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Abstract

This paper studies a class of social welfare relations (SWRs) on the set of infi-

nite utility streams. In particular, we examine the SWRs satisfying Q-Anonymity,

an impartiality axiom stronger than Finite Anonymity, as well as Strong Pareto

and a certain equity axiom. First, we characterize the extension of the generalized

Lorenz SWR by combining Q-Anonymity with Strong Pareto and Pigou-Dalton

Equity. Second, we replace Pigou-Dalton Equity with Hammond Equity for char-

acterizing the extended leximin SWR. Third, we give an alternative characteriza-

tion of the extended utilitarian SWR by substituting Incremental Equity for Pigou-

Dalton Equity.
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1 Introduction

In exploring a social welfare relation (SWR) on infinite utility streams, Strong Pareto

and Finite Anonymity are usually employed as basic principles.1 These axioms lead

∗This paper won the Kanematsu Fellowship from RIEB, Kobe University in 2008. We are grateful to
Geir Asheim, Takashi Kamihigashi, Yasumi Matsumoto, Shinsuke Nakamura, Hiroo Sasaki, Koichi Suga
and three anonymous referees of the Kanematsu Fellowship for their detailed comments and suggestions.
Remaining errors are our own.

†Graduate School of Economics, Waseda University, 1-6-1, Nishi-waseda, Shinjuku-ku, Tokyo 169-8050,
Japan; e-mail: k-kmg@ruri.waseda.jp

‡Graduate School of Economics, Waseda University, 1-6-1, Nishi-waseda, Shinjuku-ku, Tokyo 169-8050,
Japan; e-mail: tkojima@ruri.waseda.jp

1See, for example, the seminal work by Diamond (1965).
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us to the infinite-horizon variant of Suppes (1966) and Sen’s (1970) grading principle

(Svensson 1980; Asheim et al. 2001). The Suppes-Sen grading principle formalizes a

quite intuitive but fairly weak value judgment. To establish further evaluation criteria

beyond the Suppes-Sen grading principle, recent contributions in the literature propose

and characterize (in terms of a subrelation) several plausible SWRs that satisfy certain

desirable properties in addition to Strong Pareto and Finite Anonymity. Basu and Mitra

(2007) characterize the utilitarian SWR by adding the informational invariance axiom

called Partial Unit Comparability. In Asheim and Tungodden (2004), they impose

the equity axiom called Hammond Equity and characterize the two versions of leximin

principle with one of two alternative preference-continuity axioms as well as Hammond

Equity. The weaker equity axiom, which we call Pigou-Dalton Equity, is examined by

Bossert et al. (2007). They characterize the generalized Lorenz criterion with Pigou-

Dalton Equity and the leximin principle with Hammond Equity.2

Instead of adding auxiliary axioms, Mitra and Basu (2007) strengthen a notion of

anonymity beyond Finite Anonymity in a strongly Paretian SWR.3 They propose the

extended anonymity, called Q-Anonymity, that is defined by a group of cyclic permuta-

tions which contains all finite permutations. While it is well-known that the anonymity

axiom defined by all possible permutations comes in conflict with Strong Pareto (van

Liedekerke 1995; Lauwers 1997a), Mitra and Basu show that any (and only) group(s)

of cyclic permutations can define the anonymity axiom consistent with a strongly Pare-

tian SWR. Using Q-Anonymity and Strong Pareto, Banerjee (2006a) characterizes the

extended Suppes-Sen grading principle. Furthermore, he also characterizes the ex-

tended utilitarian SWR, called Q-utilitarian SWR, by strengthening Finite Anonymity

to Q-Anonymity (with a certain restriction) in the list of the axioms in Basu and Mitra’s

(2007) characterization of the utilitarian SWR.

