank whose p-value falls below 5%
threshold for the first time. The vertical line
corresponds to the 17th largest observation.

(b) The p-value for each rank obtained from
the second round test. The vertical line
represents the rank whose p-value is below
the 5% threshold but the p-values associated
with the ranks lower than that are all above
the 5% threshold. The vertical line corre-
sponds to the 1453rd largest observation.

Figure 3: The p-values obtained from the first and second round tests. The horizontal lines
represent the 5% threshold.

the value ofr0 from the first round test (r0 is 17th in the above example). Lets0

represents the size associated with the rankr0. The constant term in equation (16)
is equal to lnr0+µ lns0. Therefore, equation (16) implies that

ln

(
r
r0

)
=−µ ln

(
s
s0

)
(17)

holds for r = r0,2r0,3r0,4r0, . . . as far asr is smaller thanr1. Thus we
can estimate a power-law exponentµ using a thinned out set of observations
{r0,2r0,3r0,4r0, . . .}. Note that discarding only observations with higher ranks
thanr0 does not work, because, in this case, the rank in the new set of observa-
tions is r − r0, rather thanr/r0 in equation (17), and the log ofr − r0 does not
depend linearly on the log ofs.

The procedure we propose is summarized as follows.

1. Apply the method proposed byMalevergne et al.(2011) to the original ob-
servations to detect an observation (we refer to this ask-th largest observa-
tion), above which the CDF is steeper than the other part due to finite size
effect.

www.economics-ejournal.org 8
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2. Create a new (thinned out) set of observations, consisting of thek-th largest
observation, the 2k-th largest observation, the 3k-th largest observations,
and so on.

3. Apply the method proposed byMalevergne et al.(2011) to the thinned out
set of observations to detect a new threshold (we refer to this asK-th largest
observations).

4. Estimate the slope of a straight line within the range defined by the value
associated with thek-th largest observation and the value associated with
theK-th largest observation.

2 Empirical Results

In this section we apply the new method to firm size variables, including annual
sales, the number of workers, and tangible fixed assets for firms in more than
thirty countries.3 The data comes from ORBIS provided by Bureau van Dijk,
which contains B/S and P/L information for more than 60 million firms all over
the world. The sample includes the period from 1999 until 2009.4

Figure4 shows the CDFs for tangible fixed assets, the number of workers, and
annual sales for Japanese firms in 2007. As emphasized in the previous sections,
dots are not always on a straight line; namely, there is a range in which dots are
on a straight line, but dots deviate from the straight line below the lower bound of
the range, and they also deviate from the straight line beyond the upper bound of
the range. Our estimation result indicates that, for tangible fixed assets, the lower
bound of the range,K0, is 3,134 thousand USD, and the upper bound of the range,
K1, is 4,335,478 thousand USD. The range is shown by two vertical lines, and we
see that dots are on a straight line inside the range, but dots deviate from it outside
the range, indicating that our estimation procedure works well in identifying upper
and lower bounds. We confirm the same results for the number of workers as well
as for annual sales. Figure5 and Figure6 show the results for French firms and
those for Chinese firms, indicating again that our estimation procedure works well
in identifying upper and lower bounds of a range.

After identifying upper and lower bounds of a range, we estimate the slope of
CDF by applying an OLS regression. The results for Japan is presented in Table

3There is a long list of papers that investigate various aspects of firm size distributions, includ-
ing Stanley et al.(1995), Okuyama et al.(1999), Ramsden and Kiss-Haypál(2000), Mizuno et al.
(2006), Axtell (2001), Gaffeo et al.(2003), Fujiwara et al.(2004), andZhang et al.(2009).

4More detailed information on the dataset employed in this paper is available at
http://www.bvdinfo.com/Home.aspx.

www.economics-ejournal.org 9
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(a) K0 = 3134, K1 = 4335478 (b) L0 = 40, L1 = 112262 (c) Y0 = 23316,Y1 =
16587463

Figure 4: CDFs ofK, L, andY for Japanese Firms in 2007

(a) K0 = 180, K1 = 6167360 (b) L0 = 4, L1 = 119340 (c) Y0 = 12196,Y1 =
21357217

Figure 5: CDFs ofK, L, andY for French Firms in 2007

(a) K0 = 2118, K1 = 1196797 (b) L0 = 450, L1 = 180986 (c) Y0 = 8387,Y1 = 3450045

Figure 6: CDFs ofK, L, andY for Chinese Firms in 2007

www.economics-ejournal.org 10
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year µK µL µY

2005 0.8025(±0.0027) 0.9923(±0.0065) 0.9210(±0.0099)
2006 0.8005(±0.0025) 0.9769(±0.0066) 0.9280(±0.0099)
2007 0.7990(±0.0024) 0.9850(±0.0077) 0.9191(±0.0089)
2008 0.7964(±0.0022) 0.9731(±0.0064) 0.9047(±0.0086)
2009 0.7524(±0.0028) 0.9395(±0.0012) 0.9415(±0.0168)

Table 1: The estimates of power-law exponents for tangible fixed assets (µK), the number of
workers (µL), and annual sales (µY) for Japanese firms

1. The table shows the power-law exponents for tangible fixed assets, the number
of workers, and annual sales, each of which is denoted byµK, µL, andµY. For
example, the power-law exponent for tangible fixed assets in 2005 is 0.8025 and
its standard error is 0.0027, suggesting a high precision of the estimate. We also
see that each of the three exponents is fairly stable over time.