The principal task of this paper is to examine whether Q-Anonymity is consistent

with a strongly Paretian and equitable SWR. The results obtained in this paper are

positive. We define the extensions of the generalized Lorenz and the leximin SWRs,

called Q-generalized Lorenz criterion and Q-leximin principle, in the same way as

Mitra and Basu (2007) and Banerjee (2006a) have done for the Suppes-Sen grading

principle. Then, we show that each of the Q-generalized Lorenz criterion and the Q-

leximin principle is well-defined as a SWR and that the former is characterized in terms

of Strong Pareto, Q-Anonymity and Pigou-Dalton Equity and the latter by replacing

Pigou-Dalton Equity with Hammond Equity. In this paper, we also provide a new char-

acterization of the Q-utilitarian SWR by using the equity axiom called Incremental

2The logical relationship among the two versions of the leximin principle characterized by Asheim and
Tungodden (2004) and the leximin principle in Bossert et al. (2007) is the same as the one among the
catching-up and the overtaking SWRs and the utilitarian SWR in Basu and Mitra (2007).

3See also Lauwers (1997b; 2006) and Fleurbaey and Michel (2003).
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Equity. This characterization result is established without the restriction employed by

Banerjee (2006a) on the permissible permutations considered in Q-Anonymity. We

show that the Q-utilitarian SWR is well-defined even without Banerjee’s restriction on

the permissible permutations. The direct counterpart of Banerjee’s (2006a) characteri-

zation result is also established.

The next section introduces notation and definitions. Section 3 presents axioms

and establishes the characterizations of the Q-generalized Lorenz criterion and the Q-

leximin principle. Section 4 provides two characterizations of the Q-utilitarian SWR.

Section 5 concludes. All proofs are relegated to Appendix.

2 Notation and definitions

Let R (resp. R++) be the set of all (resp. all positive) real numbers and N the set of

all positive integers. Let X = RN be the set of all utility streams x = (x1, x2, . . . ).

For all i ∈ N, xi is interpreted as the utility level of the ith generation. For all x ∈ X

and all n ∈ N, we write x−n = (x1, . . . , xn) and x+n = (xn+1, xn+2, . . . ). For all

x ∈ X and all n ∈ N,
(
x−n

(1) , . . . , x
−n
(n)

)
denotes a rank-ordered permutation of x−n

such that x−n
(1) ≤ · · · ≤ x−n

(n), ties being broken arbitrarily. For all x,y ∈ X , we write

x > y if xi ≥ yi for all i ∈ N, and x > y if x > y and x ̸= y. Negation of a

statement is indicated by the symbol ¬.

A SWR is a reflexive and transitive binary relation, %, on X . Let ≻ (resp. ∼) be

the asymmetric (resp. symmetric) part of %. A SWR %A is a subrelation of a SWR

%B if (i) x, y ∈ X , x %A y ⇒ x %B y and (ii) x, y ∈ X , x ≻A y ⇒ x ≻B y.

A permutation matrix is an infinite matrix P = (pij)i,j∈N such that (i) for all i ∈ N,

there exists j(i) ∈ N such that pij(i) = 1 and pij = 0 for all j ̸= j(i); and (ii) for all

j ∈ N, there exists i(j) ∈ N such that pi(j)j = 1 and pij = 0 for all i ̸= i(j). Let P be

the set of all permutation matrices. Note that, for all x ∈ X and all P ∈ P , the product

Px = (Px1, Px2, . . .) belongs to X , where Pxi =
∑

k∈N pikxk for all i ∈ N. For

any P ∈ P , let P ′ be the inverse of P satisfying P ′P = PP ′ = I , where I is the

infinite identity matrix.4 For all P = (pij)i,j∈N ∈ P and all n ∈ N, let P (n) denote

the n×n matrix (pij)i,j∈{1,...,n}. A matrix P = (pij)i,j∈N ∈ P is a finite permutation

matrix if there exists n ∈ N such that pii = 1 for all i > n. Let F be the set of all finite

permutation matrices.