One of the interesting findings we learn from the table is thatµK tends to be
the smallest among the three, andµL tends to be the largest among the three. Put
differently, there exists a relationship betweenµK, µL, andµY such that

µK < µY < µL (18)

We conduct the same exercise for other countries, and the result is reported in
Table2. It shows that the estimates of power-law exponents differ across countries,
but there still exist some tendency thatµK < µY < µL for each country.

Why does equation (18) hold? One way to address this question is to start
from a Cobb-Douglas production function, which is of the form

Y = AKαLβ (19)

whereα andβ are positive (but less than unity) parameters.5 This equation simply
says that the amount of output produced by a firm is determined by the amount of
inputs, i.e., labor and capital inputs, employed by the firm, as well as the level of
productivity of the firm, which is denoted byA in equation (19). Given thatY, K,
andL all follow power-law distributions, equation (19) implies

µY = min

{
µK

α
,

µL

β

}
(20)

if K andL are independent.6 A simple comparison of (20) and (18) suggests a way
to know where (18) comes from. Suppose that the sum ofα andβ equals to unity

5SeeCobb and Douglas(1928) for more on the Cobb-Douglas production function.
6Jessen and Mikosch(2006) provide a compact summary of various properties of power law

distributions. One of them indicates thatK/α follows a power-law and its exponent isµK/α.

www.economics-ejournal.org 11
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Country code µK µL µY Country code µK µL µY

IE 0.6315 0.8446 0.7241 NO 0.7784 1.0759 1.0073
FI 0.7044 0.8927 0.7734 SI 0.8421 1.2096 1.0133
US 1.2056 0.8862 0.8457 PT 0.8966 1.2061 1.0243
NL 0.7390 0.8896 0.8474 GR 0.9028 1.0779 1.0382
FR 0.7645 0.9116 0.9068 UA 1.1121 1.2428 1.0855
AT 0.6925 0.8234 0.9168 BE 0.8249 1.1376 1.0916
JP 0.7990 0.9850 0.9191 RU 0.8795 1.5753 1.1005
BG 0.9889 1.5435 0.9219 RO 0.9754 1.2969 1.1016
GB 0.7545 0.9681 0.9244 SK 0.9322 1.4796 1.1262
SE 0.7129 0.9622 0.9461 IT 0.8403 1.0573 1.1320
DK 0.8215 0.9927 0.9554 LT 0.9440 1.6516 1.1492
RS 0.9668 1.0792 0.9704 PL 1.1525 1.4939 1.1684
DE 0.9932 1.0444 0.9773 CZ 0.9726 1.4525 1.1962
CN 0.8670 1.2887 0.9927 EE 1.0470 1.2875 1.2246
ES 0.9355 1.0823 0.9948 KR 1.0718 1.1518 1.2451
HR 1.0195 1.2881 0.9967 LV 1.1073 1.5558 1.3103
HU 0.9917 0.9751 0.9985

Table 2: The estimates of power-law exponents for tangible fixed assets (µK), the number of work-
ers (µL), and annual sales (µY) for firms in 33 countries in 2007. Country Code: IE IRELAND,
FI FINLAND, US UNITED STATES, NL NETHERLANDS, FR FRANCE, AT AUSTRIA, JP
JAPAN, BG BULGARIA, GB UNITED KINGDOM, SE SWEDEN, DK DENMARK, RS SER-
BIA, DE GERMANY, CN CHINA, ES SPAIN, HR CROATIA, HU HUNGARY, NO NORWAY,
SI SLOVENIA, PT PORTUGAL, GR GREECE, UA UKRAINE, BE BELGIUM, RU RUSSIAN
FEDERATION, RO ROMANIA, SK SLOVAKIA, IT ITALY, LT LITHUANIA, PL POLAND, CZ
CZECH REPUBLIC, EE ESTONIA, KR KOREA, REPUBLIC OF and LV LATVIA.

as is often assumed in the literature in Economics. The value ofµK, µL, andµY for
2005 in Japan is 0.8025, 0.9923, 0.9210, respectively. These empirical estimates
of power-law exponent are consistent with (20) if α = 0.87 andβ = 0.13.7 Note
that this calculation is nothing more than an illustration since the assumptions
adopted above may not necessary be satisfied in the actual data; namely,K andL
may not necessarily be independent, and the sum ofα andβ may not necessarily
be equal to unity. However, this calculation still suggests a way to reconcile the
different empirical estimates of power-law exponents for tangible fixed assets, the

Similarly, the power-law exponent forL/β is µL/β . Also we know fromJessen and Mikosch
(2006) that the product of two power-law variables is again a power-law and its exponent is equal
to the smaller one of the two exponents associated with the two variables. We obtain equation (20)
by combining these properties. See Mizuno et al. (2011) for further discussions and empirical
evidence on this property.