Let ei be the stream in X with 1 in the ith place and 0 elsewhere, i.e. the ith unit

vector in X . A permutation P ∈ P is said to be cyclic if, for any i ∈ N, there exists

k(i) ∈ N such that P k(i)ei = ei, where P k(i) denotes the k(i) times iterated multi-

plication of P . Note that if P = (pij)i,j∈N is cyclic then, for all i ∈ N, there exists

4For any P , Q ∈ P , the product P Q is defined by (rij)i,j∈N with rij =
P

k∈N pikqkj .
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a k′(i)-dimensional (k′(i) ≤ k(i)) vector (i1, . . . , ik′(i)) of distinct positive integers

with i1 = i and pi2i1 = · · · = pik′(i)ik′(i)−1
= pi1ik′(i)

= 1. While P and F define a

group with respect to the matrix multiplication, a special class of cyclic permutations

does not (e.g. the class of all cyclic permutations).5

3 Strong impartiality and consequentialist equity

We examine the possibility of a strongly Paretian and equitable SWR that reflects im-

partiality stronger than Finite Anonymity. We begin with Strong Pareto and the ex-

tended anonymity called Q-Anonymity. In what follows, let Q be some fixed group of

cyclic permutations with F ⊆ Q ⊆ P .

Strong Pareto (SP): For all x, y ∈ X , if x > y, then x ≻ y.

Q-Anonymity (QA): For all x ∈ X and all P ∈ Q, Px ∼ x.

In the case of Q = F , F-Anonymity is equivalent to Finite Anonymity (FA). When Q
is the class of fixed step permutations Qfix = {P ∈ P : there exists k ∈ N such that,

for each n ∈ N, P (nk) is a finite dimensional permutation matrix}, Qfix-Anonymity

corresponds to Fixed Step Anonymity in Lauwers (1997b).6

The following equity axioms formalize the transfer principle due to Pigou (1912)

and Dalton (1920) and the stronger equity principle by Hammond (1976).

Pigou-Dalton Equity (PDE): For all x, y ∈ X , if there exist i, j ∈ N and ϵ ∈ R++

such that xi = yi + ϵ ≤ yj − ϵ = xj and xk = yk for all k ∈ N \ {i, j}, then x ≻ y.

Hammond Equity (HE): For all x,y ∈ X , if there exist i, j ∈ N such that yi < xi ≤
xj < yj and xk = yk for all k ∈ N \ {i, j}, then x ≻ y.

Both two axioms are widely used in the extensive literature on social choice theory,

and we omit a detailed explanation for the sake of brevity.7

We introduce two SWRs satisfying SP, FA and PDE (and HE). For all n ∈ N, let

%n
G be the finite-horizon generalized Lorenz SWR defined on Rn: for all x−n, y−n ∈

Rn, x−n %n
G y−n iff

∑k
i=1 x−n

(i) ≥
∑k

i=1 y−n
(i) for all k ∈ {1, . . . , n}, and let %n

L be

the finite-horizon leximin SWR on Rn: for all x−n, y−n ∈ Rn, x−n %n
L y−n iff x−n

is a permutation of y−n, or there exists m ∈ {1, . . . , n} such that x−n
(i) = y−n

(i) for all

5For any Q ⊆ P , Q is said to define a group w.r.t. the matrix multiplication if (i) for all P , Q ∈ Q,
P Q ∈ Q, (ii) there exists I ∈ Q such that for all P ∈ Q, IP = P I = P , (iii) for all P ∈ Q, there
exists P ′ ∈ Q such that P ′P = P P ′ = I, and (iv) for all P , Q, R ∈ Q, (P Q)R = P (QR).

6See also Fleurbaey and Michel (2003), Banerjee (2006a), Lauwers (2006), and Mitra and Basu (2007).
7See d’Aspremont and Gevers (2002) and Bossert and Weymark (2004) as well as Asheim and Tungod-

den (2004) and Bossert et al. (2007). A weaker version of HE is proposed by Asheim and Tungodden (2005)
under the name Hammond Equity for the Future.
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i < m and x−n
(m) > y−n

(m). The generalized Lorenz and the leximin SWRs, denoted %G

and %L respectively, are defined by: for all x, y ∈ X ,

x %G y ⇔ there exists n ∈ N such that x−n %n
G y−n and x+n > y+n; (1)

x %L y ⇔ there exists n ∈ N such that x−n %n
L y−n and x+n > y+n. (2)

Bossert et al. (2007) show that the class of all SWRs that include %G (resp. %L) as a

subrelation is characterized by SP, FA, and PDE (resp. HE) (see Table 1 in Sect. 4).

We now extend the SWRs %G and %L to satisfy QA. For any SWR % on X , define

the Q-closure of %, denoted %Q, as follows:8 for all x, y ∈ X ,

x %Q y ⇔ there exists P ∈ Q such that Px % y. (3)

Let %GQ (resp. %LQ) denote the Q-closure of %G (resp. %L). We call %GQ Q-

generalized Lorenz criterion and %LQ Q-leximin principle. Each of %GQ and %LQ is

well-defined as a SWR on X (see Lemma 1 in Appendix).

The following theorems identify the SWRs satisfying SP, QA and the equity ax-

iom(s).

Theorem 1. Let Q be a group of cyclic permutations with F ⊆ Q ⊆ P . Then, a SWR

% on X satisfies SP, QA, and PDE if and only if %GQ is a subrelation of %.

Theorem 2. Let Q be a group of cyclic permutations with F ⊆ Q ⊆ P . Then, a SWR

% on X satisfies SP, QA, and HE if and only if %LQ is a subrelation of %.

As discussed by Basu and Mitra (2007) and Banerjee (2006a), Theorem 1 (resp. 2)

tells that %GQ (resp. %LQ) is the minimum element w.r.t. set inclusion among all the

SWRs satisfying the axioms.

4 Q-utilitarian SWR and 2-generation conflicts

In this section, we generalize Banerjee’s (2006a) Q-closure of the utilitarian SWR that

is originally defined by Q with F ⊆ Q ⊆ Qfix. As shown by Lauwers (2006), Qfix

is not maximal (w.r.t. set inclusion) within the groups of cyclic permutations. We

reformulate the Q-closure of the utilitarian SWR for Q with F ⊆ Q ⊆ P and provide

two characterizations of it with (i) an equity axiom or (ii) an invariance property.

Let %n
U denote the finite-horizon utilitarian SWR defined on Rn: for all x−n,y−n ∈

Rn, x−n %n
U y−n ⇔

∑n
i=1 xi ≥

∑n
i=1 yi. The utilitarian SWR %U is defined as: for

8The term “Q-closure” is suggested by a referee of this journal. The Q-closure of the Suppes-Sen SWR
and the Qfix-closure of the utilitarian SWR are proposed by Mitra and Basu (2007) and Banerjee (2006a)
respectively. See also Lauwers (1997b) and Fleurbaey and Michel (2003) for other Qfix-anonymous SWRs.

5



all x, y ∈ X ,

x %U y ⇔ there exists n ∈ N such that x−n %n
U y−n and x+n > y+n. (4)

Let %UQ denote the Q-closure of %U . We call %UQ Q-utilitarian relation. The

relation %UQ is well-defined as a SWR on X (see Lemma 1 in Appendix).

The following axiom deals with 2-generation conflicts similar to PDE and HE.9

Incremental Equity (IE): For all x, y ∈ X , if there exist i, j ∈ N such that xi −yi =

yj − xj and xk = yk for all k ∈ N \ {i, j}, then x ∼ y.

IE asserts that, for any utility transfer between two generations, the pre-transfer utility

stream and the post-transfer stream are equally good. In contrast to PDE, the value

judgment by IE is made without any reference to the relative utility levels of the two

generations. Note that IE implies FA.10

The next proposition characterizes %U with IE.

Proposition 1. A SWR % on X satisfies SP and IE if and only if %U is a subrelation

of %.

As shown below, using IE as the resolution to 2-generation conflicts, all SWRs

satisfying SP and QA are solely those including %UQ as a subrelation.

Theorem 3. Let Q be a group of cyclic permutations with F ⊆ Q ⊆ P . Then, a SWR

% on X satisfies SP, QA, and IE if and only if %UQ is a subrelation of %.

Next, we introduce an invariance axiom employed by Banerjee (2006a).

Partial Translation Scale Invariance (PTSI): For all x, y ∈ X , all α ∈ RN, and all

n ∈ N, if x+n = y+n and x % y, then x + α % y + α.

PTSI is interpreted as saying that utility differences of finitely many generations are

comparable but utility levels are not.11

The following result generalizes Banerjee’s (2006a) characterization of %UQ to the

case of F ⊆ Q ⊆ P .