7Given these parameter values,µK
α = 0.921 andµL

β = 7.633, so that min
{

µK
α , µL

β

}
= 0.921,

which is identical to the empirical value ofµY.

www.economics-ejournal.org 12
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number of workers, and annual sales. See Mizuno et al. (2011) for more empirical
results and discussion along this line of research.

3 Conclusion

We have proposed a new method for estimating the power-law exponent of a firm
size variable, such as annual sales. Our focus is on how to empirically identify
a range in which a firm size variable follows a power-law distribution. It is well
known that a firm size variable follows a power-law distribution only beyond some
threshold. On the other hand, in almost all empirical exercises, the right end part
of a distribution deviates from a power-law due to finite size effect. We modify the
method proposed byMalevergne et al.(2011) so that we can identify both of the
lower and the upper thresholds and then estimate the power-law exponent using
observations only in the range defined by the two thresholds.8

Malevergne et al.(2011) propose to test the null hypothesis that, beyond some
threshold, the upper tail of a distribution is characterized by a power law distri-
bution against the alternative that the upper tail follows a lognormal beyond the
same threshold. It is important to note that their intention was to detect a lower
threshold by conducting this test, and that no attention was paid to the presence
of an upper threshold. In our method, we first apply the test byMalevergne et al.
(2011) to detect a upper threshold. We then repeat the test, but we “thin out”
observations before conducting the second round test. Specifically, we discard
observations above the upper threshold, which is detected by the first round test,
and similarly we thin out observations below the upper threshold. Then we apply
the test to the thinned out set of observations to detect a lower threshold.

We have applied this new method to various firm size variables, including
annual sales, the number of workers, and tangible fixed assets for firms in more
than thirty countries. First, we find that our new method works well in identifying
upper and lower thresholds. Second, we find that there exits robust tendency in
each country that the exponent for tangible fixed capital is the lowest, the exponent
of annual sales is the second lowest, and the exponent of the number of workers is
the largest. We provide a tentative argument based on a Cobb-Douglas production
function to explain the observed difference in the three power-exponents.

8In this paper, we identify upper and lower thresholds, and discard observations above and
below the thresholds. However, the observations exceeding the upper threshold, i.e. the most
extreme observations, may contain some useful information on firm size distributions, or more
generally on firm dynamics. It is our future task to carefully examine the properties of these most
extreme observations.
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A Details on numerical calculation

In this appendix we will provide more details about how to numerically solve
equation (9) and the other related equations. Error functions built in programming
languages sometimes fail to solve these equations due to underflow. To illustrate
this, consider a function of the form

f (x) = exp
(
x2){1−Φ

(√
2x
)}

∼ 1
2
√

π

∞

∑
k=0

(−1)k(2k−1)!!
2k

1
x2k+1

Note that the functionf (·) is basically the same function ash(·) in (9). The second
row of this equation is obtained by asymptotic expansion. Figure7acompares the
result obtained from a built-in error function and the result obtained using the
equation resulting from asymptotic expansion (up tox to the 25th power). We
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(a) Black line representsf (x) in (21) com-
puted using a built-in error function; Gray
line represents the same functionf (x), but
it is computed using an equation obtained
from asymptotic expansion equation (up to
x to the 25th power).

(b) Black line representsL(x) in (15) com-
puted using a built-in error function; Gray
line represents the same functionL(x), but
it is computed using an equation obtained
from asymptotic expansion equation (up to
x to the 25th power).

Figure 7: Comparison between the result from built-in error function and the result from asymp-
totic expansion

see that the built-in error function is able to return a precise outcome up tox= 6,
but unable to do so for the values greater than that due to underflow. To fix this
problem, we use a built-in error function for up tox = 4, but use an equation
obtained from asymptotic expansion forx> 4.

Turning to a functionL(·) in equation (15), we compare in Figure7bthe result
obtained from a built-in error function and the result obtained using asymptotic
expansion up tox to the 25th power. Again we see that the built-in error function
fails to return a precise outcome forx greater than 4. More importantly, there is a
discontinuous jump around atx= 4, which cannot be completely eliminated even
if we increase the order of expansion. To fix this, we use the built-in function
for x< 4 and use an equation obtained from asymptotic expansion forx> 5, and
adopt a linear extrapolation between the two. Also we set an approximate value
of L(x) for x > 15 at zero since it can be shown analytically thatL(x) → −0 as
x→ ∞.

Finally, a similar problem occurs forL(x)2/W(x) in equation (14). We use
the built-in function forx < 4 and use an equation obtained from asymptotic ex-
pansion forx> 6, and adopt a linear extrapolation between the two. We also set
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an approximate value ofL(x)2/W(x) at 64/9 for x > 10 since it can be shown
analytically thatL(x)2/W(x)→ 64/9 asx→ ∞.
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