Theorem 4. Let Q be a group of cyclic permutations with F ⊆ Q ⊆ P . Then, a SWR

% on X satisfies SP, QA, and PTSI if and only if %UQ is a subrelation of %.

9IE was first proposed by Blackorby et al. (2002) in a finite population framework. See also d’Aspremont
and Gevers (2002) and Lemma 2 in Asheim and Tungodden (2004).

10A permutation exchanging only two generations entails utility transfer between them, and any finite
permutation is represented by a finite composition of permutations exchanging only two generations.

11For details, see d’Aspremont and Gevers (2002) and Bossert and Weymark (2004). In Basu and Mitra
(2007), PTSI is called Partial Unit Comparability and is used to characterize %U (see Table 1).
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Table 1: Characterizations of F-anonymous SWRs and Q-closures

SWR efficiency impartiality equity invariance characterization
(minimum) SP FA QA PDE HE IE PTSI

Q-G-Lorenz ⊕ + ⊕ ⊕ – – Theorem 1
G-Lorenz ⊕ ⊕ ⊕ – – Bossert et al. (2007)

Q-leximin ⊕ + ⊕ + ⊕ – – Theorem 2
Leximin ⊕ ⊕ + ⊕ – – Bossert et al. (2007)

Q-utilitarian
D ⊕

⊕
+
+

⊕
⊕

–
–

–
–

⊕
+

+
⊕

Theorem 3

Theorem 4/Banerjee (2006a)

Utilitarian
D ⊕

⊕
+
⊕

–
–

–
–

⊕
+

+
⊕

Proposition 1

Basu and Mitra (2007)

Table 1 summarizes our five characterizations and compares them with the related

results by Banerjee (2006a), Basu and Mitra (2007), and Bossert et al. (2007). For

each row in Table 1, the class of SWRs that includes the SWR in the first column as a

subrelation is characterized by the axioms indicated by ⊕, and furthermore, each SWR

in the class satisfies (resp. violates) the axioms indicated by + (resp. –).

5 Conclusion

We characterized the three classes of strongly Paretian and Q-anonymous SWRs in

terms of PDE, HE and IE. We also generalized Banerjee’s (2006a) characterization of

%UQ to any group Q of cyclic permutations that includes finite permutations F . For

each theorem, it follows from Arrow’s (1963) variant of Szpilrajn’s (1930) lemma that

there exists an ordering on X satisfying the axioms.12 Thus, in Theorems 1 and 2,

the escape route by Bossert et al. (2007) from the impossibilities of an equitable (and

continuous or representable) ordering (Sakai 2003, 2006; Banerjee 2006b; Hara et al.

2008) is refined with stronger impartiality.

Theorems 1 to 4 are established for an arbitrary group Q of cyclic permutations

with F ⊆ Q ⊆ P , i.e. applicable even to maximal forms of QA. Lauwers (2006)

shows that a maximal group of cyclic permutations involves an ultrafilter on the lattice

of partitions of N and is nonconstructive. Consequently, the Qfix-closures, which have

explicit descriptions, will be plausible extensions for a practical purpose, though Qfix-

Anonymity is not the strongest anonymity consistent with a strongly Paretian SWR.

An issue to be addressed in future work is to test the usefulness of our newly defined

Qfix-closures on an intergenerational resource allocation model.

12However, these orderings cannot have an explicit description (Lauwers 2006; Zame 2007).
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Appendix: Proofs

A finite-horizon SWR is a reflexive and transitive binary relation on a finite dimensional

Euclidean space. We provide two lemmata which are stated for the SWRs defined in

terms of the Pareto criterion and a sequence of finite-horizon SWRs satisfying the fol-

lowing properties common to (%n
G)n∈N, (%n

L)n∈N, and (%n
U )n∈N:

P1: For all n ∈ N and all x−n, y−n ∈ Rn, if x−n
i ≥ y−n

i for all i ∈ {1, . . . , n} and

x−n ̸= y−n, then x−n ≻n y−n;

P2: For all n ∈ N, all x−n, y−n ∈ Rn, and all r ∈ R, if x−n %n y−n then

(x−n, r) %n+1 (y−n, r);

P3: For all n ∈ N and all x−n, y−n ∈ Rn, if x−n is a permutation of y−n, then

x−n ∼n y−n.

Let (%n)n∈N be a sequence of finite-horizon SWRs (one for each time horizon n ∈ N)

satisfying P1 to P3. Define the binary relation % on X by, for any x, y ∈ X ,

x % y ⇔ there exists n ∈ N such that x−n %n y−n and x+n > y+n.13 (5)

As shown in Claim 1 below, the relation % is a SWR on X . Recall that %Q denotes the

Q-closure of %.

We owe a lot to Banerjee’s (2006a) work in establishing the following lemmata.

Lemma 1. %Q is reflexive and transitive.

Proof of Lemma 1. The proof proceeds through two claims.

Claim 1. The binary relation defined in (5) is reflexive and transitive.

Reflexivity is obvious. To prove % is transitive, consider any x,y, z ∈ X with

x % y and y % z. By (5), there exist n, n′ ∈ N such that (i) x−n %n y−n and

x+n > y+n and (ii) y−n′ %n′
z−n′

and y+n′ > z+n′
. Let n̄ = max{n, n′}. We only

provide the proof for the case of n̄ = n′. By (i) and P2, (x−n, yn+1, . . . , yn̄) %n̄ y−n̄.

By P1 and reflexivity, x−n̄ %n̄ (x−n, yn+1, . . . , yn̄), thus x−n̄ %n̄ y−n̄ by transitivity.

By transitivity, x−n̄ %n̄ z−n̄. Since x+n̄ > z+n̄, x % z by (5).

Claim 2. The binary relation defined in (5) satisfies the following properties: for any

P ∈ Q and any x, y ∈ X , x % y if and only if Px % Py.

To prove the only-if-part, take any P = (pij)i,j∈N ∈ Q and let x % y. By (5),

there exists n ∈ N such that x−n %n y−n and x+n > y+n. Let n̄ = max{i ∈
N : pij = 1, j ∈ {1, . . . , n}}. Define M by M = {i ∈ {1, . . . , n̄} : pij =

1 for j ∈ {n + 1, n + 2, . . .}}, and let ĩ denote the ith smallest number in M . Note

13d’Aspremont (2007) refers to this type of binary relation as simplified criterion.
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that {x1, . . . , xn} ⊆ {Px1, . . . , Pxn̄} for all x ∈ X . Define w−n̄, z−n̄ ∈ Rn̄ by

(i) w−n = x−n and z−n = y−n and (ii) wn+i = Pxĩ and zn+i = Pyĩ for all

i ∈ {1, . . . , n̄ − n}. Since x+n > y+n, w−n̄ %n̄ z−n̄ by P1 and P2. By P3,

w−n̄ ∼n̄ Px−n̄ and z−n̄ ∼n̄ Py−n̄. By transitivity, Px−n̄ %n̄ Py−n̄. Since

Px+n̄ > Py+n̄ holds, Px % Py by (5). The if-part is proved by using the inverse

P ′ in the only-if-part.

We now prove Lemma 1. Since I ∈ Q and % is reflexive, %Q is reflexive. To prove

%Q is transitive, consider x, y, z ∈ X with x %Q y and y %Q z. By (3), there exist

P ,Q ∈ Q such that Px % y and Qy % z. By Claim 2, Q(Px) % Qy. Since % is

transitive (by Claim 1), Q(Px) % z. Since QP ∈ Q, x %Q z by (3).

Lemma 2. For any x, y ∈ X ,{
x ≻Q y if and only if there exists P ∈ Q such that Px ≻ y; (6a)

x ∼Q y if and only if there exists P ∈ Q such that Px ∼ y. (6b)

Proof. First, we prove the only-if-part of (6a) by contradiction. Assume x ≻Q y.

By (3), there exists P ∈ Q such that Px % y and ¬(Qy % x) for all Q ∈ Q.

Suppose that there is no P ∈ Q such that Px ≻ y. Then, Px ∼ y. By Claim 2,

x = P ′(Px) ∼ P ′y, which contradicts that ¬(Qy % x) for all Q ∈ Q.

Next, to prove the if-part of (6a), assume that there exists P ∈ Q such that Px ≻
y. By (3), x %Q y. We show ¬(y %Q x) by contradiction. Suppose y %Q x. By

(3), there exists Q ∈ Q such that Qy % x. By Claim 2, P (Qy) % Px. Let R =

(rij)i,j∈N denote the composition PQ. Note that R ∈ Q. By transitivity, Ry ≻ y. By

(5), P1 and P2, two cases are now possible: (i) Ry−n ≻n y−n and Ry+n = y+n for

some n ∈ N or (ii) for some n ∈ N, Ry−n %n y−n and Ry+n > y+n holds with an

infinite number of strict inequality. First, consider the case (i). Take any i ∈ {1, . . . , n}.

Since R ∈ Q, there exists a finite dimensional vector (i1, . . . , ik) of distinct positive

integers with i1 = i and ri2i1 = · · · = rikik−1 = ri1ik
= 1. Define h by h = min{t ∈

{2, . . . , k} : it ∈ {1, . . . , n}} if {i2, . . . , ik} ∩ {1, . . . , n} ̸= ∅; and h = 1 otherwise.

Since Ry+n = y+n, yi = Ryi2 = yi2 = Ryi3 = · · · = Ryih
. Since the number

ih must differ for different i ∈ {1, . . . , n} (otherwise, R fails to be a permutation

matrix), {Ry1, . . . , Ryn} = {y1, . . . , yn}. By P3, Ry−n ∼n y−n, a contradiction.

Next, consider the case (ii). Note that the cardinality of M = {i ∈ N : Ryi > yi}
is infinite. Take any i ∈ M . By the same argument as in the case (i), there exists a

vector (i1, . . . , ik) of distinct numbers with i1 = i and ri2i1 = · · · = ri1ik
= 1. Since

Ryi > yi, Ryj < yj holds for some j ∈ {i2, . . . , ik}. Applying the same argument

to i′ ∈ M\{i1, . . . , ik}, we have Ryj′ < yj′ for some j′ with j′ ̸= j. Consequently,

the cardinality of {j ∈ N : Ryj < yj} must be infinite, which contradicts that the
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cardinality of {j ∈ N : Ryj < yj} is at most n − 1.

We now prove the equivalence assertion in (6b). First, assume x ∼Q y. By (3),

there exists P ∈ Q such that Px % y. If Px ≻ y, then x ≻Q y by (6a), which

contradicts x ∼Q y. Thus, Px ∼ y. Next, assume that there exists P ∈ Q such that

Px ∼ y. By Claim 2, x = P ′(Px) ∼ P ′y. Then, by (3), x %Q y and y %Q x, i.e.,

x ∼Q y.

We now provide the proofs of Theorem 1 and Proposition 1. Theorems 2 to 4

are proved by the same argument as in the proof of Theorem 1 by using the existing

characterization results of %L (by Bossert et al. (2007)) and %U (by Basu and Mitra

(2007)) and Proposition 1.

Proof of Theorem 1. The proof of the if-part is easy and omitted. Assume x ≻GQ y.

By (6a), there exists P ∈ Q such that Px ≻G y. Note that, from the characterization

of %G by Bossert et al. (2007), %G is now a subrelation of %. Thus, Px ≻ y. By QA,

x ∼ Px, and x ≻ y by transitivity. Using (6b), the same argument proves that x ∼ y

whenever x ∼GQ y.

Proof of Proposition 1. The if-part is straightforward and omitted. If x ∼U y, then

x ∼ y follows from (4) and the well-known implication of IE that x ∼ y holds

whenever
∑n

i=1 xi =
∑n

i=1 yi and x+n = y+n for some n ∈ N (See Lemma 3

in Asheim and Tungodden (2004) and also Theorem 10 in Blackorby et al. (2002)).

Next, assume x ≻U y. By (4), we can find n ∈ N such that
∑n

i=1 xi >
∑n

i=1 yi

and x+n > y+n. Take z ∈ X such that z1 = y1 +
∑n

i=1(xi − yi), zi = yi for all

i ∈ {2, . . . , n}, and zj = xj for all j ∈ {n + 1, . . . }. By SP and the implication of IE
stated above, z ≻ y and x ∼ z, thus x ≻ y.
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